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ABSTRACT Cybersecurity is a vital technology and measures intended to protect networks, computers,
information, and programs from threats and illegal access, modification, or damage. A security model covers
a network and a computer safety method. Each system has antivirus software, firewalls, and an intrusion
detection system (IDS). IDS helps in discovering and identifying illegal system behavior such as usage,
copying, alteration, and damage. By estimating network traffic anomalies and patterns, deep learning (DL)
models can enhance the detection abilities of IDS when compared to traditional rule-based methods. These
models learn complex representations from data, authorizing them to recognize subtle and developing attack
patterns. Techniques like recurrent neural network (RNN) and convolutional neural network (CNN) can
be applied to progress consecutive or spatial features in network data, correspondingly. This manuscript
empowers Cybersecurity by utilizing an Enhanced Rat SwarmOptimizer with a Deep Stack-Based Ensemble
Learning (ERSO-DSEL) model. The ERSO-DSEL approach leverages feature selection (FS) with EL
strategies to boost cybersecurity. In the ERSO-DSEL system, Z-score normalization is employed to measure
the input data. Besides, an improved equilibrium optimizer (IEO) based FS approach is applied to choose a set
of features. For cyberattack recognition, the ERSO-DSBEL approach uses the DSEL approach comprising
three models namely deep neural network (DNN), long short-term memory (LSTM), and bidirectional
LSTM (Bi-LSTM). Furthermore, the hyperparameter selection of these DL models takes place using the
ERSO system. The solution result of the ERSO-DSBEL model is executed on a benchmark IDS database.
A wide-contrast study reported that the ERSO-DSBEL model accomplishes an enhanced accuracy outcome
of 99.67% over other models of cybersecurity.

INDEX TERMS Cybersecurity, intrusion detection systems, ensemble learning, equilibrium optimizer,
hyperparameter tuning.

I. INTRODUCTION
In the present scenario, the rise in the occurrence of the
network has set severe issues linked to cybersecurity. The
existence of novel smart network technology needs novel
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models of growth in cybersecurity [1]. In defense of crucial
structures from threats and illegal access, cybersecurity is
very significant. Cybersecurity contains numerous processes
and technologies. Security of network, information, appli-
cation, operational, end-user education, disaster recovery,
etc. is a few classes of cybersecurity [2]. Cybersecurity
threats pose a few of the most severe national and financial
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safety challenges. Cyberattacks are nothing but a war without
any weapons but most terrible and malicious foremost to
revealing business and private information, disturbing crit-
ical actions, nonstop exposures, and illegitimate access to
mechanisms and software, so they impose high expenses on
the country’s financial [3]. Cybersecurity is a constant issue
for many reputed businesses like retail stores, banks, and
crucial organizations like SCADA, power grids, etc. While
several attack detection methods are available currently the
fast growth in attacks and the development of hacking abili-
ties need more evolution of novel recognition methods very
obligatory.

IDS are a safety line of a system [4]. IDS can be used along-
side other safety methods like authentication tools, access
control, and encryption models to protect the systems against
cyberattacks in a better way. Utilizing patterns of specific
rules define an exact attack; IDS can differentiate between
malicious and normal activities [5]. Data mining is employed
to define knowledge detection which aids in executing and
using IDS with greater precision and strong behavior when
equated to traditional IDS which may not be effective beside
current sophisticated cyberattacks [6]. Furthermore, many
researchers are struggling to discover complete and legal
datasets to check and assess their projected models, and
taking an appropriate dataset is an important challenge [7].
To check the efficacy of such tools, trustworthy datasets are
required to (i) enclose both numerous and benign attacks,
(ii) meet reality measures, and (iii) be openly accessible.

DL is a sub-field of machine learning (ML) that has
increased great detection in numerous regions owing to its
development in accuracy in difficult tasks and the current
growth in software and hardware [8]. DL models enhance
cybersecurity methods that prevent attacks by recognizing
patterns that are dissimilar from usual behavior [9]. Cyber-
attacks share a general feature with image detection because
more than 99 percent of the novel attacks are little mutants
of present ones; in a similar technique modification in pic-
tures can be recognized by little variations in their pixels.
In IoT Fogmethods, they are employed for identifying system
attacks but the IoT network features (i.e., its spread nature and
the restricted calculating abilities of the end-devices) need
new solutions for IDS [10].
In [11], an ensemble-based DL technique is developed,

uniting K-means with DL classification models like Gated
Recurrent Unit (GRU), LSTM, CNN, RNN, and DNN. After
pre-processing, an RF is executed for extraction. Later,
an ensemble-based model is used. In [12], an effectual
method is proposed. The authors [13] develop a novel ensem-
ble learning (EL) model-based IDS. The effectual FS is
achieved through a hybrid of Correlation FS joined with
Forest Panelized Attributes (CFS–FPA). This involves using
bagging and AdaBoosting EL techniques to adjust 4 ML
classifiers. Hammood and Sadiq [14] proposed an intelli-
gent network IDS (NIDS) utilizing ML models. A novel
anomaly-based result for IoT systems using EML techniques

consisting of LR, NB, DT, extra trees, RF, and gradient
boosting is also presented.

In [15], an EL scheme based on an RF model is proposed.
To decrease classification error, the SMOTE was proposed.
In [16], a multi-layered behavior-based IDS utilizing EL
models are offered for classification. Also, DT, RF, and
Artificial Neural Networks (ANNs) models are selected to
construct the ensemble. In [17], an ML-based NIDS with
dual-phased hybrid EL and automatic FSwith fourML classi-
fiers is developed. This model contains binary learning stages
where the 1st and 2nd stages are built utilizing classifiers
from joining attack classes. Okey et al. [18] developed a
BoostedEnML model. First, classifiers are trained to utilize
the stacking, and a popular voting technique is acquired.
The data balancing is executed with SMOTE and adaptive
synthetic (ADASYN) models. Then, a stratified K-fold is
applied.

Terbuch et al. [19] present a hybrid ML (HML) model,
integrating key performance indicators (KPIs) with an unsu-
pervised variational autoencoder (VAE) featuring LSTM
layers. In [20], a fusion DL, consisting of Graph Convolu-
tional LSTM (GC-LSTM) and a DNN model is proposed.
Wang et al. [21] utilized a hierarchical model using wavelet
transform and DL methods for extraction. In [22], a fusion
ELM is proposed, utilizing unity normalization and PCA
for pre-processing, optimization with Grey Wolf Optimizer
(GWO) for classifiers, and also presents an effectual ELM
selection model. Manokaran and Vairavel [23] introduce an
optimized stacked ELM model, utilizing an improved GWO
and stacking ensemble. In [24], an Anomaly Scoring ELM,
a bagging EL framework is presented. The cited studies
present several ensemble-based and fusion ML methods for
intrusion and anomaly detection. These techniques incor-
porate various models namely DL, EL, and FS to improve
detection accuracy and robustness against cyber threats.

This manuscript empowers Cybersecurity using Enhanced
Rat Swarm Optimization with a Deep Stack-Based Ensem-
ble Learning (ERSO-DSEL) Approach. In the ERSO-DSEL
system, Z-score normalization is employed to measure the
input data. Besides, an improved equilibrium optimizer (IEO)
based FS approach is applied to choose a set of features.
For cyberattack recognition, the ERSO-DSBEL model uses
the DSEL system comprising 3 techniques long short-term
memory (LSTM), deep neural network (DNN), and bidirec-
tional LSTM (Bi-LSTM). Furthermore, the hyperparameter
selection of these DL models takes place utilizing the ERSO
approach. The performance validation of the ERSO-DSBEL
system is executed on a benchmark database of IDS.

II. THE PROPOSED METHOD
In this research, cybersecurity using the ERSO-DSEL
approach is empowered. The ERSO-DSEL technique lever-
ages FS with EL strategies to boost cybersecurity. The
ERSO-DSEL methodology involves four major proce-
dures such as Z-score normalization, IEO-based FS, deep
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stack-based EL, and ERSO-based hyperparameter tuning.
Fig. 1 determines the complete development of the
ERSO-DSEL model.

FIGURE 1. The overall process of the ERSO-DSEL algorithm.

A. Z-SCORE NORMALIZATION
At the first level, the ERSO-DSEL model uses Z-score nor-
malization to measure the input data. Z-score normalization
is also recognized as standardization. It is an arithmetical
model utilized to convert a dataset by rescaling its values
to consume a standard deviation (SD) of one and a mean
of zero [25]. This procedure aids in transporting all the
features of the dataset onto a general measure, making it
simpler to equate and analyze them. It is attained by deducting
the mean of every data point and separating it by the SD.
Z-score standardization is generally used in ML and statistics
to guarantee that dissimilar features donate similarly to the
study, averting definite variables from controlling the method
due to their higher measure.

B. IEO BASED FS
For the procedure of FS, the IEO-based FS approach is
applied to elect a set of features. There is a need to evaluate
2141−1 times which is nearly not possible to acquire an opti-
mum feature from MFCCs and pitch features. Thus, the IEO
is used as a feature selector to attain optimal solutions within
the time range [26]. EO is used to randomly initialize the
population position and its updated position can be described
by:

Xi (n+ 1) = Xeq (n) +
(
Xi (n) − Xeq (n)

)
F (n)

+
G (n)

λ
(1F (n)) (1)

In Eq. (1), Xeq shows the equilibrium pooling, and it is
constructed by the position of the first four optimum solutions

and their average value. The algorithm selects one randomly
from Xeq for each run.

t(n) = (1 −
n

Maxiter
)

(
2 n
Maxiter

)
(2)

F (n) = sign (r−0.5)
[
e−λ t(n)

− 1
]

(3)

where F controls the balance between exploitation and explo-
ration,Max_iter indicates the maximal iteration. λ and r are
two randomly generated values within [0, 1]. The sign refers
to the signum function of Matlab. G helps the algorithm to
acquire superior performance, and it is computed by:

GCP =

{
0.5r1 if (r2 ≥GP)
0 else

(4)

G0 (n) = GCP ∗
(
Xeq (n) − Xi (n)

)
(5)

G (n) = G0 (n) ∗F (n) (6)

where r1 and r2 are two randomly generated numbers within
[0, 1].
In EO, a solution is guided by the equilibrium pooling.

However, the presence of four optimum solutions is posi-
tioned at local optima. On the other hand, if the solution
is disseminated in the search region, it can slow down the
convergence rate.

The two critical aspects, exploitation and exploration are
used for assessing the efficacy of metaheuristic algorithms.
The exploration improves the global search ability of EO and
assists in escaping from local optima. Furthermore, explo-
ration is used to empower the algorithm with stronger local
search ability and promote it to comprehensively exploit
promising regions and determine the optimum solution. Ini-
tially, the population is divided into three sub-swarms namely
exploration ability, population diversity, and convergence and
exploitation ability.

The transfer function has played an important role in
the binary metaheuristic approach, and it converts continu-
ous values into binary strings. The transfer function could
ensure efficient exploration of search space, maintain pop-
ulation diversity, and avoid early convergence to perform
binarization.

X ji (n+ 1) =

{
X ji (n) if (S (value) < rand)

1 − X ji (n) else
(7)

value =
(
Xi (n) − Xeq (n)

)
F (n) +

G (n)
λ

(1 − F (n))

(8)

whereas S signifies the transfer function, and X ji (n) represents
the location of ith individuals in the jth dimension at nth

iteration.
The equilibrium pooling is created in the first sub-swarm

and S1 is adopted as a transfer function where S1 quickly
shifts position. This sub-swarm is used to explore more space,
and it has a better global search ability. S2 is adopted as a
transfer function in the second sub-swarm and it balances
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local and global search and it has the benefits of EO. During
the third sub-swarm, Xeq represents the global optimum
solution, and S3 is adopted as a transfer function where S3
slowly shifts position. The sub-swarm exploits the optimum
solution and has greater local search capability.

The fitness function (FF) reflects the accuracy of classifi-
cation and the amount of nominated features. It increases the
accuracy of classification and diminishes the set dimension of
the chosen feature. So, the FF is employed to assess individual
solutions as exposed in Eq. (17).

Fitness = α ∗ ErrorRate+ (1 − α) ∗
#SF

#All_F
(9)

Here ErrorRate directs the error rate of classification using
the nominated feature. ErrorRate is calculated as the ratio of
wrong order to the sum of classification prepared and has as
a value among 0 and 1. (ErrorRate is the supplement of the
accuracy of classification), #SF is the number of nominated
features and #All_F is the complete integer of aspects in
the novel dataset. α is utilized to handle the prominence of
classifier excellence and sub-set length., α is set to 0.9 in our
experiments.

C. DEEP STACK-BASED EL
For cyberattack recognition, the ERSO-DSBEL technique
applies the DSEL model comprising three models such as
DNN, LSTM, and BiLSTM. The ELmodel integrates numer-
ous base-learner procedure pattern systems when generating
the best prediction method [27]. The proposed method exe-
cutes much superior when compared to base learner systems
alone. Additional EL model presented by Wolpert is stacked
generalized, which has been widely functional in many areas
ever since its inception. Stacking integrates the results of
manifold-based learner methods needed to train a novel
meta-learner technique for the output outcome. The stacking
idea is constructed on dual phases of systems. The 1st phase
contains numerous base-learner models, whereas the 2nd
phase covers the meta-learner system.

1) DNN MODEL
An ANN contains frequent layers among the layers of output
and input is recognized as a DNN. Data flows through NN
in dual methods such as the multi-layer perceptron (MLP)
technique is employed to forecast the output for the delivered
data in forward propagation, and the method upgrades its
parameters in backpropagation (BP) dependent upon the fault
of prediction. Fig. 2 portrays the infrastructure of DNN. The
first output and succeeding hidden layer (HL) are specified
as below:

h1 = σ [W1. (x) + b1] (10)

hi = σ [W1i. (hi−1) + bi] (11)

whereas i signifies the index layer, and σ denotes the activa-
tion function. The size of x is equivalent to 3636 × 9. Every
column directs a neural network feature. The output of the

FIGURE 2. Structure of DNN.

MLP is as follows:

y = σsoft (hout) (12)

Every layer is allotted an activation function dependent
upon the tanh (hyperbolic tangent). The output layer uses the
Softmax function to recognize the output.

2) LSTM MODEL
Hochreiter et al. presented an LSTM network and an
upgraded RNN whose main attention is to take long-term
dependence on data series to pledge the gradient vanishing
problem. The local nearby activation adjusts a consistent
RNNsHL but a few times it is stated to as short-termmemory.
Besides, the weights are altered by calculations executed
during the prolonged data series. To preserve data reliability
over broad arrays, LSTM is provided with a state of activation
as a weight. The calculation formulations for LSTM neurons
are expressed below:

It = σ [Wxi (xt) +Whi (ht−1) +Wci (ct−1) + bi] (13)

Ft = σ
[
Wxf (xt) +Whf (ht−1) +Wcf (ct−1) + bf

]
(14)

Ot = σ [Wxo (xt) +Who (ht−1) +Wco (ct) + b0] (15)

ht = ot tanh (ct) (16)

From the abovementioned equations, f , I , c, and o denote
the gate of forget, input, neuron memory cell, and output, cor-
respondingly. The neuron’s output and input are directed by
h and x, respectively. WhileW , σ, and b represent the weight
co-efficient matrix, excitation function, and bias matrix, cor-
respondingly. x denotes to input feature and h specifies the
predicted output.

3) BI-LSTM MODEL
Bi-LSTM is a precise RNN. The LSTM forecasts follow-up
data. To increase the accuracy of prediction, the Bi-LSTM
method acquires time-correlated data over both backward
and forward ways at the same time. The backward and for-
ward LSTM are signified by hb and hf , correspondingly.
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The hb and hf are neutral and only transmit to their LSTM
layer. The layer of forward displays the unidirectional move-
ment from input to hidden to output layers. Linking the dual
HL permits us to calculate the last Bi-LSTM prediction yt .
The method can be defined with the aid of Eqs. (17)- (19) as
follows:

hf = LSTM
(
xt , hf (t−1)

)
(17)

hb = LSTM
(
xt , hb(t+1)

)
(18)

yt = σ
[
WhYf

(
hf

)
+Whyb (hb) + by

]
(19)

whereas, the weights of the backward and forward layers at
time t are represented by Wyb and Whyf , correspondingly;
LSTM signifies network LSTM; The activation function is
signified by σ ; and by is represented by the output layer
bias.

Algorithm 1 DSEL Method Pseudocod
Input: Training dataset D = [(x1, y2), (x1, y2), . . . , ((x1, y2))]
Output: Base Classifier bc1, bc2, bc3
Meta Classifier m
Deep Stacked Model DSm
Base Model Training:
for i = 1, 2, . . . ,K
Train the base classifiers (bc1, bc2, bc3)
Create new data: Met-classifier data

Dm = [p′
i, yi]

Where p′
i = [bc1(xi), (bc2(xi), (bc3(xi)]

End
Meta-Classifier Training:
Train meta-classifier on recently created data Dm
Performance measure valuation
Return stacked method

DSm = [bc1, bc2, bc3,m]

D. HYPERPARAMETER TUNING USING THE ERSO
ALGORITHM
Eventually, the hyperparameter selection of these DL models
takes place using the ERSO algorithm. The ERSO algorithm
is employed to increase the accuracy of classification by
changing the parameters [28]. A recent swarm intelligence
(SI) method is the RSO. Method 1 offers the RSO algorithm,
and the important RSO stages have been explained in a
detailed manner.

Step 1: Creating the variables of RSOs: Numerous vari-
ables of RSO require initial values allocated. Three control
parameters and two algorithmic variables achieved the RSO.
The highest iterations count and the size of populace repre-
sented by N and Tmax, correspondingly. The random values
have been signified as variables like R,C, and A, with C
and R ranges of C∈ [0, 2] and R∈ [1, 5], correspondingly.
Eq. (20) can be applied to initializing the value ofA. Param-
eters A and C achieve exploitation and exploration abilities

in RSO.

A = R− t ×

(
R

τmax
t1, 2, . . . . . . ,Tmax

)
(20)

Step 2: Primary RSO’s population generation: The 2nd
stage encloses solution vector or arbitrarily produced rat loca-
tions into the RSO’s population (RP).N refers to several tasks
that exist. Since proven in Eq. (21), the RP was represented
by a 2D matrix with a size of N×d .

RP =


Y1′1 Y1′2 · · · Y1′d−1 Y1′d
Y2′1 Y2,2 · · · Y2′d−1 Y2′d

...
... · · ·

...
...

YN−1′1 YN−1′2 · · · YN−1′d−1 YN−1′d
YN′1 YN′2 · · · YN ,d−1 YN ,d

 (21)

In RP, each row Yi = (Yi,1,Yi,2, . . . ,Y1,d−1,Yi,d ) defines
theith location of the rate. A decision variable called Yi is a
value of random in themiddle of Yjmin and Yjmax . The decision
variables’ higher and lower boundaries are Yjmax and Yjmin,
correspondingly.
Step 3: Fitness calculation: The main function (Yi), with

∀i = 1, 2,N , is employed for the value of fitness. The rat was
elected as Ygbest to be the finest location in RP.

Step 4: Position upgrade: applying 2 succeeding functions,
hunting the prey and discussing all rat’s locations with the
prey in RP will be changed in such a stage.
1. Follow the prey: Rat in the perfect place, Xgbest refers

to the position of the prey. The assignments of the alternative
rats have been upgraded in RP according to the features of
Xgbest, denoted in Eq. (22).

Y = A · Y⃗i (t) + C ·

(
Y⃗ gbest

− Y⃗i (t)
)

(22)

whereas t represents the existing iteration, Y⃗ (t) refers to the
ith rat location, and variables like C and Awere defined in the
first stage and obtained values amongst 1 and Tmax.
2. Combating prey: Based on the place of the prey,

as demonstrated in a formula, informing each rat’s position
in RP.

Y⃗ (t + 1) =

∣∣∣Y⃗ gbest
− Y⃗

∣∣∣ (23)

Step 5: This must be suggested that the optimum solution
be upgraded. The upgrade of (t+1) with Ygbest is dependent
on the previous fitness existence greater than the final in the
stage. Specified contrarily, once the value of (t+1) is lower
than ygbest , and after ygbest can be upgraded to (t+1), and i is
in the range of one to N.

Step 6: Observe the state for stopping: The latter stage is to
reiterate stages 4 and 5 till the stopping state is fulfilled. The
termination of the iterations count is denoted by Tmax.Hence,
the finest solution to the optimizer’s difficulties is Ygbest .
Kennedy and Eberhart first establishedRSO, an efficacious

and well-known SI algorithm. A pool of particles will be
primarily produced arbitrarily, where every particle’s velocity
and location signify its existing condition in the search space.
The finest location is met by all the particles and the total
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optimal place is determined thus, it is also tracked. The place
of each particle can be upgraded by employing its velocity
and its optimum position changed. Each particle’s place will
be computed by applying Eq. (24).

Y⃗i (T + 1) = Y⃗ (T ) + V⃗ (T + 1) (24)

V⃗ (t+1) = V⃗ (t) + C1·r1 ·

(
Y⃗i

lbest
(t) − Y⃗ (t)

)
+ C2·r2

.
(
Y⃗ gbest (t) − Y⃗ (t)

)
(25)

All rat’s positions whereas following prey could be exhib-
ited by employing Eq. (26) and is changed through both the
rat’s top location. Then, the best location has been achieved,

Y⃗ = A · Y⃗i (t) + C ·

(
Y⃗ gbest

− Y⃗i (t)
)

+ r3

·

(
Y⃗i

lbest
(t) − Y⃗i (t)

)
(26)

Here, r3 refers to a random value in the middle of 0 and 1,
T , Y⃗ gbest is the best global position and Y⃗ lbest is the greatest
local location up to iteration accomplished by the RP up to
iteration t .
The ERSO method improves an FF to achieve higher clas-

sifier performance. It states a positive numeral to indicate
the upgraded candidate solution performance. In this study,
the error rate of classifier minimization is measured as FF,
as assumed in Eq. (27).

fitness (xi) = ClassifierErrorRate (xi)

=
No. of misclassified instances

Total no .of instances
∗100 (27)

III. EXPERIMENTAL VALIDATION
The performance evaluation of the ERSO-DSEL method is
verified by employing the UNSW-NB15 dataset [29] with
10000 samples and 10 classes as represented in Table 1.

TABLE 1. Details of the dataset.

Fig. 3 establishes the confusion matrices generated by the
ERSO-DSEL system below 80:20 and 70:30 of TRAP/TESP.
The outcomes specify the effective recognition and identifi-
cation of all 10 classes precisely.

FIGURE 3. Confusion matrices (a-b) 80:20 of TRAP/TESPH and (c-d) 70:30
of TRAP/TESP.

The cyberattack detection results of the ERSO-DSEL
model are examined with 80:20 of TRAP/TESP in Table 2

TABLE 2. Cyberattack detection outcome of ERSO-DSEL model under
80:20 of TRAP/TESP.
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FIGURE 4. Average of ERSO-DSEL technique under 80:20 of TRAP/TESP.

and Fig. 4. The experimental results highlighted that the
ERSO-DSEL method properly recognized different types
of classes. With 80% of TRAP, the ERSO-DSEL approach
offers an average accuy of 99.56%, precn of 97.87%, sensy of
97.79%, specy of 99.75%, andFscore of 97.80%. Additionally,
with 20% of TESP, the ERSO-DSEL system offers an average
accuy of 99.52%, precn of 97.86%, sensy of 97.59%, specy of
99.73%, and Fscore of 97.65%.
The accuy curves for training (TRA) and validation (VL)

revealed in Fig. 5 for the ERSO-DSEL system below 80:20
of TRAP/TESP offers respected visions into its performance
below numerous epochs. Mainly, there is a stable growth
in both TRA and TES accuy to rising epochs, establishing
the model’s capability to recognize and learn patterns from
both TRA and TES data. The increasing trend in TES accuy
highlights the model’s flexibility to the TRA dataset and its
aptitude to make exact predictions on hidden data, highlight-
ing robust generalized aptitudes.

FIGURE 5. Accuy curve of ERSO-DSEL technique under 80:20 of
TRAP/TESP.

Fig. 6 provides a comprehensive summary of the TRA and
TES loss values for the ERSO-DSEL model below 80:20 of

FIGURE 6. Loss curve of ERSO-DSEL method under 80:20 of TRAP/TESP.

TRAP/TESP across different epochs. The TRA loss reliably
diminishes as the technique enhances its weights to minimize
identification faults on both datasets. The loss curves demon-
strate the model’s place with the TRA data, underlining its
aptitude to take designs well in both datasets. Noteworthy is
the nonstop modification of parameters in the ERSO-DSEL
approach, proposed at diminishing differences amongst esti-
mates and real TRA labels.

Regarding the PR curve offered in Fig. 7, the results
confirm that the ERSO-DSEL approach under 80:20 of
TRAP/TESP reliably attains enhanced PR values through
every class. These outcomes underline the model’s actual
ability to discriminate among different classes, underlining
its effectiveness in precisely spotting class labels.

FIGURE 7. PR curve of ERSO-DSEL technique under 80:20 of TRAP/TESP.

Furthermore, in Fig. 8, we present ROC curves formed
by the ERSO-DSEL model under 80:20 of TRAP/TESP,
representing its aptitude in distinguishing between classes.
These curves deliver valuable insights into how the trade-off
amid TPR and FPR diverges across dissimilar classification
epochs and thresholds. The results emphasize the model’s
accurate classification performance below several classes,
highlighting its efficacy in addressing various classification
challenges.
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FIGURE 8. ROC curve of ERSO-DSEL technique under 80:20 of TRAP/TESP.

The cyberattack recognition outcomes of the ERSO-DSEL
method are observed with 70:30 of TRAP/TESP in Table 3
and Fig. 9. The experimental outcomes underlined that the
ERSO-DSEL method correctly recognized dissimilar kinds
of classes. With 70% of TRAP, the ERSO-DSEL model
provides an average accuy of 99.60%, precn of 97.99%, sensy
of 97.99%, specy of 99.78%, and Fscore of 97.99%.Moreover,
with 30% of TESP, the ERSO-DSEL system delivers an
average accuy of 99.67%, precn of 98.37%, sensy of 98.34%,
specy of 99.82%, and Fscore of 98.35%.

FIGURE 9. Average of ERSO-DSEL technique under 70:30 of TRAP/TESP.

The accuy curves for TRA and VL offered in Fig. 10
for the ERSO-DSEL system below 70:30 of TRAP/TESP
deliver valuable visions into its performance under various
epochs. Mainly, there is endless growth in both TRA and TES
accuy to increasing epochs, specifying the model’s aptitude
in recognizing and learning patterns from both TRA and TES
data. The rising trend in TS accuy emphasizes the model’s
flexibility to the TRA dataset and its aptitude to make exact
predictions on unseen data, underlining strong generalized
abilities.

TABLE 3. Cyberattack detection outcome of ERSO-DSEL technique under
70:30 of TRAP/TESP.

FIGURE 10. Accuy curve of ERSO-DSEL technique under 70:30 of
TRAP/TESP.

Fig. 11 provides a comprehensive summary of the TRA and
TES loss values for the ERSO-DSEL method under 70:30 of
TRAP/TESP across several epochs. The TRA loss gradually
declines as the method increases its weights to condense
classification faults on both datasets. The loss curves prove
the model’s placement with the TRA data and, the promi-
nence of its capacity to capture designs well in both datasets.
Noteworthy is the continuous modification of parameters
in the ERSO-DSEL methodology, projected at diminishing
differences among predictions and real TRA labels.
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FIGURE 11. Loss curve of ERSO-DSEL technique under 70:30 of
TRAP/TESP.

Regarding the PR curve offered in Fig. 12, the out-
comes confirm that the ERSO-DSEL method under 70:30
of TRAP/TESP constantly attains upgraded PR values across
each class. These results emphasize the model’s real ability
to discriminate amid different classes, emphasizing its effi-
ciency in accurately recognizing classes.

FIGURE 12. PR curve of ERSO-DSEL technique under 70:30 of TRAP/TESP.

Furthermore, in Fig. 13, we present ROC curves formed
by the ERSO-DSEL procedure under 70:30 of TRAP/TESP,
signifying its ability to distinguish between classes. These
curves deliver valuable visions into how the trade-off between
TPR and FPR differs across dissimilar classification epochs
and thresholds. The results highlight the model’s precise
identification performance below several class labels, under-
scoring its efficiency in addressing various classification
tasks.

In Table 4 and Fig. 14, a detailed comparative analysis
of the ERSO-DSEL technique is provided [30]. The results
stated that the SVM model gains poor performance whereas
the KNN, DT, VLSTM, and SSA-CRNN methodologies
obtain boosted results. Besides that, the MFSDL-ADIIoT
method has managed to report moderate performance.

Also, the GJODL-CADC model has tried to accomplish
near-optimal results with precn of 97.23%, recal of 97.09%,
accuy of 99.40%, and Fscore of 97.12%. But the ERSO-DSEL

FIGURE 13. ROC curve of ERSO-DSEL technique under 70:30 of
TRAP/TESP.

TABLE 4. Comparative analysis of the ERSO-DSEL technique with recent
algorithms.

FIGURE 14. Comparative analysis of the ERSO-DSEL technique with
recent algorithms.

system attains better performance with a maximum precn
of 98.37%, recal of 98.34%, accuy of 99.67%, and Fscore
of 99.35%. Therefore, the ERSO-DSEL technique can be
applied for an enhanced detection process.

IV. CONCLUSION
In this manuscript, cybersecurity using the ERSO-DSEL
approach is empowered. The ERSO-DSEL methodology
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leverages FS with EL strategies to boost cybersecurity.
The ERSO-DSEL methodology involves four major proce-
dures Z-score standardization, IEO-based FS, deep stack-
based EL, and ERSO-based hyperparameter tuning. Initially,
the ERSO-DSEL model applies Z-score standardization is
employed to measure the input data. Besides, IEO based FS
approach is applied to elect a set of features. For cyberat-
tack recognition, the ERSO-DSBEL model uses the DSEL
approach comprising three models namely DNN, LSTM,
and BiLSTM. Furthermore, the hyperparameter selection of
these DL models takes place using the ERSO approach.
The performance validation of the ERSO-DSBEL model is
implemented on a benchmark IDS dataset. A wide com-
parison research reported that the ERSO-DSBEL model
accomplishes enhanced performance over other models of
cybersecurity. The restriction of the ERSO-DSEL model
includes additional analysis across diverse cybersecurity
scenarios and potential threats in scalability and real-time uti-
lization. Future studies may be on improving the adaptability
to improve cyberthreats and optimizing its achievement in
large-scale network environments.
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