
Received 3 April 2024, accepted 17 April 2024, date of publication 1 May 2024, date of current version 30 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3395644

Forensic Detection of Timestamp Manipulation
for Digital Forensic Investigation
JUNGHOON OH 1,2, SANGJIN LEE 1, AND HYUNUK HWANG2, (Member, IEEE)
1School of Cybersecurity, Korea University, Seongbuk-gu, Seoul 02841, South Korea
2The Affiliated Institute of ETRI, Yuseong-gu, Daejeon 34044, South Korea

Corresponding author: Sangjin Lee (sangjin@korea.ac.kr)

ABSTRACT File system forensics is one of the most important areas of digital forensic investigations.
To date, various file system forensic methods have been studied, of which anti-forensic countermeasures
include deleted file recovery, metadata recovery, and metadata manipulation detection. In particular,
manipulation detection of timestamps, which are important file metadata, is one of the key techniques
in digital forensic investigations. Existing detection methods for file timestamp manipulation in the New
Technology File System (NTFS) have been studied based on various file system and operating system
artifacts. This paper compares and analyzes the features and limitations of various existing detectionmethods
and confirms that the NTFS journal-based detection method is the most effectively way to detect timestamp
manipulation. However, previous NTFS journal-based detectionmethods have limitations such as incorrectly
identifying normal events as manipulation or detecting manipulation only in limited cases. Therefore,
we propose a new detection algorithm that can overcome these limitations. The proposed detection algorithm
was implemented as a tool and verified through performance comparison experiments with existing detection
methods. The results of experiment showed that the proposed detection algorithm has significantly improved
performance by detecting timestamp manipulations that were not detected by previous detection methods
and identifying normal events that were misidentified by existing detection methods. Finally, we introduce a
case in which existing detection methods and the proposed detection algorithm are applied to malware that
performs file timestamp manipulation in real-world advanced persistent threat attacks. The results of which
confirm the superiority of the proposed detection algorithm.

INDEX TERMS File system, forensics, anti-forensic countermeasures, timestamp manipulation, forensic
detection.

I. INTRODUCTION
File system forensics is a branch of digital forensics that
analyses and investigates the structure and contents of file
systems [1]. Since most of the evidence collected during a
digital forensic investigation is at the file level, file system
forensics is the most basic and important element for forensic
investigators. To date, various file system forensic methods
have been studied, including tree structure analysis [1], [2],
[3], [4], metadata analysis [5], [6], [7], [8], [9], [10], and anti-
forensic countermeasures. Among these file system forensic
methods, anti-forensic countermeasures include deleted file
recovery [11], [12], metadata recovery [13], [14], [15],

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Impedovo .

[16], [17], [18], [19], [20], and metadata manipulation
detection [21], [22], [23], [24], [25], [26], [27]. In particular,
manipulation detection of timestamps, which are important
file metadata, is one of the key techniques in digital forensics
investigations because it can reveal files that malicious users
or attackers are trying to hide.

File timestamp manipulation is when a malicious user
or attacker manipulates the timestamp of a file to avoid
detection by a timeline analysis [28]. Timeline analysis is
a chronological analysis of events extracted from the file
system and artifacts during a digital forensic investigation.
Once a specific trace is found, additional traces can be
found by analyzing events that occurred before and after
the trace [29]. For example, if an investigator finds in a
timeline analysis that a specific malware execution event

72544

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME 12, 2024

https://orcid.org/0000-0002-6194-8044
https://orcid.org/0000-0002-6809-5179
https://orcid.org/0000-0002-9285-2555

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

occurred, followed by a specific file creation event, the
investigator may suspect that the file was created by malware.
In the above case, if the attacker had manipulated the
creation time of the generated file into the distant past,
the investigator would not be able to detect the file in
the timeline analysis. This file timestamp manipulation is
mainly performed on files that remain on the system, such as
backdoors. In fact, timestamp manipulation is second only to
file deletion when it comes to erasing traces of an attack [30],
meaning that timestamp manipulation is the most commonly
performed operation to hide traces of undeleted files on the
system.

Previous detection methods for file timestamp manipula-
tion in the New Technology File System (NTFS), one of
the most widely used file systems today, have been studied
based on various file system and operating system artifacts.
However, existing detection studies have been conducted for
each artifact individually, and there has been no integrated
analysis of the different detection methods. This paper
compares and analyzes the features and limitations of these
various existing detection methods and confirms that the
NTFS journal-based detection method, which can directly
detect timestampmanipulation behavior, can most effectively
detect timestamp manipulation. However, previous NTFS
journal-based detection methods have limitations such as
detecting normal events as manipulation or detecting manip-
ulation only in limited cases, which make them difficult to
use in actual digital forensic investigations.

Therefore, we propose a new detection algorithm that can
overcome the limitations of previous NTFS journal-based
detection methods. To this end, the timestamp manipulation
behavior of various timestamp manipulation tools and
malware were studied, as well as a method for identifying
file system tunneling [31], which is the main cause of
false positives in existing detection methods. The proposed
detection algorithm was implemented as a tool and verified
through performance comparison experiments with existing
detection methods. The results of experiment showed that
the proposed detection algorithm has significantly improved
performance by detecting timestamp manipulations that
were not detected by previous detection methods, and not
generating any false positives due to file system tunneling.
Finally, we introduce a case in which existing detection
methods and the proposed detection algorithm are applied
to detect the manipulation of a malware that performs file
timestamp manipulation in real-world advanced persistent
threat (APT) attacks. In this case, the proposed detection
algorithm not only detected additional detection factors that
were not detected by existing detection methods, but also
detected timestamp manipulation that was not detected by
existing detection methods at all.

The main contributions of this paper were as follows:
-We propose a new detection algorithm that overcomes the

limitations of existing NTFS journal-based detection meth-
ods. The proposed detection algorithm detects timestamp
manipulations that are not detected by existing detection

TABLE 1. NTFS timestamps.

methods and does not generate false positives due to file
system tunneling.

- We analyze the behavior of file timestamp manipulation
of a malware used in a real APT attack and provide the results
of applying existing detection methods and the proposed
detection algorithm. The results confirm that the proposed
detection algorithm is more useful in real-world digital
forensic investigations.

- The implemented tools are released to contribute to the
digital forensic community.

- We provided the results of a comparative analysis
regarding the characteristics and limitations of different
artifact-based detection methods. The results of this analysis
can be used to effectively detect timestamp manipulation in
various system environments and situations.

The remainder of this paper is organized as follows.
Section II describes the background knowledge needed to
understand the detection of file timestamp manipulation in
NTFS. Section III introduces previous detection studies of
timestamp manipulation in NTFS, and Section IV presents
a comparative analysis of the features and limitations of the
existing detection studies discussed in Section III. Section V
describes a detection algorithm that improves existing NTFS
journal-based detection methods. Section VI introduces the
tool as implemented and describes the results of performance
evaluation between the detection algorithm proposed in this
paper and previous detectionmethods. Section VII introduces
the results of applying previous detection methods and the
proposed detection algorithm to malware that manipulates
file timestamps used in real-world APT attacks. Section VIII
discuss the limitations of the proposed detection algorithm
and the process of determining timestamp manipulation in
an integrated manner. Finally, Section IX summarizes the
conclusions of this paper.

II. BACKGROUND KNOWLEDGE
A. NTFS TIMESTAMP & $MFT
NTFS, which is the main file system of the Windows
operating system, stores the timestamp of each file as a
64bit value in 100-nanoseconds since January 1, 1601 [32].
There are four types of timestamp: Last Modified Time,
Last Accessed Time, File Creation Time, and MFT Entry
Modified Time. Each timestamp can be expressed inM, A, C,
E abbreviation format [26]. In later papers, each timestamp is
expressed as an abbreviation, as shown in Table 1.
The master file table ($MFT) is a file that stores the

metadata of all files and folders in NTFS. It consists of

VOLUME 12, 2024 72545

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

entry units, and the metadata of each file and folder are
stored in one or more entries. Each entry consists of attribute
units, and the four timestamps corresponding to MACE
are stored in the $STANDARD_INFORMATION attribute
and the $FILE_NAME attribute respectively. The timestamp
of the $STANDARD_INFORMATION attribute is the time
information of the file and folder that can be checked in
Windows Explorer, and the timestamp in the $FILE_NAME
attribute is updated when the file name or location in the
volume is changed [1]. Therefore, each file and folder in
NTFS has a total of eight timestamps.

In a later paper, the $STANDARD_INFORMATION
attribute was renamed by reducing it to $SI, the $FILE_
NAME attribute to $FN, and the two were expressed in
combination with the MACE timestamp. For example, $SI-E
means the MFT Entry Modified Time of the $STAN-
DARD_INFORMATION attribute, and $SI-MC means the
Last Modified Time and File Creation Time of the $STAN-
DARD_INFORMATION attribute.

B. $LOGFILE
$LogFile, which is a metafile of the NTFS, is a log file
that records data from such file system transactions as
file creations, deletions, data changes, and name changes.
Transaction data are stored in record units, where each record
consists of redo data, which are the data updated to the
$MFT entry, and undo data, which are the data before the
update. If the file system is corrupted due to a system
error, the operating system restores the file system to its
normal state by using the undo data [1]. Therefore, $LogFile
is an important artifact that provides information about all
transaction operations performed in the file system during a
specific period. The transaction data stored in the $LogFile
file reflects how much data have been updated in which
location in which attribute of which entry in the $MFT.
Therefore, various studies have been conducted to extract
human-recognizable file-level events (creation, deletion,
renaming,movement) from these transaction data [6], [7], [8],
[9], [10].

C. $USNJRNL
$UsnJrnl is a log file that stores NTFS change logs in record
units and is used by applications to determine whether a
particular file has changed. The format of the change log data
includes the time when the change event occurred, the file or
directory name in which the event occurred, and the event
type [9]. Therefore, the $UsnJrnl is an important artifact to
know all the change events that occurred in the file system
during a specific period. Because $UsnJrnl records store data
in a fixed format, there are many tools analyzing the data of
$UsnJrnl [6], [7], [8], [33].

D. METHODS OF TIMESTAMP MANIPULATION
The methods for manipulating the timestamp of a file on a
Windows system are as follows.

The first method is to use the SetFileTime() API [34].
The corresponding API can change the MAC among the
timestamp of $SI. For $SI-E, this is changed to the time when
the SetFileTime() API is used. The SetFileTime() API is
mainly used in GUI-type timestamp manipulation tools [35],
[36], [37], [38].

The second method is to use Powershell’s Get-Item
Cmdlet [39]. The corresponding method is executed by
importing an object of a specific file through Get-Item
Cmdlet and then setting a time value for the creationtime, last-
writetime, and lastaccesstime attributes of the file object [40].
This method can be performed in the Powershell command
window or by writing a Powershell script.

The third method is to use the NtSetInformationFile()
API [41]. This API can change all timestamps (MACE)
of $SI. The NtSetInformationFile() API is mainly used in
CLI-type timestamp manipulation tools [42], [43], [44].

The fourth method is to change the timestamp of $FN.
This method uses the feature that when a file is moved
within the same volume, the timestamp of $SI is copied
to the timestamp of $FN as is. The reason for using this
method is that there is no API that can directly change the
timestamp of $FN in Windows systems. For example, after
changing the $SI-MACE of a specific file to a desired time
using the NtSetInformationFile() API, and then moving the
file to another location within the same volume, the changed
$SI-MACE is copied to $FN-MACE. Finally, if $SI-E
changed by the file movement is changed back to the desired
time, all timestamps of the file can be changed to the
desired time [26]. A tool that uses this method is SetMACE
(v1.0.0.4) [44].
In addition, there is a way to change the timestamp

by accessing the physical disk directly, but this method is
currently unavailable when a Windows system is running
because Microsoft patched it to prevent direct access to
the system drive [26]. Therefore, this paper excludes the
detection of timestamp manipulation by this method.

III. RELATED WORKS
Previous studies for detecting file timestamp manipulation
in NTFS can largely be divided into methods that use file
system artifacts and those that use operating system artifacts.
Table 2 summarizes the classification and detailedmethods of
each type of detection method. In later papers, each detection
method is represented as an alias, as shown in Table 2.

A. FILE SYSTEM ARTIFACTS-BASED METHODS
Existing detection methods using file system artifacts include
using $MFT, which stores metadata for all files and
directories in NTFS, and $LogFile and $UsnJrnl, which are
NTFS journal files.

1) $MFT
The detection methods using $MFT are the following. The
first method ($MFT-1), proposed by Ding and Zou [21]
and Jang et al. [22], checks for normal rules for $SI/$FN

72546 VOLUME 12, 2024

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

TABLE 2. Overview of existing detection methods for timestamp manipulation in NTFS.

timestamps in $MFT entries. This method looks at the
timestamp form and change method of normal files without
timestamp manipulation and creates a normal rule (e.g., $SI-
M <= $SI-E) through this, nd determines that timestamp
modulation has occurred in the file when a particular file
violates it. Details of the normal rules disclosed so far can
be found in Table 2. The second method ($MFT-2), proposed
by Willassen [23], detects timestamp manipulation using the
continuity of the sequence and entry numbers of the $MFT
entries. This method uses the principle that $MFT entries are
allocated sequentially when a file is created, and assumes
that multiple files created at the same time will have the
same sequence number and sequential entry number. If a
specific file is outside the range of sequence number and
entry number of other files created at the same time, it is
determined that timestamp manipulation has occurred in that
file. The third method ($MFT-3), proposed byMinnaard [24],
compares the timestamp of a child file stored in the $INDX
attribute within the directory’s $MFT entry with the actual
timestamp of the same file. This method is based on the
fact that a tool (SetMACE v1.0.0.5 and later) that directly
accesses the disk and changes the timestamp of the target

file, but does not change the timestamp of the same file
stored in the $INDX attribute within the $MFT entry of the
parent directory. If the two timestamps are not the same for a
specific file, it is determined that timestampmanipulation has
occurred on that file. The fourth method ($MFT-4), proposed
by Jang et al. [22] and Bouma et al. [60], is to check the
100-nanosecond unit of the $SI/$FN timestamp of the $MFT
entry. This method takes advantage of the fact that the 100-
nanosecond timestamp unit of the target file is set to zero
when certain tools (e.g., Timestomp) use the SetFileTime()
API to perform timestamp manipulations. Therefore, if the
timestamp 100-nanosecond unit of a specific file is set to 0,
it is determined that timestamp manipulation has occurred in
that file.

2) $LOGFILE
The detection methods using $LogFile are the following. The
first method ($LogFile-1), proposed by Cho [25], analyzes
events in $LogFile to check for changes in the $SI-C of
the file. This method checks for changes to $SI-C by
analyzing the data in the $LogFile record (UpdateResident-
Value) that modifies the data in the $MFT entry. If the

VOLUME 12, 2024 72547

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

event of changing the $SI-C of a specific file is confirmed,
it is determined that timestamp manipulation occurred at the
time the $SI-C change event occurred. The second method
($LogFile-2), proposed by Jang et al. [22], analyses events
in $LogFile to compare the $SI-C that can be extracted
from file creation events with the $SI-C of the same file in
$MFT. This method analyzes the data in the $LogFile record
(InitialiseFileRecordSegment) that generates the $MFT entry
to obtain the $SI-C of the generated $MFT entry and the
$SI-C of the same file within $MFT to compare the two
timestamps. If the two $SI-Cs for a specfic file are not
identical, it is determined that a timestamp manipulation has
occurred in that file.

3) $USNJRNL
The detection method ($UsnJrnl-1) using $UsnJrnl, proposed
by Palmbach and Breitinger [26], compares the time of
the last BASIC_INFO_CHANGE event of a specific file in
$UsnJrnl with the $SI-E of the same file in $MFT. This
method takes advantage of the fact that if a change operation
on a file property was last performed on a specific file, the
time of the last BASIC_INFO_CHANGE event for that file in
$UsnJrnl and the $SI-E of the same file in $MFT have similar
values. If the two time values for a specific file are not similar,
it is determined that timestamp manipulation occurred at the
time of the last BASIC_INFO_CHANGE event on that file.

B. OPERATING SYSTEM ARTIFACTS-BASED METHODS
The detection methods using operating system artifacts
involve using prefetch, registry, LNK files, event log, and
volume shadow copy.

1) PREFETCH AND REGISTRY
The method (Execution-1) using prefetch or registry, pro-
posed by Palmbach and Breitinger [26], determines whether
and when a timestamp manipulation tool was executed
through program execution traces. This method uses the exe-
cutable file name of a well-known timestamp manipulation
tool (e.g., TimeStomp, SetMACE) as a signature to determine
whether the tool has been executed and the execution time.

2) LNK FILES
The method (LNK-1) using LNK files, proposed by Palm-
bach and Breitinger [26], compares the timestamp of the LNK
file with the timestamp of the linked target file. This method
takes advantage of the fact that the $SI-A and $SI-E of the
LNK file must be similar to the same timestamp of the link
target file because the $SI-A and $SI-E of the LNK file are
updated when a specific file is opened. It also uses the fact
that the LNK file cannot be created before the link target file
is created. Therefore, if the $SI-A and $SI-E of a specific
file is significantly different from the same timestamp of the
LNK file, or if the $SI-C of the LNK file is older than the
$SI-C of the link target file, it is determined that timestamp
manipulation has occurred in that file.

3) EVENT LOGS
The method (EventLog-1) using the Event Log, proposed
by Palmbach and Breitinger [26], compares the user login
duration, which can be obtained from the Event Log, with
the $SI-C and $SI-M of the file. If the $SI-C and $SI-M of a
specific file fall outside the time period that the user is logged
in, it is determined that timestamp manipulation has occurred
in that file.

4) VOLUME SHADOW COPY
The method (VSC-1) using volume shadow copy, proposed
by Mohamed and Khalid [27], compares the $SI timestamp
of a specific file in the current volume with the $SI timestamp
of the same file in the volume shadow copies created on the
system. This method determines that timestampmanipulation
has occurred in the file if the $SI timestamp of a specific file
in a previously created volume shadow copy is greater than
the $SI timestamp of a later created volume shadow copy or
the same file in the current volume.

IV. INTEGRATED ANALYSIS ON DETECTION METHODS
Looking at the detection methods for file timestamp manip-
ulation in NTFS that have been studied so far, individual
detection methods for each artifact have been studied, but an
integrated analysis of various detection methods has not been
conducted. Therefore, this section performs a comparative
analysis of features such as detection type, detection level,
detection target information, and anti-forensics resistance of
the previous detection methods, as well as the limitations of
each. Table 3 summarizes the features and limitations of each
detection method.

In the case of detection type, existing detection methods
were largely classified into ‘‘Direct’’ and ‘‘Indirect’’ types.
The ‘‘Direct’’ type is a method that directly detects the times-
tamp change event itself, and includes the $LogFile-1 and
the $UsnJrnl-1 methods. These methods can know in which
file and when the timestamp manipulation occurred, and
in addition, for $LogFile-1, the timestamp before and after
manipulation can be checked. Therefore, detection methods
of this type can provide investigators with information not
only about the files used in the attack, but also about the time
of the attack, which is most important for timeline analysis.
The ‘‘Indirect’’ type is a method that detects the traces of
manipulation behavior left behind rather than the timestamp
manipulation itself, fromwhich it is possible to knowwhether
a timestamp manipulation has occurred in the target file or
whether a timestamp manipulation tool has been executed.

In the case of detection level, existing detection methods
can be classified into ‘‘Malicious’’, ‘‘Suspicious’’ and ‘‘Addi-
tional’’ levels. At the ‘‘Malicious’’ level, the possibility of
timestamp manipulation is very high. This level of detection
uses two or more factors to detect timestamp manipulation,
and if detected by the detection method at this level,
timestamp manipulation can be determined immediately
without additional analysis. However, none of the previous

72548 VOLUME 12, 2024

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

TABLE 3. Comparative analysis of NTFS timestamp manipulation detection methods.

detection methods are at this level. Next, at the ‘‘Suspicious’’
level, timestamp manipulation is a possibility, but additional
analysis is required for accurate determination. Therefore,
if timestamp manipulation is detected by a detection method
at this level, cross-analysis with other detection methods
should be performed to determine timestamp manipulation.
Finally, at the ‘‘Additional’’ level, it is difficult to determine
timestamp manipulation by the corresponding method alone.
Because the conditions or traces used by detection methods at
this level can be confirmed even in normal cases and there is
a high possibility of false detection, detection methods at this
level should not be used alone, but should be used to assist
Suspicious-level detection methods.

The detection target information is the information that
the method targets for detection and can be classified into
‘‘Which’’ and ‘‘When’’ types. The ‘‘Which’’ type informa-
tion is used to identify the file where timestamp manipulation
occurred and is detected by most detection methods. The
‘‘When’’ type is time-related information, such as when a
timestamp manipulation occurred or when a manipulation
tool was run. This type of information is primarily detected by

NTFS journal-based detection methods, which directly detect
timestamp manipulation, and by program execution-based
detection methods.

Anti-forensic resistance means resistance to anti-forensic
operations, such as deletion, tampering, and initialization
that an attacker might perform to erase traces of timestamp
manipulation. Anti-forensic resistance is classified into
‘‘Low’’, ‘‘Medium’’, and ‘‘High’’ and depends on the type
of artifacts used by each detection method. First, in the
case of the ‘‘Low’’ level, an attacker can directly delete
the file where the data are stored or delete the data with
a simple command. Detection methods that use operating
system artifacts such as prefetch, event log, and volume
shadow copy fall into this level. At the ‘‘Medium’’ level,
the attacker cannot directly delete the file where the data are
stored, and to erase traces of the attack, the attacker must
understand the structure of the file where the data are stored
and delete individual data through APIs supported by the
operating system. Detection methods at this level include the
Execution-1 method, which uses registry artifacts. Finally,
at the ‘‘High’’ level, an attacker cannot access the file where

VOLUME 12, 2024 72549

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

the data are stored and delete the file through normal means,
and the only approach is to manipulate the data through direct
access to the disk. However, as mentioned earlier, Microsoft
has prevented direct access to the system drive, and therefore
a kernel vulnerability is required for this to occur. This level
includes detection methods that use file system artifacts such
as $MFT, $LogFile, and $UsnJrnl. In addition, all the artifacts
mentioned, including file system artifacts, can be directly
manipulated or destroyed by directly accessing the disk while
the system is shut down, or by directly accessing the disk
through a safe mode boot. However, given that most attacks
are carried out against a running system in a remote location,
this is realistically difficult for an attacker to do.

Looking at the limitations of each detection methods
studied so far, all methods except the NTFS journal-based
method have difficulty detecting the operation to change
all timestamps ($SI-MAC or $SI-MACE) of created files
to a specific past time immediately after file creation,
which is most commonly used by malware. For $MFT-1,
changing all timestamps equally to a specific past time is
not detected by the detection rules in Table 2. MFT-2 is
difficult to use because it often violates continuity rules even
in normal cases, and $MFT-3 does not detect timestamp
manipulations that use the timestamp-changing APIs most
commonly used by malware. $MFT-4 is difficult to use
because the 100-nanosecond unit is often zero, even in normal
cases. $Execution-1 does not detect the execution of arbitrary
malware that performs timestamp manipulation because it
uses the name of a well-known timestamp manipulation
tool as its signature. LNK-1 does not detect timestamp
manipulation in executable files, and EventLog-1 is difficult
to use because there are many files with $SI-C and $SI-
M outside the user login period. Finally, VSC-1 does not
detect manipulation of file timestamps immediately after files
are created. On the other hand, $LogFile-1 and $LogFile-2
detect $SI-C manipulation, and therefore they can detect any
change in $SI-MAC or $SI-MACE to a specific past time,
and $UsnJrnl-1 detects $SI-E manipulation, so it can detect
change in $SI-MACE to a specific past time.

Taken together, the results of the above comparative
analysis showed that compared to other artifact-based
detection methods, NTFS journal-based detection methods
directly detected file timestamp manipulation and determine
when the timestamp manipulation occurred, which can
help investigators identify the most critical time of attack
during a digital forensic investigation. And this method
uses file system artifacts, making it relatively difficult for
an attacker to delete or manipulate it compared to other
artifacts. Finally, it detects manipulation of major timestamp,
making it easy to detect the most common timestamp
manipulation behaviors performed by malware. Therefore,
NTFS journal-based detection methods can be judged to the
most effective way to detect timestamp manipulation among
the various timestamp manipulation detection methods in
ditigal forensic investigations. However, previous NTFS
journal-based detection methods have limitations such as

detecting normal events as manipulation or detecting only
limited cases, which makes it difficult to use in real-world
environments. Therefore, in the next section, we propose a
detection algorithm that improves the limitations of these
previous NTFS journal-based detection methods.

Finally, all detection methods have their own limitations,
making them difficult to apply to all variety of system
environments and situations. Also, all artifacts used in the
detection methods have the potential to be deleted and
initialized by the attacker’s anti-forensic behavior. Therefore,
in order to effectively detect timestamp manipulation in
various system environments and situations, and to detect
sophisticated timestamp manipulation by attackers accom-
panied by anti-forensic behavior, it is necessary not to
rely on a single detection method, but to use multiple
detection methods to determine timestamp manipulation in
an integrated manner.

V. ADVACNED DETECTION ALGORITHM BASED ON NTFS
JOURNALS
As discussed in the previous section, the NTFS journal-based
detection method is the most useful file timestamp manip-
ulation detection method in digital forensic investigations
because it can directly detect timestamp manipulation
behavior and help determine the timing of the manipulation.
In this section, we examine the limitations of previous
NTFS journal-based detection methods and propose a
NTFS journal-based detection algorithm that overcomes the
limitations of previous detection methods.

A. LIMITATIONS OF PREVIOUS NTFS JOURNAL BASED
DETECTION METHODS
Previous $LogFile-based detection methods ($LogFile-1,
$LogFile-2) are all based on the assumption that the $SI-C
of a file does not change after the file is created. However,
in the real-world environment, $SI-C is frequently changed
even after file creation by file system tunneling. File system
tunneling is a function that maintains the $SI-C of a file in the
file system. The detailed process is as follows. First, when a
specific file A is deleted, renamed, or moved, the file name
and the $SI-C of file A are cached. After this, within a specific
time (default: 15 seconds), if a file B with the same name
as the cached file name is created, or if file B is renamed or
moved to the same name as the cached file name, file B’s
$SI-C is changed to the $SI-C of cached file A [31]. Such file
system tunneling commonly occurs in programs’ temporary
file operations, and in this case, a record in which $SI-C
is changed is created in $LogFile, resulting in many false
positives in previous detection methods. Figure 1 summarizes
the cases where file system tunneling occurs.

In addition, previous $LogFile-1 and $LogFile-2 detec-
tion methods only detect when $SI-C is manipulated, but
do not detect when other timestamps are manipulated.
For example, manipulation of $SI-M, a timestamp that
attackers usually manipulate to hide their traces along with
$SI-C, is not detected. Also, in the case of the previous

72550 VOLUME 12, 2024

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

FIGURE 1. File system tunneling.

$UsnJrnl-1 detection method, it cannot detect timestamp
manipulation using the SetFileTime() API or Powershell,
which cannot change the $SI-E. This is because these
manipulation methods change the $SI-E of the target file to
the time at which the manipulation is performed, so that the
time of the last BASIC_INFO_CHANGE event for that file
and the $SI-E have similar values.

B. TYPES OF TIMESTAMP MANIPULATION
There are twomain types of file timestampmanipulation. The
first type involves using an existing timestamp manipulation
tool or the timestamp manipulation function of a backdoor
to change the timestamp of a file that has already been
created. In this case, there is a difference between the time
when the timestamp-manipulated file is created and the time
when the timestamp manipulation occurs. In the second type,
an attacker creates malware that uses a time manipulation
API or Powershell to modify the timestamp of a file. The
malware produced in this way immediately manipulates the
timestamp of the additional malware that it creates. In this
case, there is little difference between the time when the
timestamp-manipulated file is created and the time when the
timestamp manipulation occurs.

C. TRACES OF TIMESTAMP MANIPULATION IN NTFS
JOURNALS
As mentioned earlier, the currently available methods for
manipulating file timestamps are SetFileTime(), NtSetInfor-
mationFile() API, and Get-Item cmdlet in PowerShell. The
following traces are left in $LogFile and $UsnJrnl when
timestamp manipulation is performed using this method.

In the case of $LogFile, a record whose Redo OP value of
the record header is ‘‘UpdateResidentValue’’ (0x7) is created
when timestamp manipulation is performed. The Redo OP
value of the record means the type of operation performed
on the $MFT entry, and the ‘‘UpdateResidentValue’’ means
updating the attribute data in the $MFT entry. The generated
record has a Record Offset value of 0x38, which means
that the Record Offset value is the relative position of the
attribute in the $MFT entry where the operation will be
performed. Therefore, we know that the record will perform
the operation on $SI located at 0x38 in the $MFT entry.
In addition, the Attribute Offset value of the generated
record has a value ranging from 0x18 to 0x30. Because the

FIGURE 2. $LogFile record created by timestamp manipulation.

FIGURE 3. $UsnJrnl records created by timestamp manipulation.

Attribute Offset value is the relative position of the data to
be updated in the attribute to be modified, this means that
the update will be performed for four timestamps located
between +0x18 and +0x30 within $SI. The timestamp data
used for the actual update is stored in Redo Data in the record,
and the timestamp data before update is stored in Undo Data
in the record. In other words, by analyzing the Redo Data and
the Undo Data of the record, the original timestamp and the
manipulated timestamp of the file can be accurately known.
Figure 2 is an example of a $LogFile record generated when
timestamp manipulation occurs.

In the case of $UsnJrnl, a record where the BASIC_INFO_
CHANGE (0x8000) value is added to the Reason Flag,
the event type, is created when timestamp manipulation is
performed [26]. A record where the CLOSE (0x80000000)
value is added to the Reason Flag is then created.
BASIC_INFO_CHANGE is a value that is set when file
attributes such as read-only, hidden, and timestamp are
changed [45]. Figure 3 shows an example of $UsnJrnl records
created when timestamp manipulation occurs.

D. ADVANCED DETECTION METHOD WITH $LOGFILE
This subsection describes a detection method that improves
on the limitations of the previous $LogFile-based detection
method. The overall detection process is as follows. The
first step is to extract the timestamp change events from the
$LogFile records, which consists of finding the timestamp
change record and identifying the event target file. The
second step is to check the timestamp change contents of
the extracted timestamp change events, a nd if the timestamp
change contents meet the detection condition, the events
are determined as a detection target. The final step is to
check whether the timestamp change event determined as
the detection target was caused by file system tunneling, and
when only $SI-C is changed, the event pattern of file system
tunneling is checked. Figure 4 shows the overall process of
the improved $LogFile-based detection method. A detailed
description of each step is provided below.

VOLUME 12, 2024 72551

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

FIGURE 4. Overall procedure of the advanced $LogFile-based timestamp manipulation detection method.

1) EXTRACTION OF TIMESTAMP CHANGE EVENTS
The first task in detecting timestamp manipulation in $Log-
File is to extract timestamp change events. However, previous
$LogFile-based detection methods have not provided a way
to extract timestamp change events [4]. Therefore, this
paper proposes an algorithm for extracting timestamp change
events.

To extract timestamp change events, the method must first
find the record that performed the timestamp change. The
timestamp change record can be found by checking whether
the Redo OP (0x7), Record Offset (0x38), and Attribute
Offset (0x18–0x30) values of the record header and the $SI
timestamp stored in Redo Data and Undo Data of the record
are different. If a timestamp change record is found, it is
necessary to identify the target file of that record, but the
timestamp change record does not contain information for
identifying the target file in the record data. However, the
followingmethods can identify the file targeted by the record.
The first is to use the Log Sequence Number (LSN). The
LSN is stored in the record header as information identifying
each record of $LogFile, and it is also stored in the $MFT
entry as the LSN of the last $LogFile record in which an
operation was performed on that entry. Therefore, if there
is an $MFT entry with the same LSN as the LSN of the
timestamp change record, the file indicated by that entry can
be determined as the target file of the record. The second
is to use information from other events in $LogFile. This
method searches for events with the same Target VCN and
MFTCluster Index as the timestamp change record for events
that occurred before the timestamp change record. The Target
VCN value means the in-volume address in the cluster where
the $MFT entry that is the target of the operation for that
record is located, and the MFT Cluter Index value indicates
which entry in the cluster the preceding Target VCN value
points to is the target $MFT entry [7]. In other words, if the
Target VCN andMFTCluster Index values of the two records
are the same, the two records performed the operation for
the same $MFT entry. Therefore, if a previous event with

the same Target VCN value and MFT Cluster Index value is
found, the target file of that event can be determined to be
the target file of the record. The third approach is to calculate
and use the $MFT entry number based on the Target VCN
and MFT Cluster Index values. The $MFT entry number can
be calculated by multiplying the Target VCN value by 4 and
adding the MFT Cluster Index value divided by 2. If an active
entry exists at the calculated entry number position in $MFT,
the file pointed to by that entry can be determined as the target
file of the record. However, this method has the potential for
false positives when the file in which the timestamp change
event occurred has been deleted.

Once the timestamp change record has been found and
the target file identified, the timestamp change event can
be extracted through the information of the found record
and the record target file. The detailed process of extracting
timestamp change events and identifying the record target
file is represented in the pseudocode of Algorithm 1 and
Algorithm 2.

2) CHECKING TIMESTAMP CHANGES
If the timestamp change events have been extracted, the next
step is to check the timestamp change details of each event.
In this paper, the chang es in $SI-C and $SI-M that attackers
often make to hide their traces are checked. As for $SI-E
and $SI-A, they are not checked because it is meaningless
to change only these timestamps from the attacker’s point of
view.

In the case of $SI-C, any change in the corresponding
timestamp is suspicious unless it was changed by file system
tunneling. Therefore, in this paper, both cases where $SI-C is
changed to the past and the future are determined as detection
targets. In the case of $SI-M, on the other hand, it is normal
for that timestamp to change to the future, so only if $SI-M
changes to the past is it considered a detection target.

Change detection for $SI-C and $SI-M depends on
whether the file was created immediately before the change
event. If the file was not created immediately before, the

72552 VOLUME 12, 2024

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

Algorithm 1 Extraction of Timestamp Change Events
for record in $LogFile_records[] do

if record.redo_op == 0x7 then
if record.record_offset == 0x38 then

if record.attribute_offset >= 0x18
&& record.attribute_offset <= 0x30 then

if record.attribute_offset == 0x18 then
memcpy(before_$SI-C, record.undo_data, 8)
memcpy(before_$SI-M, record.undo_data + 0x8, 8)
memcpy(before_$SI-E, record.undo_data + 0x10, 8)
memcpy(before_$SI-A, record.undo_data + 0x18, 8)
memcpy(after_$SI-C, record.redo_data, 8)
memcpy(after_$SI-M, record.redo_data + 0x8, 8)
memcpy(after_$SI-E, record.redo_data + 0x10, 8)
memcpy(after_$SI-A, record.redo_data + 0x18, 8)

else if record.attribute_offset == 0x20 then
memcpy(before_$SI-M, record.undo_data, 8)
memcpy(before_$SI-E, record.undo_data + 0x8, 8)
memcpy(before_$SI-A, record.undo_data + 0x10, 8)
memcpy(after_$SI-M, record.redo_data, 8)
memcpy(after_$SI-E, record.redo_data + 0x8, 8)
memcpy(after_$SI-A, record.redo_data + 0x10, 8)

else if record.attribute_offset == 0x28 then
memcpy(before_$SI-E, record.undo_data, 8)
memcpy(before_$SI-A, record.undo_data + 0x8, 8)
memcpy(after_$SI-E, record.redo_data, 8)
memcpy(after_$SI-A, record.redo_data + 0x8, 8)

else if record.attribute_offset == 0x30 then
memcpy(before_$SI-A, record.undo_data, 8)
memcpy(after_$SI-A, record.redo_data, 8)

end if
if before$SI-C ! = after_$SI-C || before_$SI-M ! = after_$SI-M
|| before_$SI-E ! = after_$SI-E
|| before_$SI-A ! = after_$SI-A then

event.before_$SI-C← before_$SI-C
event.after_$SI-C← after_$SI-C
event.before_$SI-M← before_$SI-M
event.after_$SI-M← after_$SI-M
event.before_$SI-E← before_$SI-E
event.after_$SI-E← after_$SI-E
event.before_$SI-A← before_$SI-A
event.after_$SI-A← after_$SI-A
event.target_file← GetTargetFile(record)
arr_timestamp_change_events[record]← event

end if
end if

end if
end if

end for

method assumes that an existing manipulation tool or the
manipulation function of a backdoor has been used to change
the timestamp of a file that had already been created, and
it checks whether $SI-C has changed or whether $SI-M
has changed to the past. Conversely, if the file was created
just before, the method assumes that the malware created
another malware file and then immediately manipulated the
timestamp of that file, and it checks whether $SI-C has
changed. In this case, the reason for not checking whether
$SI-M has been changed is that it is very common that a
file is created and only $SI-M is changed immediately to the
past in normal cases, and for malware to change only $SI-M
without also changing $SI-C would be meaningless to bypass
the timeline analysis.

In addition, if the 100-nanosecond unit of the changed $SI
timestamp is zero, it is considered an additional detection
factor. This is the case when the 100-nanosecond unit
is not set, as confirmed in the $MFT-4 method. This
additional detection factor is used after the overall timestamp
manipulation detection process has completed to make a

Algorithm 2 Identification of the Event Target File
1: function GetTargetFile(record)
2: if There is a $MFT entry having LSN same as record.LSN then
3: file.file_name← $MFTEntry.file_name
4: file.file_path← $MFTEntry.file_path
5: return file
6: end if
7: i← 1
8: while file_level_event_count-i >= 0 do
9: previous_event← arr_file_level_events[file_level_event_count-i]

10: temp_target_vcn← previous_event.target_vcn
11: temp_mft_cluster_index← previous_event.mft_cluster_index
12: if temp_target_vcn == record.target_vcn

&& temp_mft_cluster_index == record.mft_cluster_index then
13: if previous_event.event_type == ‘‘File Creation"

|| previous_event.event_type == ‘‘Renaming File"
|| previous_event.event_type == ‘‘File Move" then

14: file.name← previous_event.file_name
15: file.path← previous_event.file_path
16: return file
17: else if previous_event.event_type == ‘‘File Deletion" then
18: break
19: end if
20: end if
21: end while
22: entry_number← record.target_vcn ∗ 4
23: entry_number← entry_number + (record.mft_cluster_index / 2)
24: if There is a $MFT entry located at entry_number then
25: if the $MFT entry is not inactive then
26: file.name← $MFTEntry.file_name
27: file.path← $MFTEntry.file_path
28: return file
29: end if
30: end if
31: return NULL
32: end function

more accurate judgement of events that are determined to be
timestamp manipulation events. Algorithm 3 is pseudocode
for the process of checking for timestamp change content in
a timestamp change event.

Algorithm 3 Checking Timestamp Changes
1: for event in arr_timestamp_change_events[] do
2: if there is no creation event just before then
3: if event.before_$SI-C != event.after_$SI-C

|| event.before_$SI-M > event.after_$SI-M then
4: detection_target← TRUE
5: end if
6: else
7: if event.before_$SI-C != event.after_$SI-C then
8: detection_target← TRUE
9: end if
10: end if
11: if detection_target == TRUE then
12: if event.after_$SI-C.100-nanosecond == 0

|| event.after_$SI-M.100-nanosecond == 0
|| event.after_$SI-E.100-nanosecond == 0
|| event.after_$SI-A.100-nanosecond == 0 then

13: event.additional_detection_factor← TRUE
14: end if
15: arr_detection_target_events[]← event
16: end if
17: end for

3) IDENTIFICATION OF FILE SYSTEM TUNNELING
If the timestamp change content is the detection target,
it should finally be checked whether the event was caused by
file system tunneling. In fact, if the $SI-C of a file is changed
in a normal situation, most cases are caused by file system
tunneling.

VOLUME 12, 2024 72553

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

File system tunneling is performed when an existing file
has been deleted, moved to a different path, or renamed, after
which a file is created with an existing file name, renamed,
or moved to an existing file name within 15 seconds [31].
Therefore, it is necessary to check whether the above pattern
exists and whether changes to $SI-C have occurred by using
file creation, deletion, file name change, or movement events
that can be extracted through $LogFile analysis. One unusual
feature here is that if file system tunneling occurs due to
rapid creation, deletion, and re-naming by the program, a
$LogFile record related to the timestamp change is created
first, and then records related to file creation, deletion, and
renaming can be generated. Logically, it seems that records
related to file creation, deletion, and renaming that cause
file system tunneling will be created, followed by a record
related to timestamp change, which is the result of file
system tunneling. However, in reality, a record related to
timestamp change is often created first, after which records
related to file creation, deletion, and renaming are frequently
generated in any order. The detailed process of file system
tunneling id-entification is represented in the pseudocode of
Algorithm 4.

Algorithm 4 Identification of File System Tunneling for
$LogFile
1: for event in arr_detection_target_events[] do
2: if event.before_$SI-C != event.after_$SI-C

&& there are no other timestamp changes then
3: target_name← event.target_file.name
4: if file named target_name is deleted within the previous 15 seconds

|| file named target_name is renamed within the previous 15 seconds
|| file named target_name is moved within the previous 15 seconds then

5: if after that, event.target_file is created with target_name
|| after that, event.target_file is renamed to target_name
|| after that, event.target_file is moved to target_name then

6: this event is caused by file system tunneling
7: continue
8: end if
9: end if

10: if file named target_name is deleted within the after 1 second
|| file named target_name is renamed within the after 1 second
|| file named target_name is moved within the after 1 second then

11: if event.target_file is created with target_name within the after 1 sec
|| event.target_file is renamed to target_name within the after 1 sec
|| event.target_file is moved to target_name within the after 1 sec then

12: this event is caused by file system tunneling
13: continue
14: end if
15: end if
16: arr_timestamp_manipulation_events[]← event
17: else
18: arr_timestamp_manipulation_events[]← event
19: end if
20: end for

If among the timestamp change events determined to
be detection targets, only the $SI-C change occurred due
to file system tunneling, the event is considered a normal
event. Otherwise, it is considered a suspicious timestamp
manipulation. In addition, among the events determined
to be detection targets, the remaining events in which
$SI-C has not changed are judged to be suspicious timestamp
manipulation. Finally, if an event determined as suspicious
timestamp manipulation has an additional detection factor (0

in 100-nanosecond unit), it is determined to be a timestamp
manipulation.

The improved $LogFile-based detection method pro-
posed in this paper is named $LogFile-1A, and is a
Malicious/Suspicious-level detection method. If an event
determined as suspicious timestamp manipulation has an
additional detection factor, it is a Malicious-level detection
and can be immediately determined to be a timestamp
manipulation event. Otherwise, it is a Suspicious-level
detection and requires cross-analysis with other methods for
accurate determination.

E. ADVANCED DETECTION METHOD WITH $USNJRNL
This subsection describes a detection method that overcomes
the limitations of the previous $UsnJrnl-based detection
method. The overall detection process is as follows. The first
step is to collect file information from the $UsnJrnl records,
which consists of identifying the basic detection pattern and
grouping the records of files having this pattern. The second
step is to check the timestamp status of the collected file
information. This step checks the state of the timestamp
depending on the presence or absence of a file creation event,
and if the condition is met, the event is determined as a
detection target. The final step is to check whether the last
basic detection pattern of the file determined as the detection
target was caused by file system tunneling, and when there is
an $SI-C change in the file, the file system tunneling pattern is
checked. Figure 5 shows the overall process of the improved
$UsnJrnl-based detection method. A detailed description of
each step is provided below.

1) COLLECTING INFORMATION OF FILES WITH THE BASIC
DETECTION PATTERN
The first task that must be performed to detect timestamp
manipulation in $UsnJrnl is to collect information on files
having the basic detection pattern. In a previous study, if the
BASIC_INFO_CHANGE value was simply added to the
Reason Flag of the record, the record was judged to be a
BASIC_INFO_CHANGE event and used for detection [26].
However, as a result of executing various tools and malware
performing timestamp manipulation in this paper, It was
confirmed that timestamp manipulation creates a record
added BASIC_INFO_CHANGE value in the Reason Flag
and then an additional record added CLOSE value in the
Reason Flag within a short time (0-1 second). This pattern
means that the timestamp manipulation was performed just
before the file was closed, and the pattern is used as
the basic detection pattern in this paper. As mentioned
earlier, BASIC_INFO_CHANGE events are also generated
for changes to file properties other than timestamp changes,
and therefore the potential for false positives exists when
simply using BASIC_INFO_CHANGE events. Therefore,
the basic detection patterns presented in this paper can
be used to reduce these false positives and provide more
sophisticated detection of timestamp manipulation.

72554 VOLUME 12, 2024

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

FIGURE 5. Overall procedure of the advanced $UsnJrnl-based timestamp manipulation detection method.

To collect information on files where the basic detec-
tion pattern occurs, it is first necessary to collect the
BASIC_INFO_CHANGE records belonging to the basic
detection pattern in the $UsnJrnl records. Then, using the File
Reference Number value, which is information that identifies
the record’s target file, the method identifies and groups
$UsnJrnl records that target the same file as the target file of
each BASIC_INFO_CHANGE record collected. From such
grouped records for the same file, file information such as
file name, file path, file reference number, last basic detection
pattern time, and creation event time is collected. Algorithm 5
contains pseudocode representing the process of collecting
information on files in which the basic detection pattern has
occurred.

2) CHECKING TIMESTAMP STATUS
Once information on files in which the basic detection
pattern has occurred has been collected, the timestamp
status of each file should be checked. As mentioned earlier,
previous detection methods compare the time of the last
BASIC_INFO_CHANGE event of the target file with the
$SI-E of the same file in $MFT [26]. However, this
method has the limitation that it cannot detect timestamp
manipulation using the SetFileTime() API or Powershell,
which cannot change $SI-E. In this paper, we propose a
method to compare the creation event time of the target file
with the $SI-C of the same file in $MFT to overcome this
limitation of previous detection methods. In this method,
the creation event time is the time when the target file was
actually created, and the $SI-C of the same file in $MFT is the
current $SI-C of the target file. If the two time values are not
the same in seconds, it can be determined that $SI-C change
of the target file has occurred.

Therefore, the detection method proposed in this paper
checks the status of $SI-C and $SI-E. If there is a creation
event for a file with a basic detection pattern, the status
of both $SI-C and $SI-E are checked. The $SI-C status

Algorithm 5 Collecting Information of Files With the Basic
Detection Pattern
1: for current_record in $UsnJrnl_records[] do
2: if BASIC_INFO_CHANGE is added to current_record.reason_flag then
3: if there is another record that CLOSE is added to reason_flag within

the next second then
4: arr_basic_detection_pattern[]← current_record
5: end if
6: end if
7: end for
8: for record in arr_basic_detection_pattern[] do
9: target_file_info← NULL
10: for file_info in arr_target_file_info[] do
11: if record.file_reference_number == file_info.file_reference_number then
12: find_flag← TRUE
13: target_file_info← file_info
14: break
15: end if
16: end for
17: if find_flag == TRUE then
18: target_file_info.last_basic_detection_pattern← record
19: else
20: new_file_info.file_name← record.file_name
21: new_file_info.file_path← record.file_path
22: new_file_info.file_reference_number← record.file_reference_number
23: new_file_info.last_basic_detection_pattern_time← record.timestamp
24: new_file_info.create_event_time← NULL
25: target_file_reference_number← record.file_reference_number
26: for record2 in $UsnJrnl_records[] do
27: if record2.file_reference_number == target_file_reference_number

&& FILE_CREATE is added to record2.reason_flag then
28: new_file_info.create_event_time← record2.timestamp
29: break
30: end if
31: end for
32: arr_target_file_info[]← new_file_info
33: end if
34: end for

check compares the creation event time with the $SI-C of
the same file in $MFT to determine if a $SI-C change has
occurred. If there is an $SI-C change, the file is determined
as a detection target. The $SI-E status check compares the
time of the last basic detection pattern of the target file
with the $SI-E of the same file in the $MFT for similarity.
If the two time values are not similar, a change in $SI-E
is assumed to have occurred, and the file is considered a
detection target. The threshold for similarity is 5 seconds,

VOLUME 12, 2024 72555

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

which means that two time values are similar if they are
within 5 seconds of each other and not similar if they are
more than 5 seconds apart. The reason for using 5 seconds
as the threshold is that if the last time that a file attribute was
changed, there is usually a 0–3 second difference between
the time of the last BASIC_INFO_CHANGE event and the
$SI-E of the same file in $MFT. Conversely, if there is
no creation event, only the status of $SI-E is checked.
Algorithm 6 contains pseudocode representing the process
of checking the timestamp status of a file in which the basic
detection pattern has occurred.

Algorithm 6 Checking Timestamp Status
1: for file_info in arr_target_file_info[] do
2: $SI-C← $SI-C of same file in $MFT
3: $SI-E← $SI-E of same file in $MFT
4: record← file_info.last_basic_detection_pattern
5: last_basic_detection_pattern_time← record.timestamp
6: if file_info.create_event_time != NULL then
7: if file_info.create_event_time != $SI-C then
8: this file is a detection target
9: arr_detection_target_files[]← file_info

10: else if | last_basic_detection_pattern_time - $SI-E | > 5 seconds then
11: this file is a detection target
12: arr_detection_target_files[]← file_info
13: end if
14: else
15: if | last_basic_detection_pattern_time - $SI-E | > 5 seconds then
16: this file is a detection target
17: arr_detection_target_files[]← file_info
18: end if
19: end if
20: end for

3) IDENTIFICATION OF FILE SYSTEM TUNNELING
If a file with a basic detection pattern is determined to be
a detection target, the next step is to determine whether
the basic detection pattern in that file was caused by file
system tunneling. As mentioned above, because $SI-C can
be changed by file system tunneling, if a change to the
$SI-C of a file occurs, it is necessary to check whether the
basic detection pattern generated in the file was caused by
file system tunneling, as in the case of $LogFile. The basic
identification method for file system tunneling is the same as
for $LogFile. Algorithm 7 contains pseudocode representing
the process for identifying file system tunneling.

If among the files determined to be detection targets,
it is confirmed that the last basic detection pattern of the
file in which the $SI-C change occurred was caused by
file system tunneling, the last basic detection pattern of the
file is determined to be a normal event. Otherwise, it is
considered a suspicious timestamp manipulation. In addition,
among the files determined to be detection targets, the last
basic detection pattern of the remaining files whose $SI-C
change has not been confirmed is determined as a suspicous
timestamp manipulation.

The improved detection method based on $UsnJrnl
proposed in this paper is named $UsnJrnl-1A and
is a Suspicious-level detection method. This method
requires cross-analysis with other methods for accurate
determination.

Algorithm 7 Identification of File System Tunneling for
$UsnJrnl
1: for file_info in arr_detection_target_files[] do
2: if file_info.create_event_time != NULL then
3: record← file_info.last_basic_detection_pattern
4: target_name← record.file_name
5: if file named target_name is deleted within the previous 15 seconds

|| file named target_name is renamed within the previous 15 seconds
|| file named target_name is moved within the previous 15 seconds then

6: if after that, record’s target file is created with target_name
|| after that, record’s target file is renamed to target_name
|| after that, record’s target file is moved to target_name then

7: this record is caused by file system tunneling
8: continue
9: end if
10: end if
11: if file named target_name is deleted within the after 1 second

|| file named target_name is renamed within the after 1 sec
|| file named target_name is moved within the after 1 sec then

12: if record’s target file is created with target_name within the after 1 sec
|| record’s target file is renamed to target_name within the after 1 sec
|| record’s target file is moved to target_name within the after 1 sec
then

13: this record is caused by file system tunneling
14: continue
15: end if
16: end if
17: arr_timestamp_manipulation_events[]← record
18: else
19: arr_timestamp_manipulation_events[]← record
20: end if
21: end for

F. ADDITIONAL DETECTION METHODS
This subsection describes additional detection methods that
can be used to perform cross-analysis with the two detection
methods described above.

The first method is to compare whether a file has the
same timestamp as a file in the same path or a specific
path. This method detects the case where malware performs
manipulation using the timestamp of a file in the same path
or in a specific path [46]. For $LogFile, the $SI timestamp
after the change in the timestamp change event is used
for comparison, and for $UsnJrnl, the $SI timestamp of
the file where the basic detection pattern occurred is used
for comparison. If a file is found that is identical to the
$SI timestamp being compared by up to 100-nanoseconds,
it is judged that timestamp manipulation has occurred.
Algorithm 8 and Algorithm 9 contain pseudocode that
describes the process of identifying the same timestamp in
$LogFile and $UsnJrnl. The detection methods are named
$LogFile-3 and $UsnJrnl-2 respectively.

Algorithm 8 Detection for the Same Timestamp in $LogFile
1: for event in arr_timestamp_change_events[] do
2: target_$SI-C← event.after_$SI-C
3: target_$SI-M← event.after_$SI-M
4: target_$SI-E← event.after_$SI-E
5: target_$SI-A← event.after_$SI-A
6: for file in files of the same path or a specific path do
7: if target_$SI-C == file.$SI-C

|| target_$SI-M == file.$SI-M
|| target_$SI-E == file.$SI-E
|| target_$SI-A == file.$SI-A then

8: there is a file with same timestamp
9: arr_timestamp_manipulation_events[]← event
10: end if
11: end for
12: end for

72556 VOLUME 12, 2024

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

Algorithm 9 Detection for the Same Timestamp in $UsnJrnl
1: for file_info in arr_target_file_info[] do
2: target_$SI-C← file.$SI-C
3: target_$SI-M← file.$SI-M
4: target_$SI-E← file.$SI-E
5: target_$SI-A← file.$SI-A
6: record← file_info.last_basic_detection_pattern
7: for file in files of the same path or a specific path do
8: if target_$SI-C == file.$SI-C

|| target_$SI-M == file.$SI-M
|| target_$SI-E == file.$SI-E
|| target_$SI-A == file.$SI-A then

9: there is a file with same timestamp
10: arr_timestamp_manipulation_events[]← record
11: end if
12: end for
13: end for

The second method is to detect patterns of $FN timestamp
manipulation. As described above, file movement within the
same volume is essential to manipulate the $FN timestamp
in currently available methods. There are two main cases of
manipulating the $FN timestamp. The first case is when a
timestamp change occurs for a specific file, after which the
file is moved, and the timestamp change occurs again. In this
case, the last timestamp change is an action to re-manipulate
$SI-E, which has been changed due to file movement, and
usually occurs when all timestamps of $SI and $FN are
manipulated through the NtSetInformationFile() API. In the
second case, there is no last timestamp change as in the first
case, and only the MAC timestamps of $SI and $FN are
changed using the SetFileTime() API or Powershell’s Get-
Item Cmdlet. In this case, because there is no intention to
manipulate the E timestamp of each attribute, the method
does not attempt to manipulate the changed $SI-E time again
due to file movement. The detailed method of detecting the
pattern of $FN timestamp manipulation in each $LogFile and
$UsnJrnl is described in Algorithm 10 and Algorithm 11.
The detection methods are named $LogFile-4 and $UsnJrnl-3
respectively.

Algorithm 10 Detection for Pattern of $FN Timestamp
Manipulation in $LogFile
1: for event in arr_timestamp_change_events[] do
2: if there is a move of event.target_file to another path after event then
3: if after that, there is a timestamp change event of event.target_file then
4: this is a pattern_1 of $FN timestamp manipulation
5: arr_timestamp_manipulation_events[]← event
6: else
7: this is a pattern_2 of $FN timestamp manipulation
8: arr_timestamp_manipulation_events[]← event
9: end if
10: end if
11: end for

The third method checks for traces of timestamp manip-
ulation tool execution. This method takes advantage of the
fact that program execution can be detected through creation
and modification events of prefetch files in $LogFile and
$UsnJrnl and uses the program name of a well-known
timestamp manipulation tool as a signature to detect the
execution of that program. The detailed method for detecting
the execution of well-known timestampmanipulation tools in
each $LogFile and $UsnJrnl is described in Algorithm 12 and

Algorithm 11 Detection for Pattern of $FN Timestamp
Manipulation in $UsnJrnl
1: for record in arr_basic_detection_pattern[] do
2: if there is a move of record’s target file to another path before record then
3: if after that, there is a basic detection pattern of record’s target file then
4: this is a pattern_1 of $FN timestamp manipulation
5: arr_timestamp_manipulation_events[]← record
6: else
7: this is a pattern_2 of $FN timestamp manipulation
8: arr_timestamp_manipulation_events[]← record
9: end if
10: end if
11: end for

Algorithm 13. The detection methods are named $LogFile-5
and $UsnJrnl-4 respectively.

Algorithm 12Detection for Execution of TimestampManip-
ulation Tool in $LogFile
1: for event in arr_logfile_events[] do
2: if event.target_file.name includes ‘‘.pf" then
3: if event.event_info == ‘‘File Creation"

|| event.event_info == ‘‘File Modification" then
4: for signature in arr_manipulation_tool_signatures[] do
5: if event.file_name includes signature then
6: this event is the execution of timstamp manipulation tool
7: arr_timestamp_manipulation_tool_execution[]← event
8: end if
9: end for
10: end if
11: end if
12: end for

Algorithm 13Detection for Execution of TimestampManip-
ulation Tool in $UsnJrnl
1: for record in arr_basic_detection_pattern[] do
2: if record.file_name includes ‘‘.pf" then
3: if ‘‘File_Created" is added to record.reason_flag

|| ‘‘Data_Truncated" is added to record.reason_flag then
4: for signature in arr_manipulation_tool_signatures[] do
5: if record.file_name includes signature then
6: this event is the execution of timstamp manipulation tool
7: arr_timestamp_manipulation_tool_execution[]← event
8: end if
9: end for
10: end if
11: end if
12: end for

All the additional detection methods mentioned above are
difficult to use alone as Additional-level detection methods,
and cross-analysis with Suspicious-level detection methods
should be performed.

G. ADVANCED DETECTION ALGORITHM
This subsection describes the $LogFile-based and $UsnJrnl-
based detection algorithms, which integrate the detection
methods proposed earlier. Table 4 summarizes the character-
istics of each detection method proposed in this paper.

The $LogFile-based detection algorithm first takes $Log-
File and $MFT as input and performs detection using the
$LogFile-1A method. In the $LogFile-1A method, if an
event determined as suspicious timestamp manipulation has
an additional detection factor, the event is immediately
determined to be timestamp manipulation without further

VOLUME 12, 2024 72557

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

TABLE 4. Overview of proposed detection methods for timestamp manipulation.

FIGURE 6. Flowchart of $LogFile-based detection algorithm.

analysis because it is a Malicious-level detection. Otherwise,
the event is cross-analyzed with the $LogFile-3, $LogFile-4,
and $LogFile-5 methods for accurate determination because
it is a Suspicious-level detection. For cross-analysis with the
$LogFile-3 method, the post-change timestamp of the event
detected in the $LogFile-1Amethod is used to check whether
any of the files in the same path or a specific path (e.g.,
C:\Windows\system32\) have the same timestamp. When
using cross-analysis with the $LogFile-4 method, it checks
whether the patterns of $FN timestamp manipulation after
the events detected in the $LogFile-1A method. Finally,
when cross-analyzing with the $LogFile-5 method, it checks
whether execution of a well-known timestamp manipulation
tool just before the event detected in the $LogFile-1Amethod.
This cross-analysis determines that the event is timestamp
manipulation if additional detection is successful, and that the
event is possibly timestamp manipulation if it is not. Figure 6
shows a flowchart of the $LogFile-based detection algorithm.

The $UsnJrnl-based detection algorithm also first takes
$UsnJrnl and $MFT as input and performs detection using the
$UsnJrnl-1A method. Unlike the $LogFile-1A method, the
$UsnJrnl-1A method performs only Suspicious-level detec-
tion, and therefore the detected events are cross-analysed
with the $UsnJrnl-3, $UsnJrnl-4, and $UsnJrnl-5 methods for
accurate determination. The cross-analysis methods and the
determinations made by each detection method are the same
as in the $LogFile-based detection algorithm. Figure 7 shows
a flowchart of the $UsnJrnl-based detection algorithm.

VI. EXPERIMENT
This section describes the performance evaluation between
previous NTFS journal-based detection methods and the

FIGURE 7. Flowchart of $UsnJrnl-based detection algorithm.

improved NTFS journal-based detection algorithm proposed
in this paper.

A. TOOL DEVELOPMENT
1) NTFS LOG TRACKER v1.9
The detection algorithm proposed in this paper was added
to the suspicious behavior detection function in NTFS
Log Tracker v1.9. This tool performs suspicious behavior
detection based on analyzed record data after receiving
$LogFile, $UsnJrnl, and $MFTfiles as inputs. The timestamp
manipulation detected by the detection algorithm proposed
in this paper belongs to the ‘‘Timestamp Manipulation’’
category in the ‘‘Detection Overview’’ list, and its output
is divided into ‘‘Suspicious’’ and ‘‘Malicious’’ levels in
the ‘‘Detection Detail’’ list according to the degree of
detection. The implemented tool can be downloaded from
https://drive.google.com/drive/folders/1YHr35XVJTctiOjEs
WY1W0pp_qXPsGZJR?usp=sharing. Figure 8 shows the
result of performing suspicious behavior detection using
NTFS Log Tracker v1.9.

2) DETECTION PROGRAMS BASED ON PREVIOUS STUDIES
Previous studies have proposed various timestamp manipu-
lation detection methods based on NTFS journals [22], [25],
[26]. However, Cho [25] and Palmbach and Breitinger [26]
did not implement their tool, and Jang et al. [22] did
not disclose the tool that they implemented. Therefore,
we implemented all previous detection methods to evaluate
their performance against the detection algorithm proposed
in this paper. Table 5 shows a list of the implemented tools.

72558 VOLUME 12, 2024

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

FIGURE 8. Result of timestamp manipulation detection in NTFS log tracker v1.9.

TABLE 5. Detection programs based on previous studies.

Because no previous studies have disclosed the datasets
used in their reported experiments, we verified whether the
implemented tools had correctly executed the methods of
detection proposed in past work based on a performance
evaluation on the datasets considered in this paper. In the
performance evaluation results, each tool detected all the
timestamp manipulations that should have been detected
by the previous detection methods, without missing any.
Program A detected all cases of intentional manipulation of
$SI-C, and Program B also detected all cases of intentional
manipulation of $SI-C if the creation event of the target file
remained in $LogFile. Program C also detected all cases
where the NtSetInformati-onFile() API was used that resulted
in a difference between the last BASIC_INFO_CHANGE
event time and $SI-E.

B. EVALUATION
The performance evaluation was conducted using Programs
A, B, C, and NTFS Log Tracker v1.9, which implement
previous NTFS journal-based detection methods [22], [25],
[26], and the NTFS journal-based detection algorithm
proposed in this paper.

1) DATASETS
The dataset used for performance evaluation was generated
by extracting the $LogFile, $UsnJrnl, and $MFT files of the
system volume (C:) after performing the tasks corresponding
to each test scenario in a Windows 10 Pro x64 environment
on a VMware virtual machine. The dataset to which the test
scenario was applied was divided into two parts. The first part

was used to evaluate whether each detection tool detected
well when $SI timestamp manipulation was performed
through the three timestamp manipulation methods described
above. $SI timestamp manipulation consisted of changing
the $SI-C, the $SI-M, and the entire $SI timestamp, which
are the items most commonly manipulated by attackers.
For this purpose, NewFileTime v6.77 and nTimestomp v1.2,
the most recent tools using each timestamp manipulation
method, were used, and in addition, Windows Powershell
was used to perform manipulation by means of the Get-
Item Cmdlet. The second part was used to evaluate whether
each detection tool detected file system tunneling and
additional detection factors: timestamp zeroing within a
100-nanosecond unit, manipulation using file timestamps in
the same path, and $FN timestamp manipulation. To do this,
we performed the task to generate file system tunneling and
used SetMACE v1.0.0.4, which supports manipulation using
the file timestamps of another file and manipulation of $FN
timestamps by moving files. In addition, it is possible to
evaluate whether each detection tool detects the execution
of a well-known timestamp manipulation tool through the
tools used to generate the dataset above, and in particular,
it is possible to evaluate whether each detection tool detects
timestamp zeroing within a 100-nanosecond unit through
NewFileTime, which does not allow for 100-nanosecond
units to be modified. Table 6 details the tools and methods
used to generate each dataset and the test scenarios applied.
The dataset can be downloaded from the tool download URL.

2) EVALUATION RESULT
Table 7 shows the detection target information for each data
set and the results of each detection tool. In the detection
results, ‘O’ means that the detection target was detected, and
‘X’ means that it was not detected. A detailed description of
the detection results is provided below.

For Program A and B, using the previous detection
method based on $LogFile, they detected when $SI-C was
manipulated, but not when only $SI-M was manipulated.
In addition, they failed to identify file system tunneling,
which caused a false positive, in which a normal event was
detected as a timestamp manipulation event, and failed to
detect any additional detection factors. On the contrary, NTFS
Log Tracker v1.9, which uses the improved $LogFile-based

VOLUME 12, 2024 72559

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

TABLE 6. Data sets applied by test scenarios.

detection algorithm proposed in this paper, not only detected
$SI-C, $SI-M, and all $SI timestamps being manipulated, but
also did not generate any false positives due to file system
tunneling by identifying file system tunneling. In addition,
it detected all additional detection factors that helped to
accurately determine timestamp manipulation.

As for Program C, using the previous detection method
based on $UsnJrnl, it did not detect any timestamp manip-
ulations using the SetFileTime() API or Powershell, which
cannot change $SI-E. Moreover, as in the cases of Programs
A and B, each failed to identify file system tunneling and
failed to detect any additional detection factors. On the other
hand, NTFS Log Tracker v1.9, which uses the improved
$UsnJrnl-based detection algorithm proposed in this paper,
detected additionally $SI-C and $SI-E manipulation in even
cases using the SetFileTime() API and Powershell, and did
not generate any false positives due to file system tunneling
by identifying file system tunneling. In addition, it detected
all additional detection factors.

As described above, the NTFS journal-based detection
algorithm proposed in this paper not only detects additional
timestamp manipulation that is not detected by previous
detection methods, but also identifies file system tunneling
that causes false positives in previous detection methods.
In addition, it can also detect additional factors required to
accurately determine timestamp manipulation events, which
will enable more efficient timestamp manipulation detection
during digital forensic investigations compared to previous
detection methods.

VII. CASE STUDY
In this section, we introduced an example of the application
of previous detection methods and the detection algorithm
proposed in this paper to detect malware that performs
timestamp manipulation in real-world APT attacks.

A. APT MALWARE
The process for selecting the malware used for detection
was as follows. First, malware files that perform timestamp
modulation (T1070.006) [1] were collected from VirusTotal
Collections [47], [48], [49], [50], [51], [52], [53], [54],
[55], [56], [57], [58] for each attack group. The collected
malware files were then executed, and behavior analysis was
performed. Finally, malware files that performed the same
pattern of timestamp manipulation behavior were grouped
through behavior analysis, after which one representative
malware file was selected from each group and used for
detection. Table 8 summarizes the timestamp manipulation
behavior of selected APT malware by the attack group used
for detection.

B. DETECTION RESULT
To verify the detection of APT malware that performs
timestamp manipulation, each malware was run in the
dataset generation environment built in the previous section
and $LogFile, $UsnJrnl, and $MFT files were collected
to generate datasets. Detection was then performed on the
generated datasets using each detection tool. The dataset can
be downloaded from the tool download URL. Table 9 sum-
marizes the timestamp manipulation behavior of the malware
used for detection and the results of each detection tool. In the
detection results, ‘O’means that timestamp-manipulated files
were detected, and ‘X’ means that they were not. In addition,
‘‘(S)’’ means that manipulation using the timestamp of
another file was also detected, and ‘‘(F)’’ means that the $FN
timestamp manipulation pattern was also detected. ‘‘(Z)’’
means that manipulation with timestamp zeroing within a
100-nanosecond unit was also detected.

Looking at the detection results of each detection tool,
Program A and B, using the previous detection method
based on $LogFile, detected all files with manipulated

72560 VOLUME 12, 2024

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

TABLE 7. Performance evaluation results.

FIGURE 9. Process of timestamp manipulation decision in NTFS.

timestamps. This occurred because all malware used for
detection manipulates $SI-C. On the other hand, NTFS
Log Tracker v1.9, which uses the improved $LogFile-
based detection algorithm proposed in this paper, not only
detected all timestamp-manipulated files, but also detected
both manipulations using the timestamps of other files, the
$FN timestamp manipulation pattern, and timestamp zeroing
within a 100-nanosecond unit. These additional detections
can be used to determine that the timestamp of a file has been
maliciously manipulated, without the need for cross-analysis
with other artifacts.

In case of Program C, the previously proposed method
of detection based on $UsnJrnl, none of the files with
manipulated timestamps were detected. This was the case

because all malware used for detection performed timestamp
manipulation using the SetFileTime() API or PowerShell.
Therefore, the previous $UsnJrnl-based detection method
is considered difficult to use in real-world digital forensic
investigations. On the other hand, NTFS Log Tracker v1.9,
using the improved $UsnJrnl-based detection algorithm
proposed in this paper, not only detected all files with
manipulated timestamps, but also detected all three additional
detection factors as in the case of $LogFile.

As mentioned above, the detection algorithm proposed
in this paper can detect additional detection factors that
previous detectionmethods cannot detect in $LogFile and can
detect timestamp-manipulated files that previous detection
methods cannot detect at all in $UsnJrnl. Therefore, the

VOLUME 12, 2024 72561

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

TABLE 8. Behavior details of malware files from each attack group.

detection algorithm proposed in this paper is expected to help
investigators efficiently find timestamp-manipulated files in
real-world digital forensic investigations.

VIII. DISCUSSION
NTFS journal-based detection methods have limited detec-
tion range due to the default data capacity of NTFS journals.
$LogFile has a base capacity of 64MB, and $UsnJrnl has a
base capacity of 32MB. The data retention period of each
journal varies depending on the volume of file operations on
the system, but typically $LogFile has 2–3 hours of data, and
$UsnJrnl has 30–40 hours of data [7]. Therefore, to overcome
this limitation, it is necessary to increase the size of NTFS

journal files from a forensic readiness perspective [59]. The
maximum capacity of each NTFS journal file is 4GB, so if
the storage device has sufficient capacity, setting both journal
files to the maximum size will help prepare for digital
forensic investigations.

The detection algorithm proposed in this paper prevents
the normal event generated by file system tunneling by
the operating system from being detected as a timestamp
manipulation event. However, looking at the real-world
environment, there are cases where timestamps are changed
by legitimate programs. For example, there are cases where
anti-virus and security products change the timestamp of a
file, or where compression programs change the timestamp of

72562 VOLUME 12, 2024

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

TABLE 9. Result of detecting timestamp manipulation by APT malware files.

a decompressed file. Because the timestamp change methods
used by these legitimate programs are in principle the same as
those used bymalware, the proposed detection algorithmmay
generate false positives. Therefore, accurate determination of
file timestamp manipulation in NTFS should be performed
comprehensively, including not only the NTFS journal-based
detection methods proposed in this paper, but also the other
detection methods mentioned in Section III and additional
analyses (e.g., binary reverse engineering, timeline analysis).
Figure 9 shows a decision-making process that integrates
the detection methods proposed in this paper with previous
detection methods and additional analysis methods to make
a comprehensive determination of timestamp manipulation
in NTFS. This process may help investigators determine
file timestamp manipulation during digital forensic investi-
gations.

IX. CONCLUSION AND FUTURE WORK
File systems are the primary structure that most operating
systems use to store data, making them an important
forensic target for investigators to analyze during digital
forensic investigations. As key metadata in a filesystem,
file timestamps are very important information that can be
used to reconstruct file events in chronological order. For
this reason, malicious users or attackers will attempt to
manipulate timestamps to avoid their trace being detected.
Therefore, detecting file timestamp manipulation can be very
helpful in digital forensic investigations by detecting traces
that malicious users or attackers try to hide.

In this paper, we studied the detection of file times-
tamp manipulation in NTFS, one of the most popular

file systems in the world. We examined various existing
artifact-based detection methods for detecting file timestamp
manipulation in NTFS and compared them, finding that an
NTFS journal-based detection method can most effectively
detect file timestamp manipulation. However, existing NTFS
journal-based detection methods have limitations that make
them difficult to use in real-world digital forensic investi-
gations. As such, we proposed a new detection algorithm
to overcome these limitations. The proposed detection
algorithm was evaluated against existing detection methods
to confirm its improved performance and has been made
publicly available as a tool. Finally, we applied existing
detection methods and the proposed detection algorithm
to a malware performed file timestamp manipulation in
real-world APT attacks and verified the superiority of the
proposed detection algorithm.

The results of this paper are expected to help investigators
detect file timestamp manipulation during the real-world
digital forensic investigation process and find files that
malicious users or attackers want to hide.

As future work, we plan to study machine learning-based
timestamp manipulation detection to reduce false positives
that may occur with the detection algorithms proposed in this
paper.

REFERENCES
[1] B. Carrier, File System Analysis. Reading, MA, USA: Addison-Wesley

Professional, 2005.
[2] G.-S. Cho, ‘‘NTFS directory index analysis for computer forensics,’’

presented at the Proc. 9th Int. Conf. Innov. Mobile Internet Services
Ubiquitous Comput., Santa Cantarina, Brazil, Jul. 2015, pp. 441–446.

[3] K. Hansem and F. Toolan, ‘‘Decoding the APFS file system,’’Digit. Invest.,
vol. 22, pp. 107–132, Sep. 2017.

VOLUME 12, 2024 72563

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

[4] K. D. Fairbanks, ‘‘An analysis of Ext4 for digital forensics,’’ Digit. Invest.,
vol. 9, pp. 118–130, Aug. 2012.

[5] D. Kim, J. Park, K. Lee, and S. Lee, ‘‘Forensic analysis of Android phone
using Ext4 file system journal log,’’ Future Inf. Technol., Appl., Service,
vol. 1, pp. 435–446, Jun. 2012.

[6] D. Cowen. (2013). NTFS Triforce—A Deeper Look Inside
the Artifacts. Accessed: May 8, 2024. [Online]. Available:
https://www.hecfblog.com/2013/01/ntfs-triforce-deeper-look-inside.html

[7] J. Oh. (2013). NTFS Log Tracker. Accessed: May 8, 2024. [Online]. Avail-
able: http://forensicinsight.org/wp-content/uploads/2013/06/F-INSIGHT-
NTFS-Log-TrackerEnglish.pdf

[8] J. Oh. (2013). Advanced $UsnJrnl Forensics. Accessed:
May 8, 2024. [Online]. Available: http://forensicinsight.org/wp-content/
uploads/2013/07/F-INSIGHT-Advanced-UsnJrnl-Forensics-English.pdf

[9] J. Oh, S. Lee, andH.Hwang, ‘‘NTFS data tracker: Tracking file data history
based on $LogFile,’’ Digit. Invest., vol. 39, Dec. 2021, Art. no. 301309.

[10] J. Schicht. (2014). LogFileParser. [Online]. Available: https://
github.com/jschicht/LogFileParser

[11] X. Lin, ‘‘Deleted file recovery in NTFS,’’ in Introductory Computer
Forensics. New York, NY, USA: Springer, Nov. 2018, pp. 199–210.

[12] J. Plum and A. Dewald, ‘‘Forensic APFS file recovery,’’ in Proc. 13th Int.
Conf. Availability, Rel. Security, Hamburg, Germany, 2018, pp. 1–10.

[13] J. Oh. (2013). Advanced $UsnJrnl Forensics. Accessed:
May 8, 2024. [Online]. Available: http://forensicinsight.org/wp-
content/uploads/2013/07/F-INSIGHT-Advanced-UsnJrnl-Forensics-
English.pdf

[14] M. Fuchs. (2018). MFTEntryCarver. Accessed: May 8, 2024. [Online].
Available: https://github.com/cyb3rfox/MFTEntryCarver

[15] H. Segev. (2021). INDXRipper. Accessed: May 8, 2024. [Online].
Available: https://github.com/harelsegev/INDXRipper

[16] LSoft Technologies. APFS Recovery Methodologies. Accessed:
May 8, 2024. [Online]. Available: https://www.ntfs.com/apfs-recovery.htm

[17] A. Dewald and S. Seufert, ‘‘AFEIC: Advanced forensic Ext4 inode
carving,’’ Digit. Invest., vol. 20, pp. S83–S91, Mar. 2017.

[18] X-Ways Forensics. Accessed: May 8, 2024. [Online]. Available:
http://www.x-ways.net/winhex/manual.pdf

[19] S. Garfinkel. (2012). BulkExtractor. Accessed: May 8, 2024. [Online].
Available: https://github.com/simsong/bulk_extractor

[20] J. Oh, S. Lee, and H. Hwang, ‘‘Forensic recovery of file system
metadata for digital forensic investigation,’’ IEEE Access, vol. 10,
pp. 111591–111606, 2022.

[21] X. Ding and H. Zou, ‘‘Reliable time based forensics in NTFS,’’ in Proc.
Annu. Comput. Security Appl. Conf. Shanghai, China: Shanghai Jiao Tong
University, 2010, pp. 1–2.

[22] D. Jang, G. J. Ahn, H. Hwang, and K. Kim, ‘‘Understanding anti-forensic
techniques with timestamp manipulation,’’ in Proc. 17th Int. Conf. Inf.
Reuse Integr., Jul. 2016, pp. 609–614.

[23] S. Willassen, ‘‘Finding evidence of antedating in digital investiga-
tions,’’ in Proc. 3rd Int. Conf. Availability, Rel. Security, Mar. 2008,
pp. 26–32.

[24] W. Minnaard, ‘‘Timestomping NTFS,’’ M.S. thesis, Dept. Math. Comput.
Sci., Fac. Natural Sci., Univ. Amsterdam, Amsterdam, The Netherlands,
2014, pp. 6–10.

[25] G. Cho, ‘‘A computer forensic method for detecting timestamp forgery in
NTFS,’’ Comput. Secur., vol. 34, pp. 36–46, May 2013.

[26] D. Palmbach and F. Breitinger, ‘‘Artifacts for detecting timestamp
manipulation in NTFS on windows and their reliability,’’ in Proc. DFRWS,
2020.

[27] A.Mohamed and C. Khalid, ‘‘Detection of suspicious timestamps in NTFS
using volume shadow copies,’’ Int. J. Comput. Netw. Inf. Secur., vol. 12,
no. 4, pp. 62–69, 2021.

[28] MITRE ATT&CK. Indicator Removal: Timestomp. Accessed:
May 8, 2024. [Online]. Available: https://attack.mitre.org/techniques/
T1070/006/

[29] B. Inglot, L. Liu, and N. Antonopoulos, ‘‘A framework for enhanced
timeline analysis in digital forensics,’’ in Proc. IEEE Int. Conf. Green
Comput. Commun., Nov. 2012, pp. 253–256.

[30] Mandiant. M-Trends 2022 Executive Summary. Accessed: 2023-05-08.
[Online]. Available: https://www.mandiant.com/sites/default/files/

[31] (2019). File System Tunneling in Windows. Accessed: May 8, 2024.
[Online]. Available: https://www.senturean.com/posts/19_04_13_
windows-file-system-tunneling/

[32] (2021). File Times. Accessed: May 8, 2024. [Online]. Available:
https://docs.microsoft.com/en-us/windows/desktop/sysinfo/file-times

[33] Windows Journal Parser. Accessed: May 8, 2024. [Online]. Available:
https:// tzworks.net/prototype_page.php?proto_id=5

[34] SetFileTime. Accessed: May 8, 2024. [Online]. Available:
https://learn.microsoft.com/en-us/windows/win32/api/file

[35] NewFileTime. Accessed: May 8, 2024. [Online]. Available:
https://www.softwareok.com/?Download=NewFileTime

[36] SKTimestamp. Accessed: May 8, 2024. [Online]. Available:
https://tools.stefankueng.com/SKTimeStamp.html

[37] BulkFileChanger. Accessed: May 8, 2024. [Online]. Available:
https://www.nirsoft.net/utils/bulk_file_changer.html

[38] EXpress Timestamp Toucher. Accessed: May 8, 2024. [Online]. Available:
https://www.softpedia.com/get/PORTABLE-SOFTWARE/System/File-
management/Portable-eXpress-TimeStamp-Toucher.shtml

[39] Get-Item. Accessed: May 8, 2024. [Online]. Available: https://
learn.microsoft.com/en-us/powershell/module/microsoft.power

[40] M. Brinkmann. (2017). How to Edit Timestamps With Windows
PowerShell. Accessed: May 8, 2024. [Online]. Available: https://www
.ghacks.net/2017/10/09/how-to-edit-timestamps-with-windows-
powershell/

[41] NtSetInformationFile. Accessed: May 8, 2024. [Online]. Available:
https://learn.microsoft.com/en-us/windows-hardwae/drivers/ddi/ntifs/nf-
ntifs-ntsetinformationfile

[42] Timestomp. Accessed: May 8, 2024. [Online]. Available: https://
forensicswiki.xyz/wiki/index.php?title=Timestomp

[43] NTimestomp. Accessed: May 8, 2024. [Online]. Available: https://
github.com/limbenjamin/nTimetools

[44] SetMACE. Accessed: May 8, 2024. [Online]. Available: https://
github.com/jschicht/SetMace

[45] USN_RECORD_V2. Accessed: May 8, 2024. [Online]. Available: https://
learn.microsoft.com/en-us/windows/win32/api/winioctl/ns-winioctl-
usn_recor_v2

[46] (2020). FASTCash 2.0: North Korea’s BeagleBoyz Robbing Banks.
Accessed: May 8, 2024. [Online]. Available: https://www.cisa.
gov/uscert/ncas/alerts/aa20-239a

[47] VirusTotal—Colloections APTClass: APT17. Accessed: May 8, 2024.
[Online]. Available: https://www.virustotal.com/gui/collection/
1dfebc4527c9f44a352f7d7bdf777c6c8bf0cf003ca412dba0da6
76f6f41b972

[48] VirusTotal—Colloections Cyber-Research: APT19. Accessed:
May 8, 2024. [Online]. Available: https://www.virustotal.com/gui/
collection/006396e6f254e97d6c1b34cbc77abd7d98d13f28799df97b14c2
37f2afc9d634

[49] VirusTotal—Colloections Cyber-Research: APT21. Accessed:
May 8, 2024. [Online]. Available: https://www.virustotal.com/gui/
collection/ecd35bdee8f6796352c38523e8354e6d4297f7bf8f7969f02219e
26cf7d68ce6

[50] VirusTotal—Colloections APTClass: APT28. Accessed: May 8, 2024.
[Online]. Available: https://www.virustotal.com/gui/collection/106b00
3814966b09ee616eb126e9d9307e81424602974f8cd56
96226c92ce090

[51] VirusTotal—Colloections Cyber-Research: APT29. Accessed:
May 8, 2024. [Online]. Available: https://www.virustotal.com/gui/
collection/fb17c3f9ff70c654e85e9d7ff6947be399a8bac0d906ccbd8c180
932df749d87

[52] VirusTotal—Colloections Cyber-Research: APT30. Accessed:
May 8, 2024. [Online]. Available: https://www.virustotal.com/gui/
collection/11430e309f2ce4714c1ea9169cc37f656c768e5c1fb26c08b9ad5
998907e353a

[53] VirusTotal—Colloections APTClass: APT37. Accessed: May 8, 2024.
[Online]. Available: https://www.virustotal.com/gui/collection/c0f40f
6e3f69c7eff58afd7169bde529de167389cb558a40e8f274
1f2daf99bd

[54] VirusTotal—Colloections APTClass: Lazarus. Accessed: May 8, 2024.
[Online]. Available: https://www.virustotal.com/gui/collection/bd5eac34
d8dbb9513eaa125873539235e4b5e4864000df8d8f06
7df564bb79e4/ttps

[55] VirusTotal—Colloections APTClass: APT40. Accessed: May 8, 2024.
[Online]. Available: https://www.virustotal.com/gui/collection/
ea8ff2e4ba849aede2db8b84c1cab1be3c652b32e9a35af486d37
5381fde7de6

72564 VOLUME 12, 2024

J. Oh et al.: Forensic Detection of Timestamp Manipulation for Digital Forensic Investigation

[56] VirusTotal—Colloections Cyber-Research: Dark Hotel. Accessed:
May 8, 2024. [Online]. Available: https://www.virustotal.com/gui/
collection/36908d14af6856bf598a0949ea839b35f8506585852274159b67
84a307a69 896

[57] VirusTotal—Colloections APTClass: Kimsuky. Accessed: May 8, 2024.
[Online]. Available: https://www.virustotal.com/gui/collection/9054b6
706c3d1f92cf25dd60be46d71e16a3dd99b7a5f4fddcb9
5f04449c27b5

[58] VirusTotal—Colloections Cyber-Research: Winnti. Accessed:
May 8, 2024. [Online]. Available: https://www.virustotal.com/gui/
collection/9152438f2d4efc7ce7d3672071abcef958f132997bd486d136ef
d185b9c478e7

[59] J. Tan. (2001). Forensic Readiness. Accessed: May 8, 2024. [Online].
Available: http://bit.ly/2D9rnAR

[60] J. Bouma, H. Jonker, V. van der Meer, and E. Van Den Aker,
‘‘Reconstructing timelines: From NTFS timestamps to file histories,’’ in
Proc. 18th Int. Conf. Availability, Rel. Secur., 2023.

JUNGHOON OH received the B.S. degree from the Division of Computer,
Information Communication Engineering, Dongguk University, in 2010.
He is currently pursuing the Ph.D. degree with the Graduate School of
Information Security, Korea University. His research interests include digital
forensics, filesystem forensics, incident response, and artificial intelligence.

SANGJIN LEE received the Ph.D. degree from
the Department of Mathematics, Korea University,
in 1994. From 1989 to 1999, he was a Senior
Researcher with the Electronics and Telecommu-
nications Research Institute, South Korea. He has
been running the Digital Forensic Research Cen-
ter, Korea University, since 2008. He is currently
the President of the Division of Information
Security, Korea University. He has authored or
coauthored more than 130 papers in various

archival journals and conference proceedings and more than 200 articles
in domestic journals. His research interests include digital forensics, data
processing, forensic framework, and incident response.

HYUNUK HWANG (Member, IEEE) received the Ph.D. degree from the
Department of Information Security, Chonnam National University, in 2004.
He is currently the Head of Department of ETRI. His research interests
include digital forensics, vulnerability verification, malware, and artificial
intelligence.

VOLUME 12, 2024 72565

