
Received 29 March 2024, accepted 27 April 2024, date of publication 30 April 2024, date of current version 13 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3395390

Ultra-Sensitive Visible-IR Range Fiber Based
Plasmonic Sensor: A Finite-Element
Analysis and Deep Learning
Approach for RI Prediction
MOHAMMAD AL MAHFUZ 1,2, (Member, IEEE), SUMAIYA AFROJ3, AFIQUER RAHMAN 4,
MD. AZAD HOSSAIN 2, (Member, IEEE), MD. ANWAR HOSSAIN5, (Senior Member, IEEE),
AND MD SELIM HABIB 1, (Senior Member, IEEE)
1Department of Electrical Engineering and Computer Science, Florida Institute of Technology, Melbourne, FL 32901, USA
2Department of Electronics and Telecommunication Engineering, Chittagong University of Engineering and Technology, Chattogram 4349, Bangladesh
3Department of Biomedical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000, Bangladesh
4Department of Electronics and Telecommunication Engineering, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh
5Department of Electrical and Electronic Engineering, Bangladesh University of Business and Technology, Dhaka 1216, Bangladesh

Corresponding author: Md Selim Habib (mhabib@fit.edu)

ABSTRACT In this paper, a relatively simple and ultra-sensitive Photonic crystal fiber (PCF) based
surface plasmon resonance (SPR) sensor is proposed for detecting different analyte refractive indices (RIs)
ranging from 1.33 to 1.43 over a wide range of wavelength spectrum spanning 0.55 µm to 3.50 µm.
The comprehensive finite-element simulations indicate that it is possible to achieve remarkable sensing
performances such as wavelength sensitivity (WS) and figure of merit (FOM) as high as 123,000 nm/RIU
and 683 RIU−1, respectively, and extremely low value of wavelength resolution (WR) about 8.13 ×

10−7 RIU. A novel artificial neural network (ANN) model is proposed which helps to accurately predict the
RIs by carefully examining the simulation data. The mean square error (MSE) and prediction accuracy (R2)
values for the ANN model are found about 0.0097 and 0.9987, respectively, indicating the high prediction
capability of the proposed ANN model. Due to its exceptional sensitivity and precise detection capabilities,
the proposed sensor has the potential to serve as a viable option for sensing analyte RI. Additionally, the
sensor could be utilized for identifying cancerous cells and detecting urinary tract infections in humans.

INDEX TERMS Photonic crystal fiber, surface plasmon resonance, artificial neural network, sensor.

I. INTRODUCTION
Breakthrough research on surface plasmon resonance (SPR)
technology has been widely demonstrated in various lab-
on-chip devices, sensors, filters, and so on. Utilizing SPR
in optical sensing proves advantageous due to its effec-
tiveness, real-time detection capabilities, and user-friendly
operations [1]. SPR technology holds promise for diverse
applications such as food safety, security, medical testing,
medical diagnostics, and biomolecular analyte detection [2].
Importantly, SPR sensors are appealing due to their reliability,
efficiency, rapid response, effective light control capabilities,
and label-free sensing, contributing to their widespread
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acceptance [3]. However, traditional SPR sensors relying
on slot waveguide [4], fiber Bragg grating [5], and prism
coupling [6], tend to be costly and bulky. Overcoming these
limitations, optical fiber-based SPR sensors emerge as com-
pact and cost-effective alternatives [7]. The success rate of
bio-analyte sensing surpasses that of conventional methods,
covering a range of applications including the detection of
liquid analytes, gas, and cancer [8], [9], [10]. Plasmonic
biosensors offering high-sensitivity refractive index detection
have gained prominence. These encompass metal-based
propagating eigenwaves RI sensors [11], nanoparticle-based
localized surface plasmon resonance (LSPR) detectors [12],
fano resonance RI sensors [13], and hybrid plasmonic-
photonic sensors [14]. In contrast to conventional fiber optic
sensors, in recent years there has been growing interest
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in combining SPR technology with photonic crystal fiber
(PCF) for sensing applications owing to the design flexibility,
improved sensitivity, portability, lightweight construction,
remote sensing capabilities, high birefringence properties,
and single-mode guidance [15], [16]. The miniaturization of
the device is possible for PCF sensors due to its physical
dimensions [17] and guiding properties can also be controlled
by modifying the geometric parameters [18]. In PCF-based
plasmonic sensors, the coupling condition is greatly influ-
enced by the surrounding environment, with the RI being
a significant factor. Consequently, even slight alterations in
the surrounding RI can potentially modify the resonance
or coupling conditions. Therefore, detecting a shift in the
resonance peak allows for the straightforward identification
of an unknown analyte, as reported by Yang et al. [19].

In recent years, two types of PCF-based SPR sensing
approaches have been studied namely internal sensing [20]
and external sensing [21], [22], [23], [24]. In [20], the authors
studied an internal plasmonic sensor with dual channels,
involving a selective coating of metal around the air holes.
This approach adds complexity to the device fabrication
process, and the internal coating for both channels proves
to be a time-consuming procedure. The performance of the
sensor in [20] is comparatively low in which wavelength
sensitivity (WS) and figure of merit (FOM) reached about
11,000 nm/RIU and 204 RIU−1, respectively. In addition,
the external sensing approach can potentially surpass the
limitations of the internal sensing approach as the sensing
medium and metal layer both are employed at the outer
edge of the sensor and susceptible to the surrounding
environment. A dual-core PCF based plasmonic external
sensor was proposed by Mahfuz et al. [21], which shows
WS of 28,000 nm/RIU and FOM is about 2800 RIU−1.
Here, the FOM is high, however, the WS is comparatively
low. Recently, Srivastava and colleagues [22] numerically
reported an external micro-channel D-shaped PCF-SPR
sensor that explores WS of 67,000 nm/RIU and FOM of
279.16 RIU−1. The micro-channel sensor provides relatively
low FOM. Another intricate D-shaped SPR-PCF sensor was
proposed in [23] in which WS of 216,000 nm/RIU and
FOM of 1200 RIU−1 were obtained. These are outstanding
results, however, the fabrication of D-shape structure is
highly challenging and less practical since it requires precise
surface polishing. Besides, Sharif and Pakarzadeh [24]
proposed a circular PCF-SPR sensor for external sensing of
samples which exhibits WS of 13,800 nm/RIU and FOM
is about 470 RIU−1. The sensing performance falls below
the expected standard, and the range for sensing analyte
refractive index is restricted, spanning from 1.29 to 1.34.
The previous studies show either high WS and low FOM or
vice-versa, along with fabrication challenges making them
impractical for many real-world applications.

In our study, we propose a relatively simple and ultra-
sensitive PCF-based SPR sensor considering external sensing
technique which operates in a wide range of wavelengths
for refractive index variation in the outer environment.

FIGURE 1. (Top) 2D geometry of the proposed sensor. Geometrical
parameters are considered as below, two adjacent air-holes center to
center distance, Λ = 2.8 µm, large air hole diameter, dl = 2.52 µm,
medium air hole diameter, dm = 1.68 µm, small air hole diameter, ds =

0.56 µm, gold layer thickness, tg = 35 nm, and analyte layer thickness,
ta = 1.4 µm. (Bottom) 3D geometry of the proposed sensor.

The performance of the sensor is carried out in terms of
WS, WR, and FOM. In addition, a deep learning model is
suggested using the dataset obtained from simulation which
can successfully predict the analyte refractive indices. The
distinctive features of this study can be outlined as follows:
(i) the fiber design is simple and flexible as compatible with
various sample types including human urine and cancer cells,
(ii) practical implementation of the senor is feasible as it
utilizes only two hexagonal rings of air-holes employing
external sensing approach, also the successful integration
of FEM modeling with ANN architecture has real-time
decision-making capability, (iii) broad RI sensing range
covering the detection regime from visible to the infrared
spectrum spanning 0.55 µm to 3.50 µm is suitable for
diverse chemical, biomedical, and environmental monitoring,
and (iv) remarkable sensing performances including low
detection resolution is valuable for detecting trace amount
of analytes in bio-sensing applications.

II. FIBER GEOMETRY AND THEORETICAL BACKGROUND
Fig. 1 (top) shows the two-dimensional view of the proposed
PCF-based plasmonic RI sensor where the air-holes are
arranged in two hexagonal rings on a silica (SiO2) substrate.
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Two air-holes from the inner ring are omitted in the horizontal
direction and two air-holes from the outer ring in the same
direction are scaled down so that the incident electromagnetic
light can precisely excite the surface electrons. In the
orthogonal direction, two air holes from the outer ring are
scaled up which can assist to improve the performance of
the sensor in the considered direction. In order to simplify
the practical sensing approach, both the plasmonic material
and sensing region are integrated into the outer surface of the
fiber, serving as an external sensing layer. The fiber material
employed is fused silica, and the dielectric constants can be
derived from the Sellmeier equation, as outlined in [25].
Plasmonic materials play a vital role in the PCF-SPR

sensor, which is responsible for generating surface plasmon
polariton (SPP) waves in the fiber-dielectric interface.
Considering the characteristics of broad shift of resonance
valley, inertness, and longer stability in the environment, gold
(Au) is used as plasmonic material and the dielectric function
of gold is taken from the Drude-Lorentz Model [26]:

ϵAu = ϵ∞ −
ω2
D

ω(ω + jγD)
−

1ϵ�2
L

(ω2 − �2
L) + j0Lω

, (1)

where εAu = permittivity of Au and permittivity at high
frequency ε∞ = 5.9673. Other constants are taken from [26].
The sensing medium is placed at the external surface of
the fiber and the sensor characteristic is changed with the
changes of the outer environment. The target analyte can
be detected with the functionalization of the Au film by
varying the refractive index simultaneously. In 3D geometry
(Fig. 1 (bottom)) the core region of silica is surrounded by
capillary tube and maximum light will guide through the
core region and enable substantial interaction between the
core and metallic region to create SPP in the x-pol direction.
An analyte flow channel is placed at the outer surface of
the plasmonic material layer. When the analyte and ligand
mutually interact with each other, the effective refractive
index of the SPP-mode is expected to be varied resulting in a
wavelength shift of the signal.

III. PHASE MATCHING PROPERTIES AND EM FIELD
DISTRIBUTIONS
PCF-based SPR sensor working principle is based on guided
electromagnetic evanescent field with appropriately designed
core-cladding geometry. Free electrons stimulate from the
metallic surface upon arrival of propagated light guided
through the fiber core region. A surface plasmon wave
(SPW) is generated when the event of frequency matching
occurs. These SPWs are strongly sensitive to the surrounding
RIs. Local RIs can be detected by properly observing the
resonance or spectral wavelength variations [2]. Fig. 2 shows
the phase-matching properties for local analyte RI of 1.39.
It is evident from Fig. 2 that for the core-guided mode, the
imaginary value of the effectivemode index (violet) gradually
increases, whereas the real value of the effective-mode index
(red) gradually decreases with the increment of spectral

FIGURE 2. Phase matching properties for analyte RI of 1.39, where violet
and red line show imaginary and real effective mode index for
fundamental mode and broken light blue line indicates the SPP-mode,
respectively. Inset figures represent the mode-field profiles for 1⃝
core-mode at wavelength 0.67 µm and coupling of core-mode and
SPP-mode at 0.72 µm, and 2⃝ SPP-mode at 0.75 µm wavelength. The
color bar shows the normalized mode-field profiles in a linear scale. The
simulations are performed for Λ = 2.8 µm, dl = 2.52 µm, dm = 1.68 µm,
ds= 0.56 µm, tg = 35 nm, and ta = 1.4 µm in x–polarization direction.

wavelength. Besides, the real value of the effective-mode
index (broken light blue) of SPP-mode gradually decreases
and intersects with core-mode at a wavelength of 0.72 µm.
This is the phase-matching point or resonance wavelength
in which maximum energy transfers from the core-mode
to the SPP-mode. The inset of Fig. 2: 1⃝ shows the mode
field distributions of core-mode and the coupling between
core-mode and SPP-mode, whereas the inset of Fig. 2: 2⃝
represents the SPP-mode for x–polarization.

IV. SIMULATION THEORY AND SENSOR PERFORMANCE
ANALYSIS
The numerical simulations are performed through the
finite-element method (FEM). To accurately model the fiber
properties, a perfectly matched layer (PML)was incorporated
outside the fiber domain, as outlined in [27], [28], [29],
and [30]. Extremely fine mesh sizes are considered during
simulations. In order to get a better sensing response, the fiber
parameters are optimized by tuning a particular parameter,
while other parameters remain unchanged. Due to showing
the improved sensing response, the parameters are selected as
Λ = 2.8 µm, dl = 2.52 µm, dm = 1.68 µm, ds = 0.56 µm, tg
= 35 nm, and ta = 1.4µm. The proposed sensor performance
is carried out using the confinement loss (CL) characteristics
for various analytes. The CL was calculated using the
well-known equation as in [31]. The sensitivity of the
proposed plasmonic sensor is observed using the wavelength
interrogation method and the wavelength sensitivity (WS)
of the proposed plasmonic RI sensor is calculated using the
following equation [32]:

Sλ =
∆λpeak

1na
(nm/RIU), (2)

where 1λpeak and 1na indicate the wavelength shifting of
the resonance peak and the RI variation of the two adjacent
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FIGURE 3. Confinement Loss curve for various analyte RIs from 1.33 to
1.43 in the wavelength between 0.5 to 4 µm (visible to IR range) using
fiber geometrical parameters: Λ = 2.8 µm, dl = 2.52 µm, dm = 1.68 µm,
ds= 0.56 µm, tg = 35 nm, and ta = 1.4 µm in x–polarization direction.

analytes, respectively. To observe the detection capability of
the proposed sensor in the case of tiny analyte RIs variation,
sensor resolution is a valuable metric which can be obtained
from below equation [21]:

WR =
1na × 1λmin

1λpeak
(RIU), (3)

where 1na, 1λpeak, and 1λmin indicate the variation of two
adjacent tiny RIs, loss peak shifting and minimum resolution
of the detector, respectively. During the measurement of
sensor resolution external perturbation and instrumental noise
are not considered [21]. In determining the quantitative
performance of the sensor, it is crucial to compute the
figure of merit (FOM), as expressed in the following
equation [33]:

FOM =
Wavelegth sensitivity

FWHM
(RIU−1), (4)

where FWHM stands for full width at half maximum, and
high FOM indicates the better detection limit of the sensor.

In this study, the observation of the sensor’s performance
focuses solely on the x–polarization mode due to the stronger
coupling between core and SPP-mode. Fig. 3 illustrates
the CL spectra while varying the sample refractive indices
within the range of 1.33 to 1.43. According to Fig. 3,
CL curves growing and red-shifted simultaneously with the
increasing of analyte RIs. This phenomenon occurred due
to the RIs contrast reduction from core-mode to SPP-mode,
hence, evanescent electromagnetic light coupling through the
metal-dielectric interface efficiently increased and loss peak
experienced an upward trend. It can be seen from Fig. 3 that
the lowest loss peak value of 0.11832 dB/cm appeared for
RI of 1.33 at the wavelength of 0.58 µm and it reached the
highest peak value of 124.12 dB/cm at wavelength of 2.31µm
for RI of 1.43. The other CL peak values are found 0.15378,
0.19371, 0.25697, 0.32117, 0.43864, 0.60741, 0.86943,
1.3286, and 2.2584 dB/cm, respectively, for analyte RIs from
1.34 to 1.42 in the wavelength range between 0.59 and

TABLE 1. Details performance of the proposed RI sensor.

1.08 µm. Using Eq. (2) the minimum wavelength sensitivity
(WS) is obtained about 1000 nm/RIU for analyte RI of
1.33 and the maximum WS reached about 123,000 nm/RIU
for sample RI of 1.42. Besides, the minimum wavelength
resolution is measured about 8.13 × 10−7 RIU for analyte
RI of 1.42, which indicates that the proposed sensor is
capable of detecting very tiny changes of analyte RIs even
in the order of 10−7 scale and maximum FOM obtained
about 683 RIU−1 for analyte RI of 1.42 using Eqs. (3)
and (4), respectively. The performance of the proposed sensor
is briefly tabulated in Table 1. In this study, the detectable RI
range is 1.33 – 1.43 which span is significant for various cell
biology research and disease diagnoses [34]. Fig. 4 illustrates
that the proposed sensor can potentially detect the various
cancer-affected cells by observing the resonance valley shift
from the normal cell. The CL peaks appeared at 0.62, 0.64,
0.66, 0.68, 0.7, and 0.71 µm wavelength for normal cells
of basal (30-70%), HeLa (30-70%), Jurkat (30-70%), PC12
(30-70%), MDA-MB-231 (30-70%), and MCF 7 (30-70%),
respectively. However, when the cells are affected by skin
(80%), cervical (80%), blood (80%), adrenal glands (80%),
and breast (80%) cancers then the zenith peaks are moved
to the longer wavelength which are found at 0.68, 0.73,
0.72, 0.75, 0.78, and 0.79 µm with showing WS of 6000,
7000, 6000, 7000, 8000, and 8000 nm/RIU, respectively.
Importantly, the sensor exhibits low loss characteristics
(below 1 dB/cm), making it an excellent choice for detecting
various cancerous cells in the visible regime. Here, the
relevant RIs values are taken from Ref. [35].

For the further applications of the sensor, in this work,
we have figured out the sensing response in terms of human
urine disease detection as depicted in Fig. 5. From Fig. 5,
it is noticeable that the resonance valley is changed from its
normal position when it is affected by disease. For normal
urine (RI = 1.3464) the CL peak is found at 0.595 µm
wavelength and after being affected by disease it is shifted
to the shorter wavelength at 0.585 and 0.59 µm for acute and
moderate disease showing WS about 1000 and 500 nm/RIU,
respectively. In the case of above normal, it is shifted to the
longer wavelength of 0.6 µm, hence, the WS is 500 nm/RIU.
In this specific detection study, the loss peak remains below
0.2 dB/cm which is comparatively lower than the [39],
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FIGURE 4. Resonance peak shifting for six different biological cells and
the dotted curves indicate the cancer-affected cell whereas the smooth
curves represent normal cells.

FIGURE 5. Observation of resonance peak shifting due to human urine
infections. The RIs of normal human urine, moderate disease, acute
disease, and above normal are 1.3464, 1.3396, 1.337, and 1.3489,
respectively.

TABLE 2. Performance comparison with the reported PCF-based SPR
sensor.

hence it can be a good candidate for biochemical sensing
applications. For this analysis, the RIs values are taken
from the following [40]. To validate the numerical results

of the proposed sensor, the performance is benchmarked
with the published literature and tabulated in Table 2. The
schematic view of the experimental consideration for this
work can be carried out as outlined in [16] and [21].
The proposed two ring hexagonal lattice PCF based SPR
sensor can be practically implemented with the capillary
stacking or stack-and-draw fabrication technique [36] where
the air-holes can be realized with employing thicker wall
capillaries, and the missing air-holes can be realized with
using solid-rods. There are several methods exists to deposit
the outer plasmonic material (gold) such as wet-chemistry
deposition and thermal evaporation [41]. However, the major
limitation of these methods is excessive surface roughness
during deposition. On that perspective, to minimize the
surface roughness and to have a uniformly nano-layer
coating, chemical vapor deposition (CVD) and atomic layer
deposition (ALD) methods are highly accepted [21], [42],
[43]. In this study, fused silica is used as the background
material, which has an ultra-low thermal sensitivity. The
RIs variation with temperature for fused silica is as low as
1.28 × 10−5/oc. Therefore, the temperature effect can be
ignored in normal environments without severe temperature
variations.

V. ANN MODEL FOR PREDICTION OF RIS WITH DATA
OBTAINED FROM THE SENSOR
This section introduces an artificial neural network (ANN)
model integrated at the termination of the spectrum analyzer
within the practical configuration of the sensor. The primary
objective is to enhance the precision of the bio-analyte
RI prediction technique subsequent to the acquisition of
resonance wavelength (λr) and peak confinement loss. The
ANN structure is displayed in Fig. 6, configured to take
(λr) and loss as inputs (i) and yield the corresponding
RI as output (o). The distinct advantage of employing
this model lies in its ability to significantly reduce human
intervention in RI detection. The dataset for model training
encompasses a spectrum of RI values ranging from 1.33 to
1.43, strategically chosen to reflect diverse bio-samples. For
each RI, data points consist of resonance wavelength, four
neighboring wavelengths, and corresponding confinement
losses, ensuring resilience against fabrication errors leading
to deviations in resonance wavelength. The input features
and the output target are extracted, and in MaxScaler [44]
is applied to normalize both input and output variables.
The dataset is partitioned into a 7:3 ratio for training and
validation purposes. The neural network model is constructed
using the Sequential API from Keras [45]. It consists of
an input layer with 2 nodes corresponding to the number
of features, followed by three dense layers with 512, 32,
and 160 nodes, respectively, and varying activation functions
(swish [46] and relu [47]). Each hidden layer in a neural
network uses activation functions to conduct a weighted sum
or nonlinear processing on the values received from the prior
layer. The output layer receives the updated value from the
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FIGURE 6. Structure of the neural network consisting of 3 hidden layers
with different numbers of neurons in each layer. The input layer consists
of two nodes: resonance wavelength (λr) and confinement loss. The
output layer has one node: refractive index (RI). The mechanism of the
activation function at each node is depicted in the smaller block.

TABLE 3. Inputs and predicted output from the neural network and their
corresponding absolute percentage error.

last concealed layer. Stochastic Gradient Descent (SGD),
as outlined by Xu et al. [48], is critical in maximizing all
parameters via the connections made in the feed-forward
process:

weight′ = weight − lr ·
∂loss(Y , Ŷ )

∂weight
. (5)

bias′ = bias − lr ·
∂loss(Y , Ŷ )

∂bias
. (6)

In this context, the learning rate (lr) is an important
component. Neurons undergo nonlinear transformations via
the activation function, as described by Leshno et al.
[49]. Because of this property, ANNs can approximate any
desired function. In our method, we chose a very complex
neural network rather than the traditional ANN topologies
commonly used for regression problems. The complexity was
added to improve prediction accuracy.

Notably, the last layer is made up of a single node with
a linear activation function, making it an excellent choice
for regression-oriented applications. All the hyperparameters

FIGURE 7. MSE during the training process against each epoch. The loss
function stabilizes reaching the value of 0.0097 at around 80 epochs. The
violet dot represents the training loss and the validation loss is depicted
by green dot.

FIGURE 8. Actual RI vs predicted RI demonstrating the predictability of
the model. Predicted RIs are marked with black markers and the blue line
represents the actual RI. The predicted RIs do not deviate much from the
actual RI for inputs consisting of resonance wavelength and magnitude of
confinement loss in the training range.

for the ANN are tuned based on trial and error method. The
model is compiled using the Nadam [50] optimizer with
a specified learning rate and Mean squared error (MSE)
as the loss function. As mentioned in [51], the goal of
this adjustment procedure is to reduce the MSE between
the expected and actual output values. Formulating a loss
function specifically for the regression problem is as follows:

MSE =
1
n

n∑
i=0

(yi − ŷi)2, (7)

where n is the number of data points and yi and ŷi is the
actual and predicted result respectively. Early stopping is
implemented with a patience of 100 epochs to prevent over-
fitting. Training and validation loss over epochs, providing
a visual representation of the model’s learning progress is
evident in Fig. 7. The MSE for the test dataset is obtained to
be 0.0097. Fig. 8 presents the predicted RIs compared to the
actual values, underscoring the regression model’s accuracy.
The R2 value for the predicted result obtained is 0.9987.
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Some of the prediction results and their corresponding
absolute percentage error (APE) are tabulated in Table 3.
The testing points used were completely new to the neural
network and were not part of the training datasets. Because
the network is tested on data not encountered during the
learning phase, this method ensures an unbiased evaluation of
its prediction skills. Since our study mainly focused on finite-
element modeling, we have introduced a novel ANN model
to accurately predict the RIs of various analytes. According
to Table 3, the ANN model demonstrates a significant
potential for predicting the RIs of different cancerous cells.
This novel approach paves the way for detecting cancerous
cells precisely with high sensitivity, even in the absence of
experimental validations.

VI. CONCLUSION
In this study, we proposed, simulated, and analyzed an
ultra-sensitive PCF-based SPR RI sensor that operates
across the visible to infrared spectrum, ranging from
0.55 µm to 3.50 µm. The sensor achieved outstanding
performancemetrics, with amaximumwavelength sensitivity
of 123,000 nm/RIU, a minimum wavelength resolution of
8.13×10−7 RIU, and a figure of merit (FOM) of 683 RIU−1.
It effectively covers a RI range from 1.33 to 1.43, allowing
for the detection of tiny changes in sample analyte RI on the
order of 10−7. This capability enables the sensor to identify
a wide array of substances, from various cancer cells to
biomolecules and biochemicals, making it a versatile tool for
optical sensing applications. Furthermore, the integration of a
novel deep learning technique improved the sensor’s accuracy
and reduced losses, paving the way for innovative solutions in
a range of applications, including lab-on-chip technologies.
This study demonstrates the sensor’s potential to significantly
impact the field of optical sensing due to its high sensitivity
and broad detection range.
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