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ABSTRACT The detection of defects in printed circuit board (PCB) components is crucial to the quality
of PCB. Issues such as blurred details, complex and varied backgrounds, and inadequate recognition of
PCB components lead to poor detection accuracy. To address these challenges, this paper introduces a
PCB component defect detection model (MSF-ECANet) based on multi-scale features and efficient channel
attention networks. Firstly, to address the challenge of unclear information regarding intricate features in deep
networks, Residual Nets (ResNet) and Multi-Scale Feature Pyramid Networks (FPN) are integrated. This
fusion tackles the issue of vanishing gradients, expands the model’s receptive field, and optimizes the model’s
proficiency for recognizing PCB components. Secondly, to improve the recognition rate of PCB component
detection, Efficient channel attention networks (ECA-Net) are used to assign different weights to the PCB
background and foreground channels to segment the background and foreground. Lastly, a dichotomous
K-means algorithm is used to obtain the optimal anchor size that is closer to the ground truth size, so as to
improve the sensitivity of the model to small target detection. When compared to SSD, YOLOv3, YOLOVS,
YOLOx and Faster R-CNN, the experimental results show that the model proposed in this paper improves
1.41%, 7%, 4.17%, 5.47% and 8.33% in accuracy, respectively. Furthermore, the improved network exhibits
superior convergence compared to the original network. Therefore, the MSF-ECANet model presented in
this paper is more suitable for industrial applications of PCB component defect detection.

INDEX TERMS PCB component defects, ResNet, FPN, ECA-Net, dichotomous k-means.

I. INTRODUCTION
The printed circuit board serves as the structural founda-

enterprise [1]. Consequently, numerous scholars have been
devoted in PCB defect detection. While most researchers

tion for electronic components., The presence of missing
or incorrect components may cause circuit short circuits
within the PCB, potentially resulting in component igni-
tion or blast, eventually, leading to economic losses for the
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are targeted at PCB bare board defects, such as internal
line detection, scratch defects, solder joints, only a minor-
ity of scholars have concentrated on PCB components,
including: resistors, capacitors, power supply slots. So far,
there are five types of inspection methods for PCB com-
ponent defects: traditional manual inspection, Automatic
Optic Inspection (AOI), image segmentation inspection [2],
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machine learning inspection [3],
inspection [4].

Manual inspection methods involve direct visual inspec-
tion or checking components using a magnifying glass [5].
The advantage is that they are low cost and do not require
additional physical resources such as fixtures, but they are
inefficient and low accuracy.

With the development of PCB integration, AOI technol-
ogy [6], [7], [8] has been integrated. AOI offers numerous
advantages such as integrated design, programmable control,
and a high level of durability. But AOI is not perfectly suited
for the wide array of PCB components and cannot conduct
rapid, efficient, real-time in-line inspection on PCB assembly
lines.

Image segmentation techniques have been proposed to
solve the problem of real-time PCB defect detection and the
detection of a single type of defect [9], [10], [11]. Although
the image segmentation technique can meet the accuracy
and real-time of PCB defect detection in certain scenarios,
it requires a large number of experiments to debug parameters
and template matching, as well as high quality PCB datasets
to produce the desired results.

With a series breakthroughs of hardware technology,
including high-performance computers, graphics processors,
tensor processors, and high-bandwidth memory, deep learn-
ing has been developed significantly, Researchers have
deepened neural network layers to extract clearer informa-
tion regarding the semantic and detailed features of PCB
images. Currently, deep learning-based PCB defect detec-
tion methods are mainly one-stage algorithms (such as
You Only Look Once, YOLO [12], Single Shot MultiBox
Detector, SSD [13]), and two-stage algorithms (like Faster
R-CNN [14]). For instance, some researchers have employed
one-stage detection algorithms for PCB defect detection,
Deng et al. [15] combined CNN technology with AOI tech-
nology to locate PCB line defects using difference operations
to compensate for the detailed information in PCB images
at the feature extraction stage, but the method can produce
pseudo defects due to contaminants like dirt and dander
on the PCB surface. Zhang et al. [16] introduced a slid-
ing window method in CNN model to locate PCB defects,
thereby improving the detection accuracy and reducing the
complexity of traditional vision methods, but resulted in a
long detection time due to the complexity of the model’s
architecture. Lin et al. [17] pioneered to use the YOLO model
to detect PCB assembly capacitors, which had certain advan-
tages in terms of detection speed, but because the PCB dataset
is small, the model’s generalization capability is poor. He and
Yu [18] added a long-range global attention mechanism based
on a fine-grained spatial domain to YOLOV4 to enrich of fea-
ture information, but the accuracy only reached 91%. Some
people also use Two-Stage detection algorithm to detect PCB
defects. For example, Hu and Wang [4] realized the fea-
ture fusion of different sizes of target information through
up-sampling method and jump layer connection to solve the
problem of target detection range of PCB tiny defects and

and deep learning
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improve the model accuracy. Sun et al. [19] integrated DCN
method into ResNext101 network and embedded NAS-FPN
network in RPN network to improve the accuracy and speed
for PCB high-density defect detection. Zhang et al. [20]
proposed the IDD-Net network for defect detection on three
industrial datasets, and the accuracy of the proposed IDD-Net
network achieved 95.9% mAP for PCB bare board defect
detection, 99.5% mAP for aluminum surface defect detection,
and 79.6% mAP for steel surface defect detection. Although
this method can be adapted to a variety of data sets, the aver-
age accuracy of defect detection still needs to be improved.
A comprehensive summary and analysis of these deep learn-
ing methods are presented in Table 1, offering insights into
their performance in PCB defect detection.

TABLE 1. Characterization table for deep learning in PCB defect detection
(O: Excellent, A: Fair, x: Poor).

Characteristics One-stage Two-stage
YOLO SSD Faster R-CNN

Accuracy A A o
Speed o o A
Applicability o o o
Volume of Calculations X o X
Cost A A A
Feature Extraction Capability A X o
Modelling Difficulty A A A

In view of the excellent performance of two-stage network
detection, this paper proposes MSF-ECANet model to detect
PCB component defects. The main contributions of this study
are outlined below:

1. This paper proposes a method that fuses ResNet and
FPN to transform the original Faster R-CNN model from
single-scale feature information extraction to multi-scale
feature information extraction. The method addresses the
issue of vanishing gradient and enlarges the receptive field,
which effectively improves the model’s ability to capture the
features of PCB components, and then improves the classifi-
cation accuracy of the model.

2. The high similarity between the foreground (PCB
components) and the background poses a challenge to the
effective feature segmentation of the model. To solve this
problem, this paper proposes a feature segmentation method
based on ECA-Net, which effectively segments the back-
ground and foreground by assigning different weights to the
PCB background and foreground channels. Thus the model’s
recognition rate of PCB components is improved.

3. In PCB images defects detection, dense small targets are
prone to be missed. To solve this problem, this paper proposes
an anchor frame optimization method based on dichotomous
K-means algorithm. The method obtains the optimal anchor
box size by using the dichotomous K-means algorithm in the
Faster R-CNN model, which improves the sensitivity of the
model in detecting dense small targets.
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The paper is structured as follows: Section II briefly
reviews the related work on faster R-CNN networks;
Section III elaborates on the MSF-ECANet network frame-
work, multi-scale feature fusion, ECA-Net network and
anchor size design optimization; Section IV presents
experimental validation and comparative analysis of the
MSF-ECANet model; Section V concludes the research of
this paper.

Il. RELATED WORK

In recent years, the rapid development of deep learning
has led to a shift in target detection from the traditional
method of manually designing features to the deep learning
method. Compared with traditional methods, deep learning
target detection has the advantages of strong stability, high
accuracy and high efficiency. Currently, deep learning target
detection can be divided into two main approaches: One-stage
detection algorithm and Two-stage detection algorithm. The
One-stage algorithm directly extracts features from the input
images to predict both classification and localization. These
algorithms, such as YOLO series and the SSD algorithm, are
known for their simplicity, speed, and effectiveness in sce-
narios where targets are prominent. The Two-stage algorithm
extracts feature through the candidate region box, and divides
the target detection into two stages: firstly, it extracts the
features from the input image and generates candidate box,
which are then refined through subsequent adjustments to
improve their positioning accuracy. Lastly, a classifier is used
for image classification and localization. Typical Two-stage
algorithms are the R-CNN (Regions with CNN Features)
family networks.

R-CNN is regarded as a typical representative of Two-stage
target detection algorithm [21], but it suffers from three prob-
lems: 1) the R-CNN network can’t be trained individually,
it must be divided into multiple steps for training, which
results in a long training; 2) the cropped candidate frames
need to be compressed or pulled up, this step leads to image
distortion; 3) the network requires a large amount of memory
to store the candidate frames. To address these issues, the
Fast R-CNN [22] algorithm was introduced, enabling end-to-
end training, improving training speed, and eliminating image
distortion. However, its accuracy still needed improvement.
Therefore, Ren et al. [14] proposed Faster R-CNN model,
achieving complete end-to-end target detection with better
performance in terms of accuracy and speed.

As shown in Figure 1, the Faster R-CNN consists of three
parts: feature extraction network (FEN), region proposal net-
work (RPN), and classification network. The Faster R-CNN
accepts image of arbitrary size, initially resizing them to
600 x 600 before forwarding them through the detection
network. Within this network, the feature extraction network
generates a feature map. Subsequently, the RPN module gen-
erates candidate suggestion frames and maps the generated
candidate suggestion frames to the feature map to obtain the
feature map containing the suggestion frames. Lastly, the
feature map is passed through the Rol (Region of Interest)
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FIGURE 1. The original Faster R-CNN detection framework.

pooling layer and the fully connected layer to complete
the classification prediction and regression prediction. The
regression prediction part is used to adjust the position and the
size of the candidate proposal boxes generated in the RPN,
and the classification prediction part is used to obtain the
model prediction results.

Based on the superior accuracy of Faster R-CNN, a lot
of researchers have applied the Faster R-CNN model to
PCB detection. In [23], K-means clustering was used to
design reasonable anchor box size, and online hard example
mining technique was used to solve the problem of sample
imbalance and to optimize anchor box size. However, the
boxes generated by K-means algorithm are prone to missed
detection. Hu and Wang [4] integrated ResNet50 [24] as a
feature extraction network in the Faster R-CNN network, and
introduced the GARPN network and residual units of Shuf-
fleNetV2 to reduce the training time by reducing the number
of anchor points. Nevertheless, the method suffers from PCB
feature loss during the mapping process. Zhu et al. [25] fused
multiscale features and deformable convolutional networks
to improve the model’s ability to extract PCB image fea-
ture information. However, due to the limited diversity of
PCB dataset, the model exhibits poor generalization abil-
ity. Jiang et al. [26] proposed a RAR-SSD model, which
combines a multi-scale network with SSD network to solve
the problem of defect leakage and false detection of PCB
bare board. The RAR-SSD model enhances the receptive
field and attention mechanism module, and uses the dif-
ferent weights of different features in different channels in
PCB images to provide a wider range of effective focusing
features. It uses a lightweight model with few parameters.
However, the RAR-SSD model simultaneously employs both
pixel-level and channel-level attention mechanisms, leading
to a significant increase in computation. Additionally, there is
a certain degree of PCB image data loss when fusing features
extracted from the RAR-S.

The studies presented by Hu and Wang [4], Ren et al. [14],
and Zhang et al. [20] show that the detection accuracy of
the original Faster R-CNN model is higher than that of
the YOLO [12] model and SSD [13] model in the small
object detection task. So, in our work, the Faster R-CNN net-
work framework is used as the basic model of the improved
algorithm to detect the small target in PCB component.

IlIl. PCB COMPONENT DEFECT DETECTION ALGORITHM
A. MSF-ECANET DETECTION NETWORK

The Faster R-CNN network framework uses VGG16 as the
backbone network for feature extraction, and the weight
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FIGURE 2. MSF-ECANet network structure.

update of each convolutional layer needs to be carried out by
backpropagation during the training process. However, as the
number of network layer increases, the problem of vanishing
gradient becomes more significant, leading to a decrease in
detection accuracy. To solve this problem, the ResNet net-
work [24] introduced a residual module. In addition, ResNet
preserves better feature information of the original image.
Therefore, in this paper, instead of VGG16 network, ResNet
network is used. However, the ResNet50 network uses a
single-scale feature layer to construct the feature map, poten-
tially leading to the missed detection when extracting feature
information for PCB components. Therefore, in this paper,
ResNet50 network and FPN network are fused. Addition-
ally, to solve the problem that PCB components are highly
similar to the background information features, the ECA-Net
network is integrated into the output conv layers of CI,
C2, C3, C4, and C5 of ResNet50 network. Our proposed
MSF-ECANet network structure is shown in Figure 2.

B. MULTI-SCALE FEATURE FUSION

Since only ResNet50 is used as the backbone feature extrac-
tion network of Faster R-CNN, and the features extracted
by its CS5 layer are used to construct the feature map, it has
poor ability to detect PCB components and extract feature
information. Therefore, in this paper, FPN network is utilized
to fuse the high-level semantic information with the shallow
detail information to improve the model’s target recognition
and feature information extraction ability for different sizes
of tiny dense PCB components. FPN network comprises three
parts: feature extraction network, feature information fusion,
and multi-scale merging.

The feature extraction network has C1, C2, C3, C4, and
CS5 layers, with each layer containing a different number of
conv layers inside to extract the image feature information.
Between the adjacent layers, the size of the image is down
sampled by an integer multiple of two. The output image of
each layer provides a source of feature information for the
FPN network. Feature information fusion takes the image
features extracted from the deeper layers in ResNet50, per-
forms a 2-fold up sampling operation by the nearest neighbor
interpolation algorithm to ensure the uniformity of the height
and width of the newly fused image feature information, then,
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FIGURE 3. FPN network structure.

a new feature map layer is formed. This layer will then be
merged with the shallow feature information in a multiscale
merger. Multi-scale merging fuses the results of the feature
information fusion part with the PCB image feature informa-
tion output from each layer of the feature extraction network.
Then, 3 x 3 conv layers are used to perform convolution
operation on each fusion result to eliminate the aliasing effect
generated by the up-sampling method during the feature
information fusion process. The final feature map is gener-
ated and labeled as P2, P3, P4, and P5. The feature map of
the Rol mapped to the corresponding layers of FPN [27] is
calculated by (1).

k = ko + log, v wh/600 )

where kp = 4, w is the Rol width, 4 is the Rol height, 600 is
the image size.

C. ECA-NET

For the characteristics of PCB components, background
and foreground information may highly overlap, such as
jumperO4p (Figure 4(a)) and Jumper10p (Figure 4(b)). Dur-
ing the process of feature information extracting, the lim-
itation of the convolutional layer structure can result in a
weak expression ability for the feature information needed for
target detection of different parts. This can ultimately lead to
missed detections of PCB components, thereby reducing the
overall accuracy.

Figure 5 illustrates the process of the fused ECA-Net
network with ResNet50 network. The ECANet [28] extracts
the feature information of the detected target by fusing
the channel information within the local receptive field to
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(@)

FIGURE 4. PCB components (components and background are highly
similar). (a) Jumper04p; (b) Jumper10p.

feature maps LCIF

FIGURE 5. ECA-Net network structure.

improve the characterization capability of the network. The
network structure uses parallel computation to avoid feature
dimension reduction and improve the detection efficiency of
missing PCB components. In addition, by employing shared
weights, the ECANet minimizes model parameters and accel-
erates model convergence. The network structure reduces
the complexity of the model by enhancing the interaction
of information between channels in the PCB image. The
integration of this network enhances the dependency between
the channels of the PCB feature map, so that the PCB defect
detection model pays more attention to the foreground chan-
nel feature information and suppresses the PCB background
feature information, which improves the ability to express the
useful feature information of the PCB foreground.

In ECANet, the input PCB feature maps (H*W*C) are
subjected to Global Average Pooling (GAP) without dimen-
sionality reduction to produce a feature maps of size 1x1xC.
Next, the adaptive k-value is computed by (2). Subsequently,
each channel and its k adjacent channels are obtained by
one-dimensional convolution to obtain local cross-channel
interaction features (LCIF). Lastly, the Sigmoid (§) func-
tion is utilized to obtain the different channel weights
(DCW). By fusing the channels with different weights
with the channels of the input image, the weight informa-
tion of each channel is finally obtained (ECA results in
Figure 5), and different colors in the figure indicate different
weights.
log, (c) n b

v
where |t|,qq denotes the nearest odd number of ¢, =2, b =
1, and b is the number of channels.

k=1v(c) = 2

odd
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D. OPTIMIZE ANCHOR SIZE

In the PCB dataset used in this paper, due to the presence of
multiple components of different sizes, the target detection
using Faster R-CNN requires the design of an appropriate
anchor size to improve the accuracy of the target location.
In order to make the anchor size closer to the ground truth
box size of PCB components and thus improve the detec-
tion accuracy of small targets, this paper uses the bisecting
K-means algorithm to derive a better anchor template from
the PCB component training set. Firstly, the algorithm per-
forms cluster analysis on the data to obtain a set of cluster
center points. Then, the corresponding anchor dimensions are
calculated based on these cluster center points. Lastly, these
anchor dimensions are applied to the Faster R-CNN model
for both training and testing. Detailed steps are outlined as
follows:

1) Firstly, w and & of each component bbox (bounding box)
are obtained from the PCB data set, and the mean value of all
bboxes is selected as the centroid. All bboxes are considered
as a cluster. K-means clustering is performed on each cluster,
and K, the number of clusters, is set to derive the initial
clustering prior box, that is, (Wi, H;), i € {1,2,3,...,k},
where k is the total number of PCB components.

2) The IOU value between each ground truth bbox and the
prior bbox is calculated through (3).

IOU = |ANB|/|AUB| 3)

A denotes the ground truth bbox position of the PCB defect
point; B denotes the prior bbox position.
3) Calculate the distance of each bbox from each cluster
by (4).
DIS = 1-I0U 4)

According to DIS, the ground truth bbox is classified as
the closest initial prior bbox to form one cluster, and then the
family is divided into two families.

4) Calculate the average value of all classes through (5).

W*:ZWi/n,H*=ZHi/n (5)
where W; and H; are the width and height of each bbox,
respectively, W* and H* are the average of all points in the
cluster.

5) Select clusters that meet the criteria and can be decom-
posed. Considering the number of elements in the cluster and
the clustering cost (sum of squares of errors, SSE), the cluster
with the largest SSE is selected to be divided into two. Repeat
step 3) ~ 5) to updated until it is divided into K clusters and
the anchor box is obtained. SSE is calculated as shown in (6)
and (7).

SSEw = Zl aj (Wi — W¥)? (6)
SSEy = Z'l' aj (H; — H*)? %)

where a; denotes the weight, W; and H; are the width and
height of each anchor box, respectively, W* and H* are the
average values of all points in the cluster.
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k-means:step 17 Bik_means_anchor:step 9

FIGURE 6. Size of the anchor box obtained by the clustering algorithm.
(a) K-means cluster results; (b) Dichotomous K-means cluster results.

After above steps, the anchor template dimension matching
the PCB components are obtained. The anchor dimensions
obtained using the K-means clustering algorithm and the
dichotomous K-means clustering algorithm are shown in
Figure 6.

The nine anchor sizes obtained by K-means clustering are:
(19, 19), (21, 20), (21, 22), (24, 23), (28, 26), (24, 35), (31,
29), (37, 49), and (69, 51). And the use of dichotomous
K-means clustering yielded nine anchor sizes: (21, 21), (30,
27), (24, 34), (30, 38), (31, 49), (41, 39), (42, 54), (64, 57),
and (132, 40). As can be seen in Figure 6, the dichotomous
K-means algorithm outperforms the K-means algorithm on
the PCB dataset used in this paper. This superiority can be
attributed to several factors: 1) the dichotomous K-means
algorithm is much easier to obtain the global optimal solution
than the K-means algorithm; 2) the SSE algorithm makes the
clustering error minimal each time; and 3) the dichotomous
K-means algorithm is not affected by the initial random
particle.

IV. EXPERIMENTATION AND ANALYSIS
A. PCB DATASETS
The PCB dataset used in this paper was collected during the
actual production process at an electronics factory, and the
acquisition equipment is shown in Figure 7. Taking into
account factors such as detection accuracy, detection speed,
economic cost, data volume, Hikvision MV-CE200-11UC
face array camera was selected. In order to clearly capture
high-definition images of PCB components with a pixel size
of 3629 x 3585, the lens should be:

1) High resolution: The lens must possess a high degree of
clarity to produce more detailed images.

2) Uniform picture clarity: The lens must maintain consis-
tent clarity across different areas to prevent image distortion.

3) Ultra-low distortion: The lens should have a low dis-
tortion rate to accurately reproduce the shape and size of
objects.

4) High peripheral brightness ratio: the lens must maintain
a high brightness contrast in the image edge and the center of
the region.

According to the inspection environment and cam-
era parameters, Hikvision’s 25-megapixel MVL-KF1224M-
25MP fixed-focus industrial inspection lens has been chosen.

VOLUME 12, 2024

FIGURE 7. PCB dataset acquisition hardware devices.

In terms of light source, we require a unit with flexible
angle of light irradiation, compact size, capability of multi-
surface installation, stable light emission, high brightness,
and high-quality LED lights. In this research, Hikvision
MV-LLDS-H-400-40-W is chosen as light source, as it fulfills
the stated criteria.

In our research, a PCB image acquisition hardware device
using forward illumination is designed. Given the reflectivity
of the PCB board, it is crucial to provide uniform light
distribution around the board. Therefore, multiple strip light
sources are used to illuminate the PCB board, enhancing the
imaging quality of the PCB image.

The dataset comprises 1990 high-definition PCB compo-
nent images with the size of 3629 x 3585. Through a range
of augmentation processing, including blurring, mirroring,
cropping, and rotating, the dataset has been extended to
3000 images. The dataset contains 12 types of soldered PCB
components, which are divided into training set and test set
in a 9:1 ratio.

In this dataset, there are 1550 PCB component images with
defect and 1450 without defect. The location and category
information of PCB components are marked by labellmg. The
number and the sample of each category are shown in Table 2
and Figure 8.

B. ENVIRONMENT BUILD

The experimental platform is equipped with Intel (R) Xeon
(R) Platinum 8358P CPU @ 2.60GHz, and NVIDIA RTX
A5000 (24GB). The software is Python 3.9.7, CUDA 11.6,
and Pytorch 1.11.

C. EVALUATION INDICATORS
In order to evaluate the performance of the model in detecting
PCB components, Precision (P), Recall (R), Average Pre-
cision (AP) for a single category, Mean Average Precision
(mAP) for the model, F1, and mF1 are introduced.

TP

P=— 8
TP + FP ®
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TABLE 2. PCB dataset.

PCB components

Number of components (pcs)

Cap_blue_black
Cap_cross
Jumper04p
HDD
Speaker
Power24p
Bat
Power04p
2USB
Jumper10p
Power08p
Rj45+2USB

4375
3411
1568
2988
1960
1990
1950
2440
1850
2130
1980
1894

mMAP = 98.67%

Jumper10p
2UsB

Jumper04p 16

Bat 16

Power08p 1

Cap_blue_black 16

Speaker 16

Cap_cross o3
Rj45+2USB 0.6
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FIGURE 9. Model training loss and model mAP accuracy. (a) Model
training loss; (b) mAP accuracy.
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FIGURE 10. Improved model evaluation P-R curve and F1 curve for each
defect category. (a) P-R curve; (b) F1 curve.

TABLE 3. Comparison of optimization effects with the introduction of
different improvement modules.

VGG ResNet ResNet FPN K- Dichotomous ECA- Soft- mAP
16 50 101 means K-means Net NMS
\ 83.47%
v 90.34%
v 89.28%
v v 96.26%
v v V 95.78%
V v \ 97.45%
0] \/ \/ \ \ 98.67%
V V \ \ N 98.67%

FIGURE 8. PCB component defect detection categories. (a) Speaker;
(b) Bat; (c) 2USB; (d) Rj45+2USB; (e) Cap_cross; (f) Cap_blue_black;
(g) Jumper04p; (h) Jumper10p; (i) HDD; (j) Power08p; (k) Power04p;

(I) Power24.

model performance. mAP is the average model accuracy, the
higher the value, the better the model performance, where &

R = TP ) is the total number of categories in the recognition target. F1
TP +FN is the average sum of accuracy and recall, the higher the value,
AP — ! P (r)dr (10) the better the model performance. mF1 is the mean of F1 of
- 0 all categories. And, TP: True Positive, FP: False Positive, TN:
?:1 AP; True Negative, FN: False Negative.
mAP = == 11
2PR D. MODEL TRAINING AND PERFORMANCE EVALUATION
Fl = P+R (12) The experimental parameters of the improved algorithm
Zl; Fl, model in this paper are set as follows: the maximum number
mF1 = % (13) of iterations is 200, each epoch will be trained iteratively

P is the proportion of correct prediction frames among the
currently traversed prediction frames, high P indicates good
performance. R is the proportion of currently recognized
labels among all labels, the higher the recall, the better the
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using the training set and validation set, half precision train-
ing, batch size = 24, Adam optimizer is used, the initial
learning rate is 0.0001, momentum = 0.9, weight decay = 0,
the learning rate decreases by step, and the model is evaluated
using the coco toolbox. Real-time model training loss curve
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TABLE 4. AP values of different methods for detecting defects in different PCB components.

MSF-ECANet RAR-SSD[26] YOLOv3[12] YOLOv4[29] YOLOv5-x[30] YOLOx-s[31] Faster R-CNN [14]
(proposed)

2USB 1.00 1.00 1.00 0.98 1.00 1.00 0.99
Bat 1.00 0.98 0.99 0.87 0.99 0.99 0.99
Cap_blue black 1.00 1.00 1.00 0.94 1.00 1.00 0.69
Cap_cross 0.99 0.99 0.99 0.81 1.00 0.99 091
HDD 1.00 1.00 1.00 0.89 1.00 0.99 0.97
Jumper04p 1.00 0.99 0.97 0.77 1.00 0.97 0.83
Jumper10p 1.00 1.00 0.60 0.00 0.88 0.97 0.89
Power04p 1.00 0.98 0.98 0.00 0.99 0.99 0.83
Power08p 1.00 0.99 1.00 0.26 0.99 0.99 0.98
Power24p 1.00 0.99 0.99 0.99 1.00 1.00 1.00
Rj45+2USB 0.86 0.78 0.60 0.00 0.81 0.31 0.79
Speaker 1.00 1.00 0.99 0.00 0.99 0.97 0.99

TABLE 5. Comparison of mAP, mF1, model size, params, FLOPs (floating-point operations per second) among different methods.

MSF-ECANet RAR-SSD [26] YOLOvV3[12] YOLOv4[29] YOLOv5-x[30] YOLOx-s[31] Faster R-CNN [14]
(proposed)
mAP@0.5 98.67% 97.26% 92.61% 54.24% 97.05% 92.93% 90.34%
mF1 0.94 0.91 0.82 0.44 091 0.80 0.84
Model size (MB) 472 96.2 235 244 333 35.8 108
Params (M) 26.85 25.22 61.58 64.00 87.32 9.32 8.54
FLOPs (G) 808.58 1949.93 1243.59 480.26 1744.25 180.65 367.50

is shown in Figure 9(a); mAP values of the model are shown
in Figure 9(b).

As seen from Figure 9(a), the model converged. How-
ever, due to the small sample size of the dataset, the loss
differs between training and validating. Once the training
fished, the models generated in each epoch are traversed, and
the recognition accuracy is calculated to determine the best
model. The best model is used to evaluate the performance
on the dataset consisting of 1263 untrained PCB component
images. The P-R curve and the F1 value curve for each PCB
component detection category are plotted in Figure 10(a) and
Figure 10(b), respectively.

It can be seen from Figs 9 and 10 that the recognition rate of
the proposed model for Rj45+2USB components is relatively
low. This is primarily attributed to the intense reflection of
light from the metal surface of Rj454+2USB components.
Although preprocessing is introduced, little improvement
achieved.

In order to evaluate the impact on the defect detection per-
formance of PCB components of each improvement module
added in the MSF-ECANet model in this paper, experiments
were conducted to quantitatively analyze the experimental
effect of each improved module based on a test sample
dataset. As shown in Table 3, the detection accuracy of the tra-
ditional Faster R-CNN algorithm with VGG16 is 83.47% on
the PCB dataset. In the proposed model, by using ResNet50
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to extracts the feature of PCB components, the accuracy is
improved by 6.87% based on the Faster R-CNN algorithm.
When the single scale feature extraction is changed to FPN,
the accuracy is improved to 96.26%. When the dichotomous
K-means algorithm is used in the network model to generate
the anchor template, the model accuracy is improved by
1.19%. With the introduction of the ECA-Net module, the
overall accuracy of the MSF-ECA-Net model is improved by
15.2% on the basis of the original Faster R-CNN. Through the
above analysis, the improved network in this paper has a great
detection accuracy improvement effect than the traditional
Faster R-CNN algorithm, thus making it more suitable for
PCB practical industrial production.

E. COMPARISON OF EXPERIMENTAL RESULTS
To further validate the detection capability of the improved
algorithm, the seven algorithms, namely the MSF-ECANet
model in this paper, SSD, YOLOv3, YOLOv4, YOLOV5-x,
YOLOx-s, and Faster R-CNN, were evaluated on common
test dataset consisting of 1263 PCB images. The performance
is evaluated by AP value, mAP value, mF1 value, network
model size, number of parameters and computation (FLOPs,
floating-point operations per second). Corresponding experi-
ments results are shown in Table 4 and 5.

From the experimental data in Table 4, the AP values
of the Faster R-CNN network are only 0.69 and 0.83 on
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FIGURE 11. Comparison of actual PCB detection between original Faster R-CNN and the proposed MSF-ECANet. (a)Faster R-CNN:
miss detections of Rj45+2USB and Jumper04p; (b)Faster R-CNN: miss detections Power04p and Jumper04p; (c) Faster R-CNN:
duplicate, miss, and false detection of Cap_blue_black; (d)MSF-ECANet model.

FIGURE 12. Application of MSF-ECANet model in industry.

tiny components (Cap_blue_black) and components with
highly overlapped backgrounds (JumperO4p), whereas the
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AP values of the proposed MSF-ECANet on Cap_blue_black
and JumperO4p reached 1.

As shown in Table 5, Both the SSD model and the YOLOvV5
model are characterized as lightweight networks, with mAP
values of 97.26% and 97.05%, respectively. They are less
effective in extracting features of PCB component compared
to the improved model presented in this paper. Furthermore,
their computational complexity is twice that of improved
model. Among all the models, YOLOv4 model exhibited the
poorest performance, with a mAP of 54.24%.

So, in summary, despite being the largest among the
compared methods, the MSF-ECANet model exhibits the
highest mAP value, indicating superior detection accuracy.
Although the number of model parameters and the compu-
tational effort fall within the middle range of the compared
methods, and the accuracy of the model in identifying each
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type of PCB components is higher than that of the compared
methods.

Figure 11(a)~(c) are the detection of PCB component
using the original Faster R-CNN model. In Figure 11(a), mark
1 indicates a miss detection of Jumper04p, and mark 2 indi-
cates a miss detection of Rj45+2USB. In Figure 11 (b), mark
1 and 3 indicate miss detections of JumperO4p, and mark 2
indicates miss detection of PowerO4p. In Figure 11 (c),
mark 1 indicates false detection, mark 2 indicates dupli-
cate detection, and mark 3 indicates miss detection of
Cap_blue_black. Figure 11(d) shows the example of the
proposed MSF-ECANet model for detecting defects in PCB
components, and it can be clearly seen that the detection
capability of the improved model is significantly improved.
The practical application of the model in industry is shown in
Figure 12.

V. CONCLUSION

This paper investigated two major problems in PCB defect
detection: the insufficient detection capability of densely
packed small targets and the difficulty in segmenting due
to the high similarity between foreground and background
information. To address these problems, we propose a method
named MSF-ECANet. In the MSF-ECANet method, the
Faster R-CNN was used as the basic model. To solve the
vanishing gradient problem and increase the receptive field of
the model, ResNet and FPN was fused. This fusion enables
the model to extract finer PCB details in the deep network.
In addition, the ECA-Net model was used, which effec-
tively segment the foreground and background features of
PCB components, and weight the foreground more heavily
to improve recognition accuracy. Experimental results show
that the MSF-ECANet method outperforms algorithms like
YOLOV3, YOLOvS, and RAR-SSD in terms of accuracy and
efficiency. The MSF-ECANet model can be applied to the
PCB production process in electronic factories for PCB defect
detection.

Although the MSF-ECANet model can be applied to PCB
component detection, metal component detection poses spe-
cific challenges. Specifically, the strong reflection on the
surface of metal components and the noise problem in image
acquisition are hard to deal with. In order to solve these
problems, in future research, following strategies could be
considered: 1) Light field analysis method could be used to
arrange the light source accurately; 2) Image preprocessing
technology, such as high dynamic range (HDR) imaging
technology, local contrast enhancement, and methods from
other research fields like intelligent remote sensing [32], [33],
these method may improve the image quality degraded by
reflection; 3) Considering the difference between training
loss and validation loss, regularization methods, such as L2
weight decay regularization, might be beneficial.

REFERENCES

[1] Z. Zhong and Z. Ma, “A novel defect detection algorithm for flexible
integrated circuit package substrates,” IEEE Trans. Ind. Electron., vol. 69,
no. 2, pp. 2117-2126, Feb. 2022.

VOLUME 12, 2024

[2]

3

[l

[4]

[51

[6]

[71

[8]

[9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

[25]

A. M. Darwish and A. K. Jain, “A rule based approach for visual pat-
tern inspection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 10, no. 1,
pp. 56-68, Jan. 1988.

T. Vafeiadis, N. Dimitriou, D. Ioannidis, T. Wotherspoon, G. Tinker, and
D. Tzovaras, “A framework for inspection of dies attachment on PCB
utilizing machine learning techniques,” J. Manage. Anal., vol. 5, no. 2,
pp. 81-94, Apr. 2018.

B. Hu and J. Wang, “Detection of PCB surface defects with improved
faster-RCNN and feature pyramid network,” IEEE Access, vol. 8,
pp. 108335-108345, 2020.

X. Y. Zhao, Y. T. Zhou, F. He, S. Wang, and Z. W. Zhang,
“Hierarchical extraction matching printed circuit board components
defect detection,” Instrum. Technique Sensor, vol. 10, no. 8, pp. 84-89,
Aug. 2018.

B. Ren and L. Cheng, “Analysis and optimal design of illuminator
of AOI vision system,” Control Autom., vol. 25, no. 27, pp. 42-44,
2009.

T. Hu, B. P. Guo, and X. Guo, “Contour feature based on image
registration,” Opto-Electron. Eng., vol. 36, no. 11, pp.118-122,
2009.

J. Yao, Y. T. Ye, and J. Zhang, “Research of parsing Gerber file in
PCB automatic optical inspection,” Comput. Eng. Des., vol. 33, no. 6,
pp. 2481-2485, 2012.

C. Rother, V. Kolmogorov, and A. Blake, ‘“GrabCut: Interactive foreground
extraction using iterated graph cuts,” ACM Trans. Graph., vol. 23, no. 3,
pp. 309-314, 2004.

Y. Du, F. Yang, and X. Y. Wang, “Research on edge detection algorithm
of color PCB image,” Video Appl. Project, vol. 35, no. 13, pp. 113-115,
2011.

N. S. Qiao, L. Deng, Y. B. Ceng, and J. C. Zou, “Study of noisy and
darker PCB photoelectricity image edge detection,” J. Optoelectron.,
Laser, vol. 24, no. 4, pp. 740-745, Apr. 2013.

J. Redmon and A. Farhadi, ““YOLOV3: An incremental improvement,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 1-6.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and
A. C. Berg, “SSD: Single shot MultiBox detector,” presented at the 14th
Eur. Conf. Comput. Vis., Amsterdam, The Netherlands, Oct. 2016.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017.

Y.-S. Deng, A.-C. Luo, and M.-J. Dai, “Building an automatic defect
verification system using deep neural network for PCB defect classifica-
tion,” in Proc. 4th Int. Conf. Frontiers Signal Process. (ICFSP), Sep. 2018,
pp. 145-149.

C.Zhang, W. Shi, X. Li, H. Zhang, and H. Liu, “Improved bare PCB defect
detection approach based on deep feature learning,” J. Eng., vol. 2018,
no. 16, pp. 1415-1420, Nov. 2018.

Y.-L. Lin, Y.-M. Chiang, and H.-C. Hsu, ““Capacitor detection in PCB using
YOLO algorithm,” in Proc. Int. Conf. Syst. Sci. Eng. (ICSSE), New Taipei
City, Taiwan, Jun. 2018, pp. 1-4.

G. Z.He and L. Yu, “PCB defect detection based on convolutional neural
network,” J. Graph., vol. 43, no. 1, pp. 21-27, 2022.

Z. C. Sun, B. Wang, and X. L. Zhang, “PCB defect detection based on
deformable residual convolution and scalable feature pyramid algorithm,”
Telecommun. Eng., vol. 63, no. 6, pp. 798-805, Jun. 2023.

Z. Zhang, M. Zhou, H. Wan, M. Li, G. Li, and D. Han, “IDD-Net:
Industrial defect detection method based on deep-learning,” Eng. Appl.
Artif. Intell., vol. 123, Aug. 2023, Art. no. 106390.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, ‘‘Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Columbus, OH, USA, Jun. 2014,
pp. 580-587.

R. Girshick, “Fast R-CNN,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Santiago, Chile, Dec. 2015, pp. 1440-1448.

R. Ding, L. Dai, G. Li, and H. Liu, “TDD-Net: A tiny defect detection
network for printed circuit boards,” CAAI Trans. Intell. Technol., vol. 4,
no. 2, pp. 110-116, Jun. 2019.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Las Vegas, NV, USA, Jun. 2016, pp. 770-778.

H.Y.Zhu,Z.P.Li, Y. Zhao, X. H. Luo, X. J. Cheng, and X. W. Yang, “PCB
defect detection algorithm based on multi-scale fusion and deformable
convolution,” Comput. Eng. Des., vol. 43, no. 8, pp.2188-2196,
Aug. 2022.

62973



IEEE Access

W. Chen et al.: Defect Detection Model of Printed Circuit Board Components

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

W. Jiang, T. Li, S. Zhang, W. Chen, and J. Yang, “PCB defects target
detection combining multi-scale and attention mechanism,” Eng. Appl.
Artif. Intell., vol. 123, Aug. 2023, Art. no. 106359.

T.-Y. Lin, P. Dolldr, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), Honolulu, HI, USA, Jul. 2017,
pp. 936-944.

Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, and Q. Hu, “ECA-Net: Effi-
cient channel attention for deep convolutional neural networks,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020,
pp. 11531-11539.

A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, ““YOLOv4: Optimal speed
and accuracy of object detection,” 2020, arXiv:2004.10934.

YOLOvS, Ultralytics, Frederick, MD, USA, 2021.

Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
series in 2021,” 2021, arXiv:2107.08430.

D. Hong, B. Zhang, X. Li, Y. Li, C. Li, J. Yao, N. Yokoya,
H. Li, P. Ghamisi, X. Jia, A. Plaza, P. Gamba, J. A. Benediktsson, and
J. Chanussot, ““Spectral GPT: Spectral remote sensing foundation model,”
IEEE Trans. Pattern Anal. Mach. Intell., early access, Apr. 3, 2024, doi:
10.1109/TPAMI.2024.3362475.

X. Wu, D. Hong, and J. Chanussot, “UIU-Net: U-Net in U-Net for
infrared small object detection,” IEEE Trans. Image Process., vol. 32,
pp. 364-376, 2023.

WENBIN CHEN received the Ph.D. degree in
information and communication engineering from
the North University of China, in 2019. She joined
the School of Electrical Engineering, Chongqing
University of Science and Technology, in 2020.
Her research interests include medical image pro-
cessing, PCB defect detection, and deep learning.

62974

- a

HONGCHAO ZHAO received the B.S. and M.S.
degrees from the School of Electrical Engineering,
Chongqing University of Science and Technology,
Chongqing, China, in 2019 and 2023, respectively.
His current research interests include computer
vision, image processing, and machine learning.

ZHENG WANG received the B.S. and M.S.
degrees from the School of Electrical Engineering,
Chonggqing University of Science and Technology,
Chongqing, China, in 2019 and 2022, respec-
tively. He is currently pursuing the Ph.D. degree
with the Graduate School of Engineering, Mie
University, Japan. His current research interests
include machine learning, machine vision, and
deep learning.

VOLUME 12, 2024


http://dx.doi.org/10.1109/TPAMI.2024.3362475

