
Received 1 April 2024, accepted 23 April 2024, date of publication 30 April 2024, date of current version 7 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3395517

Sequence-to-Sequence Stacked Gate Recurrent
Unit Networks for Approximating the
Forward Problem of Partial
Differential Equations
ZHAOYANG ZHANG AND QINGWANG WANG , (Member, IEEE)
Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

Corresponding author: Qingwang Wang (wangqingwang@kust.edu.cn)

This work is funded in part by the Yunnan Fundamental Research Projects under Grant 202401AW070019, 202101BE070001-008
and 202301AV070003, in part by the Youth Project of the National Natural Science Foundation of China under Grant 62201237,
in part by the Major Science and Technology Projects in Yunnan Province under Grant 202302AG050009 and 202202AD080013.

ABSTRACT We proposed an optimisation algorithm based on the sequence-to-sequence (Seq2Seq) stacking
of the gate recurrent unit (GRU) model to characterise and approximate the forward problem of partial
differential equations (PDEs). Unlike traditional methods based on mesh differential approximation and
no parameters, this is a meshless approach based on parametric semi-supervised learning. Specifically,
the algorithm employs the ability of deep feedback neural networks to approximate continuous dynamical
systems, which is enhanced by stacked GRUmodules to capture the evolution of the PDEs over time and thus
enrich the representations of the sequences in the hidden space. The loss function of the model incorporates
partial physical knowledge as an a priori condition to guide the optimisation direction, i.e., transforming
the numerical iterative problem into a non-convex optimisation problem. In addition, each round of training
of the model incorporates data resampling to prevent it from overfitting. We evaluated the ability of the
proposed algorithm to solve mathematical physics equations for a variety of differential operators and
constraints, including the heat, wave, Burgers, Schrodinger, diffusion, and Kovasnay flow equations. The
experimental results confirmed the outstanding prediction precision and generalisation capability of the
proposed algorithm.

INDEX TERMS Forward problem of partial differential equations, deep learning, gate recurrent unit,
sequence-to-sequence.

I. INTRODUCTION
The forward problem of partial differential equations (PDEs)
can describe different physical phenomena, that is, different
physical phenomena can be governed by the same laws,
reflecting the comparability of various physical phenom-
ena. Consequently, its study is of major significance to
mathematics and theoretical physics. However, as PDEs
are nonlinear or contain complex special functions in
several practical situations, typically, analytical solutions
are nonexistent or difficult to determine. Thus, appropriate

The associate editor coordinating the review of this manuscript and

approving it for publication was Ángel F. García-Fernández .

numerical algorithms must be designed to approximate
the numerical solution of the forward problem. Traditional
numerical algorithms for solving forward problems include
the finite element method (FEM [1]), finite differencemethod
(FDM [2]), and finite volume method (FVM [3]). Owing to
the requirement of dividing the solution domain into discrete
grids, the method and scale of mesh delineation can restrict
the precision and efficacy of the computation. Moreover,
instable and non-convergent numerical solutions may result
from improper mesh selection.

In the past decades, deep learning based on deep
neural networks has made impressive achievements in the
fields of natural language processing, computer vision, and

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 61795

https://orcid.org/0009-0007-2891-492X
https://orcid.org/0000-0001-5820-5357
https://orcid.org/0000-0002-6471-8455

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

multimodal scene modelling. It has also demonstrated its
potential and advantages in processing high-dimensional
data and solving complex nonlinear problems [4], [5], [6].
The classic concept of function approximation has been
included in the approximate solution of the forward problem
of PDEs. The theory of function approximation is an
essential branch of contemporary mathematics. Wierstrass
proved that continuous functions can be approximated using
polynomial functions [7], and Chebyshev formulated the
best approximation theorem [8]. In addition, approximation
theories based on wavelet bases [9], algebraic or trigonomet-
ric polynomials [10], and deep neural networks have been
rapidly developed. The universal approximation theorem
of neural networks [11], [12] has shown that in the case
of a sufficiently wide and deep network, any continuous
and complex function can be approximated with arbitrary
precision. Thus, deep neural networks exhibit a very good
nonlinear approximation ability. Its essence is to express
and approximate unary or multivariate functions via the
expansion of nonlinear parameters. Therefore, compared to
general approximation, deep neural networks exhibit superior
nonlinear approximation abilities. According to the PAC
theory [13], deep learning algorithms can learn a nearly
correct hypothesis (local optimal solution) with a certain
probability. This is expressed as:

P(|R(f)− R̂(f)| ≤ ϵ) ≥ 1− δ, (1)

whereR(f) is the expected risk, R̂(f) is the empirical risk of
the model, and f denotes the machine learning model. Most
of the local optimal solutions are equivalent as the size of the
network increases during optimization [14], while the number
of training samples N is related to the error precision ε and
the probability δ of approximate correctness as follows:

N (ε, δ) ≥
1
2ε2

(log |F | + log
δ

2
), (2)

where F denotes the function cluster of the model and
|F | denotes the hypothesis space size. Based on the
optimization principles of deep learning, researchers have
developed numerous outstanding algorithms for solving
forward problems of PDEs. The known physical constraints
were added to the training and optimization process of the
neural network to facilitate its adaptation to and learning
of real physical phenomena while simultaneously using the
feed-forward neural network to optimize the approximate
solution of the PDEs [15], while the correlation capture of
the PDEs itself was relatively weak. In contrast to traditional
finite element methods, the Deep Galerkin Method (DGM)
need not discretize PDEs, and it uses a feedforward neural
network and a long short-termmemory (LSTM) [16] network
to approximate the approximate solution of PDEs [17].
It also uses the Monte Carlo method [18] to approximate
the second derivative, and exhibits beneficial computational
efficiency for PDEs in high-dimensional data instances.
In addition, operator theory-based deep learning methods
may also aid in the development of the forward and backward

problems of PDEs [19]. This study’s neural operators are
composed of a linear integral operator and a point-by-point
nonlinear activation function, which use two sub-networks
(backbone and branch networks) to capture the relationship
between the input function and the local operator, thus closely
approximating the nonlinear operator. Fourier transform-
based deep learning methods are based on operator learning
and approximate the solution of PDEs using frequency
domain information [20]. It can also learn the generalized
functions between inputs and outputs, which can partially
solve the retraining problem of PINNs. In addition, there
exists a method based on neural differential equations that
expresses the PDEs as a set of coupled ordinary differential
equations and obtains the numerical solution of the PDEs
by solving this set of ordinary differential equations [21].
In terms of correcting the loss function, [22] proposed a
convolutional neural network based technique to reconstruct
the loss function thereby improving the prediction accuracy.
In terms of application, [23] utilized physically informative
neural networks to predict excess pore water pressure in
two-dimensional soil consolidation and successfully applied
it in real railroads. These studies [24], [25], [26], [27], [28],
and [29] are based on certain research variants of PINN [15]
and applications in different fields. Furthermore, certain
scholars are working on theoretical studies of recurrent
neural network (RNN)-like linear system approximation
capabilities [30], [31], [32], [33].

However, these studies do not expressly reflect the
temporal correlation of time-containing PDEs, and their
sampling of training samples lacks diversity. To this end,
we propose a stacked GRU network optimization algorithm
in the sequence-to-sequence(Seq2Seq) context, based on the
capability of deep feedback neural networks to approximate
continuous dynamical systems, in order to characterize
and approximate the forward problem of time-dependent
PDEs. The direction of optimisation is constrained by using
the PDE constraints as a priori knowledge of the loss
function for the network. Calculating PDE derivatives using
automatic differentiation methods [34], which do not produce
truncation errors due to differential computation, requires
vectors of spatio-temporal sequences to train that have
been randomly sampled under the associated constraints,
avoiding the granularity issue of the grid. The trained model
is able to address a variety of time-dependent forward
problem contexts more effectively while also having high
generalisation and modifiability since the GRU structure of
the hidden layer is used to capture the correlation of time in
sequences.
The contributions of this study are as follows:

1) We proposed an optimization algorithm based on
Seq2Seq superimposed GRU networks for characteriz-
ing and approximating the forward problem of PDEs.
The constraints of the PDE were jointly constituted
as penalty terms in the loss function of the model,
where the initialization and boundary conditions served
as the direct prior knowledge to modify the model,

61796 VOLUME 12, 2024

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

and the operator conditions served as the indirect
prior knowledge to guide the model, thus transforming
the solution of the PDE from a numerical iterative
problem into a semi-supervised learning problem for
non-convex optimization.

2) The proposed algorithm is parameter learning-based
and meshless, and its numerical inference is without
differential iterations. Moreover, unlike general deep
feedforward neural networks, the proposed algorithm
increases the feature of capturing the temporal corre-
lation between PDEs input sequences, which enriches
the expressiveness of hidden variable features and the
generalization ability of the model.

3) The proposed algorithm was well-suited for solv-
ing various types of elliptic, parabolic, and hyper-
bolic PDEs, and both time-dependent and non-time-
dependent variations, including heat conduction, string
vibrations, Burgers equation, Schrodinger equation,
diffusion equation, and Kovasznay flow in fluid
dynamics. The numerical errors were typically in the
range of 1 × 10−5 –1 × 10−7, which confirmed the
accuracy and generalizability of the proposed model.

The remainder of the paper is structured as follows. Section II
introduces the related approximation lemmas and proposes
an optimization algorithm based on a synchronized Seq2Seq
stacked GRU network model to characterize and approximate
the PDE of problem. Section III presents the application of
the proposed algorithm to a variety of classical mathematical
physics scenarios with various types of operators and
constraints to evaluate and verify the prediction accuracy
and generalization of the proposed algorithm. Section IV
discusses the accuracy and generalization of the proposed
model in experiments, and some reflections on the pending
improvements of the model in the computational process.
In Section V, relevant conclusions and future work are
summarized. Moreover, the proof procedure of the lemmas
presented in this paper is given in the appendix.

II. METHODOLOGY
In this section, we present a brief summary of the capability of
deep feedback neural networks to approximate nonlinear con-
tinuous dynamical systems from the perspective of function
approximation. Consequently, we propose a Seq2Seq based
stacked GRU network model to characterize and approximate
the forward problem of time-dependent PDEs.

A. CAPACITY OF RNN TO APPROXIMATE CONTINUOUS
DYNAMIC SYSTEMS
In an RNN, neurons can receive information from other
neurons and from themselves; that is, the feedback con-
nection from hidden layer to hidden layer is added, which
forms a network structure with loops. First, a general
approximation theorem [11] is considered when describing
the evolution of a dynamical system over time t . For
multilayer feedforward neural networks, during nonlinear

continuous dynamic systems with input, the output trajectory
over a finite time period can be approximated with arbitrary
precision using a class of RNNs. A continuous RNN is of the
form:

dx(t)
dt
= −αx(t)+ Aσ (x(t)+ Bu(t)), (3)

where x ∈ RL is the state vector of L neurons, u ∈
Rm is the input vector of the network model, A ∈ RL×L

is the connection weight matrix between L neurons, B ∈
RL×m is the connection weight matrix of the input signal
to each neuron, and α ∈ {0, 1} is the delay factor, and
σ (.) is a nonlinear vector function with continuous first-order
derivatives. After learning the weight matrix, the continuous
nonlinear dynamical system can be arbitrarily approximated
as:

dx(t)
dt
= F(x(t),u(t)), (4)

if F is Lipschitz continuous, then the following lemma can be
obtained:
Lemma 1: For any ϵ > 0, let S,U be the open sets in Rn

and Rm, F, F̃ : S × U → Rn are Lipschitz continuous and
continuous mappings respectively, L is the Lipschitz constant
ofF(x,u) over S×U for x, and for all x ∈ S and u ∈ U satisfy

||F(x,u)− F̃(x,u)|| < ϵ,

if x and x̃ are solutions of equations

dx(t)
dt
= F(x(t), u(t))

and
dx̃(t)
dt
= F̃(x̃(t), u(t))

satisfying initial condition x(t0) = x̃(t0) ∈ S on the interval
T , respectively, then we have

||x(t)− x̃(t)|| ≤
ϵ

L
(expL|t − t0| − 1).

Lemma 2: For any ϵ > 0, let S,U be the open sets in Rn

and Rm, X and DU are tight sets in S and U , respectively, F :
S×U → Rn is a vector function with a continuous first-order
derivative function, consider the nonlinear dynamic system

dx(t)
dt
= F(x(t),u(t)), x ∈ S,u ∈ U , t ∈ [0,T], (5)

provided its initial condition x(0) ∈ X , then for any ϵ > 0 and
any bounded input u(t) ∈ DU , t ∈ [0,T], there exists
a natural number r and an RNN 3 with appropriate initial
condition s0 such that

max
0≤t≤T

||x(t)− sn(t)|| < ϵ, (6)

where sn is the state vector of the first n output neurons of the

RNN, that is sL =
(
sn
h

)
∈ RL , h ∈ RL−n.

According to Lemma 1 and 2, whenF(x(t),u(t)) has a certain
special structure, RNNs with a simpler structures can be used
to approximate its output track.

VOLUME 12, 2024 61797

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

Corollary 1: Let S be an open set in Rn, X be a compact
set in S, F : S × R → Rn is a vector function with
a continuous first-order derivative function, consider the
nonlinear dynamic system

dx(t)
dt
= F(x(t), t), x ∈ S, t ∈ [0,T], (7)

provided its initial condition x(0) ∈ X , then for any ϵ > 0,
there exists a natural number r and an RNN of the following
form with appropriate initial condition s0:

ds(t)
dt
= −αs+W1σ (s), s ∈ RL , (8)

such that

max
0≤t≤T

||x− sn|| < ϵ, (9)

where s =
(
sn
h

)
∈ RL , sn ∈ Rn, h ∈ Rr .

The time-dependent PDE is also a continuous linear or
nonlinear complex dynamical system, and its forward
problem can be modeled by the continuous RNN model in
the sequence-to-sequence task. Therefore, we proposed a
Seq2Seq-based stacked GRU network model to approximate
the solution of PDEs, which is both a meshless parameter
learning model and captures the correlation features between
the timing of input sequences of PDEs, thus enriching the
feature expressiveness of the model’s hidden variables and
allowing the model to be efficiently generalized to solve
PDEs of various physical problems.

B. SEQ2SEQ-STACKED GRU ARCHITECTURE FOR PDES
Consider a forward problem of a time-dependent nonlinear
PDE with a spatial dimension of d as follows:

∂au
∂ta

(t, x)−Nu(t, x) = 0, (t, x) ∈ (0,T)×�

u(t = 0, x) = φ(x)

ut (t = 0, x) = ϕ(x), x ∈ �

u(t, x) = ω(t, x)

ux(t, x) = υ(t, x), (t, x) ∈ [0,T]× ∂�, (10)

where a ∈ {1, 2} is the first-order or second-order PDEs
under the time dimension; t ∈ R1 is the time dimension,
x ∈ Rd is the d-dimensional space dimension; u(t, x)
is the real analytical solution of PDEs (it is unknown),
� is the internal value range of x, ∂� is the boundary
value range of x, and N is a linear or nonlinear operator.
The first formula represents a differential operator equation,
which can be a hyperbolic, parabolic, or elliptic equation.
The second and third formulas represent the initialization
conditions. Finally, the fourth and fifth formulas represent
the boundary conditions, which can be a combination of
Dirichlet or Neumann boundary conditions. To solve the
forward problem for PDEs more effectively, we constructed
the network model depicted in Figure 1 based on the relevant
lemmas presented in Section II-A. Assuming that the PDEs

has S conditional constraints, a batch of the model training
contains S groups of sequences, and each group of sequences
contains N samples, corresponding to sample sets that satisfy
different conditional constraints. These sequence samples are
randomly generated by a random sampling algorithm (such as
Stratified [35] or Latin Hypercube Sampling [36]). The trick
employs independent data resampling as a semi-supervised
training set Dtrain for each round of model learning, thereby
preventing grid formation.

Dd = {(td , xd) ∈ (0,T)×�} ∼ pd
Di = {(ti, xi) ∈ [0]×�} ∼ pi
Db = {(tb, xb) ∈ [0,T]× ∂�} ∼ pb

Dtrain = {Dd ,Di,Db}, (11)

where Dd is the sample set sampled on the differential
operator equation, Di is the sample set sampled on the initial
condition, Db is the sample set sampled on the boundary
condition, t∗ and x∗ denote the temporal and non-temporal
features sampled in each sample set, respectively, and p∗
is the probability density function in the sampling method.
Unlike PINN [15], [37], the input sequences to our algorithm
do not require any experimental data as loss terms for the
model, except for sampling out sequences (Dtrain) that satisfy
physical constraints.

As u(t, x) is unknown in the differential operator equation,
Dd is equivalent to unsupervised learning throughout the
entire training procedure. Moreover, because the functions
φ(x), ϕ(x), ω(t, x), υ(t, x) are known, Di and Db can be
utilized as part of supervised learning to correct model
learning errors. Thus, the entire training process is equivalent
to semi-supervised learning.

The hidden layer adopts a synchronous Seq2Seq stacking
structure and recursively learns the correlation of different
sequences in the time dimension through the hidden state h(l)t
(h(l)t shares historical information in the time dimension) of
the lth layer. We used a GRU [38] to update the hidden state
of the input sequence simultaneously by updating gate z(l)t and
resetting gate r (l)t :

z(l)t = σ (W
(l)
z xt + U (l)

z ht−1 + b(l)z), z(l)t ∈ {0, 1}

r (l)t = σ (W
(l)
r xt + U (l)

r ht−1 + b(l)r), r (l)t ∈ {0, 1}

h̃t
(l)
= tanh(W (l)

h xt + U
(l)
h (r (l)t ⊙ h

(l)
t−1)+ b

(l)
h)

h(l)t = z(l)t ⊙ h
(l)
t−1 + (1− z(l)t)⊙ h̃t

(l)
, (12)

where W (l)
∗ ,U

(l)
∗ , and b(l)∗ are learnable parameters, W (l)

∗ ∈

Rr×h is the state-input weight matrix, U (l)
∗ ∈ Rh×h is the

state-state weight matrix, b(l)∗ ∈ R1×h is the bias vector,
and h̃t

(l) is the candidate state at the current moment t ,
the operator ⊙ denotes the Hadamard product operator for
vectors, which multiplies each element. Except for the output
layer, each layer of neurons in the model employed the same
activation function to finish the nonlinear mapping, such
as the GELU function [39]. The algorithmic procedure is
described in the subsequent subsection.

61798 VOLUME 12, 2024

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

FIGURE 1. Seq2Seq stacked GRU model architecture: (a) Generate a collection of sequences in physical space that satisfy the corresponding
constraints by independent resampling of the data. (b) In the input space, a multilayer perceptron with a nonlinear activation function maps the
original input into the hidden space. (c) A multi-layer gated neural network mines the correlations between sequences in the hidden space, which in
turn enriches the representation of sequences. (d) Finally, the projection operation on the output sequence is accomplished in the output space by a
multilayer perceptron without an activation function. (e) The updating of the model parameters is done by optimising the loss function embedded in
the physical prior knowledge.

C. ALGORITHM PROCESS
Assuming that the solution u(t, x) of the forward problem
is Lipschitz continuous and bounded, we approximated u
with the algorithm model f established in Section II-B,
i.e., if u ∈ Lp[�T], 1 ≤ p ≤ ∞, then there
must exist f ∗ = f (t, x, θ∗) ∈ F , such that ||u −
f ∗||p = inff (n)∈F ||u − f (n)||p, where f and u both belong
to the linearly normed finite space, θ is the parameter
vector controlling f , ||f ||p = (

∫
�T
|f (t, x; θ)|pdx)

1
p , and

different parameters θ form a function cluster F =

{f (t, x; θ (1)), f (t, x; θ (2)), . . . , f (t, x; θ (n))}, each f in F has
a smooth, continuous, and differentiable expression, and
its partial derivatives of each order can be derived using
the automatic differentiation method [34]. The numerical
solution of a set of forward problems was calculated using
the forward process, and then the conditional residual(J∗(f))
of PDEs was used as the prior knowledge or penalty function
of the model loss functionJ (f) to reverse optimize the model
parameters using the learning rate decay algorithm Adam
with momentum [41]. The learning of model parameters is
a non-convex optimization problem, and it is typically chal-
lenging to determine the global optimal solution; therefore,
we simultaneously introduced randomness into the sampling
process and gradient calculation such that the algorithm could
escape the saddle point to the best extent possible. The flow is
shown inAlgorithm 1, whereJd (f) is the differential operator
residual of PDEs, Ji(f) and Jb(f) are the residuals of the
PDEs constraint, the hyperparameter λ∗ is the penalty factor
for each residual term, ȷ is a differentiable function that
quantifies the residual(such as MSE or Log-Cosh function),`
θ J (f) is the gradient of the current f to θ , α is the

learning rate with momentum decay, and the f ∗ trained

by J (f) can maximally satisfy the differential operator,
boundary conditions, and initial condition constraints of
PDEs. We verified the convergence of J (f) in both the
numerical fitting experiments in Section III. In addition,
we enrich the property of having consistent approximation
by embedding the low-dimensional continuous dynamical
system into a continuous feedback neural network using a
constructive approach in the appendix.

III. NUMERICAL EXAMPLES
In this section, we consider a series of forward problems
in classical mathematical physics to evaluate our algorithm.
We modeled and numerically solved these forward problems
using our algorithm to validate the accuracy and generaliza-
tion capability of the algorithm as well as its ability to capture
actual physical phenomena. In Section III-A, we presents five
one-dimensional forward problems to validate the accuracy
of the algorithm; in Section III-B, three two-dimensional
forward problems are presented to demonstrate the generality
of the algorithm.

Within each experiment in this Section, the evaluation
object of the algorithm is the exact mathematical solution or
the conventional numerical solution on the test set. Following
the flow of Algorithm 1, for the residual function ȷ of the
constrained conditions, we uniformly selected MSE [42]
and used the Adam optimizer [41] to optimize the loss
function(i.e., θ∗ = argminJ (f)

θ

). Moreover, the activation

function selected was GELU [39]. Regarding the data Re-
Sampling technique, we used Latin hypercube sampling [36]
to generate a set of training sequences that satisfied the
corresponding constraints. The learning rate is 0.0001, the
number of samples is 5000, the sample size of each batch

VOLUME 12, 2024 61799

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

Algorithm 1 Overview of the Method
Data: Number of samples N sampled for each sequence, sample size n for each batch, number of layers of GRU L,

number of neurons Nneurons for each layer, input dimension r and output dimension s of the sample, total number
of training sessions of the model Nepoch, the hyperparameter learning rate α, λ1, λ2, λ3 is employed to balance
the loss term, acceptable error accuracy ϵ;

Result: optimal model f ∗;
Initialize: f ← MLP,MultilayerGRU ← θ = {W∗,U∗, b∗} ← Xavier initialization [40];
while epoch ≤ Nepoch do

Xd ,X i,Xb← The set of sequences satisfying (0,T]×�,�, (0,T]× ∂� corresponding constraints is generated as
the training set by the data resampling method, where Xd , X i and Xb denote the set of sequences on the interior,
initial and boundary conditions of the PDE, respectively;
Dtrain, Dval ← Divide Xd ,X i,Xb into batches, where each batch contains S group sequences and each sequence
contains n samples. The Dtrain denotes the training set of sequences providing model training and Dval denotes the
validation set of sequences providing model validation.;
for {Dd ,Di,Db} ← Dtrain to do

Jd (f)← 1
|Dd |

∑
(td ,xd)∈Dd ȷ (

∂k f
∂tk (td , xd ; θ),N f (td , xd ; θ));

Ji(f)← 1
|Di| [

∑
(ti,xi)∈Di ȷ (f (ti, xi; θ), φ(xi)) +ȷ (ft (ti, xi; θ), ϕ(xi))];

Jb(f)← 1
|Db| [

∑
(tb,xb)∈Db ȷ (f (tb, xb; θ), ω(tb, xb)) +ȷ (fx(tb, xb; θ), υ(tb, xb))];

J (f)← λ1Jd (f)+ λ2Jb(f)+ λ3Ji(f);
θ ← θ − α

`
θ J (f);

Evaluate the error of the current model f on the Dval to get the validation error errval ;
if errval ≤ ϵ then

break;

Return f ∗

is 1024, the number of training times is 10000, the number
of layers of the GRU is 4, and the number of neurons is 50.
The NVIDIA RTX 3060 GPU card was utilised in each of the
following experiments.

A. ONE-DIMENSIONAL FORWARD PROBLEM
In this subsection, we test the accuracy and flexibility of
the algorithm in five forward problems: the heat conduction,
wave, Burgers, Schrodinger, and diffusion equations.

1) ONE-DIMENSIONAL HEAT CONDUCTION EQUATION
First, we evaluated the capacity of the algorithm to solve
first-order linear PDEs. Heat conduction is a common phys-
ical phenomenon wherein, in case of an uneven temperature
distribution within an object, heat spontaneously travels from
high to low temperatures. The resolution u(t, x) represents
the temperature distribution at any point within an object at
any instant in time. We considered the following linear heat
conduction scenario for a bounded rod:

∂u
∂t
=

1
π2

∂2u
∂x2

, t ∈ (0,T), x ∈ (0,L)

u|t=0 = 1+ cos
2πx
L
, x ∈ [0,L]

∂u
∂x
|x=0 = 0,

∂u
∂x
|x=L = 0, t ∈ (0,T). (13)

This PDE is linear and has a parabolic form in mathematics.
Its boundary conditions are Neumann boundary conditions,

FIGURE 2. One-dimensional heat conduction equation: Compare the
prediction and actual temperature of the algorithm for four time samples
at t = (0.1, 0.33, 0.66, 1).

implying that the two ends of the bounded rod stay adiabatic.
Thus. the temperature gradient at both ends is zero. Figure 2
shows the prediction results of the algorithm on four unequal
time snapshots and compares them with the mathematical
analytical solution of the PDEs. Explicitly, the algorithm fit
the theoretical exact value very well, and it also learned the
physical fact that when t = 1, the entire heat conduction
system gradually tended to the steady state temperature
C0 = 1. Figure 3 portrays a visual comparison of the
predicted and actual temperature of the system across the
entire space-time domain, demonstrating that the algorithm
had a reasonable fitting effect across the entire space-time

61800 VOLUME 12, 2024

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

FIGURE 3. One-dimensional heat conduction equation: Intuitive
comparison of algorithm-predicted and actual temperature changes over
the entire space-time region. (a) On the image of the function. (b) On the
heat map.

FIGURE 4. One-dimensional heat conduction equation: Evaluation results
for training and test sets. (a) Loss function convergence results for the
training set. (b) Model error results for the test set.

domain. The training process of the model observation in
Figure 4. Obviously, as the model continued to learn, the
J (f) on the training set continued to converge, while the error
calculated by the model on the test set steadily diminished.
Moreover, it exhibited high accuracy for the prediction
accuracy of the first-order linear PDEs.

2) ONE-DIMENSIONAL STRING VIBRATION EQUATION
Next, we evaluated the capacity of the algorithm to solve
the forward problem for second-order linear PDEs. The wave
equation describes the time-dependent evolution of the wave
function. Consider a string of length L placed horizontally,
with the horizontal direction of the string as the x-axis.
We used the function u(t, x) to represent the amplitude of any
position x(0 < x < L) on the string at any time t:

∂2u
∂t2
=

1
π2

∂2u
∂x2

, t ∈ (0,T), x ∈ (0,L)

u|t=0 = cos
πx
2L
,
∂u
∂t
|t=0 = 0, x ∈ [0,L]

∂u
∂x
|x=0 = 0, u|x=L = 0, t ∈ (0,T). (14)

The PDE is also linear and mathematically has a hyperbolic
shape. Here, u|t=0 and ∂u

∂t |t=0 in the constraints are the
initial displacement and initial velocity, respectively; thus,
the boundary constraints for this PDE are a combination
of Neumann boundary conditions and Dirichlet boundary
conditions. Figure 5 shows the prediction results of the
algorithm on four unequal time snapshots and compares them
with the mathematical analytical solution of the PDEs. It is
obvious that the algorithm fit the theoretical exact value
very well. Moreover, the algorithm discovered that the string
was fixed at the x = L end and vibrated simply between
[−1, 1] at the x = 0 end. The visual comparison between the
predicted and actual amplitudes of the system in the entire

FIGURE 5. One-dimensional string vibration equation: Compare the
prediction and actual amplitude of the algorithm for four time samples at
t = (0.1, 0.33, 0.66, 1).

FIGURE 6. One-dimensional string vibration equation: Intuitive
comparison of algorithm-predicted and actual amplitude changes over
the entire space-time region. (a) On the image of the function. (b) On the
heat map.

FIGURE 7. One-dimensional string vibration equation: Evaluation results
for training and test sets. (a) Loss function convergence results for the
training set. (b) Model error results for the test set.

space-time domain, demonstrating that the algorithm exerted
a reasonable fitting effect on the entire space-time domain is
shown in Figure 6. Figure 7 shows the training process of the
model. With the model continued to learn, the J (f) on the
training set continued to converge, and the error calculated
by the model on the test set steadily diminished. Moreover,
it exhibited high accuracy for the prediction accuracy of the
second-order linear PDEs.

3) ONE-DIMENSIONAL BURGERS EQUATION
Next, we tested the ability of the algorithm to solve
the forward problem for first-order nonlinear PDEs. The
Burgers equation is a nonlinear PDE that models shock
wave propagation and reflection. As the strong shock
wave in this equation is difficult to deal with using
traditional numerical methods, we considered the following
scenarios:

∂u
∂t
= −u

∂u
∂x
+

0.01
π

∂2u
∂x2

, t ∈ (0,T), x ∈ (−1, 1)

VOLUME 12, 2024 61801

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

u|t=0 = − sinπx, x ∈ [−1, 1]

u|x=−1 = 0, u|x=1 = 0, t ∈ (0,T). (15)

This is a nonlinear PDE with Dirichlet boundary conditions.

FIGURE 8. One-dimensional Burgers equation: Compare the prediction
and actual shock of the algorithm for four time samples at
t = (0.1, 0.33, 0.66, 1).

The prediction results of the algorithm on four unequal time
snapshots and compares them with the traditional numerical
solution of the PDEs is shown in Figure 8. Explicitly, the
algorithm fit the numerical reference value very well, and it
also learned the changes of strong shock waves.

FIGURE 9. One-dimensional Burgers equation: Intuitive comparison of
algorithm-predicted and actual shock wave changes over the entire
space-time region. (a) On the image of the function. (b) On the heat map.

As is illustrated in Figure 9, a visual comparison between
the predicted and actual shock wave of the system in the
entire space-time domain demonstrates that the algorithm
exhibited a reasonable fitting effect within the entire space-
time domain. Figure 10 shows the training process of the

FIGURE 10. One-dimensional Burgers equation: Evaluation results for
training and test sets. (a) Loss function convergence results for the
training set. (b) Model error results for the test set.

model. Obviously, as the model continued to learn, the J (f)
on the training set continued to converge, and the error
calculated by the model on the test set steadily diminished,
Moreover, it exhibited high accuracy for the prediction
accuracy of the first-order nonlinear PDEs.

4) ONE-DIMENSIONAL SCHRODINGER EQUATION
Next, we tested the ability of the algorithm to solve the
forward problem for complex-valued first-order nonlinear
PDEs. Following the uncertainty principle, the momentum
and position of a microscopic particle are described by the
wave function ψ(t, x), which satisfies the complex solution
of the Schrodinger equation. The statistical interpretation
of the wave function reveals that for a large number of
particles, the mode ψψ∗ of the wave function represents
the particle density in space, whereas for a single particle,
ψψ∗ represents the probability of the particle appearing at
a particular location in space. We considered the following
scenarios:

i
∂ψ

∂t
= −

1
2
∂2ψ

∂x2
− |ψ |2ψ, t ∈ (0,

π

2
), x ∈ (−5, 5)

ψ |t=0 =
2

exp(x)+ exp(−x)
, x ∈ [−5, 5]

ψ |x=−5 = 0, ψ |x=5 = 0, t ∈ (0,
π

2
)

∂ψ

∂x
|x=−5 = 0,

∂ψ

∂x
|x=5 = 0, t ∈ (0,

π

2
), (16)

where i is the imaginary unit, the wave function ψ(t, x) =
u(x, t) + iv(x, t) is a complex solution, u(x, t) is the real
part solution, and v(x, t) is the imaginary part solution.
When separating the real and imaginary components, the
following PDE equations were obtained. Its constraints acted
on both the real and imaginary components, and its boundary
constraints were a combination of Neumann and Dirichlet
boundary conditions. Therefore, the output of the model
had two dimensions: the real part function u(x, t) and the
imaginary part function v(x, t) respectively:

∂u
∂t
= −

1
2
∂2v
∂x2
− (u2 + v2)v, t ∈ (0,

π

2
), x ∈ (−5, 5)

∂v
∂t
=

1
2
∂2u
∂x2
+ (u2 + v2)u

u|t=0 =
2

exp(x)+ exp(−x)
, x ∈ [−5, 5]

v|t=0 = 0

u|x=−5 = 0, u|x=5 = 0, t ∈ (0,
π

2
)

v|x=−5 = 0, v|x=5 = 0
∂u
∂x
|x=−5 = 0,

∂u
∂x
|x=5 = 0, t ∈ (0,

π

2
)

∂v
∂x
|x=−5 = 0,

∂v
∂x
|x=5 = 0. (17)

Figure 11 shows the prediction results of the algorithm
on four unequal time snapshots, where the ordinate is the
modulus length of the real and imaginary parts of the
algorithm output(|ψ(x, t)| =

√
u(x, t)2 + v(x, t)2), and

compares it with the traditional numerical solution of the
PDEs. Obviously, the algorithm fit the numerical reference
value very well and also reflects the process of particles
collapsing from a superposition state to an intrinsic state.
Figure 12 shows a visual comparison of the predicted and

61802 VOLUME 12, 2024

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

FIGURE 11. One-dimensional Schrodinger equation: Compare the
prediction and actual probability value of the algorithm for four time
samples at t = (0.008, 0.259, 0.518, 0.785).

FIGURE 12. One-dimensional Schrodinger equation: Intuitive comparison
of algorithm-predicted and actual probability value over the entire
space-time region. (a) On the image of the function. (b) On the heat map.

actual probability change of the system across the entire
space-time domain, demonstrating that the algorithm had a
reasonable fitting effect across the entire space-time domain.
The training process of the model is shown in Figure 13.

FIGURE 13. One-dimensional Schrodinger equation: Evaluation results
for training and test sets. (a) Loss function convergence results for the
training set. (b) Model error results for the test set.

Clearly, with the model continued to learn, the J (f) on the
training set continued to converge, and the error calculated
by the model on the test set steadily diminished. Complex-
valued solutions to first-order nonlinear PDEs were predicted
with high precision using this method.

5) ONE-DIMENSIONAL DIFFUSION EQUATION
Next, we tested the ability of the algorithm to solve PDEs in
the field of fluid mechanics using the diffusion equation as an
example. This equation, which combines mass conservation
and Fick’s law, demonstrates that the first derivative of
concentration with respect to time is proportional to its
second derivative with respect to space. Moreover, it implies
that when the difference between a point in the field and the
average concentration of surrounding points is greater, the

speed of concentration diffusion is also faster. We considered
the following scenarios:

∂u
∂t
=
∂2u
∂x2
− e−t (sin(πx)− π2 sin(πx))

u|t=0 = sin(πx), x ∈ [−1, 1]

u|x=−1 = 0, u|x=1 = 0, t ∈ (0, 1). (18)

This is also a nonlinear PDE with Dirichlet boundary

FIGURE 14. One-dimensional diffusion equation: Compare the prediction
and actual diffusion of the algorithm for four time samples at
t = (0.1, 0.33, 0.66, 1).

conditions. Figure 14 shows the prediction results of the
algorithm on four unequal time snapshots and compares them
with the mathematical analytical solution of the PDEs. It is
obvious that the algorithm fit the theoretical exact value very
well. The visual comparison of the predicted and actual

FIGURE 15. One-dimensional diffusion equation: Intuitive comparison of
algorithm-predicted and actual diffusion changes over the entire
space-time region. (a) On the image of the function. (b) On the heat map.

FIGURE 16. One-dimensional diffusion equation: Evaluation results for
training and test sets. (a) Loss function convergence results for the
training set. (b) Model error results for the test set.

diffusion of the system in the entire space-time domain is
shown in Figure 15. Obviously, the algorithm learned the
diffusion process of the system over time. Figure 16 shows
the training process of the model. As the model continued

VOLUME 12, 2024 61803

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

to learn, the J (f) on the training set continued to converge,
and the error calculated by the model on the test set steadily
diminished. Moreover, it exhibited good predictive accuracy
for the diffusion process in fluid mechanics.

B. TWO-DIMENSIONAL FORWARD PROBLEM
In this subsection, we apply the algorithm to forward prob-
lems in three two-dimensional spaces (the heat conduction,
wave, and Kovasznay flow equations) to demonstrate the
generalizability of the algorithm from one-dimensional space
to two-dimensional space.

FIGURE 17. Two-dimensional heat conduction equation: (a)-(d) Compare
the prediction and actual temperature of the algorithm for four time
samples at t = (0.1, 0.33, 0.66, 1).

FIGURE 18. Two-dimensional heat conduction equation: Evaluation
results for training and test sets. (a) Loss function convergence results for
the training set. (b) Model error results for the test set.

1) TWO-DIMENSIONAL HEAT CONDUCTION EQUATION
We considered the following heat conduction scenario in two-
dimensions:

∂u
∂t
=

1
π2 (

∂2u
∂x2
+
∂2u
∂y2

), t ∈ (0, 1), x ∈ (0, 1),

y ∈ (0, 1)

u|t=0 = sin(πx) sin(πy), x ∈ [0, 1], y ∈ [0, 1]

u|x=0 = 0, u|x=1 = 0, t ∈ (0, 1), y ∈ [0, 1]

u|y=0 = 0, u|y=1 = 0, t ∈ (0, 1), x ∈ [0, 1]. (19)

This is a first-order two-dimensional linear PDE with
Dirichlet boundary conditions; the sample of the input
sequence is time t and two-dimensional space x = (x, y);
Figure 17 shows an intuitive comparison between the
predicted temperature (right) and the actual temperature
(left) of the algorithm on four unequal time snapshots,

demonstrating that the algorithm could still cover the exact
value in two-dimensions; As predicted by the algorithm.
The training process of the model is shown in Figure 18.
Obviously, with the model continued to learn, the J (f)
on the training set continued to converge, and the error
calculated by the model on the test set steadily diminished.
Moreover, it exhibited high predictive accuracy for the
first-order linear PDEs in two-dimensions. Figure 19 presents

FIGURE 19. Two-dimensional heat conduction equation: Compare the
predicted and actual cooling processes of the algorithm at the centre
point (x, y) = (1

2 , 1
2).

the cooling process over time at the centre of the film, which
corresponded to the theoretical cooling process.

2) TWO-DIMENSIONAL WAVE EQUATION
We considered the following fluctuation scenario in two-
dimensional:

∂2u
∂t2
= (

∂2u
∂x2
+
∂2u
∂y2

), t ∈ (0, 1), x ∈ (0, 1),

y ∈ (0, 1)

u|t=0 = sin(πx) sin(πy), x ∈ [0, 1], y ∈ [0, 1]
∂u
∂t
|t=0 = 0, x ∈ [0, 1], y ∈ [0, 1]

u|x=0 = 0, u|x=1 = 0, t ∈ (0, 1), y ∈ [0, 1]

u|y=0 = 0, u|y=1 = 0, t ∈ (0, 1), x ∈ [0, 1]. (20)

This is a two-dimensional linear PDE of the second order

FIGURE 20. Two-dimensional wave equation: (a)-(d) Compare the
prediction and actual amplitudes of the algorithm for four time samples
at t = (0.1, 0.33, 0.66, 1).

with Dirichlet boundary conditions. Figure 20 shows the
intuitive comparison of the predicted amplitude (right) and

61804 VOLUME 12, 2024

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

the actual amplitude (left) of the algorithm on four unequal
time snapshots. Evidently, the algorithm covered the actual
vibration of the membrane in two-dimensions perfectly.
Figure 21 shows the training process of the model. Obviously,
with the model continued to learn, theJ (f) on the training set
continued to converge, and the error calculated by the model
on the test set steadily diminished. Moreover, it exhibited
high predictive accuracy for the second-order linear PDEs
in two-dimensions. The algorithm accurately captured the

FIGURE 21. Two-dimensional wave equation: Evaluation results for
training and test sets. (a) Loss function convergence results for the
training set. (b) Model error results for the test set.

FIGURE 22. Two-dimensional wave equation: Compare the algorithm
predicted amplitude and actual amplitude at the center point of
(x, y) = (1

2 , 1
2) over time.

vibration of the center point (x, y) = (12 ,
1
2) of the rectangular

membrane over time, as shown in Figure 22. Moreover, the
displacement was not strictly periodic, which is consistent
with the theoretical vibration process.

3) TWO-DIMENSIONAL KOVASZNAY FLOW EQUATION
We considered the following Kovasznay flow equation
scenario:

u
∂u
∂x
+ v

∂u
∂y
= −

∂p
∂x
+

1
Re

(
∂2u
∂x2
+
∂2u
∂y2

), x ∈ (0, 1),

y ∈ (0, 1)

u
∂v
∂x
+ v

∂v
∂y
= −

∂p
∂y
+

1
Re

(
∂2v
∂x2
+
∂2v
∂y2

)

∂u
∂x
+
∂v
∂y
= 0, (21)

where u(x, y) and v(x, y) are the velocity of the velocity
field in the x and y directions, respectively, p(x, y) is the
pressure at each point in the flow field, and Re is the
Reynolds number of the flow. Kovasznay flow corresponds

to an exact solution of the Navier-Stokes equations and is
interpreted to characterize the flow behind a two-dimensional
grid. In the end, the output of themodel had three dimensions:
{û(x, y), v̂(x, y), p̂(x, y)}, and their boundary values complied
with the Dirichlet conditions. As is illustrated in Figure 23,

FIGURE 23. Two-dimensional Kovasznay flow equation: The comparison
between the results predicted by the algorithm and the actual results in
the entire space domain. (a) Velocity in the x-direction. (b) Velocity in the
y-direction. (c) Pressure.

FIGURE 24. Two-dimensional Kovasznay flow equation: Comparison of
heatmaps in the entire spatial domain. (a) Velocity in the x-direction.
(b) Velocity in the y-direction. (c) Pressure.

FIGURE 25. Two-dimensional Kovasznay flow equation: Evaluation
results for training and test sets. (a) Loss function convergence results for
the training set. (b) Model error results for the test set.

the velocity and pressure fields predicted by the model for the
Kovasznay fluid. On the left, the exact results are presented,
and on the right, the predicted results are shown. It is obvious
that the algorithm provided a superior fit for all three physical
quantities. Figure 24 shows a comparison of the velocity field
and the pressure field on the heatmap, demonstrating that
all physical quantities predicted by the model were close to
the actual situation. Figure 25 shows the training process
of the model. Obviously, as the model continued to learn,

VOLUME 12, 2024 61805

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

TABLE 1. Comparison of MSE results for different PDEs numerical calculation experiments.

the J (f) on the training set continued to converge, and
the error calculated by the model on the test set steadily
diminished.

IV. DISCUSSION
To verify the applicability and generalization of the proposed
method, some comparative methods based on deep learning
to solve PDEs are added in Table 1. The evaluation metric we
chose is MSE = 1

|Dtest |

∑|Dtest |
i=1 (yi − ŷi)2, where yi = u(ti, xi)

is the exact or numerical solution of the problem on the test
set, and ŷi = f (ti, xi; θ) is the prediction result of our model
on the test set, and |Dtest | is the size of the test set.
The objective of the proposed model needs to be both

to accurately solve the numerical solutions of specific
PDEs and to be applicable to PDEs of different types or
complexity in various physical problems. As demonstrated
in Table 1, the proposed model has less error in all
numerical inference results than other methods, and it
can be effectively generalized to different types of PDEs
(e.g., elliptic, parabolic, or parabolic-shaped PDEs, or PDEs
with multi-output physical quantities), which demonstrates
the superiority and feasibility of the proposed model. From
the experimental results, it is observed that the error of the
numerical inference results based on the multilayer feed-
forward neural network is higher than the proposed model,
which is mainly because PDEs with temporal evolution
can have strong temporal order, and the feedforward neural
network does not consider the correlation character between
samples when extracting the hidden variable features of the
input sequences, thereby leading to the lack of correlation
features of the hidden variable sequences in the hidden layer.
This additionally validates the ability of the stacked GRU
structural model to capture the temporal correlation of the
input sequences, which compensates for the lack of feature
expressiveness of previous deep learning methods based on
multi-layer feed-forward neural networks for solving PDEs.
Moreover, unlike the numerical computation method based
on iteration, the proposedmodel is based on a feedback neural
network to approximate the solution of the PDE, which is a
semi-supervised deep learning method based on parameter
learning. After the proposed model has been trained, the

numerical results can be quickly inferred for any tested
sample set simply by the forward computation process of
the model, which does not require the iterative process of
gridding. The proposed algorithm is a deep learning model
based on stacked GRU, where the complexity of the model is
proportional to the number of parameters. Although the GRU
model involves two control gates and one candidate hidden
state, the number of parameters is 25 percent less than the
LSTM model [16]. The number of parameters involved in
the experiments in this paper is about 40,000. The ADAM
algorithm [41] is employed to optimize the loss function to
a minimum to obtain the optimal parameters of the model.
The model training takes about 3.5 to 5 hours, and the
inference time of the trained model on the test set is about
1.9 to 2.8 seconds. The GPU-based asynchronous execution
mechanism is beneficial to improving the computational
efficiency of the model; therefore, we recommend that model
training and inference be performed on GPUs.

In addition, we found some potential problems in the
course of the experiment. First, the proposedmodel resamples
the input sequences in each round of training. This step
reduces the dilemma of the model falling into the saddle point
in the nonconvex optimization process, but it also aggravates
the training burden of the model. Therefore, we consider
subsequent local resampling for the sequence where the
penalty term that causes the error of the loss function to
become larger after each round of training is completed.
Second, the training of the model could be interrupted due
to some objective factors. For this reason, we consider
subsequently porting the proposed model to a parameter
server for training [43]. The architecture is to distribute the
training of the neural network over multiple GPU nodes to
speed up the training, and each node receives the updated
model from the parameter server asynchronously before
computing the gradient of the parameters.

V. CONCLUSION
This study proposed an optimization algorithm based on
synchronous sequence-to-sequence stacked GRU networks
for characterizing and approximating the forward problem of
PDEs. The constraints of the PDEs were utilized as a priori

61806 VOLUME 12, 2024

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

knowledge of the loss function of the network to constrain
the direction of the optimization or as a penalty function for
partially regularized terms to prevent optimization overfit-
ting. The proposed model was not grid-based, and its input
was a vector of randomly sampled space-time sequences that
satisfied the corresponding constraints. The GRU structure of
the hidden layer was used to capture and learn the correlation
of timing between different input sequences. Following the
training of the model, it only required its forward process to
swiftly deduce the expected output physical quantity in the
corresponding physical scene. Our algorithm was applied to
various types of mathematical physics equations.

Physics-informed machine learning [44] is the emerging
paradigm used to solve PDEs. Much of the physical knowl-
edge can be embedded into the optimisation goals of deep
learning, such as symmetry and conservation. According
to the research in this paper, we should follow up with
in-depth exploration in the following two aspects: On the one
hand, to enhance the representation ability of the model to
sequence data, such as capturing the time-series correlation
features and non-time-series hybrid features of the sequence,
respectively, and dynamically calculating the degree of their
contribution to the output. On the other hand, to improve
the penalty function of multi-objective optimization, such as
by combining the Lagrange multiplier method to optimize
the penalty term. We will also investigate the use of some
more general experiments to represent the performance
of the optimized algorithms, such as the chemical master
equation (CME). In our future work, we further consider the
above tasks.

APPENDIX A
PROOFS OF RELATED LEMMAS
This section lists the relevant proofs on the lemmas and
corollaries presented in Section II-A. Referring to previous
work [30], [31], [45], [46], we embed a low-dimensional
continuous dynamical system into a continuum-type RNN
using a constructive approach, thereby proving that for non-
linear continuous dynamical systems with inputs, the output
trajectory in finite time can be arbitrarily approximated by a
class of continuum-type RNN output neurone state vectors.

A. PROOF OF LEMMA 1
For any t ∈ T , there is:

|x(t)− x̃(t)| ≤
∫ t

t0
|F(x(s), u(s))− F̃(x̃(s), u(s))|ds

≤

∫ t

t0
|F(x(s), u(s))− F(x̃(s), u(s))|ds

+

∫ t

t0
|F(x̃(s), u(s))− F̃(x̃(s), u(s))|ds

≤

∫ t

t0
L|x(s)− x̃(s)|ds+

∫ t

t0
ϵds

≤ L
∫ t

t0
(|x(s)− x̃(s)| +

ϵ

L
)ds,

and thus

|x(s)− x̃(s)| +
ϵ

L
≤
ϵ

L
+ L

∫ t

t0
(|x(s)− x̃(s)| +

ϵ

L
)ds, t ∈ T ,

from Gronwall’s inequality [46], it follows that:

|x(s)− x̃(s)| +
ϵ

L
≤
ϵ

L
expL|t − t0|,

that is

||x(t)− x̃(t)|| ≤
ϵ

L
(expL|t − t0| − 1).

B. PROOF OF LEMMA 2
Since F : S × U → Rn is a vector function with continuous
first-order derivatives, for any initial conditions x(0) ∈ X ,
by the continuity and boundedness of the output trajectory of
the nonlinear continuous system(dx(t)dt = F(x(t)),u(t)), the
set DS of points of its output trajectory on the interval [0,T]
is a tight subset of S.

Let d1 be the distance between the boundaries of the tight
set DS and the open set S, and d2 be the distance between the
boundaries of the tight setDU and the open setU . For a given
ϵ > 0, take η such that it satisfies 0 < η < min (ϵ, d1, d2),
suppose that

Sη = {x ∈ Rn
|∃ x1 ∈ DS , s.t. ||x − x1|| ≤ η},

Uη = {u ∈ Rm
|∃ u1 ∈ DU , s.t. ||u− u1|| ≤ η},

then Sη and Uη are also tight sets and DS ⊂ Sη ⊂ S,DU ⊂
Uη ⊂ U , F(x, u) is Lipschitz continuous on Sη × Uη with
respect to x. Let LF be the Lipschitz constant of F on Sη×Uη
with respect to x. Take ϵ1 to satisfy

0 < ϵ1 <
ηLF

2(expLFT − 1)
, (22)

then on the tight set Sη × Uη, according to [11] and [12],
for any constant α, there exist a natural number r , an r-
dimensional threshold vector θ and matrices A ∈ Rn×r ,B1 ∈
Rr×n,B2 ∈ Rr×m such that

max
x∈Sη,u∈Uη

||F(x, u)+ α · x − Aσ (B1x + B2u+ θ)|| < ϵ1,

(23)

where σ is a Sigmoid vector function with continuous first
order derivatives. Choose α to satisfy the condition

||α · θ || <
ηLG̃

2(expLG̃T − 1)
, |α| <

LG̃
2
, (24)

where LG̃ is the Lipschitz constant for the mapping G̃ :
Rn+r

× Rm
→ Rr+n. Let x(t) and x̃(t) be solutions of the

equations

dx(t)
dt
= F(x(t), u(t)) (25)

and
dx̃(t)
dt
= −αx̃(t)+ Aσ (B1x̃(t)+ B2u(t)− θ) (26)

VOLUME 12, 2024 61807

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

respectively, they all satisfy the initial condition x(0) =
x̃(0) = x0 ∈ X . According to Lemma 1 and Equation (22),
we get

max
0≤t≤T

||x(t)− x̃(t)|| ≤
ϵ1

LF
(expLFT − 1) <

η

2
. (27)

Let ỹ = B1x̃+θ, s̃ = (x̃, ỹ)′, then fromEquations (5) and (26),
we have

ds̃(t)
dt
= G̃(s̃(t), u(t)) = −αs̃(t)+W1σ (s̃(t)

+W2u(t))+ αθ1, (28)

where W1 =

(
0 A
0 B1A

)
∈ R(n+r)×(n+r),W2 =

(
0
B2

)
∈

R(n+r)×m, θ1 =

(
0
θ

)
∈ Rn+r .

The first n elements of the solution vector of Equation (28)
are equivalent to the solution of Equation (5). Since σ (.) is
a Sigmoid vector function with continuous first-order deriva-
tives, the mappingW1σ (s̃+W2u) is Lipschitz continuous on
R(n+r)×m with respect to s̃. Let

LG̃
2 be the Lipschitz constant

forW1σ (s̃+W2u). Moreover, from Equation (24),
LG̃
2 is also

the Lipschitz constant for−αs̃, so LG̃ is the Lipschitz constant
of the mapping

G̃(s̃, u) = −αs̃+W1σ (s̃+W2u)− αθ1 (29)

overRn+r
×Rm with respect to s̃, then for the following RNN

ds(t)
dt
= G(s(t), u(t)) = −αs+W1σ (s+W2u), (30)

where s =
(
sn
h

)
∈ Rn+r , sn ∈ Rn is the internal state of its

n output neurons, h ∈ Rr is the internal state of its r hidden
neurons. By Equations (23),(24) and (25), for any s ∈ Rn+r ,
there are

||G̃(s, u)− G(s, u)|| = ||αθ || <
ηLG̃

2(expLG̃T − 1)
, (31)

therefore, let s and s̃ represent the respective RNN
Equation (30) and dynamical system Equation (25) solutions
for the input u, and let them take the same initial conditions,
that is

sn(0) = x(0), h(0) = B1x(0)+ θ,

then from Lemma 1 and Equation (27), we have

max
0≤t≤T

||x̃ − sn|| ≤ max
0≤t≤T

||s̃− s|| ≤
η

2
, (32)

from Equations (27) and (32), we have

max
0≤t≤T

||x − sn|| ≤ max
0≤t≤T

||x − x̃|| + max
0≤t≤T

||x̃ − sn||

≤
η

2
+
η

2
= η < ϵ. (33)

C. PROOF OF COROLLARY 1

Let x̄ =
(
x
t

)
∈ Rn+1, then the nonlinear system can be

expressed as
dx̄
dt
= F(x̄(t)), (34)

where F(x̄(t)) =
(
F(x(t), t)

1

)
, and the initial condition is

x̄(0) =
(
x(0)
0

)
.When x(0) ∈ X , x̄(0) belongs to a tight subset

ofRn+1. The system is a nonlinear continuous systemwithout
inputs. According to Lemma 2, the weight matrix W2 = 0 in
the RNN used to approximate Equation (34), i.e., there exists
an RNN of the form Equation (30) such that

max
0≤t≤T

||x− sn|| < ϵ. (35)

ACKNOWLEDGMENT
The authors would like to thank the editor and the reviewers
for their helpful comments and suggestions.

REFERENCES
[1] C. A. Taylor, T. J. R. Hughes, and C. K. Zarins, ‘‘Finite element modeling

of blood flow in arteries,’’ Comput. Methods Appl. Mech. Eng., vol. 158,
nos. 1–2, pp. 155–196, May 1998.

[2] Y. Zhang, ‘‘A finite difference method for fractional partial differential
equation,’’ Appl. Math. Comput., vol. 215, no. 2, pp. 524–529, Sep. 2009.

[3] R. Eymard, T. Gallouët, and R. Herbin, ‘‘Finite volume methods,’’ in
Handbook of Numerical Analysis, vol. 7. Amsterdam, The Netherlands:
Elsevier, 2000, pp. 713–1018.

[4] R. Ranftl, A. Bochkovskiy, and V. Koltun, ‘‘Vision transformers for dense
prediction,’’ in Proc. IEEE/CVF Int. Conf. Comput. Vis. (ICCV), Oct. 2021,
pp. 12159–12168.

[5] T. B. Brown et al., ‘‘Language models are few-shot learners,’’ in Proc.
NIPS, 2020, pp. 1877–1901.

[6] J. Cho, J. Lei, H. Tan, and M. Bansal, ‘‘Unifying vision-and-language
tasks via text generation,’’ in Proc. 38th Int. Conf. Mach. Learn., vol. 139,
Jul. 2021, pp. 1931–1942.

[7] M. H. Stone, ‘‘The generalizedweierstrass approximation theorem,’’Math.
Mag., vol. 21, no. 4, p. 167, Mar. 1948.

[8] J. Descloux, ‘‘Approximations in Lp and Chebyshev approximations,’’
J. Soc. Ind. Appl. Math., vol. 11, no. 4, pp. 1017–1026, 1963.

[9] M. Unser and T. Blu, ‘‘Wavelet theory demystified,’’ IEEE Trans. Signal
Process., vol. 51, no. 2, pp. 470–483, Feb. 2003.

[10] I. I. Sharapudinov, ‘‘Approximation of functions in by trigonometric
polynomials,’’ Izv. Math., vol. 77, no. 2, p. 407, 2013.

[11] K. Hornik, M. Stinchcombe, and H. White, ‘‘Multilayer feedforward
networks are universal approximators,’’ Neural Netw., vol. 2, no. 5,
pp. 359–366, Jan. 1989.

[12] K. Hornik, ‘‘Approximation capabilities of multilayer feedforward net-
works,’’ Neural Netw., vol. 4, no. 2, pp. 251–257, 1991.

[13] D. Haussler andM.Warmuth, ‘‘The probably approximately correct (PAC)
and other learning models,’’ in Foundations of Knowledge Acquisition,
vol. 195. Boston, MA, USA: Springer, 1993, pp. 291–312.

[14] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun,
‘‘The loss surfaces of multilayer networks,’’ in Proc. 18th Int. Conf. Artif.
Intell. Statist., 2015, pp. 192–204.

[15] M. Raissi, P. Perdikaris, and G. E. Karniadakis, ‘‘Physics-informed neural
networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations,’’ J. Comput.
Phys., vol. 378, pp. 686–707, Feb. 2019.

[16] Y. Yu, X. Si, C. Hu, and J. Zhang, ‘‘A review of recurrent neural networks:
LSTM cells and network architectures,’’ Neural Comput., vol. 31, no. 7,
pp. 1235–1270, Jul. 2019.

[17] J. Sirignano and K. Spiliopoulos, ‘‘DGM: A deep learning algorithm
for solving partial differential equations,’’ J. Comput. Phys., vol. 375,
pp. 1339–1364, Dec. 2018.

61808 VOLUME 12, 2024

Z. Zhang, Q. Wang: Seq2Seq Stacked GRU Networks for Approximating the Forward Problem of PDEs

[18] D. P. Kroese and R. Y. Rubinstein, ‘‘Monte Carlo methods,’’ Wiley
Interdiscipl. Rev., Comput. Statist., vol. 4, no. 1, pp. 48–58, 2012.

[19] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, ‘‘Learning
nonlinear operators via DeepONet based on the universal approximation
theorem of operators,’’ Nature Mach. Intell., vol. 3, no. 3, pp. 218–229,
Mar. 2021.

[20] N. Kovachki, S. Lanthaler, and S. Mishra, ‘‘On universal approximation
and error bounds for Fourier neural operators,’’ J. Mach. Learn. Res.,
vol. 22, no. 1, pp. 13237–13312, 2021.

[21] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, ‘‘Neural
ordinary differential equations,’’ in Proc. Adv. Neural Inf. Process. Syst.,
vol. 31, 2018, pp. 1–12.

[22] P. Zhi, Y.Wu, C. Qi, T. Zhu, X.Wu, and H.Wu, ‘‘Surrogate-based physics-
informed neural networks for elliptic partial differential equations,’’
Mathematics, vol. 11, no. 12, p. 2723, Jun. 2023.

[23] Y. Lu and G. Mei, ‘‘A deep learning approach for predicting two-
dimensional soil consolidation using physics-informed neural networks
(PINN),’’Mathematics, vol. 10, no. 16, p. 2949, Aug. 2022.

[24] L. Yang, X. Meng, and G. E. Karniadakis, ‘‘B-PINNs: Bayesian physics-
informed neural networks for forward and inverse PDE problems with
noisy data,’’ J. Comput. Phys., vol. 425, Jan. 2021, Art. no. 109913.

[25] L. Lu, X. Meng, Z. Mao, and G. E. Karniadakis, ‘‘DeepXDE: A deep
learning library for solving differential equations,’’ SIAM Rev., vol. 63,
no. 1, pp. 208–228, Jan. 2021.

[26] J. Han, A. Jentzen, and E. Weinan, ‘‘Solving high-dimensional partial
differential equations using deep learning,’’ Proc. Nat. Acad. Sci. USA,
vol. 115, no. 34, pp. 8505–8510, Aug. 2018.

[27] S. H. Rudy, S. L. Brunton, J. L. Proctor, and J. N. Kutz, ‘‘Data-driven
discovery of partial differential equations,’’ Sci. Adv., vol. 3, no. 4,
Apr. 2017, Art. no. e1602614.

[28] S. Cuomo, V. S. Di Cola, F. Giampaolo, G. Rozza, M. Raissi, and
F. Piccialli, ‘‘Scientific machine learning through physics–informed neural
networks: Where we are and what’s next,’’ J. Sci. Comput., vol. 92, no. 3,
p. 88, Sep. 2022.

[29] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, and P. Perdikaris, ‘‘Physics-
constrained deep learning for high-dimensional surrogate modeling and
uncertainty quantification without labeled data,’’ J. Comput. Phys.,
vol. 394, pp. 56–81, Oct. 2019.

[30] L. Jin, P. N. Nikiforuk, and M. M. Gupta, ‘‘Approximation of discrete-time
state-space trajectories using dynamic recurrent neural networks,’’ IEEE
Trans. Autom. Control, vol. 40, no. 7, pp. 1266–1270, Jul. 1995.

[31] K.-I. Funahashi and Y. Nakamura, ‘‘Approximation of dynamical systems
by continuous time recurrent neural networks,’’ Neural Netw., vol. 6, no. 6,
pp. 801–806, Jan. 1993.

[32] D. Elbrächter, D. Perekrestenko, P. Grohs, and H. Bölcskei, ‘‘Deep neural
network approximation theory,’’ IEEE Trans. Inf. Theory, vol. 67, no. 5,
pp. 2581–2623, May 2021.

[33] P. Chaudhari, A. Oberman, S. Osher, S. Soatto, and G. Carlier, ‘‘Deep
relaxation: Partial differential equations for optimizing deep neural
networks,’’ Res. Math. Sci., vol. 5, no. 3, pp. 1–30, Sep. 2018.

[34] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, ‘‘Auto-
matic differentiation in machine learning: A survey,’’ J. Mach. Learn. Res.,
vol. 18, pp. 1–43, Apr. 2018.

[35] C. Tong, ‘‘Refinement strategies for stratified sampling methods,’’ Rel.
Eng. Syst. Saf., vol. 91, nos. 10–11, pp. 1257–1265, Oct. 2006.

[36] J. C. Helton and F. J. Davis, ‘‘Latin hypercube sampling and the
propagation of uncertainty in analyses of complex systems,’’Rel. Eng. Syst.
Saf., vol. 81, no. 1, pp. 23–69, Jul. 2003.

[37] Y. Li and F. Mei, ‘‘Deep learning-based method coupled with small sample
learning for solving partial differential equations,’’Multimedia Tools Appl.,
vol. 80, no. 11, pp. 17391–17413, May 2021.

[38] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, ‘‘Gated feedback
recurrent neural networks,’’ in Proc. Int. Conf. Mach. Learn., Jun. 2015,
pp. 2067–2075.

[39] M. Lee, ‘‘GELU activation function in deep learning: A comprehensive
mathematical analysis and performance,’’ 2023, arXiv:2305.12073.

[40] X. Glorot and Y. Bengio, ‘‘Understanding the difficulty of training deep
feedforward neural networks,’’ in Proc. 13th Int. Conf. Artif. Intell. Statist.,
2010, pp. 249–256.

[41] D. P. Kingma and J. Ba, ‘‘Adam: A method for stochastic optimization,’’
2014, arXiv:1412.6980.

[42] D. Chicco, M. J. Warrens, and G. Jurman, ‘‘The coefficient of determi-
nation R-squared is more informative than SMAPE, MAE, MAPE, MSE
and RMSE in regression analysis evaluation,’’ PeerJ Comput. Sci., vol. 7,
p. e623, Jul. 2021.

[43] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ranzato,
A. Senior, P. Tucker, K. Yang, Q. Le, and A. Ng, ‘‘Large scale distributed
deep networks,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 25, 2012,
pp. 1–12.

[44] Z. Hao, S. Liu, Y. Zhang, C. Ying, Y. Feng, H. Su, and J. Zhu,
‘‘Physics-informed machine learning: A survey on problems, methods and
applications,’’ 2022, arXiv:2211.08064.

[45] G. Lewicki and G. Marino, ‘‘Approximation by superpositions of a
sigmoidal function,’’ Zeitschrift für Anal. und Ihre Anwendungen, vol. 22,
no. 2, pp. 463–470, Jun. 2003.

[46] B. Hammer, ‘‘On the approximation capability of recurrent neural
networks,’’ Neurocomputing, vol. 31, nos. 1–4, pp. 107–123, Mar. 2000.

ZHAOYANG ZHANG received the B.E. degree
fromKunming University of Science and Technol-
ogy, China, in 2015, where he is currently pursuing
the master’s degree with the School of Information
and Automation. His research interests include
wide-ranging, machine learning, optimization the-
ory, and the research of deep neural networks
fusing numerical iterative methods to solve partial
differential equations.

QINGWANG WANG (Member, IEEE) received
the B.E. and Ph.D. degrees in electronics and
information engineering and information and com-
munication engineering from Harbin Institute of
Technology, Harbin, China, in 2014 and 2020,
respectively. From 2020 to 2021, he was a Senior
Engineer with Huawei Technology Company Ltd.,
to study autonomous driving. He joined Kunming
University of Technology with a high-level talent.
His research interests include machine learning

and its application to remote sensing data analysis, autonomous driving, and
partial differential equation solving.

VOLUME 12, 2024 61809

