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ABSTRACT This paper introduces a method for trajectory selection using large-scale pre-trained language
models, aiming to improve sample and training efficiency in reinforcement learning. By using a carefully
designed prompt, the large language model can fully utilize its prior knowledge, effectively understanding
and assessing the quality of trajectories produced through agent-environment interactions in reinforcement
learning. This approach allows selecting more informative trajectories for the current agent’s learning.
Unlike other works that indirectly improve reinforcement learning training efficiency by generating actions
or decisions through large language models, our method employs these models to choose high-quality
trajectories, thereby enhancing sample efficiency in reinforcement learning more directly. The approach was
evaluated across multiple benchmark tasks in OpenAI’s Gym and RLcard. The results indicate a significant
reduction in the number of environment interactions, and a 37% increase in the average reward compared to
the original method.

INDEX TERMS Reinforcement learning, large language models, trajectory selection, sampling efficiency.

I. INTRODUCTION
The field of artificial intelligence has recently undergone
a significant technological revolution, particularly in the
subfields of reinforcement learning [1] and large-scale pre-
trained language models [2], where we have witnessed a
series of notable and innovative breakthroughs. Reinforce-
ment learning, as a framework that simulates intelligent
agents interacting with an environment to achieve certain
goals, has demonstrated tremendous potential and adapt-
ability in various tasks. DeepMind’s AlphaGo [3] has
successfully defeated the world champion of Go, while its
advanced successor, AlphaZero [4], has surpassed human
capabilities not only in Go but also in chess and shogi.
Meanwhile, OpenAI’s Dactyl [5], a robot hand developed
through reinforcement learning, demonstrates proficiency in
flexibly handling objects, indicating potential for industrial
automation and medical surgery applications. Furthermore,
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DeepMind’s AlphaFold [6], has achieved success in protein
folding prediction, paving the way for potential applications
of reinforcement learning in the biomedical field. Addi-
tionally, Tesla’s autonomous driving technology, to some
extent, employs reinforcement learning, enabling vehicles
to navigate autonomously in complex traffic conditions [7].
In the financial field, reinforcement learning has been used
to optimize trading strategies and asset allocation, aiding
investors in achieving higher returns. However, compared to
its immense potential, a major challenge of reinforcement
learning is its high sampling cost. In certain tasks, training
a stable and effective strategy may require millions or even
billions of environment interactions [8]. This high demand
for samples makes many practical applications impracti-
cal, especially when each environmental interaction requires
significant time or cost. On the other hand, large-scale
pre-trained language models are redefining our understand-
ing of natural language processing. Models like BERT [9],
GPT [10], and T5 [11], pre-trained on vast amounts of text
data, have demonstrated performance surpassing humans in
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various tasks. Their success lies not only in the scale of the
models but also in their ability to capture subtle language
nuances, implicit semantics, and complex dependencies [12].
However, the true power of these models is not limited to
language processing tasks. In fact, researchers have begun
exploring how to apply these models in other areas, such as
computer vision, sound processing, and our focus: reinforce-
ment learning.

Combining reinforcement learning with large-scale pre-
trained language models is a natural extension of related
research. In past studies, large language models have typi-
cally been used as decision-makers for agents or involved
in the design of their reward functions [13]. Although this
approach has achieved certain success in some applica-
tions, it remains largely superficial. Treating languagemodels
merely as decision tools or designers of reward functions
may not fully tap into their potential. For instance, when
language models are used solely as decision tools, their
immense parameters and complexity can lead to increased
computational costs instead of genuinely improving learning
efficiency [14]. On the other hand, when used for design-
ing rewards, they may lead to instability in the reward
signal, affecting the stability of learning [15]. Therefore,
although these preliminary attempts have provided valuable
insights into combining reinforcement learning with large
language models, many unresolved issues and challenges
remain [16].
This paper aims to explore a direct method of com-

bining large language models with reinforcement learning.
We propose a method of trajectory selection using large-
scale pre-trained language models. Unlike previous methods,
our approach does not simply use language models as deci-
sion tools but allows them to assess the quality of different
trajectories and select more enlightening trajectories for the
agents to learn from. The purpose of this method is to directly
utilize the knowledge and generalization capabilities of large
language models, thereby achieving higher sample efficiency
in reinforcement learning.

The contributions and innovations of this article are primar-
ily in the following aspects. Firstly, we innovatively utilized
large-scale pre-trained language models to directly analyze
and evaluate the quality of different trajectories. As illustrated
in Figure 1, after simply changing the sequence number of
trajectories, the large language model can correctly modify
the response number and choose more insightful and effi-
cient trajectories for the agent, facilitating faster convergence.
Secondly, we diligently constructed a prompt, after multiple
attempts, that allows the large-scale pre-trained model to
efficiently use its existing knowledge to better assist the agent
in training. Thirdly, to better leverage the benefits of the
approach presented in this research, we have developed a
training paradigm based on the selection method of reinforce-
ment learning trajectories using large languagemodels. To the
best of our knowledge, we are the first researchers to explore
the direct application of large language models in selecting
superior reinforcement learning trajectories.

FIGURE 1. The large language model identifying which trajectory is better.

The remainder of this paper is organized as follows:
Section II discusses the related work relevant to our research,
providing an overview of the existing methodologies and
highlighting the gaps that our study aims to fill. Section III
provides a detailed description of our proposed methodol-
ogy, explaining the rationale behind our approach and how
it addresses the identified gaps. Section IV describes our
experimental design and results, presenting a comprehen-
sive analysis of our findings and their implications. Finally,
in Section V, we conclude our research, highlighting the
implications of our findings and outlining potential directions
for future research.

II. RELATED WORK
Previous reinforcement learning studies primarily focused
on using human evaluations or rankings to guide algo-
rithmic strategies. A prominent example is the work of
Akrour et al. [17], who investigated how human feedback
could optimize the performance of agents. Similarly, Sut-
ton et al. [18] conducted research in this domain. These
studies commonly assumed a direct, linear relationship
between the reward function and manually designed features,
which is practical for certain tasks but becomes less effective
for more complex scenarios, such as physical tasks with a
high degree of freedom or Atari games that lack hand-crafted
features [20].

Furthermore, a novel approach explored in later studies,
like those by Fürnkranz et al. [21] and Akrour et al. [22],
involved shifting the focus from traditional, absolute reward
values to learning based on subjective preferences. This
method addresses a fundamental challenge in reinforcement
learning: making decisions in scenarios where quantifying
rewards is difficult or subjective. Instead of relying on precise
numerical rewards, this approach uses human preferences or
choices to guide the learning process. It involves comparing
different outcomes or actions and selecting based on preferred
choices, rather than assigning a fixed value to each action.
However, one of the challenges with this approach is the
bias in human-evaluated trajectories, as they may not always
provide an unbiased or stable basis for assessment.

Early work combining reinforcement learning with natural
language processing typically involved using large language
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models to transfer real world experiences to agents. For
example, the vector representation of a word like ‘scorpion’
should be similar to that of ‘spider’, and if the corresponding
words appear in similar contexts, this frequency of context
can benefit the agent in tasks like ‘avoiding scorpions’, where
it would also avoid spiders due to the closeness of their word
vectors [23], [24], [25].

With the rise of large language models like GPT, com-
bining them with reinforcement learning has become more
intriguing. A straightforward approach involves giving com-
mands in everyday language to large language models.
These models then interpret the instructions, converting them
into a format that agents can use for exploration. Mir-
chandani et al. [27] rewarded agents after completing tasks
meaningful to humans, such as ‘picking up a key’, and grad-
ually built a dataset to learn to associate high-level commands
with low-level descriptions. Tam et al. [26] and Mu et al. [28]
used language or visual language models to uncover and
interpret new scenarios in their environment. For example,
in a simulated environment where an agent is exploring a
room, a languagemodelmight help the agent recognize a state
like a ‘closed door’ based on language descriptions. Then,
using this information, the agent can be instructed to find a
key to open the door, thereby earning a reward. This process
represents a significant advancement in enabling agents to
understand and react to complex and evolving environments
based on semantic cues.

Text knowledge has been proven to enhance the gener-
alizability of reinforcement learning through environmental
descriptions or language instructions [29], [30], [31]. There-
fore, large language models are often combined with agent
decision-making, usually introducing the text knowledge of
large language models to improve agent training and gener-
alization [32]. In cases of vast state spaces, large language
models are used to directly make decisions for agents [33].
Unlike all previous research, in this paper, we focus on using
large language models for trajectory selection to enhance the
training speed of reinforcement learning agents.

Concurrently, recent research has begun to focus on the
issue of consensus control within multi-agent systems. For
instance, the study ‘Robust adaptive event-triggered fault-
tolerant consensus control of multiagent systems with a
positive minimum inter-event time’ proposed a fully dis-
tributed, robust event-triggered consensus control strategy
that deals with disturbances and faults in multi-agent systems
through the introduction of adaptive control coefficients and
open-loop estimation [38]. Another study introduced a dis-
tributed dynamic event-triggered consensus control strategy
that ensures a positive lower bound on inter-event times,
thereby avoiding Zeno behavior, by introducing triggering
rules with internal dynamic variables [39].
These methodologies provide a fresh perspective on our

problem of achieving efficient reinforcement learning in
multi-agent systems. Although these studies primarily focus
on consensus control, their approach to handling system
disturbances, fault tolerance, and communication efficiency

bears significant resemblance to our research. Our method
can also be applied in multi-agent systems, using large
pre-trained language models to select more informative tra-
jectories, thereby, improving sample efficiency and training
speed. However, further research and experimental validation
might be required to determine how to apply our methodmost
effectively to multi-agent systems and use large pre-trained
language models for evaluating and selecting trajectories.
We look forward to further exploring this direction in future
work.

III. EXPERIMENTAL DESIGN AND METHODOLOGY
A. EXPERIMENTS SETUP
In the previous sections, we discussed the work related to
our research. In this section, we will detail our experimental
design and methodology. To validate the effectiveness and
generalizability of the method proposed in this paper, we per-
formed experiments in four different reinforcement learning
environments: Cartpole [34], ClifRoaming, Blackjack [35],
and Leduc-Holdem. These experiments aimed to evaluate
whether feedback based on a large language model (LLM)
could enhance the learning efficiency of agents in different
tasks.

1) BLACKJACK (RLCard)
This is a reinforcement learning version of the classic card
game ’21’. The goal of the agent is to draw cards to get
as close to 21 points as possible without exceeding it. The
environment simulates a game against the dealer, where both
the dealer and the player can choose to stand or continue
drawing cards.

2) LEDUC-HOLDEM (RLCard)
Leduc-Holdem is a simplified version of poker, often used to
test game theory algorithms. The game involves two rounds
of betting, where players need to formulate strategies based
on the cards in their hands and the community cards, with the
goal of maximizing their winnings.

3) ClifRoaming (OpenAI Gym)
In this task, the agent’s goal is tomove from a starting position
to a target location while avoiding falling off a cliff. Each step
taken incurs a −1 reward and falling into the cliff results in a
larger negative reward.

4) CARTPOLE (OpenAI Gym)
This is a classic reinforcement learning task. The agent’s goal
is to control a moving cart so that the pole on top remains
upright. Each time the pole is kept upright, a reward is given,
and the experiment ends when the pole deviates too far from
the vertical position or the cart moves out of bounds.

In all environments, we chose cumulative return as the
primary evaluation metric. For comparison, we selected
different benchmark algorithms for different environments,
as detailed in Table 1. TheDQN-basedmethodwas chosen for
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Cartpole, Blackjack, and Leduc-Holdem, as it is suitable for
problems with larger state spaces or continuous states, while
Q-learning was selected for ClifRoaming. We present the
environmental parameters for each setting using the bench-
mark methods in Table 2.

TABLE 1. Benchmark models for each environments.

5) Q-LEARNING [37]
This is a classic value-based reinforcement learning
algorithm. It learns a policy by estimating an action-value
function, which provides the expected total return for each
state-action pair. By continuously updating this Q function,
Q-learning can find an approximately optimal policy. The
core update rule of Q-learning is:

Q (s, a)← Q (s, a)+ α

(
r + γ max

a′
Q

(
s′, a′

)
− Q (s, a)

)
(1)

where: a is the learning rate; r is the reward obtained after
taking action a from state s; γ is the discount factor; and s′ is
the new state reached after taking action a.

6) DQN (DEEP Q-NETWORK) [36]
DQN is a deep learning version of Q-learning. Traditional
Q-learning uses a table to store Q values, but this method
becomes impractical when the state and action spaces are
large. DQN addresses this issue by using deep neural net-
works to approximate the Q function:

Q (s, a; θ) ≈ Q∗ (s, a) (2)

where: θ represents the parameters of the neural network.
Q∗ is the true value of the Q function.
To increase the stability of learning, DQN introduces two

main techniques: experience replay and target networks.
Experience replay stores a series of past experiences and
samples from them randomly for training. This breaks the
temporal correlation between data and enhances stability. The
target network is used to fix the update of the target Q values,
preventing oscillations during the learning process.

These two algorithms, known for their widespread appli-
cation in diverse reinforcement learning tasks, have consis-
tently demonstrated effectiveness and stability. In our study,
we selectively implemented Q-Learning in ClifRoaming and
DQN in others, based on the specific requirements of each
scenario.

B. EXPERIMENTAL PROCEDURE
This study proposes a strategy that effectively combines
the strengths of reinforcement learning and large language
models (LLMs). Specifically, this method initially collects
trajectories from the environment and then employs LLM
to evaluate and select preferable trajectories, optimizing the
agent’s learning efficiency. The algorithmic process of this
strategy is illustrated in Algorithm 1 and Figure 2.

Algorithm 1 Optimize Agent With LLM Feedback
Require:agent, environment, LLM, number_of_iterations
1: Initialize agent with random parameters
2: for i = 1 to number_of_iterations do
3: trajectories← Interact (agent, environment)
4: better_trajectory←AskLLM(LLM, trajectories)
5: Train (agent, better_trajectory, trajectories)
6: end for
7: returnagent

In this process, the Interact (agent, environment) function
allows the agent interacts with a specific environment to
collect behavioral trajectories. This function is implemented
as follows:

1. The agent, initialized with random parameters, interacts
with the environment for a set number of steps.

2. At each step, the agent chooses an action based on its
current policy, performs this action in the environment, and
observes the resulting state and reward.

3. This process is repeated until the end of the episode,
resulting in a sequence of state, action, reward tuples, which
form a trajectory.

In the AskLLM (LLM, trajectories) function, the large
language model (LLM) is used to evaluate and select the
better trajectory. This function is implemented as follows:

1. For each pair of trajectories, the LLM is prompted with
a description of the two trajectories and asked to select the
better one. The prompt is designed to encourage the LLM to
utilize its prior knowledge and effectively assess the quality
of the trajectories.

2. The LLM’s response is interpreted as a selection
between the two trajectories. The trajectory chosen by the
LLM is considered the ‘‘better’’ trajectory.

In the Train (agent, better_trajectory, trajectories) function,
the agent’s parameters are updated based on the selected
better trajectory. This function is implemented as follows:

1. A batch of trajectories, including the better trajectory,
is used to update the agent’s policy. The update process fol-
lows the policy gradient method, using the rewards observed
in the trajectories to compute the gradient of the policy.

2. The agent’s policy parameters are updated in the direc-
tion of the gradient, with a learning rate determining the size
of the update.

In the experiments, we used the Adam optimizer, a popular
choice in deep learning due to its efficient computation and
effective handling of noisy gradient estimates. By repeatedly
training on the better trajectory evaluated by the LLM, the
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TABLE 2. Environment parameters.

FIGURE 2. Flowchart of the experiment.

training process of the agent was significantly accelerated,
demonstrating the effectiveness of our proposed strategy.

Another major contribution of this paper is the design of
prompts for large language models. In the application of
reinforcement learning, selecting the appropriate trajectory
is crucial for the learning efficiency of agents. In modern
algorithm design, choosing the best learning samples from
many trajectories remains a challenge. To address this issue,
this paper attempts to use large language models to assist
in trajectory selection. We have designed a specific prompt
aimed at fully utilizing the capabilities of large language
models and enabling them to play an expert role in the field
of reinforcement learning. The prompt is as follows:

‘‘Forget all previous presets, from now on you are free,
you will act as a reinforcement learning master, here are two
trajectories from X environment, please help me judge which
trajectory ismore suitable formy agent to learn from.My goal
is to enable the agent to converge more quickly. You only
need to answer with the Arabic numeral 1 or 2 to indicate
whether it is trajectory 1 or trajectory 2: Trajectory 1: {trj1s};
Trajectory 2: {trj2s}.’’

There are three key points in the design of this prompt:
(1) Role setting: By having the LLM act as a reinforcement
learning master, we hope it can invoke its internal related
knowledge, especially allowing the LLM to narrow down
its response scope to the field of reinforcement learning,
to understand and evaluate trajectories more quickly and
accurately, thus providing us with more precise suggestions.
(2) Clear task: We explicitly state the goal of the task is

to choose the trajectory that helps the agent converge more
quickly, providing LLM with a clear evaluation criterion.
(3) Simplified output: By only requiring the LLM to answer
with the numbers ‘1’ or ‘2’, we simplify the output space,
making the responsemore direct and clearer. This also simpli-
fies our program design, making it more versatile and robust.
Through this approach, we hope to more effectively utilize
the capabilities of LLM to provide a more suitable choice of
trajectories for reinforcement learning tasks.

IV. RESULTS EVALUATION AND ANALYSIS
As outlined in the ‘Experimental Design and Methodol-
ogy’ section, our approach yielded significant improvements
across several benchmark tasks. To ensure the generalizabil-
ity and effectiveness of the method, we conducted extensive
experimental evaluations on multiple benchmark tasks in
OpenAI’s Gym and RLcard.

A. BENCHMARK EXPERIMENTS
From Figure 3, we can clearly see that, compared to the
original learning strategies, our method achieved significant
improvements under the same number of training steps.
By combining Figure 3 and Table 3, we can observe the
following:

1) PERFORMANCE IMPROVEMENT
In all test environments, the strategy integrating LLM
feedback exhibited better performance than the benchmark
algorithms. Specifically, the strategy using LLM for trajec-
tory selection showed about a 26% performance increase in
the average return metric in the Blackjack task compared
to DQN; in the ClifRoaming task, there was about a 30%
improvement over Q-learning, and in the Leduc-Holdem task,
there was a 15% increase. Notably, in the Cartpole task,
we achieved a remarkable 79% increase in the average return
metric, even reaching the environment’s maximum return in
the 20th episode.

2) SAMPLE EFFICIENCY
Since LLM can effectively evaluate and select the more
enlightening trajectories, agents can learn effective strate-
gies more quickly. This means our method is more efficient
in sample collection, thereby speeding up the training
process.
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FIGURE 3. Comparison of benchmark experiments.

TABLE 3. Comparison of benchmark experimental metrics.

3) STABILITY
Although in some tasks, the benchmark algorithms showed
faster learning speeds in the initial phase, the method com-
bined with LLM proved to be more stable over long-term
training. This also demonstrates that LLM’s ability to evalu-
ate trajectories provides effective guidance for reinforcement
learning agents.

4) ADAPTABILITY
Our method not only performed excellently in traditional
tasks but alsowas successfully applied tomore complex game
theory tasks, such as Leduc-Holdem. This further validates
the broad applicability of the method.

In summary, trajectory selection combining large language
models provides an effective and efficient tool for rein-
forcement learning. By effectively evaluating and selecting
trajectories, our method achieves higher performance, bet-
ter sample efficiency, and greater stability. Moreover, the
experimental results also indicate that this method has broad
adaptability and can be applied to various reinforcement
learning tasks.

B. ABLATION EXPERIMENTS
To gain a deeper understanding of the effectiveness of our
proposed method, we conducted a series of ablation experi-
ments. In these experiments, we removed themodel’s reliance
on LLM and instead used random trajectories for training the
agent, observing the results to analyze the effectiveness of the
improvements. The results, as shown in Figure 4 and Table 4,
indicate that the improved parts in the ablation experiments
have a significant impact on performance.

1) TASK PERFORMANCE ANALYSIS
Firstly, we observed significant differences between our
method and the ablated version in most tasks (BlackJack,
Leduc-Holdem, CliffRoaming, Cartpole). In the Black-Jack
task, our method outperformed the ablated version in average
rewards and exhibited lower reward variability. This suggests
that the introduced components indeed enhance the model’s
stability and performance. For Leduc-Holdem, our method
surpassed the ablated version not only in final rewards but
also in reduced reward variability, further verifying the supe-
riority of our approach. In the CliffRoaming task, the ablated
experiment did not converge for a long time, while our
method achieved significant convergence in a short period,
indicating that the use of LLM significantly enhances con-
vergence speed and model performance in more complex
tasks; and in the Cartpole task, our method significantly
outperformed the ablated version, indicating its efficiency in
such tasks.

2) COMPREHENSIVE PERFORMANCE DISCUSSION
From the comparison of these four tasks, we can conclude that
the introduced components have significant implications for
performance improvement. Our method demonstrates better
performance and stability, not just in a single task but across
various types of tasks.

3) COMPARATIVE CHART ANALYSIS
Observing the charts above, we can see that in most cases,
there is a clear gap between the curves of our method and the
ablated version. This further illustrates that the components
we introduced play a key role in enhancing performance and
stability.
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FIGURE 4. Comparison of benchmark experiments.

TABLE 4. Performance metrics comparison for ablation experiments.

Comparing and analyzing the results of the ablation exper-
iments leads to the following conclusions: Our proposed
method demonstrates good performance and stability across
various tasks. Compared to the ablated version, our method
shows significant improvements in most metrics. This vali-
dates the critical and important role of the components we
introduced. It is evident that our method outperforms the
ablation method in all environments, concretely proving that
the large language model is not randomly answering any
trajectory number but understands the environment and tra-
jectories, then compares two trajectories to provide one that
better guides the agent towards convergence.

V. CONCLUSION
This study successfully integrates large-scale pre-trained lan-
guage models (LLMs) with reinforcement learning, offering
a novel and straightforward trajectory selection strategy that
significantly enhances sampling efficiency. The LLM used in
our research is based on the ChatGPT model. It has 175 bil-
lion parameters and is trained on a diverse range of internet
text. However, we should note that the specific choice of LLM
can be adjusted based on the requirements of the task at hand,
and it’s not limited to ChatGPT. Other LLMs such as BERT
or Transformer models can also be used depending on the
specific requirements of the task.

The LLM was configured to evaluate and select trajec-
tories based on a carefully designed prompt. The prompt
was optimized through several iterations to ensure that it
effectively leverages the LLM’s ability to understand and
evaluate trajectories. The LLM’s configuration and prompt
design are crucial aspects of our methodology, as they enable
the LLM to effectively utilize its prior knowledge to assess the

quality of trajectories and select the most informative ones for
the reinforcement learning agent.

Through experimental comparisons in multiple environ-
ments, this method achieved up to a 79% improvement
compared to benchmark tasks. Its simplicity and convenience
allow it to be plug-and-play in most reinforcement learning
tasks.

We posit that there are two primary reasons why the trajec-
tories selected by the LLM expedite the learning efficiency
of the model. Firstly, the Large Language Model compre-
hends the corresponding environment, enabling it to select the
trajectory that is most informative within this environment.
Secondly, certain specific time steps in the environment have
a significant impact on the reward. The Large Language
Model is capable of accurately identifying these impactful
trajectories.

Compared to traditional approach of manually selecting
trajectories, the strategy that integrates LLMs exhibits unpar-
alleled advantages in trajectory selection. This not only
greatly simplifies the training process but also enhances the
model’s generalizability and sample efficiency. It is note-
worthy that in the training of reinforcement learning, most
trajectories tend to offer little benefit to the model’s con-
vergence, while only a few can provide clear and correct
guidance.

However, while our method effectively selects informative
trajectories, there’s a risk that it might lead to overfitting on
these specific sequences of actions and rewards. This could
result in a model that performs exceptionally well on the
selected trajectories but lacks the ability to generalize to new
or unseen scenarios within the same environment. This is an
area we plan to investigate further in future work.
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Despite the satisfactory results achieved in various test-
ing environments, our method still faces some challenges.
Firstly, as our strategy relies on the non-open-source model,
this may limit its application in a broader range of research
fields. Additionally, using LLMs for trajectory selection
may be influenced by the training data of LLMs, thereby
introducing a certain degree of bias. Also, since most
LLMs have context length limitations, the model may
not be suitable in environments with particularly long
trajectories.

To address these issues, we are considering various
approaches. On one hand, we can look for or train other
open-source large language models to better adapt to the
specific needs of reinforcement learning. On the other hand,
we plan to conduct an in-depth analysis of the internal work-
ings of LLMs to better understand their behavior in trajectory
selection. Furthermore, we plan to extend the context length
of LLMs through technical means to accommodate longer
trajectories.

Looking to the future, we firmly believe that combining
LLMs with reinforcement learning has immense research
potential. We plan to further study how to optimize the
training data of large language models to perform better in
reinforcement learning tasks. Additionally, we look forward
to collaborating with other researchers to explore and expand
the application scope of this method, aiming to achieve better
performance in more practical application scenarios.
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