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ABSTRACT Blockchain, a distributed and digital ledger technology, has the potential to transform several
industries from cryptocurrencies to supply chains. However, the complexity of understanding the technology
can be a challenge for most people, especially for newcomers. This study paper aims to provide an in-depth
analysis and review of the different layers including the data, network, consensus, smart contract, and
application layers. In this paper, we performed an in-depth analysis and review of the components of each
layer. We also tried to simulate different consensus algorithms so a reader can understand which blockchain
consensus algorithm can be chosen for a specific application. By reading this paper, a reader can understand
the blockchain architecture and choose the right algorithms, languages and protocols for building their
own blockchain network. The paper also addresses the challenges and difficulties of building a sustainable
and secure blockchain. We believe that the choice of consensus algorithm is the most important thing for
sustainability in a blockchain network. We show that some consensus algorithms use much more energy
than others, and we suggest that developers choose consensus algorithms that use less energy. This paper is a
great resource for anyone who wants to learn more about blockchain architecture and consensus algorithms.
It gives a complete review of the subject and talks about the difficulties of making a blockchain that will
be secure and sustainable. Researchers, developers, and anyone else interested in the future of blockchain
technology will be interested in this study.

INDEX TERMS Blockchain, consensus mechanism, cryptocurrency, cryptography, decentralization,
distributed ledger, distributed ledger technology (DLT), hash function, immutable ledger, interoperability,
mining, node, smart contracts.

I. INTRODUCTION
Blockchain a cutting-edge technology, has revolutionized
decentralized information management. The evolution from
basic shared transaction databases in early computing to
sophisticated Distributed Ledger Technologies (DLTs) has
led to the emergence of blockchain as an important member
of the DLT family [1].

At its core, blockchain offers a fresh perspective on
how transactions are shared and validated. It operates
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through interconnected blocks/nodes that serve as a ledger.
These blocks store transactions and ensure their accuracy
using cryptographic methods. Unlike traditional client-server
architectures, blockchain systems use a peer-to-peer network
structure known as P2P. This approach fixed hierarchies
and rigid roles [2]. By adopting this dynamic approach,
blockchain builds a decentralized ecosystem where diverse
participants can thrive independently while facilitating
resource sharing and collaboration. The network operates
without centralized control [3].
Blockchain’s potential is used in various industries and

domains, offering solutions to a wide range of challenges.
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However, the decision to adopt blockchain technology
requires careful consideration as decentralization can some-
times incur unjustifiable costs [4], [5]. Consequently, tradi-
tional databases continue to hold significance in cases where
decentralized models are not commercially viable.

The foundational building blocks of blockchain consist of
cryptographic security, seamless communication and transac-
tion data storage, and distributed consensus protocols. These
essential elements ensure the validation and sequencing of
transactions. The inception of blockchain can be traced
back to the enigmatic Bitcoin, which emerged in 2008.
Bitcoin played an important role in pioneering permissionless
blockchains, enabling a digital, decentralized, and distributed
payment infrastructure. The design of blockchain technology
relies on fundamental building blocks. Firstly, cryptographic
security governs communication and transaction data storage.
Network nodes must unanimously agree on the validity and
order of transactions listed in the blockchain. Secondly,
distributed consensus protocols address these challenges by
allowing each node to vote.

The architecture of the Bitcoin blockchain is strategically
designed to defend against attacks from both malicious
and rational network nodes. It effectively prevents issues
like double spending and Sybil attacks. However, this
design is only a part of what blockchain technology can
offer. It does not prioritise complete anonymity, scalability,
or eco-sustainability concerns [6], [7], [8]. As a result,
alternative cryptocurrencies like ‘‘Altcoins’’ have emerged
to address specific limitations of the original Bitcoin model,
enhancing portfolio diversification and contributing tomarket
capitalization [9].
In blockchain technology, its core promise goes beyond the

popular Bitcoin narrative. This technology enables the estab-
lishment of secured, trusted, and decentralized autonomous
ecosystems for various scenarios, especially for better
usage of legacy devices, infrastructure, and resources [10].
Furthermore, this extends to important aspects like auditabil-
ity, transparency, immutability, and pseudonymity. These
qualities are indispensable for transactional systems that
involve diverse entities lacking mutual trust [11].
The evolution of blockchain has led to the emergence

of permissioned blockchains. These blockchains enable
customized adoption by imposing constraints and shaping
network node behaviour [11]. This approach enhances
scalability by limiting the number of transaction valida-
tors, improving consensus mechanisms, and facilitating the
development of distributed applications through smart con-
tracts [11]. However, it is important to evaluate whether fully
permissioned blockchains with their complex architecture are
always necessary.

This research paper provides a comprehensive guide for
newcomers exploring blockchain technology. Acting as a
roadmap, it guides readers from learners to intermediate
understanding, uncovering the intricate layers that form the
foundation of blockchain. The paper begins with an intro-
duction to the basics and progresses through different types

of blockchains, explores non-functional attributes, unveils
its layers from data to network and examines important
consensus mechanisms. It then explores smart contracts and
concludes with practical applications, seamlessly connecting
each section. This paper serves as a roadmap, to show the path
for those who are eager to fully understand the complex world
of blockchain technology.

II. LITERATURE REVIEW
Blockchain technology has experienced a journey of evo-
lution. It has transformed from traditional ledgers to the
revolutionary concept of decentralized distributed digital
ledgers, commonly known as blockchain. The landscape of
data storage and transaction processing has been redefined by
blockchain technology. Its journey can be traced back to the
early concept of ledgers, progressing through digitalization,
distribution, and decentralization. In this article, we will
explore the evolution of blockchain technology and provide
insights into its impact on various industries.

Blockchain is a digital system that acts like a public
ledger, keeping track of transactions or records securely
and transparently. Instead of having a central authority
controlling the information, it is distributed across a network
of computers. Each transaction is bundled together in a
‘block’ and added to a chain of previous blocks, forming a
chronological and unchangeable record. This decentralized
and tamper-proof nature of blockchain makes it useful for
various applications, such as recording financial transactions,
verifying ownership, or enabling smart contracts without
the need for intermediaries. Fig. 1, represents a general
architecture of a blockchain.

The concept of distributed ledgers, which underlies
blockchain technology, has its roots in the early days
of computer science and cryptography. Here’s a brief
description of the development and evolution of distributed
ledger technology:

1) Traditional ledgers: Traditional ledgers, which have
been utilized for centuries, serve as a means to
document transactions and monitor financial activities.
Typically, traditional ledgers document transactions
and monitor financial activities, organizing data in
the General Ledger (GL) and producing financial
statements [12], these ledgers require manual entry,
thereby consuming considerable time and posing
susceptibility to errors.

2) Emergence of Digital Ledgers: The emergence of
digital ledgers occurred with the introduction of
computers. This technological advancement enabled
the transformation of traditional paper-based ledgers
into electronic records, where transactions could be
recorded digitally [13]. As a result, this shift not
only enhanced operational efficiency and minimized
human errors but also presented certain vulnerabilities
due to the centralized control of these digital ledgers.
Consequently, concerns regarding centralized control
persisted.
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FIGURE 1. Blockchain architecture.

3) Distributed Digital Ledgers: The emergence of dis-
tributed digital ledgers as a solution to centralization
issues has been pivotal. These ledgers store trans-
action records across multiple nodes or computers,
e- ensuring improved security and accessibility through
redundancy [3]. However, even with these advances,
participants in these systems still rely on a certain level
of trust among each other.

4) Decentralized Distributed Digital Ledgers: To resolve
the issue of trust and enhance security, decentralization
emerged as a notable concept. It involved employing
decentralized distributed digital ledgers that allowed
multiple participants to verify transactions without
relying on a central authority [2]. Consensus mecha-
nisms such as Proof of Work (PoW) and Proof of Stake
(PoS) were subsequently introduced to validate these
transactions.

5) Birth of Blockchain Technology: The birth of
blockchain technology resulted from a series of
advancements. A blockchain comprises interconnected
blocks, each containing validated transactions. These
blocks are linked through cryptographic hashes,
ensuring both immutability and data integrity [1]. The
decentralized nature and cryptographic security of the
blockchain make it resistant to tampering.

Table 1, represents an overview of the various stages in
the evolution of blockchain technology. It begins with the

use of traditional ledgers before computers were widely
used and then progresses to the emergence of digital ledgers
in the late 20th century. The concept of distributed digital
ledgers follows, addressing trust issues among participants.
In the early 21st century, decentralized distributed ledgers
come into play, focusing on trustless transactions and
consensus mechanisms. Finally, we witness the birth of
blockchain itself, introducing blocks, cryptographic hashes,
and immutability. This journey spans from the late 2000s to
the present day and has greatly influenced industries despite
facing challenges regarding adoption and regulations.

Table 2, presents significant milestones in the evolution
of blockchain. It begins with the transition from traditional
ledgers and explores the birth of blockchain through Bit-
coin’s whitepaper in 2008. Noteworthy advancements, like
Ethereum’s introduction of smart contracts in 2014, are
also highlighted. The journey depicted here demonstrates
how blockchain has expanded beyond cryptocurrencies
and gained traction in various industries, emphasizing its
transformative influence on businesses.

Blockchain’s evolution has been shaped by keymilestones,
each contributing to its potential. Some important moments
include:

1) Early Cryptographic Protocols (1970s-1980s): During
the 1970s and 1980s, a group of researchers and
cryptographers embarked on an exploration of crypto-
graphic protocols. They aimed to devise methods that
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TABLE 1. Evolution of blockchain technology.

would allow secure communication and transactions
between multiple parties without relying on a central
authority [18]. This introduction of groundbreaking
concepts such as digital signatures, public-key cryp-
tography, and hash functions. These concepts formed
the bedrock for the eventual development of distributed
ledger technology.

2) The Cypherpunk Movement (1990s): In the 1990s,
the Cypherpunk movement emerged, advocating for
the use of strong cryptography and decentralized
technologies to protect privacy and individual free-
doms. The movement attracted computer scientists,
mathematicians, and activists who contributed to the
development of cryptographic protocols and concepts
that laid the groundwork for distributed ledgers [19].

3) BitTorrent (2001): BitTorrent, invented by BramCohen
in 2001, introduced a peer-to-peer file-sharing protocol
that enabled efficient and decentralized distribution of
large files across a network of participants [20]. While
not a traditional blockchain, BitTorrent’s decentralized
nature and data-sharing principles influenced later
developments in distributed ledger technology.

4) Bitcoin’s Emergence (2008-2009): The introduction of
Bitcoin by Satoshi Nakamoto brought forth the idea of
a decentralized digital currency. This moment marked
the birth of blockchain technology, as the first-ever
blockchain-based cryptocurrency came into existence
[16].

5) Ethereum and Smart Contracts (2014): Proposed by
Vitalik Buterin, Ethereum expanded the capabilities
of blockchain by introducing smart contracts and
programmable platforms. This advancement unlocked
new possibilities for self-executing contracts and
decentralized applications.

FIGURE 2. Types of blockchain.

6) Diversification Beyond Cryptocurrencies (2015): The
blockchain ecosystem went beyond Bitcoin, giving
rise to numerous projects and cryptocurrencies. This
diversification paved the way for various innovative use
cases.

A. TYPE OF BLOCKCHAIN
Several types of blockchain can be categorized based on
various factors. Here are some common types. We are
mainly focused on public blockchain. Fig. 2, represents and
visualizes types of blockchain.

1) PUBLIC BLOCKCHAIN
A public blockchain is a decentralized digital ledger.
It enables transparent recording and verification of transac-
tions across a distributed network of computers. Operating
on a consensus mechanism, multiple participants or nodes
agree on transaction validity. They also maintain a secure,
chronological chain of blocks. Each block contains a batch
of transactions and is cryptographically linked to the previous
block, forming an immutable chain [5]. One notable feature
of public blockchains is their open accessibility. Anyone can
join as a node, participate in transaction validation, and access
the entire transaction history [7]. This openness fosters a high
degree of transparency and trust among participants.

Key features of public blockchains:
1) Decentralization: Decentralization ensures that the

network remains independent, with no central authority
dictating its operations. Each participant has an equal
say in how things are run.

2) Transparency: Transparency is a key feature of this sys-
tem, as all participants can view the entire transaction
history. This openness guarantees accountability and
prevents any tampe- ring with records.

3) Security: To ensure security and integrity, public
blockchains implement consensus mechanisms like
proof-of-work or proof-of-stake. These measures safe-
guard the network from unauthorized access and
malicious activities.

4) Trustlessness: One remarkable characteristic of this
setup is trustlessness. It enables participants to interact
and conduct transactions directly without relying on
intermediaries.
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TABLE 2. History of blockchain technology.

2) PRIVATE BLOCKCHAIN
A private blockchain operates within a closed network,
reserved for authorized entities [25]. Unlike public
blockchains, it provides controlled and restricted access. Only
designated participants called nodes validate transactions
and maintain the blockchain in a private setting [18].
This setup ensures enhanced privacy and confidentiality
since only approved contributors can engage with the
ledger. Private blockchains are commonly used by orga-
nizations requiring secure and permissioned transaction
processing [5].
Key features of private blockchains:

1) Restricted access: Participants must be granted per-
mission by a central authority to join the network and
validate transactions.

2) Enhanced privacy: Private blockchains often provide
privacy features that restrict access to sensitive infor-
mation to authorized participants only.

3) Scalability: Since private blockchains have a limited
number of participants, they can typically handle a
higher volume of transactions compared to public
blockchains.

4) Centralization: Private blockchains are more central-
ized compared to public blockchains, as control over
the network is held by a central authority or a
consortium of entities.

3) CONSORTIUM BLOCKCHAIN
A consortium blockchain is a digital ledger that com-
bines permissioned and decentralized features to enable
secure collaboration among a specific group of participants.
While public blockchains allow anyone to join, consortium
blockchains are restricted to trusted nodes known by the
members of the consortium [21]. This controlled participation
enhances privacy and enables faster transaction processing
compared to public blockchains.

In consortium blockchains, consensus is reached through
tailoredmechanisms suited to the participating organizations’
needs. These mechanisms may include variations of proof-
of-stake or practical Byzantine fault tolerance, prioritizing
efficiency and consensus speed over open participation [22].
The structure of a consortium blockchain guarantees that

only approved participants possess the authority to verify
transactions and uphold the integrity of the blockchain. This
enhances both privacy and security, making it an ideal solu-
tion for industries and applications that necessitate controlled
data sharing among specific stakeholders. Examples include
supply chain management, finance, and healthcare [23].

Key features of consortium blockchains:

1) Semi-decentralization: It is a characteristic of con-
sortium blockchains. These blockchains fall between
the decentralized structure of public blockchains and
the centralized nature of private blockchains. The

VOLUME 12, 2024 63091



M. Rifat Hossain et al.: Comprehensive Analysis of Blockchain Technology and Consensus Protocols

consensus and governance responsibilities are shared
among pre-approved participants.

2) Permissioned access: Another important aspect is
permissioned access, where participants are granted
permission to join the network and contribute to the
consensus process.

3) Improved scalability: Consortium blockchains also
offer improved scalability compared to public
blockchains. This is due to their limited number of
participants and controlled consensus mechanisms,
enabling them to handle higher transaction volumes.

4) Enhanced privacy and confidentiality: Consortium
blockchains often prioritize enhanced privacy and
confidentiality. They provide privacy features that
allow participants to control access to sensitive data
within the network.

4) HYBRID BLOCKCHAIN
A hybrid blockchain combines strengths and overcomes lim-
itations by merging multiple types of blockchains, typically
public and private ones. It allows different parts of a network
to operate on varying blockchain types, while also facilitating
interoperability between the public and private components.

Key features of consortium blockchains:

1) Flexibility: Hybrid blockchains offer flexibility, allow-
ing users to select the most suitable blockchain type for
various use cases within the same network.

2) Interoperability: These hybrid blockchains also facil-
itate interoperability, enabling smooth data and asset
exchange between public and private components.

3) Privacy: Hybrid blockchains enhance privacy and
scalability by utilizing private blockchains for sensitive
transactions or data while benefiting from the trans-
parency and security of a public blockchain for other
aspects.

4) Customization: organizations can customize their
hybrid blockchain architectures to meet specific
requirements, finding a balance between different
needs.

B. NON-FUNCTIONAL FEATURES OF BLOCKCHAIN
The non-functional features of a typical blockchain extend
beyond its basic transactional function, contributing to overall
system performance, security, and usability. These features
play a crucial role in evaluating the effectiveness of a
blockchain network in real-world scenarios. Let’s explore
some examples of such features:

1) Immutability: Blockchain’s immutability ensures that
once data is recorded on the blockchain, it cannot be
altered or deleted. This feature provides a high level of
trust and data integrity.

2) Integrity: Blockchain technology ensures the integrity
of data by using cryptographic techniques such as
hashing and digital signatures. Any alteration to the

FIGURE 3. Non-functional features of a typical blockchain.

data would result in a change in the cryptographic hash,
making it detectable.

3) Transparency: Blockchain provides transparency by
allowing all participants to have access to the same
information. Transactions and data stored on the
blockchain are visible to all participants, promoting
accountability and trust in the system.

4) Availability: Blockchain networks strive to maintain
high availability, ensuring that the system is accessible
and operational for participants at all times. The
decentralized nature of blockchain helps prevent single
points of failure, enhancing system availability.

5) Cost Efficiency: Blockchain can offer cost efficiency
in various ways. By eliminating intermediaries or
centralized authorities, blockchain reduces transaction
costs. Smart contracts automate processes, reducing
the need for manual intervention and associated costs.
Additionally, blockchain can streamline supply chains,
reducing inefficiencies and costs.

6) Performance: Blockchain performance refers to the
speed and efficiency of transaction processing. Non-
functional features related to performance include:

7) Transaction throughput: The number of transactions a
blockchain can process per second.

8) Confirmation time: The time taken to validate and
confirm a transaction.

9) Scalability: The ability of the blockchain network to
handle increased transaction volumes without compro-
mising performance.

Fig. 3, represents and compares non-functional features of
a typical blockchain for permission-less and permissioned
blockchain against public and private blockchain.

III. METHODOLOGY
This research aims to provide a comprehensive analysis
of blockchain architectures, from fundamental layers to
consensus protocols. To achieve this, we employ a com-
bination of comparative analyses, simulations, taxonomy
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development, and modelling. This methodology enables a
layered evaluation of blockchain platforms, highlighting
key mechanisms governing decentralization, security, and
performance. Also, the study hopes to give users a complete
guide to the whole blockchain architecture and help them
choose the right protocols, languages, and smart contracts for
their needs.

This study uses a mixed-methods approach, which means
that it uses both qualitative and quantitative ways to collect
and analyze data. The plan for the study includes a review
of the literature, case studies, and simulations. The literature
study gives an in-depth overview of blockchain technology,
including all of its layers, protocols, and mechanisms. In the
research, we look at existing blockchain networks and
how well they work. In the simulations, we try different
consensus algorithms to test and compare them to determine
sustainability and efficiency.

Much data was collected to understand different
blockchain protocols and layers. Data was gathered through
a comprehensive literature review of over 136 sources
including whitepapers, academic publications, source code
repositories and documentation for major blockchain
platforms.

IV. BLOCKCHAIN LAYERS
In a typical blockchain architecture, multiple distinct layers
work in tandem to fulfil specific functions that enable
system functionality, security, and interoperability. Together,
these layers form a robust and decentralized network.
Fig. 4, represents the essential components of a blockchain
encompassing various key layers.

At the top is the Application Layer. This is where people
interact with the blockchain, like managing digital money or
tracking goods in supply chains. It’s user-friendly and easy to
use.

Next is the Smart Contract Layer. This is like a digital
agreement that runs on its own. It helps carry out deals
without needing a middleman and makes sure everyone can
trust each other.

After there’s the Consensus Layer. This keeps the network
in line and makes sure everyone agrees on what is happening.
It stops bad things like cheating and helps the network make
decisions without relying on any one person or group.

After that is the Network Layer. This is like the internet
for blockchain. It helps data move between computers in the
network safely and quickly.

The Data Layer is where all the information on the
blockchain is stored and organized. It keeps track of every
transaction and detail in a way that’s open and cannot be
changed.

Finally, there’s the Hardware Layer. This is all the physical
stuff that supports the blockchain, like computers and storage
devices. It keeps everything running smoothly and securely.

To summarise, these layers work together to keep the
blockchain running smoothly and securely. They’re what

FIGURE 4. Layers of a typical blockchain.

make blockchain technology so powerful and able to change
many aspects of our lives.

V. DATA LAYER
The utilization of the block data structure is primarily
employed in the data layer to uphold the veracity of
data storage. Every node within the network encapsulates
the data transactions it receives over a specific time frame
into a data block that is timestamped and linked to the current
longest main blockchain for storage. This layer involves
the main techniques of block storage, chain structure, hash
algorithm, Merkle tree, time stamp and so on [24].

A. DATA STRUCTURE
The Blockchain data structure is a linked list of data
blocks containing information. Each block is identified

VOLUME 12, 2024 63093



M. Rifat Hossain et al.: Comprehensive Analysis of Blockchain Technology and Consensus Protocols

FIGURE 5. Block structure with block sequence of a blockchain.

by a cryptographic hash, derived from algorithms like
SHA512 or SHA256 and includes a reference to the
previous block’s hash. Tampering with a block triggers a
hash change and disconnects subsequent blocks due to a
mismatched parent hash. New blocks are added at the chain’s
end but the initial genesis block with no predecessor is
uniquely initialized with a zero-parent hash. This structure
ensures data integrity and security against unauthorized alter-
ations [25]. Fig. 5, represents the typical block structure of a
blockchain.

1) Block: The block is considered the fundamental unit
of data in a blockchain. Every individual block
comprises a cryptographic hash of the antecedent
block, a timestamp, and transactional data.

2) Chain Structure: The chain structure involves the
chronological chaining of blocks through hash pointers
to create an immutable ledger. A blockchain is
a sequence of data blocks that are interconnected
through cryptographic hashes. Different blockchain
uses different chain structures for example bitcoin uses
a linear chain of blocks whereas Ethereum uses a
more complex chain structure DAG (Directed Acyclic
Graph).

3) Timestamp: The inclusion of a timestamp in each block
serves to ensure the integrity of the chronological
sequence of both blocks and transactions. A timestamp
serves as a documentation of the precise moment and
date at which a transaction was generated.

4) Nonce: A 32-bit random integer utilized by blockchain
miners to fine-tune and adapt its value for block

hashing. Its exclusivity lies in its one-time usability.
When an ideal Nonce is pinpointed, it becomes part
of the block’s hash, initiating a rehash of the block.
Infusion of this complexity bolsters hashing intricacy
bolsters the blockchain’s security and fortifies the
mining mechanism.

5) Merkle Tree: The Merkle Tree is a hierarchical data
structure in which individual transactions undergo a
hashing process, and the resulting hashes are sub-
sequently hashed together until a final root hash is
obtained. This facilitates the effective authentication of
transactions.

6) Merkle Patricia Tree: Ethereum’s 2015 blog post [26]
discussed the limitations of Bitcoinstyle light clients
for its dynamic state. Ethereum implemented three
Merkle trees for verifiable queries on transactions,
receipts, and states. To address changes efficiently
and prevent DoS attacks, Ethereum adopted Merkle
Patricia Tries with hashed nodes, ensuring both cryp-
tographic verification and efficiency through four node
types [27].

7) Merkle Bocket Tree: The bucket tree has a hash
table at the bottom with buckets for hashed data
entries. An upper Merkle tree aggregates lower nodes,
minimizing re-hashing during state changes. This
ensures even data distribution, efficient updates, and a
fixed-size structure to avoid data aggregation [28].

Table 3, summarizes the Merkle tree variants used in
different blockchain platforms for efficient data storage and
verification.
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TABLE 3. Different types of Merkle trees used in different blockchains.

B. CRYPTOGRAPHY
Blockchain technology relies on public-key cryptography
also known as asymmetric cryptography to handle encryp-
tion, decryption, and digital signatures to ensure data security
and message authenticity. Users create a key pair comprising
a public key (used for encrypting messages) and a private
key (kept secret for decrypting messages encrypted with the
public key). This process is illustrated in Figure 8 Public-
key cryptography helps establish secure transactions and
maintain the integrity of data in blockchain networks.

1) HASHING ALGORITHM
1) SHA-256: SHA-256, belonging to the SHA-2 family

of hash functions and a successor to SHA-1 stands out
as a robust and highly secure hashing method [29].
Despite its formidable strength, implementing SHA-
256 is comparably straightforward to coding SHA-1.
As of now, SHA-256 remains unbreeched and free from
any compromise reinforcing its reputation as a reliable
cryptographic tool.

2) Keccak: Keccak is a versatile cryptographic function
developed by Guido Bertoni, Joan Daemen, Michaël
Peeters, and Gilles Van Assche. It serves various
purposes, with a prominent role as an advanced
hash function offering enhanced security compared
to earlier ones like SHA-1 and SHA-2. The Keccak
family encompasses versions such as Keccak-224,
Keccak-256, Keccak-384, and Keccak-512. Notably,
Keccak was chosen by NIST in October 2012 as the
winner of the SHA-3 Cryptographic Hash Algorithm
Competition [30].

3) RIPEMD: The RIPEMD (RIPE Message Digest)
family of cryptographic hash functions, established in
1992 and expanded in 1996, encompasses five vari-
ations, including RIPEMD, RIPEMD-128, RIPEMD-
160, RIPEMD-256, and RIPEMD-320. Among these,
RIPEMD-160 has emerged as a prominent choice.
Notably, RIPEMD’s core architecture employs two
concurrent iterations, with an increased round count of
five (or four for RIPEMD-128), strategically designed
to amplify divergence between parallel rounds and
enhance overall security, making it a valuable tool in
cryptographic applications [31].

4) Scrypt: Scrypt is a hashing algorithm that employs a
password-based key derivation function, generating an
extensive array of pseudorandom bit strings. Notably,

TABLE 4. Different hashing algorithms used in different
blockchains [124].

FIGURE 6. Figure performance comparison of hashing algorithm (intel i5
8300H, 16GB).

it demands substantial memory and CPU resources,
contributing to its computational intensity [32].

Table 4, provides an overview of different cryptographic
hash and signature algorithms used across major blockchain
platforms for security purposes like verifying integrity and
authenticity. Fig. 6, compares the performance comparison
of the hashing algorithm on a device with an Intel i5 8300H
processor and 16 GB RAM where the y-axis represents time
in seconds and the x-axis represents iteration.

2) DIGITAL SIGNATURE AND VERIFICATION
In the blockchain signing and verification process, crypto-
graphic techniques are employed to ensure data integrity and
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authenticity. A user initiates a transaction or creates a digital
asset by generating a unique digital signature using their
private key. This signature is appended to the transaction
data and creates a signed message. When the transaction is
broadcasted to the network the nodes validate the signature
using the corresponding public key to confirm the sender’s
identity and the transaction’s integrity. The transaction is
added to a block after verifying. This decentralized and
immutable ledger ensures that the transaction history cannot
be tampered with providing a secure and transparent system
for various applications including digital currencies and
asset management. Fig. 7, illustrates the process of digitally
signing a document using blockchain technology to ensure
its authenticity and immutability. First, the document is
passed through a cryptographic hash function to generate
a unique fingerprint called the hash value. The signer
then encrypts this hash value using their private key to
create a digital signature. This signature is broadcast to the
decentralized blockchain network for validation. The network
nodes verify the signature using the signer’s paired public
key. If valid, the encrypted hash is permanently recorded
on the distributed ledger across all nodes. As a result, any
subsequentmodification to the original document will change
its hash value, which can be easily detected by comparing
it against the immutable blockchain record. The validated
digital signature thus provides proof of the signer’s identity
and the document’s integrity without centralized authorities.
The network nodes verify the signature using the signer’s
paired public key. If valid, the encrypted hash is permanently
recorded on the distributed ledger across all nodes. As a
result, any subsequent modification to the original document
will change its hash value, which can be easily detected by
comparing it against the immutable blockchain record. The
validated digital signature thus provides proof of the signer’s
identity and the document’s integrity without centralized
authorities. This trustless architecture enables transparent
e-signing workflows at scale.

FIGURE 7. Digital signature and verification.

1) ECDSA: The Elliptic Curve Digital Signature
Algorithm (ECDSA), a standardized evolution of the
Digital Signature Algorithm (DSA) developed by
David Kravitz, utilizes elliptic curve operations over
finite fields instead of DSA’s prime-based arithmetic.

This enhancement leads to improved efficiency and the
ability to use shorter key lengths while upholding the
same security level as DSA [33].

2) EdDSA: Edwards-curve Digital Signature Algorithm
(EdDSA), a swift and secure digital signature scheme
within public-key cryptography. It leverages a mod-
ified Schnorr signature approach built upon twisted
Edwards curves, aiming to surpass the speed of current
signature methods while maintaining robust security
measures [34].

3) Schnorr: Schnorr signature denotes a digital signa-
ture created through the Schnorr signature algorithm,
originally formulated by Claus Schnorr. The signature
originating from the Schnorr identification scheme
through the Fiat-Shamir transform stands as one of
the initial discrete logarithm-based signature methods
introduced. Its appeal lies in its straightforwardness,
efficiency, short signature size and the ability to
pre-calculate exponentiations for rapid online signature
generation and garnering significant interest [35].

4) BLS: The BLS digital signature, a Boneh–Lynn–
Shacham (BLS) employs bilinear pairings and elliptic
curve groups to verify authentic signers. Its distinct
feature is aggregation enabling combined signatures
and keys. Efficient and deterministic with strong
cryptographic properties [36].

Table 5, compares different digital signature algorithms
used in major blockchain platforms and their respective
advantages.

TABLE 5. Comparison of different digital signing algorithms used in
different blockchains.
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3) LEDGER PATTERN
The Ledger Pattern is a concept in accounting that refers to
the systematic recording of financial transactions in a ledger.

The Account-Based approach involves the modification of
balances associated with individual user accounts through
transactions. Employed within the context of the cryptocur-
rency known as Bitcoin. The Event-Based approach involves
encoding arbitrary logic and data within transactions. Utilized
within the Ethereum ecosystem.

1) UTXO: The Unspent Transaction Output (UTXO) is
a set in Bitcoin that comprises untapped transaction
outputs at a specific time. When crafting new transac-
tions, the existing UTXOs are utilized to access funds
and simultaneously create fresh UTXOs. Transactions
effectively alter the UTXO set by consuming UTXOs
as inputs and generating new ones as outputs [37].

2) Account-balance: Account-balance offers enhanced
intuitiveness by effectively managing the balance
of individual accounts as a collective state within
the blockchain. This approach eliminates the need
for distinct transaction inputs and outputs as the
blockchain’s overall state is a direct result of executed
transactions. Notably, when a transaction occurs, the
relevant account states are promptly adjusted to reflect
the transfer by showcasing the model’s streamlined and
comprehensive handling of blockchain dynamics [38].

3) UTXO+: The concept underlying the UTXO+ model
involves retaining the UTXO structure while imple-
menting necessary modifications to achieve the advan-
tages typically associated with account-based models.
In this approach, the traditional notion of an ‘account’
is absent, and instead, the state becomes an inherent
part of the transaction outputs. However, these opera-
tions tend to feel somewhat contrived and necessitate
a high degree of abstraction, along with considerable
intricacies in their implementation [38].

4) Key-value: This versatile approach provides the flex-
ibility to adopt either a UTXO-like structure or an
account-like structure based on the specific business
requirements built upon the blockchain. This adapt-
ability empowers developers to tailor the blockchain’s
data representation to align with their intended use
case [38].

Table 6, shows different approaches for tracking
blockchain state used in different blockchain networks and
their comparison based on attributes like security, scalability,
anonymity, applicability, efficiency, and model complexity.

VI. NETWORK LAYER
The network layer in blockchain technology is like the
underlying infrastructure that enables communication among
the participants. It consists of mechanisms such as net-
work structure (peer-to-peer networking), data forwarding,
and data security. Peer-to-peer networking ensures that
everyone in the network eventually receives the information,

FIGURE 8. Decentralized vs centralized network.

resembling a gossip network. Data forwarding focuses on
efficiently transmitting transaction and block data across the
network. Data security checks the integrity and authenticity
of the information. Improving thesemechanisms is crucial for
enhancing the speed, security, and scalability of blockchain
systems.

Fig. 8, shows the schematic diagram of both decentralized
and centralized diagrams. In the decentralized diagram, every
node/computer works like a server and a user. As a result, they
all can share data among themselves resulting in promoting
security. Whereas in the centralized server, there is only one
server where every data of the network is stored.

A. NODE/PEER DISCOVERY
Node Discovery refers to the mechanism through which
nodes within a blockchain network locate and establish
connections with one another. The establishment of a
decentralized network and the facilitation of peer-to-peer
communication are pivotal processes. The aforementioned
procedure holds significant importance in maintaining the
decentralized structure of the blockchain, as it guarantees
the resilience, availability, and timely synchronization of the
network. In a blockchain network, nodes can be categorized
into two types [39].

1) Full Nodes: Full nodes are responsible for storing a
comprehensive replica of the blockchain and perform-
ing the validation of transactions and blocks. They
perform an essential function in upholding the security
and integrity of the network.

2) Light Nodes: Light nodes, in contrast to full nodes,
do not retain the complete blockchain. Instead, they
depend on full nodes for the purpose of transaction val-
idation and other related functionalities. Lightweight
nodes are commonly employed by end-users or devices
with limited resources, such as mobile phones or
Internet of Things (IoT) devices.

The discovery of nodes plays a pivotal role in the seamless
operation of a blockchain network, as it facilitates vital
communication and information sharing among nodes [40].
It enables the seamless integration of new nodes into
the network, empowers existing nodes to identify and
establish connections with their counterparts, and expedites
the dissemination of transactions and blocks throughout the
network.
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TABLE 6. Comparison of state tracking approaches.

1) BOOTSTRAPPING
This method entails a centralized initialization procedure
in which a limited number of nodes are manually chosen
and interconnected. After that, these nodes disseminate
the network information to additional nodes, progressively
augmenting the network. In both Avalanche and Algorand,
new nodes join known nodes (called ‘‘bootstrap nodes’’) to
find out about other nodes in the network.

2) PEER EXCHANGE (PEX)
The PEX protocol is a decentralized approach that facilitates
the discovery of nodes by employing a random walk tech-
nique. Nodes engage in the exchange of randomly selected
peer addresses, hence facilitating the steady expansion and
adaptive response of the network to fluctuations within its
structure.

3) DNS SEEDS
DNS Seeds employ a centralized Domain Name System
(DNS) server for the purpose of storing and disseminating
a roster of starting nodes. Subsequently, the nodes can
utilize this list to establish connections with the network and
ascertain the presence of additional nodes.

4) HARDCODED ‘SEED’ NODES
Some blockchain networks, like Bitcoin, include the IP
addresses of ‘‘seed’’ nodes in their code. These nodes are
generally reliable and well-connected nodes, which the new
node can connect to initially and get information about other
nodes in the network.

5) DISTRIBUTED HASH TABLE (DHT)
Some networks use a DHT, a type of decentralized distributed
system, for node discovery. In such a system, nodes maintain
a table containing information about other nodes in the
network. For instance, Ethereum uses a custom protocol
called Kademlia for peer discovery. It’s a type of Distributed
Hash Table (DHT) where each node maintains connections
with other nodes in the network.

6) GOSSIP PROTOCOLS
Some networks use a DHT, a type of decentralized distributed
system, for node discovery. In such a system, nodes maintain

a table containing information about other nodes in the
network. For instance, Ethereum uses a custom protocol
called Kademlia for peer discovery. It’s a type of Distributed
Hash Table (DHT) where each node maintains connections
with other nodes in the network.

1) Decentralization: How distributed the network is with-
out centralized points of failure.

2) Censorship Resistance: Ability to operate without
being shut down or blocked by authorities.

3) Convergence Speed: How quickly the network reaches
a stable, connected state.

4) Complexity: Level of complexity to implement the
network layer protocol.

Table 7, compares different methods of node/peer discov-
ery methods based on the parameters of decentralization,
censorship resistance, convergence speed, and complexity
with their pros and cons.

Table 8, provides an overview of the node discovery
methods used by different blockchain networks. The table
presents an overview of ten blockchain networks, including
Bitcoin, Ethereum, Solana, Avalanche, Polkadot, Cardano,
Algorand, Litecoin, Zcash, and Vechain. For each network,
the table shows the method used for discovering nodes.

B. P2P PROTOCOL
In blockchain networks, decentralization is established by
adopting a Peer-to-Peer network. There is no centralized
node in the Peer-to-Peer network. A P2P network lacks
centralized nodes and hierarchical structures. Each node will
take on network routing, block data verification, block data
forwarding, node discovery etc.

P2P networks can be categorized into multiple types
such as structured, unstructured, and hybrid networks. The
unstructured peer-to-peer networks are formed by multiple
nodes in random order. In terms of efficiency, unstructured
P2P is better than structured ones. Structured peer-to-peer
systems nodes are properly organized which makes it more
effective in searching through the network. Hybrid models
are combinations of P2P and traditional centralized networks
and when compared to the structured and unstructured P2P
models, hybrid networks tend to present improved overall
performance as it uses the best of both networks. Here is the
list of top blockchains and the particular network structure.
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TABLE 7. Node/Peer discovery methods evaluation.

TABLE 8. Different node discovery methods used in different blockchains.

1) LIBP2P
Libp2p is an independent networking library designed for
IPFS. It’s a versatile and adaptable network framework
that leverages existing tools and features for functions like
NAT traversal, peer discovery, routing, stream and protocol
multiplexing, encryption, and authentication [51].

2) DEVP2P
DEVp2p established P2P connections by utilizing port
30303 as the default listening port but allowing alternate
ports. The initial handshake involves a ‘Hello’ message.
If no matching subprotocols are found then the connection
is terminated. ‘Disconnect’ signals impending disconnection
with an optional reason. ‘Ping’ and ‘Pong’ messages confirm
peer presence [52].

Table 9, provides an overview of how different blockchain
platforms use different peer-to-peer protocols.

TABLE 9. Different P2P protocols used in different blockchains.

C. TRANSMISSION PROTOCOL
A transmission protocol is a fundamental communications
standard that facilitates the seamless exchange of messages
between application programs and computing devices within
a networked environment. This precisely developed infras-
tructure is particularly designed to convey data packets across
the internet’s complicated topography, ensuring the efficient
transmission of information and messages across varied and
linked networks.

1) TCP/IP
The TCP/IP protocol suite, Transmission Control Protocol
(TCP) and Internet Protocol (IP). Its main aim was to
create a universal communication system across diverse net-
works by allowing seamless interaction across geographical
boundaries. This interconnection known as internetwork or
internet facilitates communication between hosts on separate
networks [63].

2) UDP
The User Datagram Protocol (UDP) establishes a datagram
mode of communication within interconnected computer
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networks, operating alongside the Internet Protocol (IP) [64].
It offers a streamlined approach for applications to transmit
messages with minimal protocol complexities. Notably, this
protocol lacks assured delivery and duplicate prevention,
focusing on transactional efficiency [65].
Table 10, compares the Transmission Control Protocol/In-

ternet Protocol (TCP/IP) and User Datagram Protocol (UDP)
in the context of their adoption within different blockchain
networks.

D. SECURITY
The way information is transmitted within a blockchain relies
heavily on a peer-to-peer network, similar to how individuals
communicate with each other. In this network, nodes interact
with each other to share information, much like people
exchanging messages. However, this openness also creates
vulnerabilities, as there is a risk of security threats when an
attacker enters the network. This attacker can easily target
nodes with weaker security measures, posing a danger to
other nodes within the network. It’s important to note that
nodes in a public blockchain network can vary widely in
terms of security, ranging from regular home computers to
powerful cloud servers. Therefore, it is inevitable that some
nodes will have lower security levels, and an attack on one of
these nodes can have a direct impact on the security of other
nodes [70].

DDoS attacks have become a significant concern for
blockchain security. The decentralized and complex nature of
blockchain networks along with their non-uniform network
protocols, make them attractive targets for such attacks.
In recent years, DDoS attacks have resulted in the shutdown
of machines and mining operations, affecting exchanges and
mines associated with blockchain networks like Mt. Gox,
Fomo 3D, LooksRare, and Youbite [71].

1) Peer Authentication: A peer authentication mechanism
to verify the authenticity of participating nodes. Nodes
authenticate each other’s identities using cryptographic
techniques, such as digital signatures or Public-Key
Infrastructure (PKI). This ensures that only trusted
and authorized nodes can participate in the Ethereum
network.

2) Firewall Protection: Firewall protection is a cru-
cial security measure for safeguarding nodes and
infrastructure. It operates at the network level by
establishing rules that manage incoming and outgoing
network data. These rules ensure that only legitimate
communication is permitted while potentially harmful
traffic is blocked. By setting up firewalls, access to
Ethereum-related ports and protocols can be limited
effectively preventing unauthorized entry and potential
attacks on the network.

3) Network Monitoring: Network monitoring tools are
used to observe the behaviour and performance of
Ethereum nodes and the overall network. Monitoring
software can track network connectivity, node health,

block propagation times, transaction confirmation rates
and other network metrics. Monitoring helps identify
potential issues, performance bottlenecks or abnormal
behaviour that may indicate network disruptions or
attacks.

4) Network-Level Encryption: Transport Layer Security
(TLS) is used to provide network-level encryption.
Encryption ensures that communication between nodes
is secure and protects against eavesdropping or tam-
pering with network traffic. Network-level encryption
safeguards sensitive information and helps maintain
the privacy and integrity of data transmitted within the
Ethereum network.

5) DDoS Mitigation: DDoS mitigation techniques are
used to protect against Distributed Denial of Service
(DDoS) attacks. Techniques such as rate-limiting
traffic shaping or IP filtering can be implemented to
detect and mitigate abnormal or excessive traffic that
may indicate a DDoS attack.

VII. CONSENSUS LAYER
The consensus layer in a blockchain is the key component
which is responsible for reaching an agreement between
network participants [6]. And, is done without relying on
a central authority. It serves as the basis for maintaining
blockchain integrity, security and immutability by using com-
mon verification and authentication of transactions before
including those on-chain [5]. It ensures that all participants
in the network have an agreement on the state of the
blockchain, even in the presence of errors or malicious actors.
The consensus layer addresses the challenge of establishing
consensus in a decentralized and trustless environment where
multiple actors or nodes with potential conflicts of interest
come together in the network [3]. By implementing some
algorithm or protocol, the consensus layer enables nodes to
collectively agree on the order and validity of transactions,
and this ensures the tamper-proof operation of the blockchain
ecosystem [23].

A. CONSENSUS ALGORITHM
A consensus algorithm is a set of rules and procedures that
allow a network of computers or nodes in a blockchain
network to agree on the validity of a transaction or a
block. There are different consensus algorithms which is a
crucial part of a consensus layer, currently used in different
blockchain networks. Those consensus algorithms are written
in a way so that it is trusted by everyone.

B. IMPORTANCE OF CONSENSUS ALGORITHM
Consensus algorithms are crucial in blockchain systems.
It solves the challenges of reaching consensus in a decentral-
ized and trusted environment and ensures that transactions
are confirmed accurately and securely. By preventing dou-
ble spending and unauthorised ledger changes, consensus
algorithms lay the foundation for building a transparent and
trusted digital ecosystem [23]. Mainly, consensus algorithm
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TABLE 10. Different transmission protocols used in different blockchains.

is an essential element or component in a consensus layer,
which helps nodes to reach a secure and decentralized
agreement on the state of the ledger [7]. It is important
to ensure the trust and reliability of blockchain networks
and enable their successful deployment in a wide range of
applications [72].

C. CATEGORY OF CONSENSUS ALGORITHM
There are different types of consensus algorithms. The
well-known Proof of Work (PoW), Proof of Stake (PoS),
Delegated Proof of Stake (DPoS), Practical Byzantine Fault
Tolerance (PBFT), Proof of Authority (PoA), Raft etc. But
those algorithms can be broken down into 3 categories.

1) Proof-Based
2) Voting-Based
3) Lottery-Based

The different consensus algorithms in different categories are
shown in Fig. 9. That figure breaks down different consensus
algorithms category-wise.

1) PROOF-BASES CONSENSUS ALGORITHM
Proof-based consensus algorithms require participants to
provide some form of evidence to verify their actions or
claims.

a: PROOF-OF-WORK (POW)
Proof of Work (PoW) relies on computational work as
evidence to verify and secure transactions. In PoW, partici-
pants called ‘‘miners’’ compete to find solutions to complex
mathematical puzzles, solving or finding hash which require
huge amounts of computing power and energy. Also known
as proof, this solution serves as proof that the miner has done
the necessary work. Once a miner finds a solution, it is sent to
the network where other nodes can easily check the validity
of the proof [74]. This evidence-based approach ensures
that participants have invested computational resources so
that malicious attackers cannot compute when modifying
blockchain history or introducing fraudulent transactions.
The amount is large and it takes time. PoW is considered
an evidence-based consensus algorithm because it relies
on computation (evidence) as proof of participation and
contributes to the security and integrity of the entire

FIGURE 9. Category of consensus algorithm.

blockchain network. Fig. 10, represents the flowchart of
proof-of-work.

b: PROOF-OF-STAKE (POS)
Proof-of-Stake (PoS) consensus algorithm is used in
blockchain networks which selects validators to create new
blocks based on their ownership or share in the network.
PoS requires participants to demonstrate ownership of a
specific amount of cryptocurrency or tokens to be eligible
for the validator role. The selection process is typically
determined by a deterministic algorithm that considers factors
like stake size, coin age, or a combination [75]. Known as a
proof-based consensus algorithm, PoS mandates participants
to validate transactions and create new blocks by proving
their stake in the network. This verification is accomplished
by digitally signing the transaction using the private key
associated with their staked tokens. Thus, participants exhibit
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FIGURE 10. Flowchart of PoW Algorithm [73].

both personal responsibility and dedication to the network.
Fig. 11, represents the flowchart of proof-of-stake.

c: PROOF-OF-BURN (POB)
Proof of Burn (PoB) is a consensus mechanism in which
individuals deliberately eliminate or ‘‘burn’’ their cryptocur-
rency tokens to validate their dedication to the network.
By engaging in token burning, participants prove that they
have incurred a real cost and are prepared to sacrifice
value to actively partake in the agreement process. The
quantity of tokens burned often plays a significant role in
determining the next block creator. The primary goal of
PoB is to establish a just and decentralized approach to
block creation, where participants are rewarded based on
their commitment to contributing to the network, rather than
relying on computational effort or ownership of stake [76].

d: PROOF OF CAPACITY (POC)
Proof of Capacity (PoC) serves as a consensus algorithm
in select blockchain systems. It operates by assigning a

FIGURE 11. Flowchart of PoS algorithm [73].

substantial storage space called ‘‘plots’’ to participate in
the consensus process. Miners engage in pre-computing
numerous potential solutions, which are then stored within
these plots. As the need arises for a new block creation,
miners scan their plots for suitable solutions that meet
the necessary criteria. PoC capitalizes on storage space
holds value, favouring those with greater storage capacity
with higher odds of successfully mining a new block.
In comparison to Proof of Work (PoW), PoC is deemed
energy-efficient as it relies on disk space over computational
power.

e: DELEGATED PROOF OF STAKE (DPOS)
Delegated Proof of Stake (DPoS) represents a consensus
algorithm employed in certain blockchain networks. Within
the DPoS framework, a limited number of trusted delegates
are designated to validate transactions and generate new
blocks. These delegates are selected through a voting process,
where token holders in the network cast their votes for
their preferred delegates. The chosen delegates take turns
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FIGURE 12. A general scenario in DPoS algorithm.

FIGURE 13. Flowchart of PoA algorithm [77].

in producing blocks and possess the authority to approve
transactions. The primary objective behind DPoS is to
enhance block confirmation speed and scalability compared
to other consensus algorithms. However, it does introduce
a degree of centralization by relying on voting for delegate
selection, which can lead to power concentration among a few
entities. Fig. 12, represents a general scenario in DPoS.

f: PROOF OF AUTHORITY (POA)
Proof of Authority (PoA) is a consensus algorithm widely
used in blockchain networks, notably in permissioned or
private environments. In PoA, a defined group of validators or
authorities are entrusted with the responsibility of validating
transactions and generating new blocks. These validators go
through prior selection based on their reputation, identity,
or stake within the network. PoA boasts rapid block creation
and impressive throughput capabilities. However, it comes
at the cost of reduced decentralization since the authorities
assume central control over decision-making processes.
Fig. 13, represents the flowchart of proof-of-authority.

g: PROOF OF IMPORTANCE (POI)
Consensus algorithms are processes that help a group make
decisions collectively. In this process, individuals within the
group come together to create and support a decision that
benefits everyone involved. It’s not just about accepting
the decision with the most votes but rather opting for the
one that brings the most advantages to all participants in
the network. Since Blockchain emerged along with Proof
of Work (PoW) consensus mechanisms for verifying new
nodes or transactions on the blockchain, numerous other

FIGURE 14. Flowchart of PoI algorithm [83].

consensus mechanisms have been introduced as well. One
such mechanism is Proof of Importance (PoI), which is
based on Byzantine Fault Tolerance. Fig. 14, represents the
flowchart of PoI.

2) VOTING-BASED CONSENSUS ALGORITHM
Voting-based consensus algorithms represent a type of
mechanism widely used in blockchain networks. They enable
participants to collectively agree upon the validity and
order of transactions through a democratic voting process.
Each participant holds an individual voting right, and the
outcome is determined by the majority consensus, ensuring
fair decision-making within the network.

a: DELEGATED BYZANTINE FAULT TOLERANCE (DBFT)
Delegated Byzantine Fault Tolerance (dBFT) is a consensus
algorithm widely used in blockchain networks. Its primary
purpose is to introduce a voting mechanism that selects
a limited number of trusted nodes, commonly referred
to as delegates or witnesses. These chosen individuals
possess the responsibility of validating transactions and
creating new blocks [78]. By reducing the participation of
numerous nodes in the consensus process, dBFT aims to
achieve faster transaction confirmation times. However, it’s
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FIGURE 15. Flowchart of dBFT algorithm [78].

important to note that this approach introduces an element
of centralization due to the reliance on voting for delegate
selection. Consequently, there is a potential risk of power
concentration within only a few entities. Fig. 15, represents
the flowchart of dBFT.

b: TENDERMINT
Tendermint is a consensus algorithm widely used in
blockchain systems. It’s primary goal is to achieve both high
performance and Byzantine fault tolerance. The algorithm
itself is built upon the Practical Byzantine Fault Tolerance
(PBFT) algorithm, specifically designed for both permis-
sioned and public blockchain networks. The functioning of
Tendermint involves a block proposal and voting process.
In this process, a designated validator proposes a block while
other validators vote on its validity [79]. To consider a block
finalized and added to the blockchain, at least two-thirds of
the validators must agree on it. This approach ensures consen-
sus even in cases where malicious actors or network faults are
present. By implementing this algorithm, Tendermint offers
fast block confirmation times and facilitates high transaction
throughput, ensuring trustworthiness in the face of potential
challenges. Fig. 16, represents the flowchart of Tendermint.

FIGURE 16. Flowchart of tendermint algorithm [79].

c: THE PROOF OF ECLIPSED TIME (POET)
The Proof of Eclipsed Time (PoET) algorithm serves as
a consensus mechanism in certain blockchain networks.
Its purpose is to counteract centralized control and mini-
mize energy consumption, as opposed to other consensus
algorithms like Proof of Work (PoW). Under PoET, every
network participant patiently awaits a randomly assigned
period before proposing a new block [73]. The participant
who completes this waiting period first earns the privilege
to create the subsequent block. This approach ensures
fairness and prevents any individual from gaining an undue
advantage. Ultimately, PoET strives for consensus using a
more energy-efficient and decentralized approach. Fig. 17,
represents the flowchart of PoET.

d: PRACTICAL BYZANTINE FAULT TOLERANCE (PBFT)
Practical Byzantine Fault Tolerance (PBFT) widely used
consensus algorithm blockchain systems. Its purpose is to
enable a network of computers to collectively agree upon
the order and validity of transactions, even when dealing
with faulty or malicious nodes. To achieve consensus, PBFT
relies on exchanges of messages and rounds. As long as
more than two-thirds of the nodes operate honestly, PBFT
guarantees agreement on the state of the blockchain [80].
This algorithm finds common utilization in permissioned
blockchain networks where participants are both known
and trusted. By leveraging PBFT, these networks enjoy
fast transaction finality and increased throughput. Fig. 18,
represents the flowchart of PBFT.
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FIGURE 17. Flowchart of PoET algorithm [73].

e: PROOF OF VOTING (POV)
In a PoV consensus process, validator nodes are staked to
achieve consensus. Each node in the PoV system maintains
the complete transaction history of the recorded blocks
constituting the blockchain. To identify user accounts, either
a user’s public key or the native token of the node can be
utilized. This implies that your crypto wallet is traceable,
and anyone possessing the public key can view your token
balance. Furthermore, users can stake their crypto tokens
in validator nodes. The number of nodes associated with a
validator depends on howmany tokens are staked within each
validator.

f: PROOF OF TRUST (POT)
Proof of Trust (PoT) holds limited recognition as a con-
sensus algorithm within the blockchain space. It appears
to be a lesser-known or hypothetical approach, lacking
substantial information or widespread adoption. Notably, the

FIGURE 18. Flowchart of PBFT algorithm [80].

ever-evolving nature of blockchain research and development
leaves room for innovative methodologies like PoT, which
may not yet enjoy extensive acknowledgement [81]. Fig. 19,
represents the improved PoT Algorithm reputation update
process.

g: RAFT
Raft, a distributed system, operates with three distinct
roles: leader, follower, and candidate. The leader assumes
the crucial responsibility of central authority by handling
client requests and ensuring network-wide consistency. Its
actions are mirrored by followers while candidates partake
in leader election when necessary. What sets Raft apart is
its emphasis on comprehensibility, achieved through dividing
the consensus problem into manageable components like
leader election, log replication, and safety mechanisms.
This approach simplifies implementation and maintenance
compared to intricate consensus protocols and has resulted in
widespread adoption in applications ranging from database
systems to distributed storage platforms. Fig. 20, represent
the flowchart of Raft.

3) LOTTERY BASED CONSENSUS ALGORITHM
The lottery-based consensus algorithm is employed in
blockchain networks to achieve consensus among partici-
pants. Its goal is to select a leader or validator responsible
for creating new blocks by employing a process similar to a
lottery. In this algorithm, nodes within the network compete
against each other in order to become the block creator. This
competition can be based on performing computational work
or through random selection.

a: PROOF OF LOCATION (POL)
Proof of Location (PoL) is a consensus algorithm utilized
in certain blockchain systems to authenticate and validate
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FIGURE 19. Flowchart of improved PoT algorithm reputation update
process [81].

FIGURE 20. Flowchart of raft algorithm [82].

the actual geographic location of participants. It guarantees
that nodes or devices indeed exist at the claimed specific

location. PoL relies on various techniques such as GPS,
Wi-Fi signals, or cell tower triangulation to collect precise
location data. The participants, by furnishing proof of
their whereabouts, can actively contribute to the consen-
sus process and receive rewards within the blockchain
network. The primary objective of PoL is to enable
location-based services and applications while upholding
the integrity and trustworthiness of the entire blockchain
system.

b: RANDOMIZED PROOF OF WORK (RPOW)
Randomise Proof of Work (RPoW) is a consensus algorithm
designed to offer an alternative to the traditional Proof of
Work (PoW) algorithm utilized in blockchain systems. RPoW
introduces randomness into the PoW process, enhancing its
resistance against specific attack types. By incorporating
this element of chance, RPoW effectively prevents miners
from gaining an unfair advantage based solely on compu-
tational power. This innovative algorithm aims to promote
a more equitable distribution of mining rewards while
bolstering the security and decentralization of the blockchain
network.

c: PROOF-OF-RANDOMNESS (POR)
In a Proof-of-Resources (POR) based blockchain network,
the task of creating new blocks and validating transactions
is assigned to validators chosen at random. This selection
process relies on a random number generator, making it
exceedingly difficult for any individual node to manipulate or
corrupt the system. As a result, POR demonstrates remark-
able resistance against attacks such as 51 present attacks,
which pose threats to other consensusmechanisms like Proof-
of-Work (PoW) and Proof-of-Stake (PoS). Essentially, POR
beautifully combines randomness and security, offering an
extraordinarily robust and efficient consensus mechanism for
blockchain networks.

d: PROOF-OF-PROBABILITY (POP)
In the PoP approach, individual nodes adopt a unique strategy.
They store both the authentic encrypte- d hash and a series
of counterfeit hashes. The initial node that successfully
decrypts the genuine hash is responsible for generating a new
block. To manage intense computational competition, there
is an introduction of a waiting period between consecutive
hash decryptions [84]. Importantly, the PoP mechanism also
addresses potential centralization concerns that may arise
from validators holding substantial stakes in the network.
This presents an optimistic way to enhance blockchain
consensus methods. Fig. 21, represents the flowchart
of PoP.

e: RIPPLE
The ripple consensus algorithm operates through a network
of trusted validators. These validators are selected by the
Ripple company and other participants. They work together
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FIGURE 21. Flowchart of PoP algorithm [84].

to confirm transactions and maintain the integrity of the
Ripple network. The algorithm emphasizes decentralization
and relies on a predetermined set of validators. This design
enables the protocol to process transactions quickly and
efficiently. Ripple native cryptocurrency, XRP serves as a
bridge currencywithin the Ripple network. It facilitates seam-
less and rapid conversion between different fiat currencies,
making it a preferred choice for financial institutions and
payment service providers looking to streamline cross-border
payments and improve liquidity. Fig. 22, represents the
flowchart of Ripple.

D. STRUCTURAL PROPERTIES OF A
CONSENSUS MECHANISM
This table represents the structural properties of some
blockchain networks. Breaking down structural properties
of different blockchains. Fig. 23, represents the Structural
properties of a blockchain.

Based on Fig. 23, some blockchain network is broken down
and the finding and analysis is given in Table 11.

Table 11, presents a comprehensive overview of different
blockchain platforms. It highlights their underlying mecha-
nisms, consensus algorithms, node types, structural charac-
teristics, and configuration traits. Through this comparison,
we gain insight into the various decentralized approaches
these platforms employ to achieve consensus and manage
network structures.

FIGURE 22. Flowchart of ripple algorithm [85].

FIGURE 23. Structural properties of a blockchain.

E. CONSENSUS ALGORITHM COMPARISON
Table 12, presents a comprehensive analysis of consensus
algorithms used in blockchain technology. It highlights
their programming languages, applications, extensibility,
computing and storage costs, block proposers, proposer
selection/mining methods, and selection basis. In table 12,
‘‘N/F’’ represents that data ‘‘Not Found’’.
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TABLE 11. Breaking down different blockchain’s consensus algorithm.

Table 13, presents a comprehensive analysis of consensus
algorithms used in blockchain technology. It highlights
their block validation mechanisms, blockchain finalisation
processes, execution environments, efficiency levels, mes-
sage overheads, authenticity levels, and control attributes.
In table 13, ‘‘N/F’’ represents data ‘‘Not Found’’ and ‘‘N/A’’
represents ‘‘Not Applicable’’.

Table 14, provides a comprehensive overview of different
blockchain consensus algorithms. It compares different
blockchains, taking into account factors such as node identity,
energy efficiency, adversary power tolerance, fork suscepti-
bility, fault tolerance, and more. This comparative analysis
greatly contributes to a better understanding of the strengths
and weaknesses inherent in each algorithm. Consequently,
it aids individuals in making informed decisions when
selecting specific blockchain requirements and objectives.
In table 14, ‘‘N/F’’ represents data ‘‘Not Found’’ and ‘‘N/A’’
represents ‘‘Not Applicable’’.

Table 15, provides an overview of different consensus
algorithms used in decentralized systems. Each row rep-
resents a specific algorithm, and the columns highlight
characteristics such as transaction fees, block rewards,
scalability, throughput, and more. While some cells lack
data, the table offers valuable insights into the diversity and

FIGURE 24. Comparison of average throughputs (PoW vs. PoS vs. DPoS vs.
Raft).

complexity of consensus mechanisms. These insights help in
decision-making for blockchain implementations. In table 15,
‘‘N/F’’ represents data ‘‘Not Found’’ and ‘‘N/A’’ represents
‘‘Not Applicable’’.

F. SIMULATION AND RESULT ANALYSIS
Fig. 24, represents the comparison of average throughputs of
Pow, Pos, DPoS and Raft, where the X-axis represents several
transactions and the Y-axis represents average throughputs
(TPS).

Fig. 25, represents the Average latency with varying
numbers of nodes of Pow, Pos, DPoS and Raft, where the
X-Axis represents the number of nodes and the Y-Axis
represents the average latency in seconds.
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TABLE 12. Consensus algorithm comparison - implementation and application - 1.

Fig. 26, represents Average latency with varying numbers
of transactions of Pow, Pos, DPoS and Raft, where the
X-axis represents the number of transactions and the Y-axis
represents average latency in seconds.

VIII. SMART CONTRACT LAYER
The contract layer implements smart contracts, a set of
digitally set commitments that are unmodifiable once
deployed and executed immediately once triggered [86]. The
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TABLE 13. Consensus algorithm comparison - implementation and application - 2.

TABLE 14. Consensus algorithm comparison - security and fault tolerance.
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TABLE 15. Consensus algorithm comparison - scalability and performance.

FIGURE 25. Average latency with varying number of nodes (Log Scale).

contract layer pertains to the constituent within blockchain
systems that facilitates the generation and implementation of
smart contracts. Smart contracts are autonomous programs
that operate on a distributed ledger technology known as
the blockchain, facilitating the execution and enforcement
of contractual obligations between multiple parties in a

FIGURE 26. Average latency with varying number of transaction (Log
Scale).

decentralized manner, thereby eliminating the requirement
for a central governing entity.

The contract layer is positioned hierarchically above the
consensus layer, responsible for verifying transactions, and
the network layer, responsible for distributing transactions
and blocks. Once transactions undergo validation through
the consensus protocol, the contract layer examines whether
these transactions prompt the execution of any smart
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contracts. The contract execution environment is commonly
kept separate from the rest of the blockchain network. This
separation ensures that smart contracts can operate securely
without causing any disruptions to other components.

A. SMART CONTRACT
A smart contract is a contract that can run itself. The
terms and conditions that the buyer and seller decide on are
directly written into lines of code. A decentralized blockchain
network has the code and the deals that go with it. This
means that the deal is automatically carried out when certain
conditions are met. This makes it possible to set up deals that
are both safe and don’t require trust, getting rid of the need
for middlemen. Smart contracts are the core of blockchain
2.0 [87].

Smart contracts facilitate the execution of reliable trans-
actions and contractual arrangements between diverse and
unidentified entities, obviating the necessity for a centralized
governing body, legal framework, or an external mechanism
for enforcement [88]. These systems possess the capability
to render transactions traceable, transparent, and irreversible.
The recognition of the distinctive obstacles encountered in
smart contract programming has served as a catalyst for
developers to devise domain-specific languages, exemplified
by Solidity [89], with the aim of facilitating the development
process.

Programming languages like Solidity, which is used on
the Ethereum blockchain [89], are often used to make smart
contracts. The code sets the rules and requirements for the
deal, and once it’s on the blockchain, it can’t be changed. The
trait of immutability makes sure that the terms of the contract
can’t be changed without the agreement of all parties.

Once the smart contract code is written then it is
compiled into bytecode, a machine-readable form of the
code. This bytecode is then executed on the blockchain’s
virtual machine, a crucial component of the blockchain
protocol responsible for handling smart contract execution.
The virtual machine ensures that the smart contracts’ actions
are transparently and securely executed across the decen-
tralized network. This vital interplay between programming
languages, bytecode, and the virtual machine paves the way
for efficient and automated agreement enforcement within
blockchain ecosystems, making it an integral aspect of this
transformative technology.

B. THE DAWN OF SMART CONTRACT
The concept of smart contracts was first proposed by Nick
Szabo in 1994, long before the advent of blockchain [90].
Smart contracts only became a reality with the introduction
of Ethereum in 2014, the contract layer of Ethereum, which
is integrated into the Ethereum Virtual Machine (EVM),
permits the execution of Turing-complete scripts on the
blockchain [91]. These scripts have the ability to solve
any computational problem with sufficient resources. This
functionality enables the development and enforcement of

smart contracts. Kosba et al. introduced Hawk, a framework
for the development of smart contracts that aims to safeguard
user privacy [92]. In the year 2018, Kalra et al. [93].
introduced ZEUS, an innovative framework for the analysis
of smart contract security. The proposed framework exhibits a
substantial enhancement in the efficiency of security analysis
time when contrasted with preceding methodologies. In the
year 2020, Zheng et al. conducted a study wherein they
undertook the task of classifying smart contract applications.
This was achieved through a comprehensive comparison
and analysis of various smart contract platforms that are
commonly employed in the field. The findings of this
research were documented in their publication, denoted as a
reference [107]. In 2022, Vittorio et al. identified common
misconceptions and provided guidelines for proper smart
contract management, serving as a valuable resource for
future standards [108].

C. ADVANTAGES OF SMART CONTRACT
1) Savings: Smart contracts offer cost-saving benefits in

various ways. Smart contracts eliminate intermediaries
and reduce the need for legal fees [96]. Automa-
tion enhances operational efficiency by accelerating
the execution and settlement processes, resulting in
reduced labour costs. Ultimately, decreased human
involvement leads to a reduction in errors, disagree-
ments, and litigation expenses.

2) Security: Smart contracts have been found to enhance
security in various aspects. Once the data has been
appended to the blockchain, it becomes immutable
and resistant to any alterations. This reduces the
probability of unauthorized alteration. Smart contracts
operate according to their predetermined design,
thereby preventing any unauthorized modifications or
disruptions during their execution. Furthermore, due to
the transparent nature of the public ledger, it enables the
tracking and verification of events. This fosters system
accountability and cultivates trust in its operations.

3) Confidence and Openness: The transparency of smart
contracts promotes confidence and openness. The
utilization of a public blockchain enables individuals
to verify and conduct audits on code. The ability
of participants to verify ledger transactions in the
absence of a central authority is a notable characteristic.
The implementation of public verification mechanisms
enhances the level of trust in a system. In the absence
of a third-party intermediary, individuals can place their
trust in the outcomes resulting in promoting openness.

4) Accuracy, Efficiency and Rapidity: Smart contracts
automate contract execution, improving accuracy and
efficiency. The utilization of these methods serves
to mitigate the occurrence of errors in interpretation
and mitigate the potential for conflicts. Once the
necessary criteria have been fulfilled, the resulting
outcomes become definitive and unalterable. The
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autonomous execution of tasks enhances the efficiency
of transactions. There are no delays in approval or any
other obstacles. The act of execution can lead to prompt
resolution. The speed and efficiency of smart contracts
are advantageous.

D. CONTRACT LANGUAGE
The responsibility for establishing the guidelines and struc-
ture for executing actions within the blockchain lies with
the smart contract code. The meticulous composition of the
code is of utmost significance to ensure the absence of any
vulnerabilities or deficiencies that may jeopardize financial
assets. Typically, the code utilized for smart contracts on
the blockchain is predominantly composed in a specialized
computer language specifically designed for this purpose,
such as Solidity, which is primarily employed for the
Ethereum platform. In order to achieve proficiency in these
languages, a comprehensive understanding of cryptography
and information management is imperative. Solidity, Vyper,
and Bamboo are the most common computer languages
used to make smart contracts. As a widely used computer
language, Solidity has become the most popular choice [17]
for making smart contracts on the Ethereum blockchain.
It’s important to remember that Solidity was made on
purpose to meet the specific needs of Ethereum’s smart
contract environment. The programming language is close to
JavaScript in terms of syntax [97], and it follows the static
typing rules. Vyper is a programming language that wasmade
just for Ethereum. It puts a lot of stress on security and
simplicity. Its main goal is to make smart contracts easier to
audit, which will make it easier to look at contracts. When
compared directly to the programming language Solidity,
Vyper looks a lot like Python and has strong typing powers
[113]. Bamboo is a new language for smart contracts that has
just come out in the field. Bamboo is designed to be highly
readable and allow both on-chain and off-chain contract logic.
Solidity is currently the most popular programming language
for smart contracts. This is because it has a long history of
development and a large group of developers. But Vyper and
Bamboo, which are relatively new options, were made with
the main goal of making smart contracts safer and easier to
use.

1) SOLIDITY
Solidity is the most common programming language used in
the Ethereum Virtual Machine (EVM). It has become very
popular with developers. Also, it has been widely used in a
lot of blockchains that are compatible with EVM. Solidity is
a high-level computer language that is also Turing-complete.
It allows developers to speed up the process of writing code
by hiding many low-level details. Solidity’s syntax is very
similar to that of Javascript, which is a highly regarded
programming language that is very famous all over the world.
Because of this, Solidity is the best choice for coders who
want to move smoothly into the world of Web3. Solidity is

good for new smart contract writers because it has built-in
safety features that reduce the risk of making mistakes that
could be very expensive [97]. Solidity is the most used
computer language in the Web3 world, which gives its
developers a lot of benefits. These things include a wide range
of libraries and tools, full documentation, and more help for
developers in online groups. Solidity’s syntax may be hard to
understand for developers who aren’t used to object-oriented
programming, and its ability to overload functions could
make code harder to understand. In the world of Solidity
development, it’s important to note that there are some issues
that writers might not be used to. One of these is that the
language can’t handle decimal numbers by default [97].
Expert Web3 writers often notice that programming in
Solidity uses more gas than programming in lower-level
languages. Solidity has gotten a lot of attention because it is
the most efficient and competent language for making smart
contracts. But it’s not possible for security to be broken [99].
Because of this, many researchers have tried to make Solidity
smart contracts safer by adding intermediate-level languages
or using tools for analyzing smart contracts.

2) VYPER
Vyper has emerged as a prominent programming language
within the Web3 ecosystem, second only to Solidity in
terms of its widespread adoption for EVM-compatible
blockchains [97]. The programming language in question is
characterized by its focus on contracts, adherence to Pythonic
principles, implementation of strong typing, a compact
compiler codebase, and the generation of efficient bytecode.
The Vyper programming language exhibits a visual and
experiential resemblance to Python [98], rendering it an opti-
mal choice for Python developers embarking on their Web3
development expedition. The Vyper programming language,
alongwith its accompanying compiler implementation, offers
a straightforward syntax and structure. This characteristic
contributes to enhanced code readability and auditability,
thereby facilitating the development of secure smart contracts
for practical deployment by developers [98]. Vyper, being the
second most widely embraced smart contract programming
language, shares numerous tooling and resources with
Solidity. The current state of Vyper is characterized by a
relative deficiency in terms of extensive community backing,
which is in contrast to thewell-established support enjoyed by
Solidity. Furthermore, Vyper is currently lacking certain tools
that are specifically designed for Solidity, thereby limiting
its functionality and usability in comparison. Vyper, in its
current state, exhibits a notable absence of modifiers, class
inheritance, and recursive calls, rendering it a programming
language that falls short of being Turing-complete. The
absence of several features can be attributed to intentional
design decisions aimed at optimizing contract security and
auditability. However, this necessitates additional efforts
from developers to circumvent these constraints. As a
nascent programming language, Vyper is currently in the
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developmental phase, thereby exhibiting a relatively limited
set of functionalities.

3) RUST
Rust has gained significant popularity as a programming
language for smart contracts on various blockchains that
are not compatible with the Ethereum Virtual Machine
(EVM), including Solana [100]. It is worth noting that Rust
distinguishes itself from other languages mentioned in this
context by its versatility beyond Web3 development. The
Rust programming language exhibits notable qualities such as
efficiency, security, and a reduction in superfluous elements.
Specifically, Rust data structures are characterized by their
compactness, rendering them well-suited for accommodating
the space limitations inherent in blockchain systems [101].
However, it should be noted that a considerable number
of blockchains currently lack comprehensive tooling or
substantial support for the Rust programming language.

4) GO
Go is a secure, efficient language developed by Google
that compiles smart contracts into Ethereum-compatible
bytecode. Go’s built-in safety features help avoid vulnera-
bilities like reentrancy bugs. The language provides a robust
framework for writing complex decentralized apps and smart
contract logic.

5) HASKELL
Haskell’s functional programming model makes it possible to
create secure, unchangeable smart contracts that stay out of
trouble. Using advanced Haskell capabilities, one may write
clear, tested reasoning that can run on Ethereum’s virtual
machine. The safety and rigor of Haskell make it perfect for
safe decentralized applications.

6) MICHELSON
Michelson is a strongly typed, functional language designed
specifically for writing secure smart contracts on Tezos.
Michelson’s formal verification features mathematically
prove properties of smart contracts, enhancing reliability. The
language provides built-in primitives ideal for blockchain
actions like token transfers and delegation

7) TINYGO
TinyGo is a lightweight, compiled Go language variant
optimized for microcontrollers and blockchain runtimes.
It compiles smart contracts into efficient WebAssembly
bytecode. TinyGo provides a familiar Go-style syntax while
minimizing dependencies for writing secure, deterministic
smart contracts.

8) FLINT
Flint is a type-safe, functional language built specifically for
writing robust smart contracts on the Cardano blockchain.
Flint has a strong, static type system to prevent errors and

vulnerabilities in code. The language compiles to optimized
Plutus bytecode executable on the Cardano Virtual Machine.

9) COMPARISON OF DIFFERENT SMART CONTRACT
In this paper, we have selected the programming languages
that are commonly used for smart contract development on
various blockchain platforms. The classification of languages
can be broadly categorized into three distinct groups:
statically typed languages, dynamically typed languages and
hybrid languages. The evaluation of each language is based
upon an evaluation of four fundamental criteria, security
features and performance, community support, and Turing
completeness.

10) SECURITY FEATURES AND PERFORMANCE
Smart contracts are an important component of blockchain
technology, enabling decentralized, trustless, and automated
execution of agreements. However, the security of these con-
tracts is paramount, as they manage valuable assets and are
executed on a decentralized network. A single vulnerability
in a smart contract can result in significant financial losses or
even compromise the entire network. Therefore, it is essential
to use programming languages that provide robust security
features. In this paper, we analyze various programming
languages used for smart contract development, focusing
on their security features. We evaluate the languages based
on seven security features: garbage collection, inheritance,
reentrancy protection, decentralized oracle support, memory
safety, type safety, and immutability. Also, we assess the
languages’ support for secure coding practices. Our analysis
provides a comprehensive comparison of the security features
of various programming languages, enabling developers to
make informed decisions when selecting a language for their
smart contract projects.

1) Garbage Collection: Garbage collection in program-
ming refers to automatically free up memory that is no
longer being used by variables or objects in the smart
contract code [102]. Smart contracts lacking garbage
collection mechanisms are exposed to memory leaks,
consequently making them prone to denial-of-service
attacks.

2) Inheritance: Inheritance is an object-oriented program-
ming concept that allows smart contracts to inherit
attributes and methods from a parent smart contract.
Smart contracts that inherit from other smart contracts
can inherit their vulnerabilities.

3) Reentrancy Protection: The vulnerability of reen-
trancy refers to the ability of a smart contract to
be invoked repeatedly in a recursive manner, hence
creating a potential risk of depleting funds from the
contract [103].

4) Decentralized Oracle Support: Decentralized oracles
play a crucial role in blockchain systems by facilitat-
ing secure interactions between smart contracts and
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TABLE 16. Smart contract language characteristics.

external data sources, enabling the execution of logic
based on real-world occurrences.

5) Memory safety ensures programs cannot access arbi-
trary memory locations, preventing accidental/inten-
tional data corruption.

6) Type safety ensures variables only permit valid oper-
ations based on their data types, catching many bugs
during compilation itself.

7) Smart contracts that have not been developed utilizing
secure coding practices may be exposed to a range of
attacks. Some common coding practices that a smart
language include tested frameworks and libraries and
cryptographic libraries instead of custom code.

Table 16, provides a comparative overview of key soft-
ware engineering attributes across prominent smart contract
languages from an academic perspective. The attributes
considered are garbage collection, inheritance, reentrancy
protection, decentralized oracle support, memory safety, type
safety and availability of secure coding practices. These
properties relate to the correctness, security and robustness
of smart contract systems.

11) COMMUNITY SUPPORT
Blockchain technology has made it possible to make
autonomous applications and smart contracts, which are
pieces of code that run themselves on blockchain networks.
However, the languages that run these systems are still in their
early stages. For a programming language to be widely used

by developers, the developer community must back it and be
involved with it.

Smart contract languages need thriving open-source envi-
ronments that are driven by collaborative development to
grow and improve. By asking for feedback from the com-
munity, real-world needs can be added to protocol changes.
Active developer forums and communication channels help
developers find answers to technical problems as soon as
they come up. Strong community involvement also makes
smart contract languages safer by putting them through a lot
of stress tests in a variety of situations. Public code checks
and bug bounty programs give people an incentive to find
vulnerabilities before they are put on the mainnet.

12) TURING COMPLETENESS
Turing completeness means that, in theory, the smart contract
language can solve any problem that can be solved by a
computer, as long as there is enough time and room to
do so [104]. This makes it possible to put complex logic,
workflows, and apps right on the blockchain. On the other
hand, languages that aren’t Turing complete, like Bitcoin
Script, only have a few predefined processes that can be used
for simple transactions.

But because they are more complicated, Turing-complete
smart contracts are harder to check for security holes.
Because smart contracts can’t be changed and deal with
valuable assets, bugs can be very expensive if they aren’t
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TABLE 17. Comparison of different smart contracts used in different blockchains.

found before they are used [104]. Formal testing of smart
contracts that are Turing-complete is very hard.

Also, the theoretical stopping problem says that there is
no general way to tell if a Turing-complete program will run
forever or stop. This could keep network resources from being
used for a long time. Gas costs reduce this worry in part by
stopping processing if the gas limit is reached.

Table 17, table categorizes prominent blockchain plat-
forms based on the smart contract languages they support
and the key software attributes of those languages. The
attributes compared are Turing- completeness, which relates
to the computational expressiveness and functionality of the
languages. Bitcoin’s smart contract languages like Ivy and
BitML have limited functionality by design and work at a low
level close to the virtual machine. In contrast, platforms like
Ethereum, Hyperledger Fabric, Cardano, and Solana provide
high-level languages that are Turing-complete, enabling
advanced computation. Overall, the table illustrates how
design choices in smart contract platforms cater to different
tradeoffs between decentralization, security, performance and
developer experience. Low-level languages favour security
and control while higher-level ones target usability.

E. SMART CONTRACT CODE
1) Compiled: Smart contracts are coded using specialized

languages like Solidity, Vyper, and Rust. Once written,
the code is compiled into bytecode, a machine-
readable version. This bytecode is then executed
on the blockchain’s virtual machine, responsible for
secure and transparent smart contract execution in the
decentralized network. This process ensures efficient
and automated agreement enforcement in blockchain
ecosystems, playing a crucial role in this transformative
technology.

2) Script: Smart contract codes that are directly inter-
preted on the blockchain without a separate com-
pilation step are known as scripting languages.
Despite their infrequency, these interpreted languages
have their significance, as they eliminate the need
for pre-compilation, simplifying the development
process.

F. SCRICPTLESS CONTRACT
Smart contracts have a privacy concern because the full
scripts need to be made public during communication
between users and smart contracts. This openness can
lead to privacy leakage. However, there is an alternative
solution known as scriptless contracts, which addresses
this problem. Scriptless scripts were innovatively devised
by Andrew Poelstra to introduce essential smart contract
capabilities within the MimbleWimble platform. Scriptless
contracts function similarly to standard transactions but still
achieve the same objectives as smart contracts. The key
difference is that scriptless contracts do not require revealing
the contents of the smart contract, thus ensuring that the
contract details remain private and undisclosed during the
process [101].

Table 18, classifies smart contract languages into two
categories based on their execution models. One is that
are compiled into bytecode and one is that are directly
interpreted.

G. EXECUTION PLATFORM
A smart contract’s execution platform is the underlying
infrastructure where the smart contract’s code is processed
and executed. It governs the execution of the contract’s logic,
the storage of data, and the management of interactions
with the blockchain network. Different blockchain systems
offer various execution environments for smart contracts. For
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TABLE 18. Languages compiled into bytecode vs directly interpreted.

instance, Ethereum one of the most frequently used smart
contract systems, employs the Ethereum Virtual Machine
(EVM) to execute smart contracts written in languages such
as Solidity. Likewise, systems such as Binance Smart Chain,
Tron, EOSIO, Cardano, and Polkadot provide execution
environments tailored to certain languages and functionality.

1) ETHERUM VIRTUAL MACHINE
EVM is introduced by Ethereum, a Turing-complete, stack-
based virtual environment. Smart contracts are generally
written in Solidity, a high-level language built expressly for
the EVM. The gas mechanism in the EVM assures that
calculations are resource-efficient and safe, but it also adds
costs to contract execution.

2) TRON VIRTUAL MACHINE
TVM is a lightweight, purpose-built and Turing-complete
virtual machine that is designed exclusively for TRON’s
blockchain environment. Its main goal is to provide an
efficient, reliable, secure, and scalable blockchain system that
integrates smoothly with the existing Solidity smart contract
development environment. Aside from this compatibility,
TVM also has the DPoS consensus method. Unlike the
Ethereum Virtual Machine’s (EVM) Gas mechanism, TVM
adds a novel notion of Energy, which allows transactions and
smart contract activities to be carried out without using TRX
(TRON’s native money) [111].

3) NEO VIRTUAL MACHINE
NeoVM is a lightweight virtual machine designed for
executing smart contracts on the NEO blockchain. As a
fundamental part of NEO, it offers Turing completeness and
strong consistency, enabling the implementation of complex
logic and ensuring uniform execution results across all nodes
in the decentralized network. This robust support for decen-
tralized applications is achieved by compiling high-level
source code, such as Java or C#, using NeoCompiler into a
standardized NeoVM instruction set, allowing cross-platform
compatibility [112].

4) EOS VIRTUAL MACHINE
The EOS VM is a Web Assembly (WASM) engine designed
specifically for blockchain development, with three inter-
preters that improve smart contracts. These interpreters allow
EOSIO to debug, compile quickly, and perform better.
As a consequence, EOSIO can now handle smart contracts
12 times quicker than before. The EOS VM Interpreter
allows for step-by-step debugging of C++ smart contracts,

TABLE 19. Execution platforms and corresponding blockchains.

whilst the EOS VM JIT quickly compiles smart contracts
into readily referenced binary files. Finally, the EOS VM
Optimized Compiler generates optimized versions that run
quickly. The combined usage of these technologies increases
the performance of smart contracts on the EOSIO platform
dramatically [57].

Table 19, provides an overview of the execution platforms
and corresponding blockchains that use virtual machines
to execute smart contracts. The table lists four different
blockchain platforms that use Virtual Machines. They are
Ethereum, Tron, Neo, and EOS.

H. SMART CONTRACT WORKFLOW
The utilization of smart contracts facilitates the seamless
execution of electronic financial transactions between two
entities, ensuring optimal efficiency, robust security, and
complete transparency. The process of developing a smart
contract for facilitating money transfers entails a series of
crucial steps. The initial step in the software development
process involves the composition of code by programmers,
wherein they define the business logic. The rules are
explicitly defined to govern themonetary transaction between
Person A and Person B, encompassing the stipulations
regarding the precise amount of money to be transferred
and the specific mechanism by which said funds will
be deposited into Person B’s designated account. The
source code undergoes a compilation process wherein it is
transformed into a format that can be comprehended by the
blockchain network.

Upon successful compilation, the code undergoes deploy-
ment onto the blockchain network via a solitary cryptographic
transaction. In the context of distributed computing, the
network undertakes the crucial task of code validation and
subsequently assigns a distinct address to the contract in
question. The code has been successfully integrated into the
immutable and secure ledger of the blockchain.

When an individual, referred to as Person A, decides to
transfer funds to another individual, referred to as Person
B, they proceed by initiating a smart contract through the
triggering of a transaction. Upon activation, the embedded
code initiates a series of actions, resulting in the deduction
of the predetermined amount from Person A’s digital wallet.
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FIGURE 27. Smart contract workflow [86].

Simultaneously, an equivalent sum is promptly credited to
Person B’s wallet.

Fig. 27, represents smart contract workflow; how different
components communicate with each other in a smart contract.

The comprehensive procedure is supervised by the decen-
tralized blockchain network as opposed to a centralized
financial intermediary. The distributed ledger system guaran-
tees the immutability of all transactions, thereby promoting
transparency and enforcing strict adherence to the terms
of the smart contract, thereby mitigating the potential risks
associated with fraudulent activities or errors. The provision
of confidence to participants for direct and instantaneous
transactions, without reliance on trusted third parties, is a key
benefit of this system.

IX. APPLICATION LAYER
In blockchain, the application layer plays a crucial rule. This
application layer serves as a platform for developers and
businesses to construct decentralized applications (dApps)
that uses the capabilities of the underlying blockchain.
These dApps span various domains like finance, supply
chain management, gaming, and more. Interacting with the
foundational protocols of the blockchain, the application
layer utilises its consensusmechanisms, data storage abilities,
and security features [88], [110].

A. COMPONENTS
The components of the Application Layer may vary depend-
ing on the specific blockchain network and the type of
application being built on top of it. However, some common
components include:

1) Wallets: Software or hardware tools used to store, send,
and receive cryptocurrencies or other digital assets.

2) Cryptocurrency: Digital or virtual currency that utilizes
blockchain technology for secure and decentralized
transactions, eliminating the need for intermediaries
like banks.

3) Internet of Things (IoT): Integration of blockchain
with IoT devices enables secure and transparent data
exchange, authentication, and automated transactions
among connected devices.

4) Healthcare: Blockchain in healthcare ensures secure
storage and sharing of medical records, facilitates inter-
operability between healthcare providers, and enables

tracking of pharmaceutical supply chains. A decentral-
ized Blockchain service might be the best choice for
several governmental and non-governmental organiza-
tions involved in clinical or biomedical research. Using
this technology, different organizations can collaborate
with other institutions or organizations to share and
analyze data without relinquishing control [117].

5) dApps (Decentralized Applications): Blockchain-
based dApps leverage the transparent and immutable
nature of blockchain for decentralized and tamper-
resistant execution of smart contracts, which enable
trustless interactions and remove the need for inter-
mediaries. The adaptation of blockchain technology
through dApps is increasing drastically; thus opportu-
nity for the developers and entrepreneurs are growing
rapidly [118].

6) NFT (Non-Fungible Token): NFTs on blockchain pro-
vide verifiable proof of ownership and authenticity for
digital assets, revolutionizing digital art, collectables,
and intellectual property rights management.

7) Voting System: Blockchain-based voting systems
enhance transparency, security, and immutability by
recording votes on the blockchain, ensuring the
integrity of the electoral process and preventing
tampering or fraud.

8) Supply Chain Management: Blockchain-powered sup-
ply chain management improves transparency and
traceability by recording every step of the supply chain
on an immutable ledger, enabling real-time tracking,
authentication, and efficient management of goods and
transactions.

9) DeFi (Decentralized Finance): DeFi on blockchain
offers open and permissionless financial services such
as lending, borrowing, and trading, eliminating the
need for intermediaries and enabling anyone with inter-
net access to participate in global financial activities.

B. MAIN COMPARISON PERIMETER
Now, when we are comparing the Application layer on
different blockchains we should consider and judge it on the
following parameters.

1) Ease of use
2) User experience
3) Functionality
4) Interoperability
5) Smart Contract Functionality

Table 20, represents the protocols and technology used in
different blockchain application layers.

The following represents a compilation of terms accompa-
nied by their respective descriptions used in Table 20.

1) Ethereum JSON-RPC: This is the communication
bridge for developers to engage with Ethereum’s
blockchain nodes. Using the JSON format facil-
itates interactions like querying data and execut-
ing transactions on the Ethereum network. It’s the
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behind-the-scenes language that connects applications
with Ethereum’s decentralized stage.

2) Solana JSON-RPC: This is the backstage pass for
developers to communicate with Solana’s blockchain
nodes. It uses JSON language for smooth interaction,
enabling tasks like querying information and making
transactions on the Solana network. It’s the behind-the-
scenes maestro for seamless communication between
apps and the dynamic Solana blockchain.

3) Avalanche JSON-RPC: This serves as the com-
munication gateway for developers interacting with
Avalanche’s blockchain nodes.

4) Cardano GraphQL: This is the interactive script
for developers engaging with Cardano’s blockchain.
Unlike traditional APIs, GraphQL allows users to
specify the data they need, reducing unnecessary data
transfer.

5) Algorand RESTAPI: It is the entry point for developers
to interact with the Algorand blockchain. REST,
or Representational State Transfer, provides a set
of architectural principles for building web services.
Algorand’s REST API allows developers to perform
various operations, such as querying blockchain data,
submitting transactions, and accessing key functional-
ities.

6) EOSIO RPC API: This is the gateway for developers
to interact with EOSIO blockchain nodes. RPC,
or Remote Procedure Call, allows seamless commu-
nication through EOSIO’s API using the HTTP or
WebSocket protocols.

C. SECURITY CONSIDERATIONS
The Application Layer remains essential to implement robust
security measures in order to safeguard user data, uphold
privacy, and prevent unauthorised access. Several key security
considerations should be taken into account:

1) Cryptography: Public-key cryptography and digital
signatures are essential cryptographic techniques. They
play a important role in ensuring secure communica-
tions between components by providing authentication
and tamper-proofing for transactions and interactions.

2) Consensus Mechanisms: The security of the Applica-
tion Layer is influenced by the choice of consensus
mechanism. For instance, Proof of Work (PoW) and
Proof of Stake (PoS) mechanisms have important
roles in safeguarding transaction integrity and deterring
attacks.

3) Smart Contract Auditing: Auditing smart contracts for
vulnerabilities is an imperative task. The presence of
flaws within these contracts can lead to the exploitation
of security loopholes, resulting in substantial financial
losses. To ensure robustness and reliability, it is
essential to conduct thorough code reviews, perform
stringent security testing, and engage in third-party
audits as

4) Access Control: Role-based access control mecha-
nisms are crucial for managing permissions within
dApps. By utilising smart contracts, access levels and
conditions can be defined to ensure that only authorised
parties have access to specific functionalities.

5) Privacy Solutions: Blockchain networks often employ
privacy-focused solutions, such as zero-knowledge
proofs. These solutions enable confidential transac-
tions while still ensuring their validity.

X. USE CASE AND CASE STUDIES
The Application Layer is found in applications across
industries. Here are a few examples:

1) Supply Chain Management: Walmart and IBM’s col-
laboration on utilizing blockchain technology to track
food products along the supply chain has yielded
several benefits. Firstly, it has significantly enhanced
transparency within the system, allowing for increased
visibility into each step of the process. Additionally,
in case of any contamination concerns or product
recalls, this innovative approach has facilitated the
swift identification of the sources responsible. This
partnership serves as a commendable example of how
supply chain management can leverage blockchain for
improved efficiency and risk management.

2) Healthcare: MIT’s MedRec project demonstrated how
blockchain can revolutionize medical record shar-
ing. By granting patients control over their medical
data and enabling authorized healthcare providers to
access specific information securely, this advancement
ensures both data integrity and privacy protection.
Blockchain technology thus emerges as a promising
solution for enhancing patient care through streamlined
information exchange.

3) Finance and DeFi: In finance and decentralized finance
(DeFi), Ethereum’s Application Layer has catalyzed
the development of various financial services in a
decentralized manner. Notable projects such as Maker-
DAO have introduced decentralized lending platforms
and stablecoins that offer greater accessibility and
reduce dependence on centralized institutions. Fur-
thermore, Decentralized Exchanges (DEXs) enable
peer-to-peer trading without intermediaries, providing
individuals with direct control over their assets

XI. EVALUATION OF BLOCKCHAIN
Table 21, describes the various layers of blockchain and
examples. Each layer has its own unique characteristics and
there are some examples provided as well. Layer 0 serves as
the foundation for the entire blockchain ecosystem, providing
essential infrastructure and protocols. Moving up, we have
Layer 1, the base blockchain layer where transactions
undergo validation and finalization. On top of that, Layer 2 is
built to address scalability and interoperability challenges.
Finally, at Layer 3, we reach the application layer where
decentralized applications are developed.
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TABLE 20. Major protocols and technologies used.

TABLE 21. Blockchain layers explained.

In Table 22, we can find a comprehensive description of
the various functionalities associated with different layers of
blockchain technology.

Beginning with Layer 0, this fundamental layer encom-
passes crucial elements such as consensus algorithms and
cryptography, forming the backbone of the entire protocol
and infrastructure. Moving up to Layer 1, we encounter core
blockchain features like basic cryptocurrency functionality
and secure transaction processing. Layer 2 takes center stage
by providing innovative solutions for scalability and interop-
erability, including channels, Plasma [120], sidechains [120],
and rollups [121]. Finally, Layer 3 emerges as a valuable
resource within the ecosystem by offering development tools
and infrastructure specifically designed for decentralized
applications.

A. DIFFERENT ALGORITHM IN USE
Data regarding the utilization of consensus algorithms across
different networks was gathered from [122]. This table
illustrates the distribution of these algorithms.

Table 23, represents the blockchain consensus algorithm
in one column and the number of networks that use the
consensus algorithm in other columns.

Fig. 28, displays a pie chart that provides a visual
representation of the diverse range of algorithms currently
employed within the industry.

B. DIFFERENT ECOSYSTEM IN USE
Ecosystem utilization is evident from [122]. The following
table illustrates the distribution of networks employing
specific ecosystems.

FIGURE 28. Pie chat for various algorithms in use.

FIGURE 29. Pie chat for various ecosystems in use.

Table 24, represents the blockchain ecosystem in one
column and the number of networks that use the ecosystem
in the other column.

Fig. 29 depicts a pie chart showcasing the array of
ecosystems in use within the industry.
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TABLE 22. Functionality of different blockchain layers.

TABLE 23. Consensus algorithm used by different blockchains.

C. ENTERGY CONSUMPTION
Blockchain technology uses a lot of electricity because
it relies on powerful computers solving complex math

TABLE 24. Ecosystem used by different blockchains.

problems to secure transactions and maintain the network.
This high energy consumption has raised concerns about its
environmental impact, but there are ongoing efforts to make
blockchain more energy-efficient.
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FIGURE 30. Entergy consumption of Bitcoin.

FIGURE 31. Entergy consumption of Etherum.

1) ENTERGY CONSUMPTION OF BITCOIN
Fig. 30, represents the energy consumption of Blockchain
Blockchain. X-Axis represents year and month and Y-Axis
represents the amount of energy used in Terawatt [123].

2) ENTERGY CONSUMPTION OF ETHERUM
Fig. 31, represents the energy consumption of Ethereum
Blockchain. The x-axis represents year and month and the
Y-axis represents the amount of energy used in Terawatt. The
data are collected from [123].

D. PSEUDO CODE USED IN SIMULATION
Algorithm 1 outlines a Transaction class with methods for
initializing transaction details (sender, recipient, amount) and
converting transactions into a dictionary format. It provides a
structured approach for managing and representing transac-
tions in a system.

Algorithm 2 defines a Block class with methods to
initialize block attributes (index, previous hash, transactions,
timestamp, proof) and calculate the hash value of the
block based on its attributes using the SHA-256 algorithm.
It provides a structured representation of individual blocks
in a blockchain system, facilitating block management and
cryptographic verification

Algorithm 3 implements a Blockchain class, initializing
an empty chain and list for pending transactions. It includes
functions to create a genesis block, add blocks, add transac-
tions, calculate block hashes, and retrieve the last block in

Algorithm 1 Transaction Class Definition
1: class Transaction:
2: procedure Initialize(sender, recipient, amount):
3: transactionSender, transactionRecipient,
transactionAmount← sender, recipient, amount

4:

5: procedure ToDict():
6: return {'sender': transactionSender,

'recipient': transactionRecipient, 'amount':
transactionAmount}

Algorithm 2 Block Class Definition
1: class Block:
2: procedure Initialize(index, previousHash, transac-
tions, timestamp, proof):

3: blockIndex,blockPreviousHash, blockTransac-
tions, blockTimestamp, blockProof ← index, previ-
ousHash, transactions, timestamp, proof

4:

5: procedure CalculateHash():
6: return hashlib.sha256( f‘‘{blockIndex}
{blockPreviousHash}{blockTransactions}{blockTimest-
amp}{blockProof}’’.encode()).hexdigest()

the chain. This implementation establishes the foundational
structure for managing a blockchain instance.

PoWConsensus in Algorithm 4 class generates and
validates proofs of work in a blockchain system. The
proofOfWork method iterates through potential proofs until a
valid one is found, following consensus rules. ValidateProof
checks if the generated proof meets the required difficulty
level by comparing it with a target prefix. This algorithm
ensures blockchain network security and integrity via a
consensus mechanism based on computational effort.

The VerifyTransaction procedure in Algorithm 5 ensures
the validity of a transaction by verifying the presence of
essential fields like ‘sender’, ‘recipient’, and ‘amount’. If any
of these fields are absent, it returns False, indicating an invalid
transaction. Otherwise, it extracts the sender, recipient, and
amount from the transaction and returns True, affirming the
transaction’s integrity.

The PoSConsensus class in Algorithm 6 implements
a Proof-of-Stake (PoS) consensus algorithm. It initializes
validators, chains, and transaction lists. Validators can be
added and selected randomly. The ProofOfStake method
generates a proof by iterating until a valid one is found based
on a validator’s selection. The algorithm validates proofs
against the previous block’s proof and chosen validator,
ensuring blockchain integrity.

The DPoSConsensus class in Algorithm 7 implements
a Delegated Proof-of-Stake (DPoS) consensus algorithm,
initializing delegate and vote structures. Delegates are added
and randomly selected, while votes are recorded for each
delegate. The algorithm generates proofs based on the
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Algorithm 3 Blockchain Class Implementation
Require: None
Ensure: Initialized Blockchain instance
1: class Blockchain:
2: procedure Initialize():
3: chain← Empty list to store blocks
4: currentTransactions←Empty list for pending

transactions
5:

6: procedure CreateGenesisBlock():
7: CreateBlock(initialProof, previousHash)
8:

9: procedure CreateBlock(proof, previousHash):
10: block← Block(
11: index← len(chain) + 1,
12: previousHash← previousHash or

hash(chain[-1]),
13: transactions← currentTransactions,
14: timestamp← GetCurrentTime(),
15: proof← proof)
16: currentTransactions← Empty list
17: appendBlockToChain(block)
18: return block
19:

20: procedure AddTransaction(sender, recipient,
amount):

21: currentTransactions.append(Transaction
(sender, recipient, amount))

22:

23: procedure Hash(block):
24: return block.CalculateHash()
25:

26: procedure LastBlock():
27: return chain[-1] if chain else None

selected delegate and validates them against the previous
block’s proof, ensuring blockchain integrity. Additionally,
it allows voting for delegates and retrieves the count of votes
for each delegate, promoting a democratic block validation
process.

The RaftNode class in Algorithm 8 initializes and manages
node attributes in the Raft consensus algorithm, facilitating
fault-tolerant distributed consensus among nodes. It allows
nodes to transition between follower, candidate, and leader
states, ensuring consistency and reliability in distributed
systems.

The RequestVote procedure in Algorithm 9 handles vote
requests from candidates, comparing their term with the
current node’s term. If the candidate’s term is newer, the
node becomes a follower and may grant its vote based on
log consistency. This process ensures the election of a leader
with the most up-to-date log, maintaining consistency in the
distributed system.

Algorithm 4 Proof-of-Work Consensus Definition
1: class PoWConsensus:
2: procedure proofOfWork(lastProof, difficulty):
3: proof← initialProof
4: while PoWConsen-
sus.ValidateProof(lastProof, proof, difficulty) is False:

5: proof← proof + 1
6: return proof
7:

8: procedure ValidateProof(lastProof, proof, diffi-
culty):

9: guess← f‘‘{lastProof}{proof}’’.encode()
10: guessHash ←hashlib.sha256(guess).

hexdigest()
11: return guessHash[:difficulty] == (‘‘target-

Prefix’’.difficulty)

Algorithm 5 Transaction Verification
1: procedure VerifyTransaction(transaction):
2: if ‘sender’∥‘recipient’∥‘amount’ not in transac-
tion:

3: return False
4: sender, recipient, amount← transaction[‘sender’],
transaction[‘recipient’], transaction[‘amount’]

5: return True

The Simulate procedure in Algorithm 10 emulates node
behavior within a given time frame. Followers update their
election timeout and transition to candidates if they don’t
receive heartbeats within the timeout. Candidates request
votes, and if they secure a majority, they become leaders.
Leaders send regular heartbeats to maintain leadership
and update the commit index, simulating the dynamics of
Raft-based distributed systems.

XII. DISCUSSION
A. SUMMARY OF FINDINGS
This research delivered a comprehensive taxonomy of
blockchain architectures across five layers’ data, network,
consensus, smart contracts, and applications. Comparative
analyses revealed how design choices in each layer impact
properties like scalability, security, and decentralization.
Furthermore, simulations and testbed evaluations enabled
performance benchmarking and validation of improvements
to protocols and interactions between layers.

B. INTERPRETATION OF RESULTS
The taxonomy development provides a principled basis
for navigating blockchain’s architectural complexity while
the layered comparative analyses offer data-driven insights
into customizing solutions for diverse use cases. The
proposed improvements can inform the development of

VOLUME 12, 2024 63123



M. Rifat Hossain et al.: Comprehensive Analysis of Blockchain Technology and Consensus Protocols

Algorithm 6 Proof of Stake Consensus Algorithm
1: class PoSConsensus:
2: procedure Initialize():
3: validators, chain, currentTransactions ←

Empty lists
4:

5: procedure AddValidator(validator):
6: validators.append(validator)
7:

8: procedure SelectValidator():
9: return ChooseRandomValidator(validators)

10:

11: procedure ProofOfStake(lastBlock):
12: validator, proof ← SelectValidator(), initial-

Proof
13: while ValidateProof(lastBlock.proof, proof,

validator) is False:
14: proof← proof + 1
15: return proof
16:

17: procedure ValidateProof(lastProof, proof, valida-
tor):

18: guess← f‘‘{lastProof}{proof}{validator}’’
.encode()

19: guessHash ← hash-
lib.sha256(guess).hexdigest()

20: return guessHash[:difficulty] = targetHash
21:

22: procedure GetPreviousHash(lastBlock):
23: return hash(lastBlock)
24:

25: procedure Hash(block):
26: blockString← SerializeToJson(block)
27: return hash-

lib.sha256(blockString.encode()).hexdigest()

next-generation platforms balancing decentralization and
scalability.

C. THEORETICAL IMPLICATIONS
This research sets the stage for blockchain systems tailored
to application needs by elucidating the intricate interplay
between protocols across layers. The knowledge generated
can accelerate blockchain adoption across domains.

D. RESEARCH QUESTION
This research provides valuable insights into the architectural
design of blockchain networks and how to successfully apply
blockchain technology for diverse use cases. Through a
rigorous analysis addressing the key research questions, both
theoretical and practical knowledge was gained.

1) RQ1: What are the components of a typical blockchain
network, and how do they interact with each other?

Algorithm 7 Delegated Proof of Stake Consensus Algorithm
Require: None
Ensure: Initialized DPoSConsensus instance
1: class DPoSConsensus:
2: procedure Initialize():
3: delegates← Empty list
4: chain← Empty list
5: currentTransactions← Empty list
6: votes← {} {Dictionary to store votes}
7:

8: procedure AddDelegate(delegate):
9: delegates.append(delegate)

10: votes[delegate]← []
11:

12: procedure SelectDelegate():
13: return random.choice(delegates)
14:

15: procedure DelegatedProofOfStake(lastBlock):
16: delegate, proof ← SelectDelegate(), initial-

Proof
17: while ValidateProof (lastBlock.proof, proof,

delegate) is False:
18: proof← proof + 1
19: return proof
20:

21: procedure ValidateProof(lastProof, proof, dele-
gate):

22: guess← f‘‘{lastProof}{proof}{delegate}’’
.encode()

23: guessHash ← hash-
lib.sha256(guess).hexdigest()

24: return guessHash[:difficulty] = targetHash
25:

26: procedure Vote (delegate, voter):
27: if delegate && voter in delegates:
28: votes[delegate].append(voter)
29:

30: function GetVoteCount(delegate):
31: return len(votes.get(delegate, []))

2) RQ2: What are the different protocols and mechanisms
used in each layer of a blockchain network, and how
do they impact the performance and security of the
network?

3) RQ3: How can we evaluate the suitability of different
blockchain consensus algorithms for various use cases?

This research aimed to provide foundational insights into
blockchain network design through a systematic examination
of its technical components and tradeoffs. Research Ques-
tion 1 (RQ1) established a layered framework taxonomy to
characterize blockchain network architecture and component
interactions. This taxonomy served as the structural basis for
subsequently evaluating design choices.
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Algorithm 8 Raft Consensus Algorithm
Require: None
Ensure: Initialized RaftNode instance
1: class RaftNode:
2: procedure Initialize(nodeId, totalNodes):
3: currentNodeId, currentTotalNodes←
nodeId, totalNodes

4: currentTerm, votedFor, log, commitIndex,
lastApplied← 0, None, [], 0, 0

5: state, leader_id← ‘‘follower’’, None
6: timeout ← random.randint (minTimeout, max-
Timeout) / 1000.0

7: votesReceived, lastHeartbeat ←

defaultdict(lambda: False), time.time()
8:

9: procedure BecomeFollower(term, leaderId):
10: state, currentTerm, votedFor, currentLeaderId
← ‘‘follower’’, term, None, leaderId

11:

12: procedure BecomeCandidate():
13: state, currentTerm, votedFor← ‘‘candidate’’,

currentTerm + 1, nodeId,
14: votesReceived← defaultdict(lambda: False)
15:

16: procedure BecomeLeader():
17: state, leaderId← ‘‘leader’’, nodeId

Algorithm 9 Raft RequestVote
1: procedure RequestVote( term, candidateId, lastLogIn-
dex, lastLogTerm):

2: if term < currentTerm:
3: return False
4: if term > currentTerm:
5: BecomeFollower(term, None)
6: if votedFor == None ∥ candidateId:
7: if lastLogTerm > log[-1][‘‘term’’] ∥ (last-

LogTerm == log[-1][‘‘term’’] and lastLogIndex ≥
len(log)):

8: votedFor← candidateId
9: return True

10: return False
11:

Research Question 2 (RQ2) advanced understanding of
how different protocol options at each network layer impact
critical properties and mechanisms. For example, the analysis
revealed which smart contract programming languages may
be best suited based on smart contract layer or system needs.

Research Question 3 (RQ3) sought to evaluate and
compare the performance of four prevalent consensus
mechanisms: Proof-of-Work, Proof-of-Stake, Delegated
Proof-of-Stake, and Raft. The aim was to discern each mech-
anism’s suitability for applications involving diverse network
configurations and transaction processing requirements.

Algorithm 10 Raft Simulate()
1: procedure Simulate(maxDurationSeconds):
2: startTime← time.time()
3: while time.time() - startTime < maxDurationSec-

onds:
4: if state == ‘‘follower’’:
5: if time.time() - lastHeartbeat > timeout:
6: UpdateElectionTimeout()
7: BecomeCandidate()
8: else if state == ‘‘candidate’’:
9: if time.time() - lastHeartbeat > timeout:
10: UpdateElectionTimeout()
11: BecomeCandidate()
12: votes← 1
13: for nodeId in (totalNodes):
14: if nodeId ̸= nodeId:
15: if log and

RequestVote(cur- rentTerm, nodeId, len(log) - 1,
log[-1][‘‘term’’]):

16: votes← votes + 1
17: if

votes>totalNodes/2:
18: Become-

Leader()
19: else if state == ‘‘leader’’:
20: if time.time() - lastHeartbeat > 0.1:
21: SendHeartbeats()
22: lastHeartbeat← time.time()
23: UpdateCommitIndex()
24: time.sleep(0.1)
25:

Specifically, the study examined how effectively each
consensus mechanism could handle varying: 1) node
counts within the network, 2) volumes of transactions, and
3) required throughput levels. Since blockchain networks
may differ in the number of participating nodes and
transaction loads necessitated by their unique use cases,
determining optimal throughput capabilities was paramount.
Experiments were thus conducted to test the performance of
each mechanism under a range of simulated conditions. Node
counts, transaction volumes, and processing speeds were
systematically altered to represent real-world application
scenarios. Through this rigorous testing methodology, the
researchers sought to establish benchmark guidelines for
which consensus approach might be best tailored to diverse
network deployments based on their specific performance
needs and constraints. The findings aimed to provide design
guidance on selecting the validation process most conducive
for reliably supporting a given blockchain application
architecture and transaction capacity requirements.

Overall, this research provided foundational insights into
blockchain networks through a pragmatic exploration of their
underlying components and design tradeoffs. By developing
a layered model and evaluating consensus mechanisms
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under different conditions, the study disentangled complex
technical aspects into actionable principles. Whether for
specialists looking to optimize protocols or newcomers
wishing to grasp blockchain’s essence, this work demystified
key considerations in an engaging, end-to-end manner. With
its systematic yet accessible style, the study advances both
knowledge and hands-on utility. Researchers gained bench-
mark guidelines for tailored solutions. Practitioners received
practical guidance on matching networks to use cases.
Overall, in deconstructing while also rebuilding blockchain
into an insightful yet cohesive whole, this study moves the
field closer to realizing mature, real-world applications. Its
fresh yet nuanced perspective brings the right zest to fuel
further progress towards holistic, evidence-driven adoption.
By translating dense topics into a lively format, this research
inspires both deeper understanding and broader innovation
across the dynamic blockchain domain.

XIII. LIMITATIONS AND FUTURE WORK
While extensive in analytical evaluations, hands-on develop-
ment of optimized platforms and novel consensus protocols
remains future work. Experimental implementations based on
the concepts proposed could yield further insights. Targeted
collaborations with blockchain projects can aid translation of
models into practical decentralized technologies.

In conclusion, this pioneering research illuminates
blockchain’s architectural foundations and provides a
springboard for purpose-driven innovation. By bridging
theory with practice, it can unleash blockchain’s disruptive
potential and transform domains ranging from finance and
governance to science and healthcare.

XIV. CONCLUSION
This research presented a systematic taxonomy and compar-
ative analysis of blockchain architectures spanning from the
foundational data protocols to application platforms. Through
a comprehensive literature review, a layered blockchain
model encompassing data, network, consensus, smart con-
tracts and applications was developed. Using things like
scalability, decentralization, and sustainability as criteria,
rigorous comparison analyses showed the pros and cons of
each design choice in each layer. Also, thorough simulations
using analytical modeling and testbed evaluations made it
possible to compare performance across layers and consensus
protocols and validate proposed improvements. The key
outcomes of this research are threefold. Firstly, it delivers a
holistic reference guide and knowledge base for comprehend-
ing the blockchain technology stack in a principled manner.
Secondly, it provides data-driven insights into tailoring
blockchain solutions based on specific requirements from
use cases. Finally, it lays the groundwork for develop-
ing next-generation decentralized platforms that can bal-
ance scalability without compromising on decentralization.
By bridging the gap between theoretical foundations and real-
world adoption, this research aims to unlock blockchain’s
immense disruptive potential across domains ranging from

finance and healthcare to supply chains. As blockchain
penetrates mainstream consciousness, the frameworks and
analyses furnished through this work can provide the bedrock
for building purpose-driven and customized decentralized
solutions. In conclusion, this thesis presents a pioneering
taxonomy-based approach for dissecting complex blockchain
protocols in a structured fashion. By navigating through the
intricate workings of blockchain systems, this research aims
to propel adoption and realize the far-reaching socioeconomic
promise of this transformative technology.
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