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ABSTRACT Chronic diseases, a global public health challenge, necessitate the deployment of cutting-edge
predictive models for early diagnosis and personalized interventions. This study presents an advanced
methodology for early prediction of chronic diseases, including heart attack, diabetes, breast cancer, and
kidney disease, leveraging a synergistic combination of cutting-edge techniques. Recognizing the challenge
posed by extensive medical datasets with numerous features, we introduce a novel approach that begins
with Feature Engineering using Recursive Feature Elimination (RFE) in conjunction with a Support Vector
Machine (SVM). The presented methodology identifies and removes irrelevant features to simplify data
complexity. The refined dataset is then input into the robust eXtreme Gradient Boosting (XGBoost) classifier,
known for its efficiency and adeptness in predicting complex relationships within the data. The chosen
ensemble learning algorithm demonstrates significant prowess in inducing intricate patterns crucial for
chronic disease prediction. To enhance model performance, an essential phase of optimization is introduced
through hyperparameter tuning using Bayesian optimization. This strategically navigates the hyperparameter
space, maximizing the efficiency of the search process and fine-tuning the model for optimal predictive
accuracy. The proposed approach showcases a substantial improvement in the early prediction of chronic

diseases, demonstrating the effectiveness of the proposed approach.

INDEX TERMS Artificial intelligence, chronic disease, early prediction, machine learning, XGBoost.

I. INTRODUCTION

The worldwide occurrence of chronic diseases constitutes
a critical concern in the healthcare domain. Chronic dis-
eases continue to exert a significant impact on global health
and pose immense challenges for healthcare systems world-
wide [1]. These long-term medical conditions, such as
cardiovascular diseases, cancer, kidney disease, and diabetes,
not only result in substantial morbidity and mortality but also
impose a substantial economic burden on societies [2]. As the
prevalence of chronic diseases continues to rise due to aging
populations and lifestyle changes, there is an urgent need to
develop innovative and accurate predictive models for early
detection and personalized interventions. Early detection of
chronic diseases is pivotal for preventing their progression,
reducing associated complications, and improving the overall
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prognosis for affected individuals. Timely recognition of such
diseases during their emerging stages is of utmost impor-
tance to mitigate their potential seriousness [3]. The nature
of several chronic diseases, including heart disease, diabetes,
and specific cancers, is characterized by asymptomatic early
stages, delaying crucial detection and intervention until sig-
nificant, possibly irreversible, progression.

Recent strides in artificial intelligence (AI) have pro-
foundly influenced medical and healthcare research [4]. Al’s
capacity to pinpoint patients at an elevated risk of devel-
oping specific diseases enables the implementation of early
intervention and prevention strategies. This transformative
capability empowers healthcare professionals to identify
chronic diseases at earlier stages, subsequently alleviating
the burden on both patients and healthcare systems [5], [6].
A compelling example of the advantages of early diagnosis
is evident in the work of Di Biasi et al. [7], which illustrates
the advantages of early detection, particularly in melanoma.
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Furthermore, it emphasizes the critical role of applying Al
techniques within the relevant clinical context.

These advancements contribute to a more comprehensive
exploration of the pivotal role of early diagnosis and the
strategic application of Al in medical research. By con-
tinuously learning and adapting to new data, AI models
can provide personalized and precise predictions, helping
healthcare providers develop tailored treatment plans for
each patient’s unique risk factors [8]. Al techniques provide
an effective means of extracting valuable information from
data. Machine Learning (ML) algorithms show substantial
potential for revealing valuable insights and latent patterns
in complex medical data. This capability extends to enhanc-
ing diagnostic accuracy, treatment planning, and ultimately
improving patient outcomes [9], [10]. With the exponential
growth in medical data availability, researchers have explored
diverse ML techniques to improve early detection and predic-
tion capabilities. This collective effort contributes to a global
initiative aimed at combating chronic diseases on a broader
scale [11].

XGBoost is a notable ML algorithm that builds upon the
gradient-boosting decision tree algorithm. XGBoost outper-
forms its predecessor in both accuracy and generalization,
confidently predicting even unseen data [12]. It has demon-
strated exceptional performance in various domains, includ-
ing healthcare [13], [14], [15]. While the XGBoost algorithm
possesses notable strengths, suboptimal performance can
arise from its default configuration due to insufficient param-
eter optimization. This limitation hinders the effective fitting
of the dataset, thereby impeding its generalization capacity
and adaptability [16]. Thus, in this study, Bayesian opti-
mization (BO) was employed to effectively fine-tune the
hyperparameters and enhance the model efficiency [17]. The
incorporation of BO into hyperparameter optimization plays
a pivotal role in achieving optimal performance, mitigating
the risk of overfitting, and improving the model’s robust-
ness [18]. The combination of XGBoost and BO offers a
compelling hybrid approach that harnesses the strengths of
both algorithms to create sophisticated and accurate predic-
tors for chronic diseases.

Recognizing the challenge posed by extensive medical
datasets with numerous features, we introduce a novel
approach that begins with Feature Engineering using Recur-
sive Feature Elimination (RFE [19]) in conjunction with
a Support Vector Machine (SVM [20], [21]). The iterative
nature of RFE progressively eliminates less impactful vari-
ables based on SVM weights, yielding a subset of the most
relevant features. Subsequently, the refined dataset is fed into
the powerful hybrid BO-XGBoost model to predict chronic
diseases by considering the impact of symptoms on disease
presence. By synergizing these two techniques, the devel-
oped models achieved improved predictive capabilities and
optimization efficiencies for chronic disease prediction. The
breadth and depth of our validation process were ensured by
using six datasets covering three distinct chronic diseases —
heart attack, breast cancer, diabetes, and kidney disease — to
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assess the hybrid model’s practicality and efficiency. These
diseases were chosen due to their widespread prevalence, sig-
nificant healthcare implications, and varied manifestations.
The proposed model seeks to overcome the constraints of
traditional Al-based predictive models by capitalizing on the
strengths of XGBoost and BO within a unified framework and
incorporating a feature selection technique.

Il. Al-BASED PREDICTION IN CHRONIC DISEASES

The ML domain has garnered increasing interest in its appli-
cation to predicting chronic diseases. With the ever-growing
availability of medical data, researchers have explored vari-
ous ML techniques to enhance early detection and prediction
capabilities, contributing to a collective effort to combat
chronic diseases worldwide. This section offers an overview
of the extensive literature addressing the use of ML for
predicting chronic diseases, with a particular focus on dis-
eases significantly impacting public health. To navigate this
vast body of research, we selected a set of representative
papers encapsulating a wide spectrum of chronic diseases and
ML methodologies, providing insights into the state-of-the-
art and laying the foundation for our specific investigation.
Table 1 summarizes the selected representative research
papers, grouping them by the chronic diseases under inves-
tigation and highlighting the ML methods employed.

TABLE 1. Summary of literature review.

Study Investigated disease ML methods
[22] Diabetes and breast cancer ~ SVM, NB, and DT
[23] Diabetes, kidney, and APD
heart attack

[24] Diabetes, heart attack, and ~ CNN
breast cancer

[25] Heart, hepatitis, diabetes, Correlation-based
breast cancer

[26] Heart disease, hepatitis, Stacked ensemble

diabetes, breast cancer and
kidney disease

[27] Diabetes, breath cancer Rough K-means clustering
and kidney diseases

[28] Breast cancer DT, NB, k-NN, and SVM

[29] Breast cancer ANN

[30] Breast cancer Deep Learning and Light
Boosting Classifier

[31] Diabetes PyCaret classifiers

[32] Diabetes CNN

[33] Diabetes RF, NB, and J48 DT

[34] Diabetes XGBoost

[35] Heart disease RF, SVM, k-NN, and DT

[36] Heart disease ANN

[37] Heart disease SVM, DT, RF, Gradient
Boosting

[38] Heart disease RF, k-NN, and AdaBoost

[39] Kidney disease DT, k-NN and NB

[40] Kidney disease AdaBoost on SVM

[41] Kidney disease CNN

[42] Kidney disease Stratified Logistic Regression

[43] Kidney disease eXplainable Al
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These studies span a wide spectrum, including diabetes,
breast cancer, heart disease, hepatitis, and kidney disease.
Notable ML techniques employed encompass traditional
models such as SVM, Naive Bayes (NB), Random For-
est (RF), k-Nearest Neighbors (k-NN), Artificial Neural
Networks (ANN), and Decision Tree (DT), to advanced
methods like Adaptive Probabilistic Divergence (APD),
Convolutional Neural Network (CNN), Correlation-based
approaches, Stacked Ensemble, Rough K-means clustering,
Deep Learning, and Light Boosting Classifier, among others.

While these studies contribute valuable insights, com-
mon limitations emerge. For instance, employing a
Correlation-based approach overlooks non-linear relation-
ships and dependencies in the data, which limits the model’s
ability to capture intricate patterns [25]. Similarly, the
application of Rough K-means clustering to predict dia-
betes, breast cancer, and kidney diseases struggles with
high-dimensional and noisy data, impacting the reliability of
the identified clusters [27]. Additionally, employing SVM
and NB for diabetes and breast cancer prediction faces
challenges in handling complex relationships and non-linear
patterns inherent in medical data. The rigidity of SVM and the
assumptions in NB could limit their adaptability to intricate
disease-related datasets [22]. Furthermore, utilizing SVM,
DT, RF, and Gradient Boosting for heart disease predic-
tion, faces interpretability challenges due to the complexity
introduced by the proposed approach [37]. Identifying and
addressing these limitations is crucial for enhancing the
overall efficacy of disease prediction models. Identifying
and addressing these limitations is crucial for enhancing the
overall efficacy of disease prediction models.

The present study aims to contribute to the evolving
field of chronic disease prediction by offering a robust and
effective solution. The emphasis on feature selection, adapt-
ability, and ensemble learning positions the proposed model
as a valuable advancement. The proposed model offers a
novel approach to disease prediction. The Advanced Feature-
Selection-Based Hybrid BO—XGBoost Model stands out for
several key strengths. It integrates advanced feature selec-
tion techniques to ensure the inclusion of relevant features
while mitigating the impact of noise. The incorporation
of Bayesian Optimization enhances adaptability to varying
datasets and optimizes hyperparameters for improved per-
formance. By adopting ensemble learning with XGBoost,
our proposed model harnesses the strengths of various mod-
els while ensuring interpretability. This approach presents a
promising solution to overcome the limitations identified in
existing methodologies.

Ill. INTEGRATED LEARNING ENSEMBLE FRAMEWORK
The illustrated framework in Figure 1 integrates a detailed
methodology for early chronic disease prediction. The frame-
work includes a feature selection method to identify relevant
variables, a hybrid ensemble model that combines BO and
XGBoost algorithms for improved predictive accuracy, and
an experimental setup for modeling.
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A. SVM-RFE-BASED FEATURE ENGINEERING
Feature engineering holds substantial potential for advanc-
ing chronic disease prediction. Medical datasets comprise a
multitude of features, some of which may not significantly
contribute to chronic disease prediction and might introduce
noise, RFE proves invaluable in managing high-dimensional
data by selecting a subset of the most informative fea-
tures [44]. Combining RFE with SVM plays a crucial role in
identifying and selecting essential features, which are pivotal
for constructing an efficient predictive model [45]. The appli-
cation of RFE with SVM in the context of chronic disease
prediction contributes to the development of a more precise,
comprehensible, and clinically significant predictive model.
Given a dataset with input features X and corresponding
labels y, the SVM aims to find a hyperplane that separates the
data into different classes. The decision function for SVM is
defined as:

fX)=signY vk X X)+b) (D)

where X; represent the training samples in the dataset, y;are
the corresponding labels (—1 or 1), K is the kernel function, «;
are the Lagrange multipliers, and b is the bias term. The SVM
training involves solving the optimization problem to find
the optimal values of «; that maximize the margin between
classes, subject to the constraint that > ; ejy; = 0. RFE is
an iterative feature selection method that eliminates the least
important features based on the weights assigned by a model,
which, in this case, is the SVM.
The general steps of RFE are as follows:

1. Train the SVM on the entire set of features.

2. Use the learned weights from the SVM to rank the

importance of each feature.

Remove the least important feature(s).

4. Repeat steps 1-3 until the desired number of features is
reached.

»

The combination of RFE with SVM involves using the
SVM'’s decision function and weights to determine feature
importance. The iterative nature of RFE allows it to pro-
gressively eliminate less impactful variables, enhancing the
efficiency of feature selection. The SVM weight represents
the contribution of a feature to the overall model. A higher
SVM weight indicates that the feature has a stronger impact
on the model’s decision boundary. However, the RFE rank
considers the feature’s importance in a different context—
it evaluates how well the model performs when the feature
is removed. Therefore, a feature with a high SVM weight
may have a low RFE rank if its removal doesn’t signifi-
cantly affect the model’s performance. In contrast, a feature
with a low SVM weight might have a high RFE rank if its
absence noticeably impairs the model’s predictive accuracy.
In essence, SVM weight and RFE rank offer complementary
insights—one focusing on the feature’s influence within the
model and the other on its importance in the absence of
other features. These differences in perspective can lead to
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FIGURE 1. The proposed chronic disease prediction framework.

scenarios where high SVM weights align with low RFE ranks
and vice versa.

B. EXTREME GRADIENT BOOSTING ALGORITHM

The XGBoost algorithm is an ensemble learning method
based on gradient boosting [46], incorporating two crucial
optimization enhancements based on gradient-boosting deci-
sion trees [47]. XGBoost has been used in data mining
and has extensive applications for various problems [48].
Notably, XGBoost demonstrates advantageous traits such as
fast computation, robustness, and accurate prediction [49],
[50]. However, few studies have explored the potential of
XGBoost in the treatment of chronic diseases.

XGBoost mitigates overfitting through two key features:
its regularized objective function and second-order Tay-
lor expansion of the loss function. XGBoost incorporates
L1 (LASSO) and L2 (ridge) regularization terms into its
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objective function, penalizing model complexity. In addi-
tion, XGBoost approximates the loss function using a
second-order Taylor series expansion (SOT). This approx-
imation simplifies the optimization problem and leads to
more accurate loss estimates, ultimately enhancing model
fitting and accuracy. These optimizations contribute to the
effectiveness and robustness of XGBoost as a powerful
machine-learning method.

Assume that we have a dataset denoted as D =
{(xi, yi)}@ = 1,2, ..., n), where x; represents the input data
and y; represents the corresponding target or output data.
In this dataset, we have n examples, numbered 1 to n, each
comprising an input xi and its corresponding target y;. After
training the model with K trees, the predicted results (3;)
obtained from the model are as follows:

~ n
= fuxi). feeW @
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where W refers to the modeling space for the regression trees.
Each regression tree, denoted as f(x), represents an individual
model in an ensemble. The predicted result y; is obtained by
combining the outputs of all K regression trees in the model.

W= (f () = i) 3)

where [ (x), u are the leaf node and its score of the xth
sample, respectively. The predicted value of the ith iteration
is computed as follows:

=5+ fix) @
fi(x;) is the target function, which is optimized as follows:
T =" I R vE)  6)

i=1 1) t\Aq t

where J(-) and v (f;) are the cost function and the model
complexity, respectively.

YD) =y 05 S ©)

where y sets the severity of the penalty for model complexity,
with higher values encouraging fewer decision tree leaves 7.
Larger leaves will be regularized by y. Equation (6) can be
simplified using SOT as:

- 1
T(F) =D Loy, 37D + &) + Shifpx) + v (f) - ()

i=1

Ly 5H

j=— 8)
8y§ 1
82L(yi, 371
b= — 55— ©
3y,

Therefore, the computed objective function has the follow-
ing form:

n 1 1 T
6 =2 lgimie) + bt )My T+a5 > uf
(10)

XGBoost offers various hyperparameters that require opti-
mization. Optimizing these hyperparameters enables the
fine-tuning of the XGBoost model to achieve optimal perfor-
mance and mitigate overfitting. Each hyperparameter plays
a specific role in controlling the complexity, generalization
ability, and computational efficiency of the model.

Enhancing the efficiency and accuracy of models can be
achieved by implementing an efficient hyperparameter opti-
mization algorithm [51]. Grid search is widely employed as a
hyperparameter optimization method because it exhaustively
explores the parameter space; however, dimensionality lim-
itations arise owing to the exhaustive nature of the search,
leading to computational challenges. Given the limitations
of random search for complex models, exploring alternative
hyperparameter optimization techniques for efficient training
becomes crucial [52]. Conventional optimization methods
often struggle with the complexities of ML algorithms.
Bayesian optimization [53] as a powerful method proves its
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effectiveness in optimizing ANNs, SVMs, and other mod-
els [54], [55], [56] and paves the way for tackling more
intricate challenges.

C. BAYESIAN OPTIMIZATION

The optimization goal in hyperparameter tuning is often to
control the maximum or minimum value of the objective
function using a limited set of sampling points. Given that
the function is unknown and its evaluation can be compu-
tationally expensive, an alternative approach is necessary to
effectively address this challenge [51]. Heuristic optimization
algorithms are commonly employed in such scenarios. These
algorithms explore the search space by iteratively sampling
points and evaluating objective functions at these points [57].
Examples of such algorithms include Bayesian optimization,
genetic algorithms [58], particle swarm optimization [59],
and simulated annealing [60]. Crucially, these methods do not
rely on the mathematical form or convexity of the objective
function and can handle complex, non-convex, and computa-
tionally expensive optimization problems.

By leveraging these optimization algorithms, researchers
can efficiently search for optimal hyperparameter config-
urations through iterative sampling and evaluation of the
unknown objective function to find the maximum or mini-
mum value within the given computational resources. The
position at which the optimization function is computed,
denoted as p™, is computed as follows:

pT = argmax 9 (p) (11)
pev

where ¢ refers to an unknown objective function, and p
and ¢ denote the sampling point and the search space of p,
respectively.

Indeed, BO proved to be an exceptionally competent
optimization method [53]. By incorporating prior knowl-
edge about the objective function ¢+ with observations from
strategically sampled points, BO updates its belief about the
function’s distribution. This dynamic posterior estimation
drives its efficient search for the optimum. This approach
enables the algorithm to iteratively refine its understanding
of the behavior and uncertainty of a function. By utilizing
this posterior information, BO can effectively evaluate the
global optimal value [51], [61], making it a powerful tool for
optimizing complex and computationally expensive functions
encountered in various real-world applications. This includes
the optimization of hyperparameters in ML models.

There are two main tasks achieved by BO [62]. To model
the given data and update the posterior distribution, a Gaus-
sian process (GP) is first chosen. The feature that defines GP
is that a multivariate Gaussian distribution on §° is induced by
the finite collection of points pZeMZZZ]. The equivalent func-
tion ¥ (p,) is defined as the z point; from there, the marginals
and conditionals of this distribution can be calculated.

Second, an acquisition function (AC) is chosen to identify
the subsequent evaluation point in the search space. The
posterior over function ¥ (p) is induced if and only if the
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function ¥ (p) is derived from a GP prior and the observations
take the form of p;, 8n§:1, where ¢, ~ Nv (p;) , v) represents
the z measured model performance and ¥ is the variance of
the noise.

The next evaluation point in the search space, denoted by
DPrext = argmax ,,ot(p), is then found using this posterior. The
predictive variance function o%(p) and predictive mean func-
tion w(p) of the GP model rely on the acquisition function.
The next sampling point that is most likely to produce the
ideal value for the unknown objective function # can be found
using these essential functions. Using the acquisition function
and repeated GP model updates, BO effectively searches the
search space and converges to the ideal point pA+ where
is maximized.

The likelihood of improvement and the GP upper confi-
dence bound (GP-UCB) are two methods that can be used to
solve the AC optimization issue [63]. To decide whether to
explore other low-confidence regions (representing the high
o (p) zone) that may yield better performance in hyperparam-
eter tuning or to take advantage of the current optimal value
(representing the high w(p) zone), the GP-UCB method is
utilized in this case. To achieve a balance between the two
options, parameter k is added. Here is how the function is
expressed:

aycg = w (p) — ko(p) (12)

Figure 2 outlines the BO algorithm, which comprises two
main components: Step 2 optimizes the acquisition func-
tion and updates the posterior distribution, as illustrated in
Steps 3 and 4. These steps work in tandem to iteratively
refine the model’s understanding of the objective function and
select the next sampling point in the search space, ultimately
guiding the optimization process toward the global maximum
or minimum of the unknown function.

1. Repeat the following n times:
a. Find P, through the optimization of AC a(p)
- P, = argmax, a(p)
b. Perform sampling of the function 3(P,)
c. Increase the data @,., = D141, (P, 9(Py))
d. Update the posterior of the function 3

FIGURE 2. Bayesian optimization algorithm.

D. HYBRID BO-XGBOOST MODEL

This section presents a comprehensive analysis of the pro-
posed BO-XGBoost model, outlining its three core stages:
data preparation, feature set development, and model con-
struction and validation.

To enhance the feature selection process, XGBoost was
employed using a gain metric to determine the optimal split
nodes. This feature selection step enables the identification of
the most influential features, contributing to improved model
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performance and efficiency.

gain
2 2
1 (Xier, 8 (it 81 L Qi g’
2| e, i+ D it A 2 hit A

(13)

In the XGBoost feature selection process, following seg-
mentation, the left node samples are denoted as 7, and the
right node samples are denoted as I,. The total sample I is
the sum of /;, and I,, representing all samples considered.
The gain score is a metric used to measure feature impor-
tance in XGBoost. A higher gain score indicates a higher
feature importance score, indicating that the corresponding
feature is more crucial and effective in the model [64]; in
other words, features with higher gain scores have a more
substantial impact on the predictive performance of the model
and play a more significant role in determining the target vari-
ables. Thus, during the feature selection process, XGBoost
prioritizes features with higher gain scores because they con-
tribute more to improving the model’s accuracy and overall
performance.

The second stage, the BO-XGBoost model, consists of
four distinct steps:

1) Establish the objective function for optimization and

initialize the XGBoost model using (2) to (12).

2) Define the search domain for hyperparameters through
BO optimization.

3) Develop a probabilistic model during optimization
using a GP, based on the conducted search itera-
tions. Subsequent hyperparameter selection is guided
by maximizing the acquisition function until a prede-
termined number of iterations is reached.

4) Record the optimization results, including hyperparam-
eter values and XGBoost verification errors, for each
candidate parameter set.

IV. EXPERIMENTAL SETUP

The current research was initiated by carefully selecting
datasets and applying preprocessing techniques. This section
presents the experimental setups, including dataset selection,
data processing, and performance evaluation metrics.

A. DATA COLLECTION

Efficient evaluation of Al systems in healthcare requires a
thorough examination of their performance across diverse
datasets [65], [66]. Due to the diverse nature of disease
prevalence, manifestations, and risk factors across regions
and ethnicities, there exists a potential for biased or inac-
curate predictions when models are trained on limited data
from underrepresented populations. It is imperative to address
this critical issue [67]. Recognizing and mitigating regional
differences in patient data is essential to ensure the fairness
and reliability of Al-driven healthcare insights. This approach
is crucial for minimizing health disparities and promoting an
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inclusive and equitable application of advanced technologies
in global healthcare practices.

This study employed a rigorous data-driven approach, uti-
lizing multiple publicly available datasets for heart disease,
breast cancer, diabetes, and kidney disease. These datasets
encompassed pertinent features such as demographics, lab-
oratory tests, and disease-specific indicators.

The selection of datasets for this study was guided by a
meticulous approach aimed at ensuring diversity and rep-
resentativeness across various investigated chronic diseases.
The objective was to construct a comprehensive evalua-
tion framework for the proposed methodology, taking into
consideration the multifaceted nature of real-world medical
datasets. For a thorough assessment, datasets with varying
numbers of features, ranging from 9 to 32, were selected. This
diversity enables examining the adaptability of the model to
datasets with differing levels of complexity, reflecting the
diverse nature of medical data in practice.

Moreover, the significant variation in sample sizes among
the chosen datasets, ranging from 333 to 1025 samples, was
carefully considered. This selection allows for a thorough
evaluation of the methodology’s scalability and performance
across datasets with distinct scales, mirroring the variability
encountered in real-world scenarios.

Recognizing the prevalence of imbalanced data in medical
datasets, datasets with imbalanced class distributions, such as
the AbuDhabi dataset for kidney disease, were intentionally
included. This strategic inclusion enables a thorough evalu-
ation of the methodology’s effectiveness in scenarios where
positive cases may be considerably outnumbered, a frequent
situation in medical diagnostics. Furthermore, the selection
of datasets placed significant emphasis on geographical and
demographic diversity. Datasets such as Sylhet and AbuD-
habi represent various regions and demographics, ensuring a
comprehensive examination of the proposed methodology’s
applicability across diverse contexts.

Table 2 presents a summarized view of the key character-
istics of the selected datasets employed in this study. In the
following, a more detailed description of each dataset has
been presented, offering comprehensive insights into their
distinctive features and contextual relevance.

« The Heart Attack - Erbil dataset was collected at the
Medical Help Centre, a private hospital and heart center
in Erbil, Iraq. Comprising 21 features and 333 patient
records, this open dataset serves the primary objective
of utilizing native patients’ information to predict the
likelihood of heart disease. The gathered information is
categorically classified into five groups, encompassing
demographic details, medical history, physical examina-
tions and symptoms, medical lab tests, and diagnostic
features. The selection of dataset features is guided by
the recommendations of medical professionals, ensuring
the inclusion of relevant and meaningful information for
heart disease prediction [68].

o The CHSLB dataset, comprising patients’ records from
Cleveland, Hungary, Switzerland, and Long Beach,
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encompasses both male and female subjects. The dataset
comprises a total of 1025 entries, distributed across
13 features, with the class distribution represented as the
14th attribute. Among the individuals studied, 499 indi-
viduals were identified as healthy and free from heart
disease, while the remaining 526 individuals were cat-
egorized as sick. Importantly, the dataset indicates the
absence of missing values. The data was sourced from
the Kaggle database [69].

The Wisconsin Diagnostic Breast Cancer (WDBC)
dataset captures essential features computed from dig-
itized images of fine needle aspirates (FNA) of breast
masses, specifically characterizing cell nuclei. With
569 data points, the dataset classifies instances into
212 malignant and 357 benign cases. The ten features
include radius, texture, perimeter, area, smoothness,
compactness, concavity, concave points, symmetry, and
fractal dimension, each having three attributes: mean,
standard error, and worst. The dataset incorporates
30 features, offering a representation of cell nuclei char-
acteristics crucial for breast cancer diagnosis [70].

The Wisconsin Breast Cancer Dataset (WBCD) com-
prises 699 instances obtained from FNA of human
breast tissue. Each record in the database encompasses
10 attributes, as elaborated in Section V. These attributes
are assigned integer values ranging from 1 to 10, with
1 indicating proximity to benign and 10 signifying the
highest degree of anaplasia. Each sample is accom-
panied by its corresponding class label, designated as
either benign or malignant [71].

The Diabetes Sylhet Dataset encompasses sign and indi-
cation data from individuals who are newly diabetic or
at risk of developing diabetes. Collected through direct
questionnaires administered by healthcare professionals
at Sylhet Diabetes Hospital in Sylhet, Bangladesh, the
dataset includes 17 features. With a total of 520 samples,
it highlights 320 positive cases and 200 negative cases,
providing valuable insights into the characteristics asso-
ciated with diabetes in the local population [72].

The Diabetes Pima Dataset comprises data from
768 female diabetic patients belonging to the Pima
Indian community in Phoenix, Arizona, all aged
21 years or older. With 9 attributes, the dataset offers
a detailed exploration across 768 samples. Among the
patients, 500 do not have diabetes, while 268 have
been diagnosed with diabetes, resulting in a distribu-
tion of 35% for diabetes and 65% for non-diabetic
individuals [73].

The Kidney Disease Abu Dhabi Dataset comprises
electronic medical records of 491 patients gathered
at Tawam Hospital in Al-Ain City (Abu Dhabi,
United Arab Emirates) [74]. This dataset encompasses
22 features and 491 samples, with a predominance of
435 positive cases and 56 negative cases. The patient
demographics include 241 women and 250 men, with an
average age of 53.2 years, providing a comprehensive
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TABLE 2. Datasets used for classification.

No. of Positive No. of Negative

Chronic Disease ~ Dataset Name No. of Features No. of Samples Dataset Link
Cases Cases

Heart Erbil 20 333 118 215 [68]
CHSLB 14 1025 526 499 [69]

Breast Cancer WDBC 32 569 212 357 [70]
WBCD 10 699 240 459 [71]

Diabetes Sylhet 17 520 320 200 [72]
Pima 9 768 268 500 [73]

Kidney Abu Dhabi 22 491 435 56 [75]
India 25 400 250 150 [76]

representation of the kidney health profile within this
specific population [75].

The Kidney Disease India Dataset consists of
400 records and 25 features. Among these features are
class attributes denoted as CKD and NOTCKD, indicat-
ing the presence or absence of chronic kidney disease
in the patients. The dataset encompasses 14 categorical
and 11 numerical features. Notably, there is a substantial
number of missing values, with only 158 records being
complete. Moreover, the dataset demonstrates a notable
imbalance, with 250 observations (62.5%) classified
as CKD and 150 (37.5%) as NOTCKD. This distribu-
tion offers a nuanced perspective on the prevalence of
chronic kidney disease statuses within the dataset [76].

B. DATA PREPROCESSING

In the domain of predictive analytics, the significance of data
quality cannot be overstated, particularly in the context of
real-world medical datasets. The diverse nature and sources
of these datasets introduce challenges, including outliers,
missing data points, and irrelevant features. These factors
can have a substantial impact on the accuracy of subsequent
analyses and model training [77]. Recognizing the inherent
complexities, our study placed a strong emphasis on rigorous
data pre-processing to ensure the reliability and robustness of
our predictive models [78].

The pre-processing pipeline involved several crucial steps,
each tailored to address specific challenges posed by
real-world medical data. Key features were meticulously
extracted, taking into consideration their relevance to disease
prediction. Simultaneously, measures were implemented to
safeguard patient anonymity, aligning with ethical consid-
erations [79]. Cleaning the data involved the identification
and handling of outliers, a process vital for accurate model
training.

Outliers, recognized as potential sources of bias in the anal-
ysis, were addressed through a robust replacement strategy.
For numerical features, outliers were replaced with represen-
tative values, specifically the mean, to maintain data integrity.
For categorical features, a similar approach was employed,
replacing outliers with the mode to preserve the categorical
distribution [80].

Handling missing data was another critical aspect of
our data pre-processing strategy. Imputation methods were
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employed based on the type of data — mean imputation
for numerical features and mode imputation for categorical
features. This approach ensured a comprehensive treatment
of missing entries, minimizing the impact on subsequent
analyses and predictions.

Challenges encountered during the data pre-processing
phase, such as variations in data quality and the presence of
anomalies, were diligently addressed to maintain the integrity
of the datasets. Our rigorous data pre-processing efforts not
only contributed to the accuracy of disease prediction but also
ensured the reliability of our findings.

After preprocessing the datasets, they were systematically
divided through random sampling, allocating 80% for train-
ing and 20% for testing. This division ensures robust model
learning with the extensive training set, while the 20% testing
set enables a thorough evaluation of the model’s generaliza-
tion performance on unseen data.

C. PERFORMANCE EVALUATION

In the model validation process, we utilized a separate set
of testing data comprising 20% of the dataset. These testing
samples were not included in the model training phase, allow-
ing us to evaluate how well the model could make accurate
predictions when presented with instances representing a
class it hadn’t encountered during training. Essentially, this
assessment aimed to gauge the model’s ability to handle new,
previously unseen data during validation, ensuring its robust-
ness and performance beyond the initial training datasets.

A confusion matrix assessed the congruence between
actual and predicted outcomes generated by the developed
BO-XGBoost models. The analysis involved four key ele-
ments commonly used in binary classification metrics: True
Positives, True Negatives, False Positives, and False Neg-
atives [81]. These components were employed for further
examination, and their detailed metrics are presented in
Table 3 for further examination.

Precision measures the accuracy of positive predictions
and is vital for avoiding consequences such as unneces-
sary treatments or missed interventions. Recall measures the
model’s ability to correctly identify individuals with the dis-
ease, which is crucial to preventing delayed treatment and
serious complications. The model’s performance has been
evaluated with accuracy for a general view and F1-score for a
balanced perspective on precision and recall. The area under
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TABLE 3. Metrics used to evaluate the performance of ML-based models
for classification.

Metric Equation
R (TP + TN)
cotracy (TP + TN + FP + FN)
L. TP
Precision TP+ FP)
Recall L
cea (TP + FN)
FI-S (Precision * Recall)
- o 7
core (Precision + Recall)
AU-ROC L s + ™
) 2 ((TP +FN) (TN + FN))
(TP * TN — FP * FN)
MCC

J(TP + FP) * (TP + FN) * (IN + FP) * (TN + FN)

the receiver operating characteristic curve (AU-ROC) is a
widely used metric in medical diagnosis and ML that offers a
comprehensive evaluation of model performance, especially
in the face of class imbalances. A score of 1 signifies a perfect
model, while 0.5 indicates performance equivalent to ran-
dom guessing [82]. Finally, Matthew’s correlation coefficient
(MCC) serves as a balanced measure, particularly valuable
for imbalanced datasets, ranging from —1 (total disagree-
ment) to 1 (perfect prediction), with 0 indicating random
prediction. The MCC is widely utilized in ML research for its
ability to assess model performance across various scenarios.

V. RESULTS AND DISCUSSION

In this research, predictive models were employed to pre-
dict the onset of diverse medical conditions, encompassing
heart attacks, breast cancer, diabetes, and kidney disease.
Each disease was examined using two datasets, a strategic
choice aimed at supporting the robustness, and applicability
of the predictive models. Utilizing multiple datasets for each
chronic disease takes into account the inherent diversity in
healthcare data. This approach establishes a more compre-
hensive foundation for precise predictions, thereby enhancing
the efficacy of strategies aimed at managing and preventing
chronic diseases.

Notably, the chosen datasets underscore the issue of class
imbalance, where one dataset (CHSLB) exhibits balanced
classes (51% and 49%), while six out of eight datasets have
one class representing over 60% of the samples. In the
Kidney-Abu Dhabi dataset, one class comprises a striking
89% of the data, highlighting the significance of addressing
this common challenge for accurate predictions in medical
contexts [83], [84]. In addressing the inherent imbalance
within the datasets, the proposed methodology incorporated
a combination of strategic adjustments within the XGBoost
framework. Specifically, the scale_pos_weight parameter,
a key feature of XGBoost, was fine-tuned to assign appro-
priate weights to the minority class. This adjustment aimed
to mitigate the challenges posed by class imbalance, enhance
the model’s learning from instances of the minority class,
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and contribute to its overall robustness in predicting chronic
diseases. Moreover, a comprehensive assessment of the
developed models’ performance on imbalanced datasets was
conducted by employing a diverse set of evaluation metrics,
aimed at providing detailed insights. Precision, recall, and
Fl-score were selected to evaluate the model’s ability to
accurately identify positive instances while minimizing false
positives. These metrics are crucial considerations, especially
in the context of imbalanced datasets. Additionally, the use
of AU-ROC provided a holistic perspective on the trade-off
between true positive and false positive rates. The MCC,
as a robust metric accounting for both sensitivity and speci-
ficity, further enhanced the evaluation, ensuring a balanced
assessment of the model’s performance even in the presence
of imbalanced class distributions. By incorporating these
metrics into the evaluation process, the aim is not only to
demonstrate the model’s effectiveness in handling imbal-
anced data but also to provide a comprehensive understanding
of its impact on early prediction accuracy for chronic dis-
eases.

Table 4 presents the optimal hyperparameter settings for
the BO-XGBoost-based models developed in this study;
this table serves as a comprehensive reference; offering
insights into the hyperparameter choices that result in opti-
mal model configurations. The hyperparameters, namely
colsample bytree, learning rate, maximum depth, N esti-
mators, and subsample play a crucial role in fine-tuning
the models’ performance. The hyperparameter settings were
determined through a systematic optimization process that
utilized Bayesian optimization techniques. The values pre-
sented in the table represent the culmination of an iterative
refinement process aimed at enhancing the predictive capa-
bilities and overall effectiveness of the BO—XGBoost models
in the context of this study.

The conducted evaluation employed a diverse array of
performance metrics to assess the efficacy of the model. The
following subsection provides detailed findings from these
experiments, with a summary presented in Table 5.

A. RESULTS ON HEART DISEASE DATASETS

This experiment, focusing on heart disease prediction, imple-
mented an Al-based model on two distinct datasets related
to heart health: the Erbil dataset, which comprises 20 fea-
tures, and the CHSLB dataset, which comprises 14 features.
To optimize the BO-XGBoost model and ensure its ability
to accurately predict outcomes in various contexts, feature
selection processes were implemented. The feature selection
process, utilizing both SVM weights and RFE ranks, aimed to
identify the most relevant features for predicting the presence
of heart diseases.

Table 6 presents the SVM weights and RFE ranks obtained
through the feature selection process for the Erbil dataset.
Each feature has an associated weight, indicating its contri-
bution to the SVM model. The weights are typically used
to understand the influence of each feature on the model’s
decision-making. Each feature also has an RFE rank, which
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TABLE 4. Optimal settings for hyperparameters of the developed BO-XGBoost-based models.

Colsample bytree Learning rate Max depth N estimators Subsample
Heart-Erbil 0.90 0.29 5.19 119 0.94
Heart- CHSLB 0.62 0.02 7.39 190 0.67
Breast Cancer - WDBC 0.98 0.69 5.25 101 0.52
Breast Cancer WBCD 0.83 0.27 6.98 72 0.59
Diabetes- Sylhet 0.50 0.01 10.0 165 0.63
Diabetes- Pima 0.98 0.92 6.92 108 0.78
Kidney-Abu Dhabi 0.95 0.82 8.64 146 0.98
Kidney-India 0.85 0.49 6.68 181 0.65
TABLE 5. Classification accuracy results obtained from BO-XGBoost classifiers.

DATASET Precision Recall F1-Score MCC Accuracy
Heart-Erbil 1.00 1.00 1.00 1.00 1.00
Heart- CHSLB 1.00 1.00 1.00 1.00 1.00
Breast Cancer - WDBC 1.00 0.97 0.99 0.98 0.99
Breast Cancer- WBCD 0.98 0.98 0.98 0.97 0.99
Diabetes- Sylhet 1.00 1.00 1.00 1.00 1.00
Diabetes- Pima 0.72 0.71 0.71 0.57 0.81
Kidney - Abu Dhabi 0.83 0.62 0.71 0.70 0.96
Kidney-India 1.00 1.00 1.00 1.00 1.00

TABLE 6. SVM weights and RFE ranks of selected features of the erbil
dataset.

Feature SVM WEIGHT (RFE RANK)
Age 0.0046, 1
Gender 0.0157,1
Smoking Status 0.0488, 1
Chest Pain 0.0179, 2
Family History of Heart Disease 0.0248, 5
Lifestyle 0.0129, 1
Diabetes Mellitus 0.0042, 7
Blood Pressure Diastolic 0.0021, 6
Hypertension 0.0655, 1
Interventricular Septal Thickness 0.0440, 4
Electrocardiographic Pattern 1.1044, 1
Presence of Q-Wave 1.1044, 3

indicates its importance after the recursive feature elimination
process. A lower rank generally implies higher importance.
The process has identified 12 features out of the original
20 as relevant for the prediction task. The selected fea-
tures encompass a range of factors, including demographics
(age, gender), lifestyle choices (smoking, hypertension), and
various medical indicators (chest pain, diabetes, electrocar-
diographic patterns). For instance, a feature with a high SVM
weight, such as Electrocardiographic Pattern, holds substan-
tial influence in the overall model decision, as evidenced by
its RFE rank of 1. This aligns with the general understanding
that a lower RFE rank implies higher importance. In the
context of the Erbil dataset, the removal of the Electrocar-
diographic Pattern feature significantly impacts predictive
accuracy, underscoring its importance in both SVM and RFE
assessments. In contrast, the Diabetes Mellitus feature has
a modest influence in the SVM model, as indicated by its
low SVM weight and higher RFE rank. While it contributes
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to the model, its importance is relatively lower compared to
features with higher SVM weights and lower RFE ranks. The
SVM-RFE analysis offers a valuable initial assessment of
feature importance, underscoring the necessity for more in-
depth investigations. It suggests the potential incorporation of
additional modeling techniques for a comprehensive under-
standing of the relationships between these features and the
target variable. These findings highlight that a combination
of demographic, lifestyle, and medical factors significantly
contributes to predicting heart disease in the Erbil dataset.

The feature selected from the CHSLB heart dataset
unveiled varying degrees of significance in predicting heart-
related outcomes. The process has identified 10 features out
of the original 14 as the most important features for the
prediction task. Table 7 presents the results from the SVM
weights and RFE ranks. It provides valuable insights into
feature importance in the CHSLP dataset. Features like Chest
Pain Type exhibit substantial SVM weights (0.6780) and
an RFE rank equal to 1, indicating their significant influ-
ence on the model’s decision-making even after recursive
feature elimination. Similarly, Thalassemia demonstrates a
high SVM weight (0.7260) and an RFE rank of 1, empha-
sizing its critical role in predictive accuracy. These findings
underscore the model’s ability to integrate traditional car-
diovascular indicators and specific medical conditions for
accurate predictions. Features with high SVM weights and
low RFE ranks, such as Exercise-Induced Angina, Maximum
Heart Rate Achieved, and Serum Cholesterol, are priori-
tized in the model, highlighting their importance in capturing
nuanced patterns in cardiovascular health. Despite Resting
Blood Pressure and Fasting Blood Sugar > 120 mg/dl having
low SVM weights, these features have RFE ranks, suggesting
their importance in the model.
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FIGURE 3. Prediction results: Erbil heat disease dataset and CHSLB dataset.

TABLE 7. SVM weights and RFE ranks of selected features of the CHSLB
dataset.

Feature SVM WEIGHT (RFE
RANK)
Gender 0.8236, 4
Chest Pain Type 0.6780, 1
Resting Blood Pressure 0.0113, 1
Fasting Blood Sugar > 120 mg/dl 0.0420, 1
Resting Electrocardiographic Results 0.3259, 3
Exercise-Induced Angina 0.7746, 1
Maximum Heart Rate Achieved 0.3968, 1
Slope of the Peak Exercise ST Segment 0.5678, 2
Serum Cholesterol 0.5587, 1
Thalassemia 0.7260, 1

The selection of these features implies that they collec-
tively contribute significantly to the predictive ability of
the model for heart-related conditions in the CHSLB heart
dataset.

The BO-XGBoost model, tailored for heart attack predic-
tion and depicted in Figure 3, exhibits promising outcomes
across both datasets. The comprehensive evaluation presented
in Table 5 indicates that all employed classification metrics,
particularly the AUC measure highlighted in Figure 3, con-
sistently achieved 100% accuracy. This robust performance
is particularly noteworthy for its accurate prediction of both
True Positive and True Negative cases.

The exceptional level of accuracy and precision suggests
the model’s potential benefits in real-life scenarios, where
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early and accurate prediction of heart attacks is critical for
timely intervention and patient well-being. The model’s abil-
ity to achieve perfect classification across various metrics
underscores its reliability. It indicates its potential utility as
an effective tool for proactive heart attack risk assessment and
prevention in clinical settings.

B. BREAST CANCER

The second experiment centered on predicting breast cancer
using two datasets: WDBC with 32 features and WBCD with
10 features.

In the context of the WDBC dataset, the feature selection
process identified only 18 out of the 32 features to be utilized
in the modeling phase. This allows the prioritization of influ-
ential features while potentially excluding less informative
ones. Table 8 displays the SVM weights and RFE ranks
of selected features from the WDBC dataset, presumably
related to breast cancer prediction given the features’ names.
Features such as Mean Concavity (SVM weight: 0.8301, RFE
rank: 1) exhibit substantial importance, with a high SVM
weight and a top RFE rank, emphasizing their crucial roles in
the model’s decision-making process. These features main-
tain significance even after recursive feature elimination.
Conversely, features like Worst (Largest) Concavity (SVM
weight: 1.7257, RFE rank: 6) showcase high SVM weights
but relatively low RFE ranks, indicating the low importance
of the feature, but still contributing to the overall model.
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This nuanced evaluation underscores the varied influence of
different features on the model’s predictive accuracy, pro-
viding valuable insights into the intricacies of the WDBC
dataset. Emphasizing the significance of considering both
SVM weights and RFE ranks enhances our understanding of
the dataset’s complexities. It is noteworthy to highlight that
the feature selection process has revealed that removing the
remaining 14 discarded features will not have a detrimental
effect on the predictive accuracy of the model.

TABLE 8. SVM weights and RFE ranks of selected features of the WDBC
dataset.

Feature SVM WEIGHT (RFE RANK)
Mean Radius 1.6656, 1
Mean Texture 0.1065, 1
Mean Perimeter 0.2069, 1
Mean Smoothness 0.2692, 8
Mean Compactness 0.2129, 1
Mean Concavity 0.8301, 1
Mean Concave Points 0.4128, 1
Mean Symmetry 0.3227,1
Standard Error of Texture 1.2874, 1
Standard Error of Perimeter 0.3003, 5
Standard Error of Concavity 0.1838,7
Worst (Largest) Radius 0.9137,1
Worst (Largest) Texture 0.2627, 1
Worst (Largest) Smoothness 0.5336,2
Worst (Largest) Compactness 0.2778, 3
Worst (Largest) Concavity 1.7257,6
Worst (Largest) Concave Points 0.6804, 1
Worst (Largest) Symmetry 0.5080, 4

TABLE 9. SVM weights and RFE ranks of selected features of the breast
cancer wisconsin dataset.

Feature SVM WEIGHT (RFE RANK)
Clump Thickness 0.3392, 1
Uniformity of Cell Shape 0.1021, 2
Marginal Adhesion 0.1554, 1
Epithelial Cell Size 0.0208, 1
Bare Nucleoli 0.2581, 1
Bland Chromatin 0.2939, 1
Normal Nucleoli 0.0943, 1
Mitoses (Number of Mitotic Figures) 0.2537, 1
Clump Thickness 0.3392, 1
Uniformity of Cell Shape 0.1021, 2

In the breast cancer prediction experiments depicted in
Figure 4, the implemented BO-XGBoost model demon-
strated an impressively high level of accuracy, consistently
reaching 99% for both datasets. The AUC value, a critical
measure of model performance, achieved a perfect score
of 1, further affirming the robustness of the model. Although
the model encountered a misprediction in one positive case
across the two datasets, this discrepancy was effectively cap-
tured by the recall values detailed in Table 5, which were
97% and 98% for the WDBC dataset and WBCD dataset,
respectively. These findings indicate the remarkable ability
of the model to effectively identify and classify breast cancer
instances with high accuracy and sensitivity. Such precise
predictions have substantial real-life implications, as they can
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significantly contribute to early detection and intervention,
enhance patient outcomes, and aid in the development of
targeted treatment strategies.

Table 9 provides insights into the SVM weights and RFE
ranks of selected features from the Breast Cancer Wisconsin
dataset (WBCD). These features, encapsulating diverse cell
characteristics, are pivotal contributors to the model’s predic-
tive power. Notably, all selected features hold top positions
with RFE ranks of 1 or 2, reinforcing their collective sig-
nificance in shaping the model’s predictions. This thorough
evaluation underscores the influential role of these factors in
enhancing the overall predictive capability of the model. It is
important to highlight that the prediction model is built using
the 10 original features identified through this comprehensive
analysis.

C. DIABETES

This experiment investigated diabetes prediction, utilizing
two datasets: Sylhet with 17 features and Pima with nine
features. For the first dataset, 11 features have been identified.
The results of the feature selection process for the Sylhet
dataset are shown in Table 10, which sheds light on the statis-
tical significance of these features in predicting diabetes. The
selected features in the Sylhet diabetes dataset reflect symp-
toms and conditions commonly associated with diabetes. The
SVM weights and RFE ranks in the Sylhet Diabetes dataset
highlight the individual contributions of selected features
to the predictive model. Polyuria and Polydipsia exemplify
crucial factors with high SVM weights (1.6662 and 1.9996,
respectively) and top RFE ranks (1). These features stand
out as pivotal contributors, emphasizing their significance
in diabetes prediction. On the other hand, the Gender fea-
ture, with an SVM weight of 1.9997, highlights the nuanced
impact of features, as it possesses a high weight, but a lower
RFE rank of 5. This suggests that, while the Gender feature
plays a role, other features take precedence during the feature
elimination process. Additionally, Alopecia, with alow SVM
weight (0.3337) but a top RFE rank (1), signifies its impor-
tance despite its lower impact on the overall model. This
comprehensive evaluation provides valuable insights into the
varying importance of features and the differential influence
of RFE on their rankings.

The SVM weights and RFE ranks for the selected features
from the Pima Diabetes dataset, as presented in Table 11,
offer valuable insights into their contributions to the pre-
dictive model. It shows that the eight features presented in
the dataset were selected to get the best performance. The
Pima diabetes dataset’s selected features cover a range of
health indicators, including reproductive history, glucose lev-
els, blood pressure, BMI, diabetes pedigree function, and
age. Several features, including Pregnancies, Glucose, Blood
Pressure, Skin Thickness, Insulin, BMI, Diabetes Pedigree
Function, and Age, exhibit both high SVM weights (ranging
from 0.0004 to 0.4386) and top RFE ranks (all ranked 1).
These features play crucial roles in shaping the predictive
model, underscoring their significance in diabetes prediction.
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FIGURE 4. Prediction results: Breast cancer WDBC dataset and breast cancer WBCD dataset.

TABLE 10. SVM weights and RFE ranks of selected features of the sylhet
diabetes dataset.

TABLE 11. SVM weights and RFE ranks of selected features of the Pima
diabetes dataset.

Feature SVM WEIGHT (RFE RANK) Feature SVM WEIGHT (RFE RANK)
Gender 1.9997, 5 Pregnancies 0.0952, 1
Polyuria 1.6662, 1 Glucose 0.0303, 1
Polydipsia 1.9996, 1 Blood Pressure 0.0088, 1
Polyphagia 0.6666, 1 Skin Thickness 0.0018, 1
Genital thrush 0.3340, 4 Insulin 0.0004, 1
Itching 1.3332,3 BMI 0.0653, 1
Irritability 1.6661, 1 Diabetes Pedigree Function 0.4386, 1
delayed healing 0.3332, 1 Age 0.0018, 1
Partial paresis 0.6667, 2

Muscle stiffness 0.6668, 1

Alopecia 0.3337, 1

While individual SVM weights are low, the recursive feature
elimination process identifies each feature as important for
predicting diabetes.

The consistently top RFE ranks indicate that, after recur-
sive feature elimination, these features maintain their impor-
tance and contribute significantly to the overall model
accuracy. The model appears to rely on a combination of
factors rather than heavily emphasizing a single feature.

In the experiments focusing on diabetes prediction, the
BO- XGBoost model underwent evaluation using two dis-
tinct datasets. The Sylhet dataset exhibited exceptional
accuracy, achieving a perfect score of 100% across all clas-
sification measures, including the Area Under the Curve
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(AUC). Conversely, in the case of the Pima dataset, the
predictive performance of the model fell short of reaching
90% across all measures, as detailed in Table 5. The asso-
ciated confusion matrix in Figure 5 reveals that out of the
106 positive cases, 17 were misclassified as negative, and
13 negative cases out of 48 were erroneously classified as
positive. In the context of medical diagnosis, the significance
of recall values is evident, as a lower recall may impact
the early identification and treatment of potential patients
requiring immediate attention. Despite this, it is noteworthy
that the results obtained for the Pima dataset remain compet-
itive when benchmarked against other models, showcasing
the model’s competence in the challenging task of dia-
betes prediction. The imbalanced nature of the dataset, with
65% negative and 35% positive cases, poses challenges for
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FIGURE 5. Prediction results: Diabetes-Sylhet dataset and diabetes- Pima dataset.

diabetes prediction, potentially leading to a bias toward the
majority class.

D. KIDNEY DISEASE

In the final set of experiments, attention shifted to kidney
disease prediction, involving two datasets: Abu Dhabi with
22 features and India with 25 features. The feature selec-
tion using the SVM-RFE method provides insights into the
features’ statistical significance in predicting kidney-related
outcomes. Table 12 presents the SVM weights and RFE ranks
of selected features from the Abu Dhabi Kidney dataset.
The process identified 14 features to be used in the mod-
eling phase. It is noteworthy that eight features have been
eliminated, highlighting the model’s focus on retaining the
most informative variables. The selected features include a
combination of demographic information, medical history,
medication history, and baseline measures. Features such as
Gender, History of Coronary Heart Disease (CHD), History
of Vascular, History of Smoking, History of HTN, His-
tory of Obesity, Cholesterol Baseline, eGFR Baseline, and
TIME_YEAR demonstrate substantial SVM weights (rang-
ing from 0.0290 to 0.4589) and consistently maintain RFE
rank 1, underscoring their pivotal roles in kidney disease pre-
diction. These features remain influential even after recursive
feature elimination, emphasizing their enduring importance.
On the other hand, features like History Diabetes, DLDmeds,
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DMmeds, HTNmeds, and ACEIARB exhibit notable SVM
weights (ranging from 0.1041 to 0.7500) but have higher
RFE ranks (2-3), suggesting their importance diminishes after
feature elimination. This nuanced evaluation sheds light on
the relative contributions of individual features in predicting
kidney disease, considering both their SVM weights and RFE
ranks.

Table 13 provides information on the SVM weights and
RFE ranks of selected features from the India Kidney dataset.
Notably, only 12 features out of 25 were identified through
the SVM-RFE method. The 12 identified features from the
India Kidney dataset encompass a range of medical indica-
tors related to urine analysis, blood parameters, and medical
conditions. Notably, features such as Sugar, Red Blood Cells,
Pus Cell, Serum Creatinine, Potassium, and Anemia exhibit
substantial SVM weights (ranging from 0.3136 to 1.7706)
and consistently maintain top RFE ranks (1), emphasizing
their crucial roles in kidney disease prediction. These features
retain their importance even after recursive feature elimi-
nation, highlighting their enduring impact on the model’s
decision-making. On the other hand, Specific Gravity, Albu-
min, Red Blood Cell Count, Hypertension, and Diabetes
Mellitus also display noteworthy SVM weights (ranging
from 0.1752 to 0.8462) but low RFE ranks (3-7). These
features collectively contribute to predicting kidney-related
conditions. The comprehensive assessment of these features

VOLUME 12, 2024



H. A. Al-Jamimi: Synergistic Feature Engineering and Ensemble Learning

IEEE Access

104

0.8 1 -

0.6 1 #

Abu Dhabi

dataset 047 ’

True Poitive Rate
.

0.2 r

< —— BO-XGBoost (AUC = 0.98)

0.09

T T
0.0 0.2 0.4 0.6 0.8 1.0
False Poitive Rate

India dataset

True Poitive Rate

0.0 —— BO-XGBoost (AUC = 0.88)

T T T
0.0 0.2 0.4 0.6 0.8 1.0
False Poitive Rate

80
2
—_ 60
w
s
n
g 40
E
F 2 6
20
T T
T F
Predicted label
50
T 23 0 40
I
0
T 30
1]
I~
F 20
F1 0
10
T F 0

Predicted label

FIGURE 6. Prediction results: kidney-Abu Dhabi dataset and kidney-india dataset.

TABLE 12. SVM weights and RFE ranks of selected features of the abu
dhabi kidney dataset.

TABLE 13. SVM weights and RFE ranks of selected features of the india
kidney dataset.

Feature SVM WEIGHT (RFE RANK) Feature SVM WEIGHT (RFE RANK)
Gender 0.4589, 1 Specific Gravity 0.6658, 5
History of Diabetes 0.7500, 2 Albumin 0.8029, 2
History of CHD 0.3324,1 Sugar 0.5433, 1
History of Vascular 0.3811, 1 Red Blood Cells 1.7706, 1
History of Smoking 0.1954, 1 Pus Cell 0.3136, 1
History of Hypertension (HTN) 0.1869, 1 Serum Creatinine 0.7569, 1
History of Obesity 0.0290, 1 Potassium 0.1823, 1
DLDmeds 0.1282,3 Red Blood Cell Count 0.1752,6
DMmeds 0.3053, 1 Hypertension 0.8462, 7
HTNmeds 0.5004, 1 Diabetes Mellitus 0.8462, 3
ACEIARB 0.2657, 1 Pedal Edema 0.7436, 4
Cholesterol Baseline 0.1041, 1 Anemia 0.3860, 1
eGFR Baseline 0.0381, 1

TIME YEAR 0.2257, 1

provides valuable insights into the complex relationships
between various factors and kidney-related conditions, con-
tributing to a deeper understanding of the India Kidney
dataset.

High SVM weights for Red Blood Cells, Pus Cell, Serum
Creatinine, Potassium, and Sugar emphasize their signifi-
cance in the model. Albumin and Diabetes Mellitus have
lower RFE ranks but still substantial SVM weights. Their
inclusion suggests that while not the top predictors, they
contribute significantly to the predictive power of the model.

In the chronic disease experiment outlined earlier, two
datasets were employed to evaluate the performance of

VOLUME 12, 2024

BO-XGBoost models in predicting kidney chronic disease.
Although the model achieved an accuracy of 96% on the Abu
Dhabi dataset, the recall value was notably lower, at approx-
imately 62%.

The difference in measures can be attributed to the imbal-
anced nature of the dataset, exemplified by the confusion
matrix in Figure 6. The testing set, in particular, included
eight negative cases and 91 positive cases, contributing
to the observed differences. However, despite this imbal-
ance, the proposed model achieves outstanding performance.
For the second dataset, the BO—XGBoost model demon-
strated excellent performance, achieving 100% accuracy
across all measures. These accurate predictions hold signifi-
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cant real-life implications, contributing to the early detection,
intervention, and development of targeted treatment strate-
gies, ultimately enhancing patient outcomes.

E. COMPARATIVE ANALYSIS

Among a diverse ensemble of machine learning algorithms,
including established methods like SVM, DT, RF, K-NN,
GNB, LR, and MLP, the hybrid BO-XGBoost model reigned
supreme. Our comprehensive evaluation, crafted using the
AUC metric for classification accuracy, painted a definitive
picture: the BO—XGBoost model stood head and shoulders
above its competitors. Its consistently superior AUC values
show the exceptional predictive power of BO-XGBoost in
predicting chronic diseases like heart attack, breast cancer,
diabetes, and kidney disease. Figure 7 demonstrates the per-
formance results of the applied ML methods.

VI. CONCLUSION AND FUTURE WORK

The early detection of chronic diseases remains a formidable
obstacle for researchers, driving the exploration of various Al
techniques for analyzing medical data and predicting disease
onset. The findings reported in this study demonstrated the
effectiveness of the proposed approach for predicting chronic
diseases (i.e., heart attack, breast cancer, diabetes, and kidney
disease). The integration of XGBoost, and Bayesian opti-
mization contributes to a robust and efficient model for the
accurate identification of individuals at risk, paving the way
for precision healthcare and proactive disease management.

In addition, the proposed approach incorporates feature
selection methods to refine the analysis. The SVM-RFE
was used to identify and prioritize relevant features within
datasets, discarding irrelevant ones, and assigning scores
to those with the most significant predictive power. This
targeted approach ensures the model focuses on the most
impactful information, enhancing its effectiveness.

This study demonstrated the remarkable performance
of the proposed hybrid model, combining Bayesian Opti-
mization with XGBoost, in comparison to a range of
well-established ML models. A thorough comparative anal-
ysis included SVM, DT, RF, KNN, GNB, LR, and MLP.
The evaluation encompassed two datasets for each disease,
ensuring a comprehensive assessment of the BO-XGBoost
model’s predictive capabilities. The outcomes underscore the
adaptability of the proposed hybrid model across diverse
datasets and various disease types. Through this extensive
comparison, our study not only showcases the impressive
performance of the BO-XGBoost model but also positions
it favorably in the context of existing ML models for chronic
disease prediction.

The model’s effectiveness in handling multiple chronic
diseases underscores its potential for real-world application
in healthcare settings. Its ability to leverage diverse datasets
and prioritize high-impact features suggests it could be read-
ily integrated into medical practice, empowering healthcare
professionals with valuable prediction tools for early disease
detection and intervention.

VOLUME 12, 2024

While this study paved the way for significant advance-
ments in chronic disease prediction, it also identifies research
gaps that need further exploration. The development of
universally applicable prediction systems remains a chal-
lenge, and the study acknowledges the potential discrepancies
between research findings and real-world clinical use due to
data limitations and variations in medical datasets. Address-
ing these challenges will involve continuous research and
collaboration to refine and validate Al-powered predic-
tion models for robust and widespread implementation in
healthcare systems, ultimately benefiting both patients and
healthcare professionals.
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