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ABSTRACT Predictive algorithms for the coronavirus epidemic are indispensable tools for monitoring the
dynamic spread of COVID-19 and for implementing intervention and preparedness measures to mitigate the
outbreak. Many of the existing mathematical models used for epidemic analysis are deterministic in nature,
which may not fully capture the complex dynamics of disease transmission. In this paper, we introduce a
novel stochastic predictive algorithm known as the LSM-EKF-SIRD-V algorithm. This algorithm combines
a SIRD-V model, which accounts for susceptible, infected, recovered, deceased, and vaccinated cases, with
the Least SquareMethod (LSM) and an ExtendedKalman Filter (EKF). It provides daily dynamic predictions
of the system’s parameters and is employed to analyze the COVID-19 disease profile in Algeria from January
29, 2021, to October 2, 2022. The primary goal of this approach is to create a decision-support system that
empowers governments and health authorities with future pandemic statistics. This information enables them
to adapt and optimize hospitalization resources, allowing for more effective intervention and preparedness
measures to control the spread of the pandemic. Simulation results demonstrate the effectiveness of the
proposed algorithm in accurately predicting the future dynamics of coronavirus spread based on historical
and current case data.

INDEX TERMS Coronavirus, COVID-19, SIRD-V model, extended Kalman filter, LSM-EKF-SIRD-V
algorithm.

I. INTRODUCTION
The coronavirus, or COVID-19, is an extremely contagious
respiratory virus that originated in Hubei province, China [1],
[2]. Within a very brief period, it spread to numerous coun-
tries worldwide, causing a significant impact on the affected
regions. The World Health Organization (WHO) officially
declared the COVID-19 epidemic a ‘‘public health emer-
gency of international concern’’ on January 30, 2020, and
subsequently escalated it to the status of a pandemic onMarch
11, 2020.

The associate editor coordinating the review of this manuscript and

approving it for publication was Zhengmao Li .

Since the onset of the COVID-19 pandemic, various efforts
have been made to monitor the progression of the viral
spread and forecast the course of this infectious disease.
These endeavors share a common goal of providing crucial
insights to inform the decisions of public health authorities.
The approaches developed can be categorized based on the
number of compartments studied and are broadly divided into
two groups: those employing artificial intelligence tools [3],
[4], [5] and those relying on classical epidemiological
models.

The second category, which involves classical epidemio-
logical models, stands out for the mathematical equations
used. These equations may encompass differential equations,
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difference equations, or even fractional calculus, depend-
ing on the specific requirements of modeling biological or
medical phenomena [6], [7], [8].

Regarding the application of mathematical models,
initial research efforts have primarily concentrated on
epidemiological studies, focusing on the transmission
dynamics and forecasting of the disease in the most heav-
ily impacted countries across the globe. Many of these
studies have employed various forms of mathematical
models, often utilizing different compartments, such as
susceptible-exposed-infectious-recovered-death (and even
more compartments like protected and treated). These mod-
els are drawn from well-established frameworks found in
the literature, including the widely recognized SIR, SIRD,
SIERD, PSIERD, and more. These models serve as tools
for understanding and analyzing the spread and transmission
dynamics of the disease [9], [10].

In subsequent phases of the research, these strategies
have evolved to include the consideration of isolated or
hospitalized populations within the modeling framework
[11], [12].

More recently, researchers have delved into extended
epidemic models that account for vaccinated individuals.
In studies like [13], [14], and [15], authors examine the
impact of vaccination campaigns and shed light on the devel-
opment of the epidemic in various countries, with particular
emphasis on developing nations. They use models such as
the deterministic SEIR model or the SEIR model formulated
with white noise and time delays. Additionally, Poonia et al.
propose an enhanced SEIR model for predicting the severity
of COVID-19 in vaccinated populations [16]. By combining
the generalized SEIR model with the Wells–Riley model,
the results obtained offer insights into the effectiveness of
preventive strategies, including vaccination, face mask usage,
and nucleic acid testing, particularly in the context of mass
gatherings such as large sports events [17].
In the realm of epidemiological modeling, the basic SIR

model with vaccination has gained widespread usage in the
literature due to its simplicity. Numerous approaches have
been developed, presenting different versions of the SIRV
model to monitor transmission and predict the trends of
COVID-19 and other infectious diseases [18], [19], [20].

In [20], an age-structured SIR model was employed to
quantify the effects of vaccine hesitancy in the United States
during the Delta wave of the pandemic.

A significant model, known as the SIRDV model, has
proven to be efficient in the study of severe infectious diseases
like Ebola and COVID-19 [7], [15]. This model incorporates
both vaccination and deceased individuals in its formula-
tion and is a crucial tool for analyzing epidemiological
characteristics.

While many previous works on vaccination campaigns
focused on a single dose, some recent approaches have taken
multiple vaccinations into account, breaking down vaccinated
individuals into different categories, such as vaccination1
(those who received the first dose) and vaccination2 (those

who received the second dose) [21], [22]. Similarly, the
authors of [23] formulated the rollout of vaccination for
two different vaccines as an optimization problem with the
primary goal of achieving herd immunity rapidly.

As evident from the papers discussed, many issues are
addressed using a deterministic framework of compartmental
models. While deterministic models are advantageous for
their simplicity and ease of analysis, they may not be the
most appropriate choice when dealing with uncertainties or
random variations, especially in cases where the phenomenon
under study exhibits stochastic properties, as is often the case
with the spread of diseases [24], [25].

This recognition of the stochastic nature of disease spread
has prompted researchers to approach COVID-19-related
issues from a stochastic perspective, employing various mod-
eling techniques. These include regression models, agent-
based models, and traditional models like SIR, SEIRD, etc.
These models are often combined with a range of tools,
such as the Kalman filter [26], [27] and its suboptimal
estimators like the Ensemble Kalman Filter (EnKF) [28],
[29], Unscented Kalman Filter (UKF), Extended Kalman
Filter (EKF) [30], [31], [32], particle filters [33], Bayesian
approaches [34], stochastic models [35]. These stochastic
modeling techniques provide a more accurate representation
of the inherent randomness and uncertainties in the spread of
diseases like COVID-19.

The stochastic approaches have evolved to include the con-
sideration of vaccinated individuals to better understand the
dynamics of COVID-19 and assess the effects of vaccination.

The current research endeavors to investigate the influence
of vaccination on the transmission dynamics of COVID-19.
This study is a follow-up to a previously published work [30],
which introduced the well-established concept of the Kalman
filter used in target tracking to predict the spread of diseases.
The goal here is to combine the Least Square Method (LSM)
with the ExtendedKalman Filter (EKF) within the framework
of a SIRDV model. This combined approach aims to forecast
and monitor the dynamics of compartmental classes in the
COVID-19 pandemic in Algeria.

Up to this point, there have been only a handful of con-
tributions discussing the epidemiological profile in Algeria,
primarily focusing on modeling and prediction studies [30],
[36], [37]. Notably, none of these prior works have considered
the impact of vaccination.

In this context, we introduce an estimation approach based
on the Extended Kalman Filter (EKF) for an extended SIRD
model, which incorporates five distinct classes: susceptible,
infected, recovered, deceased, and vaccinated. The primary
objective of this paper is to delve into the transmission
dynamics of COVID-19, using data spanning from January
29, 2021, to October 2, 2022, in the specific context of
Algeria.

The contributions and innovations of this study can be
summarized as follows:
1. The introduction of a stochastic aspect achieved by

combining the Least Square Method (LSM) and the
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Extended Kalman Filter (EKF) within the framework of
the epidemiological SIRD-V model.

2. A daily optimization and prediction of various key param-
eters, including the infection rate α(k), recovery rate β(k),
death rate γ (k), and vaccination rateµ(k) is accomplished
through the application of LSM.

3. Utilization of the epidemiological SIRD-V model in
conjunction with the Extended Kalman Filter (EKF) to
enable the simultaneous prediction of daily model states,
daily transmission rates, and all parameters related to
COVID-19.

These contributions provide a comprehensive framework for
monitoring and forecasting the dynamics of COVID-19, con-
sidering both stochastic aspects and essential parameters in
the context of Algeria.

The rest of this paper is organized into three sections.
Section II is dedicated to firstly the problem formulation and
the description of the chosen epidemiological model with
the least square method (LSM), secondly, it details the data
assimilationmethods, more precisely the EKF algorithm used
in the context of this work. In the next section, we discuss the
application of this algorithm and present simulation results
to verify this study. Finally, the last section recapitulates the
concluding remarks of this study and suggests a purpose for
future work.

II. MATERIALS AND METHODS
A. EPIDEMIOLOGICAL MODEL
In this paper, we present an extended version of the SIRD
epidemiological compartment model, through, which we
examine the spread of COVID-19 and account for daily and
periodic intervention in terms of restrictions and vaccination
campaigns in Algeria. This extended version is named the
SIRD-V model and consists of the susceptible population
S(t), the infected population I (t), the recovered popula-
tion R(t), the deceased population D(t) and the vaccinated
population V (t), such that:

S (t) + I (t) + R (t) + D (t) + V (t) = N (1)

where N represents the total number of Algerian populations,
the schematic of a SIRD-V model is shown in fig 1. and it is
governed by the following set of nonlinear equations:

dS (t)
dt

= −
α (t)
N

S (t) I (t) − µ(t)S (t) (2)

dI (t)
dt

= +
α(t)
N

S (t) I (t) − β (t) I (t) − γ (t) I (t) (3)

dR (t)
dt

= β(t)I (t) (4)

dD (t)
dt

= γ (t)I (t) (5)

dV (t)
dt

= µ(t)S (t) (6)

α (t), β(t), γ (t) and µ(t) are the daily infection, daily
recovery, daily death and daily vaccination rates, which are
optimized by the least square method (LSM) as follow:

FIGURE 1. Scheme of SIRD-V epidemiological model.

In discrete time and if we suppose that S = N , then:

α (k)

=

∑k
j=1 I (j)·1I (j)+

∑k
j=1 I (j)·1R (j)+

∑k
j=1 I (j)·1D (j)∑k

j=1 I
2 (j)

(7)

If S ̸= N , then (8)–(11), as shown at the bottom of the next
page:
I (j) is the total currently infected at time j (day)
S (j) is the susceptible population at time j (day)
1I (j) = I (j) − I (j−1) is daily currently infected at time j

(day)
1R (j) = R (j) − R(j−1) is daily new recovered at time j

(day)
1D (j) = D (j) − D(j−1) is daily new deceased at time j

(day)
1V (j) = V (j) − V (j−1) is daily new vaccinated at time j

(day)
The nonlinear discrete SIRD-V model is given by:

X (k + 1)

=


x1 (k) −

α(k)
N x1 (k) ·x2 (k) − µ (k) · x1 (k)

x2 (k) +
α(k)
N x1 (k) ·x2 (k) − β (k) x2 (k) − γ (k) x2 (k)

x3 (k) + β (k) x2 (k)
x4 (k) + γ (k) x2 (k)
x5 (k) + µ (k) x1 (k)


+ Vk (12)

where

X (k) =


x1 (k)
x2 (k)
x3 (k)
x4 (k)
x5 (k)

 =


S (k)
I (k)
R (k)
D (k)
V (k)


Vk is a zero-mean white noise with covariance QV .

The Jacobian matrice of this model is obtained as (13) and
(14), as shown at the bottom of the next page, where α̂ (k),
β̂ (k) and γ̂ (k) are given in [30].

VOLUME 12, 2024 62049



A. Sebbagh et al.: Stochastic Epidemiological SIRD-V Model With LSM-EKF Algorithm

We suppose that the measurement equation is given
daily by:

Yk+1 =


1
0
0

0
1
0

0 0 0
0 0 0
1 0 0

0 0 0 1 0
0 0 0 0 1




x1 (k + 1)
x2 (k + 1)
x3 (k + 1)
x4 (k + 1)
x5 (k + 1)

 +Wk

Yk+1= CXk+1+Wk (15)

With

C =


1
0
0

0
1
0

0 0 0
0 0 0
1 0 0

0 0 0 1 0
0 0 0 0 1


Wk is a zero-mean white noise with covariance

∑
W .

B. EXTENDED KALMAN FILTER
Kalman Filter can be used in estimation of the state Xk∈Rnx

where posterior PDF is Gaussian in every time step and the
process is governed by linear difference equation. But in
many cases this PDF is Not-Gaussian and we need to use
different approach such as an approximate grid-basedmethod
or extended Kalman Filter. These methods are also labeled as
sub-optimal algorithms [38], [39].
Again, let Xk∈Rnx be the state sequence, but in opposite

to the previous case, the process is governed by the nonlinear

difference equation.

Xk+1 = f (Xk) + Vk (16)

with measurement Yk ∈ Rny :

Yk+1 = h (Xk+1) +Wk (17)

where Vk and Wk represent process and measurement noise
vectors with a zero mean and covariancesQk and

∑
k respec-

tively. Function f can be used to compute a state in time step
k from the previous estimate and function h can be used to
compute the predicted measurement from the predicted state.

Extended Kalman Filter is based upon an approximation of
the Bayes’ rule using linearization. Again, as Kalman Filter,
its extended version works also in two phases: prediction
and update. A predict stage can be described using following
equations:

X̂k+1|k = f
(
X̂k|k

)
+ Vk (18)

where X̂k+1|k is the predicted state estimate at time k+1 given
measurements up to time k and

Pk+1|k = F̂kPk+1|k F̂Tk + Qk (19)

where Pk+1|k is the error covariance matrix

Ŷk+1 = h
(
X̂k+1|k

)
+Wk (20)

α (k) = N ·

[∑k
j=1 I

2 (j)
∑k

j=1 (S (j) · I (j) · 1I (j))
]

∑k
j=1 I

2(j)
∑k

j=1 (I
2 (j) · S2 (j))

+ N

(∑k
j=1I

2 (j)·S (j)
)(∑k

j=1(I (j)·1R (j))+
∑k

j=1(I (j)·1D (j))
)

∑k
j=1 I

2(j)
∑k

j=1 (I
2 (j) · S2 (j))

(8)

β (k) =

∑k
j=1 I (j) · 1R(j)∑k

j=1 I
2(j)

(9)

γ (k) =

∑k
j=1 I (j) · 1D(j)∑k

j=1 I
2(j)

(10)

µ (k) =

∑k
j=1 S(j) · 1V (j)∑k

j=1 S
2(j)

(11)

F (Xk) =
∂f
∂Xk

=


1− α̂(k)

N x2 (k) −µ̂ (k) −
α̂(k)
N x1 (k) 0 0 0

α̂(k)
N x2 (k) 1−β̂ (k) −γ̂ (k) +

α̂(k)
N x1 (k) 0 0 0

0
0

µ̂ (k)

β̂ (k)
γ̂ (k)
0

1
0
0

0
1
0

0
0
1

 (13)

µ̂ (k) =
predicted daily new vaccinated
estmate of total susceptible

=
x5 (k + 1/k) −x5 (k/k − 1)

x1 (k/k − 1)
(14)
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FIGURE 2. Real and predicted trajectories, (a) total coronavirus cases, (b) total susceptible, (c) total currently infected, (d) total recovered cases, (e) total
deceased and (f) total vaccinated.
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FIGURE 3. Real and predicted trajectories, (a) daily infection rate α(k), (b) daily recovery rate β
(
k
)
, (c) daily death rate γ (k) and (d) daily

vaccination rate µ(k).

Ŷk+1 is the predicted measurement at time k + 1 state transi-
tion and observation matrices are defined by the following

F̂k =
∂f
∂X

∣∣∣∣
Xk|k

(21)

Ĥk+1 =
∂h
∂X

∣∣∣∣
Xk+1|k

(22)

and Sk+1 is the innovation covariance defined by:

Sk+1 = Ĥk+1Pk+1|k ĤT
k+1 +

∑
k

(23)

Kk+1 = Pk+1|k ĤT
k+1S

−1
k+1 (24)

where Kk+1 is the Kalman gain,
Update stage can be described with the following

equations:

ỹk+1 = Yk+1 − Ŷk+1 (25)

where ỹk+1 is innovation term,

X̂k+1|k+1 = X̂k+1|k + Kk+1ỹk+1 (26)

is update state estimate and

Pk+1|k+1 =

(
I − Kk+1Ĥk+1

)
Pk+1|k (27)

is update estimate covariance.
Equations for the extended Kalman filter shown above uti-

lize first term in a Taylor expansion of the non-linear function.
Utilizing higher order terms is possible, but computational
complexity prohibited their use.

III. RESULTS AND DISCUSSION
Algeria was among the early adopters in the WHO Africa
region to kickstart its COVID-19 vaccination campaign. The
government has allocated substantial human and material
resources to provide its population with safe and effec-
tive vaccines. The aim is to mitigate the spread of the

62052 VOLUME 12, 2024



A. Sebbagh et al.: Stochastic Epidemiological SIRD-V Model With LSM-EKF Algorithm

FIGURE 4. Real and predicted trajectories, (a) daily basic reproduction
number R0 and (b) daily basic reproduction number (zoom).

virus across the country, including all its cities (Wilayas).
These vaccination efforts are crucial in the fight against
COVID-19 and in achieving herd immunity to protect public
health.

The initial phase of the vaccination campaign in Algeria
was initiated on January 30, 2021, starting in the city (Wilaya)
of Blida. Blida was the first national hotspot of the pandemic
in Algeria. During this phase, the Russian Vaccine Sputnik-V
was administered to the population as part of the vaccination
campaign. This marked the beginning of a critical effort
to protect individuals and communities from the spread of
COVID-19.

As of September 4th, 2022, Algeria had administered three
additional types of vaccines, namely AstraZeneca, Sinovac,
and Sinopharm. The total number of vaccine doses adminis-
tered in the country had reached approximately 15.27million.
This widespread vaccination effort aims to provide immunity
and protection against COVID-19 for a significant portion of
the population.

To implement the LSM-EKF-SIRD-V algorithm for pre-
dicting the dynamics of COVID-19 spread with vaccination,
we utilize real data obtained from the Algerian Health Min-
istry and the World Health Organization (WHO). This data
spans from January 29, 2021, to October 02, 2022, and serves
as the foundation for our analysis and predictions regarding
the transmission of the coronavirus in Algeria.

The real initial vector of coronavirus is given by:

X (1) =
(
44112498 31047 72956 28440

)T
The mean vector and covariance matrice initialization of the
EKF according to a Gaussian law are:

X̂ (1 |1 ) =
(
44113000 31100 73050 2890 0

)T
P1|1 =


10+3

0
0

0
10+3

0

0 0 0
0 0 0

10+3 0 0
0 0 0 10+3 0
0 0 0 0 10+3


The process noise is zero mean, white with covariance

Qk =


10+3

0
0

0
10+3

0

0 0 0
0 0 0

10+3 0 0
0 0 0 10+3 0
0 0 0 0 10+3


Themeasurement noise is also zeromean, white, independent
of the process noise, with covariance

∑
k

=


10−2

0
0

0
10−2

0

0 0 0
0 0 0

10−2 0 0
0 0 0 10−2 0
0 0 0 0 10−2


Fig 2: (a), (b), (c), (d), (e) and (f) shows the real and predicted
trajectories of total coronavirus cases, total susceptible, total
currently infected, total recovered, total deceased and total
vaccinated respectively.

It’s clear that the real and predicted trajectories are almost
identical whichmeans that our LSM-EKF-SIRD-V algorithm
is correctly predicted the daily evolution of coronavirus
spread.

α(k),β(k), γ (k) and µ(k) are the daily infection, daily
recovery, daily death and daily vaccination rates respec-
tively, and are optimized firstly by the least square method
(LSM) according to (7), (8), (9), (10) and (11) and sec-
ondly predicted by LSM-EKF-SIRD-V algorithm as shown
in Figure 3: a, b, c and d.

To predict correctly SIRD-V model states and all coron-
avirus parameters, it must predict correctly α(k),β(k), γ (k)
and µ (k) rates, good predicted rates will certainly give us
good predicted states

Fig 3. demonstrates the LSM-EKF-SIRD-V algorithm’s
ability to make accurate daily predictions of key rates related
to COVID-19.
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Algorithm 1 LSM-EKF-SIRD-V Algorithm
• Initialization:

X̂1|1 = E
(
X̃1

)
, P1|1 = E

(
X̃1 − X̂1|1

) (
X̃1 − X̂1|1

)T
, (α (1) , β (1) , γ (1) andµ(1))

for k = 1 : enddo
• prediction step:

• X̂k+1|k = f
(
X̂k|k

)
+ Vk −→SIRD-V model predicted state

• Calculate the predicted (α̂ (k), β̂ (k) , γ̂ (k) andµ̂(k))
• Calculate :F̂k =

∂f
∂X

∣∣∣
Xk|k

using the predicted (α̂ (k), β̂ (k) , γ̂ (k) andµ̂(k))

• Pk+1|k = F̂kPk+1|k F̂Tk + Qk −→predicted covariance

• Ŷk+1 = h
(
X̂k+1|k

)
+Wk −→ predicted measurement

• Sk+1 = Ĥk+1Pk+1|k ĤT
k+1 +

∑
k where Ĥk+1 =

∂h
∂X

∣∣
Xk+1|k

• Update step:
when a measurement has arrived:(Y k+1)

• ỹk+1 = Yk+1 − Ŷk+1 innovation term
• X̂k+1|k+1 = X̂k+1|k + Kk+1ỹk+1 SIRD-V model estimate state

• Pk+1|k+1 =

(
I − Kk+1Ĥk+1

)
Pk+1|k estimate covariance

• Optimization of (α (k + 1) , β (k + 1) , γ (k + 1) andµ (k + 1)) by LSM from real DATA for using in the next step

α (k+1)=N ·

[∑k+1
j=1 I

2(j)
∑k+1

j=1 (S (j) · I (j) · 1I (j))
]
+

(∑k+1
j=1 I

2 (j) · S (j)
) (∑k+1

j=1 (I (j) · 1R(j))+
∑k+1

j=1 (I (j) · 1D(j))
)

∑k+1
j=1 I

2(j)
∑k+1

j=1 (I2 (j) · S2 (j))

β (k + 1) =

∑k+1
j=1 I (j) · 1R(j)∑k+1

j=1 I
2(j)

γ (k + 1) =

∑k+1
j=1 I (j) · 1D(j)∑k+1

j=1 I
2(j)

µ (k + 1) =

∑k+1
j=1 S(j) · 1V (j)∑k+1

j=1 S
2(j)

End

Fig 4. reveals the algorithm’s capacity to predict the daily
basic reproduction number R0. This prediction is based on the
daily values of α(k), β(k), and γ (k) and is a valuable metric
for assessing the transmission dynamics and potential impact
of control measures on the spread of the virus, given by the
equation:

R0 (k) =
α (k)

β (k) +γ (k)
(28)

From January 29, 2021, to July 29, 2021, we observed a
gradual increase in the reproduction number (R0) from 1 to 2.
However, from July 29, 2021, to April 15, 2022, this num-
ber began to decrease. The reduction in the reproduction
number during the latter period can be attributed to a com-
bination of containment measures taken by the government.
These measures included lockdowns, traffic restrictions, con-
tact tracing, mandatory face masks in public spaces, and
most significantly, the vaccination campaign. It is evident

that the vaccination operation played a crucial role in
reducing the rate of infection, contributing to the overall
control of the pandemic. This underscores the importance
of vaccination in managing and mitigating the spread of
COVID-19.

Indeed, when the value of the reproduction number R0 con-
sistently falls between 1 and 2 over the entire observed range,
it suggests that the situation was not particularly alarming.
R0 values in this range indicate that the spread of the virus is
relatively controlled and not experiencing rapid exponential
growth.

This suggests that the implemented measures, includ-
ing containment strategies and vaccination, have been
effective in managing the COVID-19 situation and keep-
ing it within manageable limits. However, it’s important
to remain vigilant and continue these measures to pre-
vent potential resurgences and ensure public health and
safety.
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FIGURE 5. Real and predicted trajectories, (a) daily new coronavirus cases, (b) daily new recovered, (c) daily new dead and (d) daily new vaccinated.

The real and predicted trajectories of daily new coronavirus
cases, daily new deceased, daily new recovered, and daily
new vaccinated, as presented in fig 5: (a), (b), (c), and (d),
illustrate that the proposed algorithm has accurately predicted
these daily new quantities. These results reflect the effec-
tiveness and accuracy of our algorithm in forecasting and
modeling the dynamics of COVID-19, including the impact
of vaccination. Such precise predictions are valuable for pub-
lic health decision-makers and authorities in managing the
pandemic effectively.

The RootMean Square Errors (RMSEs) illustrated in fig 6:
a, b and c are derived from 100 Monte Carlo runs. These runs
are conducted based on a specific equation (29) that we are
likely referring to within our research or analysis. The RMSE
is a commonmeasure of the accuracy of amodel’s predictions

compared to the actual data, and conducting multiple Monte
Carlo runs helps assess the performance and robustness of a
predictive algorithm.

RMSE (x (j)) =

√∑j
k=1

(
xreal (k) − xpredicted (k)

)2
j

j = 1 to N (29)

The quality of the prediction results is evidenced by the
smaller Root Mean Square Errors (RMSEs) as illustrated in
fig 6: (a), (b), and (c). Smaller RMSE values indicate that
the predictions made by this algorithm closely align with the
actual data, highlighting the effectiveness and accuracy of this
predictive approach in modeling and forecasting COVID-19
dynamics with vaccination.
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FIGURE 6. RMS error of: (a) daily new coronavirus cases, (b) daily new
recovered and (c) daily new dead.

IV. CONCLUSION
This study, which spans from January 29, 2021, to October
2, 2022, aims to provide valuable insights to the govern-
ment and health authorities. By investigating the outbreak of
COVID-19 in Algeria during this period, we are contribut-
ing essential information that can inform and guide future
measures and decisions for managing and controlling the

coronavirus pandemic in the country. This research plays
a vital role in helping authorities make data-driven and
informed choices to protect public health and mitigate the
impact of the virus.

This paper introduces a novel predictive algorithm
designed to monitor and manage the dynamics of coronavirus
spread. The algorithm is a combination of the Least Square
Method (LSM) and the ExtendedKalman Filter (EKF), incor-
porating the epidemiological SIRD-V model. The algorithm
brings several novelties to the field:
1. Daily optimization of critical rates: The algorithm opti-

mizes daily values for key rates, including the infection
rate (α(k)), recovery rate (β(k)), death rate (γ (k)), and
vaccination rate (µ(k)) using the LSM.

2. Comprehensive predictions: Leveraging the epidemiolog-
ical SIRD-V model and EKF, the algorithm simultane-
ously forecasts daily model states, daily transmission
rates, and all parameters related to COVID-19. This
approach treats the pandemic as a dynamic, evolving
entity, allowing for more accurate predictions and control
measures.

These innovations offer a robust tool for tracking and con-
trolling the dynamics of coronavirus spread and enable more
effective decision-making for public health authorities.

The simulation results indicate that the proposed algorithm
is highly effective in predicting the parameters related to the
spread of the coronavirus. This predictive capability equips
health authorities and policy-makers with valuable insights
into the future statistics of the pandemic. By providing accu-
rate forecasts of COVID-19 dynamics, the algorithm offers an
essential tool for making informed decisions and implement-
ing effective measures to control and manage the ongoing
pandemic.

In future work, we propose to combine this algorithm with
an artificial intelligence tool to obtain more precise results.
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