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ABSTRACT Scene text detection and recognition have attracted much attention in recent years because of
their potential applications. Detecting and recognizing texts in images may suffer from scene complexity
and text variations. Some of these problematic cases are included in popular benchmark datasets, but only
to a limited extent. In this work, we investigate the problem of scene text detection and recognition in
a domain with extreme challenges. We focus on in-the-wild signboard images in which text commonly
appears in different fonts, sizes, artistic styles, or languages with cluttered backgrounds. We first contribute
an in-the-wild signboard dataset with 79K text instances on both line-level and word-level across 2,104
scene images. We then comprehensively evaluated recent state-of-the-art (SOTA) approaches for text
detection and recognition on the dataset. By doing this, we expect to realize the barriers of current state-
of-the-art approaches to solving the extremely challenging issues of scene text detection and recognition,
as well as their applicability in this domain. Code and dataset are available at https://github.com/aiclub-
uit/SignboardText/ and IEEE DataPort.

INDEX TERMS Signboard images, scene text detection, scene text recognition.

I. INTRODUCTION
Image understanding is a topic of great interest in the research
community, with numerous applications. Text in images is
essential for naturally comprehending the images. Text can
assist in extracting important information that is difficult to
find by relying solely on scenery analysis. However, detecting
and recognizing text in natural images remains a challenging
problem due to scene complexity and text variations.

Popular publicly available datasets like COCO-Text [1],
ICDAR 2015 [2], and Total-Text [3] are crucial in advancing
scene text understanding research. They serve as platforms
for difficulty discovery as well as benchmarks for eval-
uating advancement. Scene text detection and recognition
have made significant strides lately, despite the datasets
only partially reflecting the difficulties of the problem.
In this work, we hope to advance understanding of text in
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unconstrained scenes by addressing a domain with extreme
challenges. We focus on in-the-wild signboard images. Text
on signboards may be displayed in a variety of fonts, sizes,
artistic styles, or languages, depending on the signboard
maker’s or the artist’s creativity to catch the attention of the
viewer. Additionally, text instances on the same signboard
may convey important semantic or design correlations. The
ability to read text precisely in signboard images may
assist in a variety of real-world applications, including geo-
localization, autonomous driving, and disability assistance.

There are two main contributions of this work. First,
we introduce an in-the-wild signboard dataset, named
SignboardText, for scene text detection and recognition. The
dataset consists of 79,814 manually annotated text instances
at both line-level and word-level from 2,104 scene images.
SignboardText includes a variety of words in different real-
life conditions when the background is cluttered, the text is
curved or distorted, the fonts are varied, or the art form is
different (as shown in Figure 1). The signboard’s typeface
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FIGURE 1. Texts on signboards commonly appear in different fonts, sizes,
artistic styles, or languages with cluttered backgrounds.

is the Latin alphabet, a widely used script worldwide, which
combines with the aesthetic style of texts, creating a unique
challenge for the dataset. We collect signboard images in
different languages, with and without tone marks. The art-
style texts combined with the system of tone marks, which
is common in many language systems, are a prominent
attribute of the dataset, leading to challenging detection and
recognition cases of generic design methods.

Second, we provide a comprehensive evaluation and anal-
ysis of recent state-of-the-art (SOTA) methods for text detec-
tion and recognition on the SignboardText. We report the
performance of different approaches, including TextSnake
[4], DBNet [5], PSNet [6], PAN [7], DRRG [8], FCENet [9],
and DPText-DETR [10];PaddleOCR [11], STAR-Net [12],
SATRN [13], ViTSTR [14], ABINet [15], PARSeq [16],
VietOCR,1 Tesseract,2 and also end-to-end methods such as
ABCNet [17], ABCNet v2 [18], and DeepSolo [19]. The
results and analyses of thesemethods serve as a valuable point
of reference for researchers working on this specific problem.

The content of this paper is divided into the following
sections: Section II examines a number of related works.
Sections III and IV present the collected dataset as well as
the analysis and evaluation based on the experiment results.
Section V contains the conclusions.

II. RELATED WORKS
In this section, we first provide an overview of recent works
on scene text detection and recognition. We categorize them
mainly based on their approaches. Then, we summarize
existing popular scene text datasets. Datasets are essential
for training and evaluating proposed methods, enhancing
understanding of the diversity and difficulty of scene text in
images.

A. TEXT DETECTION AND RECOGNITION
Prior to the advent of deep learning, text detection and
recognition methods relied heavily on low-level or mid-
level handcrafted image features [20], [21], [22], [23], [24],
[25], [26], which necessitated time-consuming and repeated

1https://github.com/pbcquoc/vietocr
2https://github.com/tesseract-ocr/tesseract

TABLE 1. Number of signboard images from ICDAR2015, Total-Text,
VinText, and manual collection.

pre-processing and post-processing procedures. Due to the
limited representation capability of handcrafted features and
the complexity of pipelines, such techniques are ill-equipped
to deal with complicated situations.

Recent research on textual information extraction in
images, as highlighted in [27], faces three primary challenges.
The first includes text detection methods, which aim at
localizing text instances in images. The second includes
methods solely focusing on recognizing texts in given
cropped text regions. The third takes both text localization
and recognition into a single pipeline. Deep learning-based
methods have emerged as the most advanced techniques in
recent years.

1) TEXT DETECTION
Many algorithms are greatly influenced by and modelled
after object detectors. In general, the development of scene
text detection algorithms is divided into three stages [27].
Learning-based techniques are equipped with multi-step
pipelines in the first phase to replace handcrafted features.
Text center lines [28], [29] and single characters [30],
[31] constitute key components of design. They are used
to construct structures from the bottom up. In the second
stage of development, generic object detection techniques
are employed for the problem of scene text detection. Text
detection methods for scenes are introduced by modifying
detectors’ region proposal and bounding box regression
modules to locate text instances [32], [33], [34]. When
dealing with irregular text, the performance of one-staged
approaches is still bound by the receptive field’s limitations.
Two-staged approaches, on the other hand, are inefficient.
Several works propose using sub-text components in the third
stage to address long and irregular text problems. These
methods use neural networks to predict local characteristics
or segments and a post-processing step to reconstruct text
instances at the pixel-level [35], [36], component-level [8],
[34], [37], or character-level [38]. In the final step of post-
processing, segments are combined into text instances. The
use of sub-text components increases the flexibility and
generality of text instance form and aspect ratio in detection.

2) TEXT RECOGNITION
Text recognition aims to translate a cropped text instance
image into a target string sequence. There are two main cate-
gories of scene text recognition methods [39]: segmentation-
based methods and segmentation-free methods.

Segmentation-based methods aim at predicting distinct
pixel labels for each object instance. These methods can
be roughly divided into top-down approaches and bottom-
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up approaches. Top-down methods such as [40], [41], [42],
and [43] aim to locate bounding boxes first, then in the second
stage, segment the instances mask using within bounding
boxes. [41] adopt VGG-16 as its backbone and combine
and utilize low-level features (edge, color, and texture) and
high-level features using multiple stages. Character bounding
boxes are repeatedly predicted in multiple stages of the
VGG-16, specifically. Then, the network outputs the final
segmentation maps. Due to the assumption made by its
prediction module (i.e., words are roughly sorted from left to
right), [41] is not quite accurate in other scenarios. To address
this disadvantage, [42] uses RNN for context modeling and
a geometry branch to ensure characters are predicted in the
correct order. Likewise, methods belong to MaskTextSpotter
family [40], [43], integrates a spatial attention module, which
helps complement the character segmentation sub-module
by mitigating the limitation of lacking character-level anno-
tations in the majority of the datasets. Segmentation-based
methods [40], [41], [42], [43] usually include three steps:
image preprocessing, character segmentation, and character
recognition. Meanwhile, segmentation-free methods focus
on directly mapping the whole text line or word into the
target string using an encoder-decoder framework. Attention
decoders are regarded as less adaptable than segmentation-
based methods when it comes to identifying irregular text,
including instances of oriented or curved text [42].
A typical segmentation-free method contains four main

stages, including image preprocessing, feature representa-
tion, sequence modeling, and prediction. The purpose of
image preprocessing, such as background removal, picture
super-resolution, and rectification, is to enhance the quality
of an image. By doing so, it has the potential to enhance
the representation of features and improve recognition in
subsequent stages. The utilization of Generative Adversarial
Networks (GANs) for the purpose of enhancing the resolution
of low-quality photos to a 2× super-resolution image
was demonstrated in the study conducted by Wang et al.
[44]. They employed deformable attention and convolution,
techniques also utilized in [45] and [46]. Other approaches,
such as rectification, aim to normalize highly curved or
distorted text instances. Several methods that fall under this
category [12], [47], [48], [49], [50] use a variant of the
spatial transformer network (STN) [51] to estimate spatial
transformation via control points to correct the input image
into a more straight shape. CNN networks are then commonly
utilized at the feature representation stage to extract robust
representations for the prediction stage. For instance, the
VGG [52] network has been employed in [47] and [53].
Similarly, the ResNet [54] has been utilized in [12], [42],
[49], [50], and [55]. Several works, including [14], [16], have
recently adopted vision transformer as the backbone.

Typically, the sequence modeling stage is used to link
visual features with predictions. It improves recognition by
using bidirectional long short-term memory (BiLSTM) [56]
to capture long-range dependencies in the visual features
created in the previous stage and sending contextual cues to

the prediction stage [12], [47], [49], [50], [55]. The fourth
and final stage is prediction, in which the target string is
predicted. Connectionist temporal classification (CTC) [57]
and the attention mechanism [58] are two popular approaches
used in this stage. The utilization of CTC as the prediction
stage was initially introduced by [59], and subsequently,
several prediction methods based on CTC, including [12],
[60], and [61], have demonstrated remarkable performance.
Visual attention, introduced in [58], has been integrated in
recent works, improving recognition by identifying more
informative and discriminative image regions. Examples of
this include [47], [53], [55], [62], [63], [64], [65], [66],
where feature selection and decoding were carried out using
the attention mechanism. Vanilla attention was used in [55],
[62], and [64]. To address attention drift, location-specific
information was incorporated in [66]. In [66], the decoder
decodes individual characters with a dynamic ratio between
context and positional clues.

3) END-TO-END SCENE TEXT RECOGNITION
The goal of end-to-end scene text recognition (also referred
to as text spotting) is to address both text detection and
recognition simultaneously, as opposed to treating each as a
separate task. According to [67] and [68], current text spotting
techniques can be broadly divided into two categories: two-
stage scene text spotters and single-shot scene text spotting
methods.

a: TWO-STAGE SCENE TEXT SPOTTERS
The early scene text spotters, such as the Textboxes
methods [69], [70], comprise two individual parts, i.e.,
the text detector and the recognizer, in a unified pipeline.
The detection part of [69] and [70] uses SSD [71], while
the recognition part uses CRNN [59]. Text detection and
recognition are considered independent optimization tasks
within the pipeline in these methods. Disjoint optimization,
however, may make it difficult to identify the optimal
solution. There are end-to-end techniques, such as [72],
that jointly learn text detector and recognizer utilizing a
curriculum learningmodel in order to mitigate the suboptimal
relationship between text detection and recognition. Methods
such as the MaskTextSpotter methods ([40], [43]) have
recently adopted a segmentation approach. In [40] and [43],
a Region-of-Interest (RoI) module is used to feed candidate
regions into its Fast-RCNN branch to generate semantic
segmentation maps. Feng et al. [73] use a sliding window
method, RoISlide, inspired by the works of Long et al. [4],
to read the text along the centerline of the text instances.
To convert arbitrary-shape texts into conventional ones, the
ABCNet based methods [17], [18] uses BezierAlign with
learnable parameters.

b: ONE-STAGE TEXT SPOTTERS
One-stage text spotter methods [19], [74], [75] attempt to
integrate the detector and recognizer into a one-stage network
to avoid the adverse effects of RoI cropping. PGNet [74]
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predicts text using center-point sequences. DeepSolo [19],
taking inspiration from [17] and [18], devises a much simpler
Bezier center curve proposal scheme and a novel query
formulation. Finally, a simple linear projection can classify
characters using these query cues.

B. SCENE TEXT DATASETS
Extracting textual information from images has caught the
interest of the research community. Annual competitions on
this problem have revealed that there are still many challenges
to be solved. Recent research frequently focuses on solving
problems posed in the Robust Reading competition [76].
Several popular datasets were released as a result of this con-
test, including COCO-Text [1], MSRA-TD500 [77], ICDAR
2013 [78], ICDAR 2015 [2], Total-Text [3], CTW1500 [79],
VinText [80], for the problem of scene text detection and
recognition, and ICDAR2017 [1], E2E-MLT [81], for multi-
lingual scene text detection and language identification.

Language is a property related to text in images. ICDAR
2013 [78] and ICDAR 2015 [2] are well-known and popular
datasets in English. These datasets emphasize small, oriented
text. COCO-Text [1], which has a large number of images
(63K), is another widely used dataset with texts in English.
Texts in images are annotated at word level. Texts in
COCO-Text, either machine-printed or hand-written, appear
in different contexts, e.g., printed on objects such as baseball
bats or backpacks. Total-Text [3] is another English dataset
with 1,525 images for scene text. This dataset is primarily
concerned with irregular text, particularly curved text. As a
result, texts were annotated in different text orientations,
including horizontal, multi-oriented, and curved.

In [82], the authors proposed a methodology that covers
detection, orientation prediction, and recognition of Urdu
ligatures in outdoor images. Urdu text is a cursive script
that is part of the non-Latin family of scripts that includes
Arabic, Chinese, and Hindi. This work introduced a dataset
comprising 4.2K and 51K synthetic images embedded with
Urdu text, generated using CLE annotation, and 1,094 real-
world images with more than 12K Urdu characters. Utilizing
the dataset, various methods were evaluated for different
tasks, including detection, orientation prediction, and ligature
recognition.

There are datasets with Chinese language, like CTW-1500
and RCTW-17. In CTW1500, the authors collected 1,500
images from the Internet and image libraries. All images
are annotated with 10,751 cropped text instances, including
3,530 curved text. Another recent dataset is VinText, which
focuses on Vietnamese scene text. This collection of images
with text depicts objects from everyday life in Vietnam, such
as clothing, books, storefronts, and street walls. VinText is
the only and largest Vietnamese dataset at the moment, with
2,000 images and roughly 56,000 text instances. In general,
most of the datsets are prepared for general scene text
problem rather than specific domain like texts in signboard
images. To the best of our knowledge, there is only one

dataset related to signboard images introduced by Zhang et
al [83]. The dataset is named ShopSign. It contains 25,770
images captured by smartphones. Images in ShopSign are
manually annotated in a text-line-based manner. However,
ShopSign solely contains Chinese texts, with the goal of
furthering research in Chinese OCR.

Our dataset (namely SignboardText) contains Latin-based
texts in two different languages, i.e., English and Vietnamese.
Texts in both languages can appear simultaneously on
the same signboard. We chose English to represent Latin-
alphabet-based languages that do not have tone marks, while
Vietnamese represents Latin-alphabet-based languages that
do have tone marks. Tone marks are common in many
languages and can lead to failure detection and recognition.
Our dataset, when combined with ShopSign, provides a
comprehensive benchmark for scene text detection and
recognition in this new domain.

Selected samples of some of the aforementioned datasets
are depicted in Figure 2, which can aid in the visualization
of their characteristics. Table 2 is a statistics table that
summarizes the datasets.

FIGURE 2. Sample images of some publicly available scene text datasets.

III. SignboardText
In this section, we provide a detailed description of our
dataset, named SignboardText. It is made up of two parts:
(1) 1,175 images manually labeled with a total of 59,588
text instances at the line and word levels (see Table 2);
and (2) 929 signboard images collected from the VinText,
Total-Text, and ICDAR15 datasets (as shown in Table 1).
Each text instance in the first part of our dataset has a
quadrilateral bounding box and a ground truth character
sequence associated with it. In the second part, images are
selected if they contain signboards (as illustrated in Figure 1).
This portion of the dataset comprises 20,261 text instances at
word levels. This bring the total text instances of our final
dataset up into 79,814. The dataset enhances the diversity
and complexity of the text understanding in scene images,
making it more representative of real-world scenarios. This
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TABLE 2. Our SignboardText dataset and other public datasets for scene text detection and recognition. Our dataset can be compared with CTW-1500,
Total-Text, and VinText in terms of quantity and diversity of text orientation. EN stands for english, CN for Chinese, VI for Vietnamese, UR for Urdu, and ML
for multi-language. The term ‘Regular’ text refers to datasets in which the majority of text instances are simple, such as frontal and/or horizontal. The
‘Irregular’ collection contains the majority of text instances that are low-resolution, perspective warped, or curved.

dataset allows for a more robust evaluation of scene text
recognition algorithms and their performance in handling
new challenging issues, e.g., artistic-style text on signboards.

A. DATA CRAWLING AND ANNOTATION
In the initial phase of our data preparation, we collect images
from Google Images using specific keywords that are related
to billboards, traffic signs, hospital or school entrances,
conferences, ceremonies, and other commonly encountered
terms. These collected images were then categorized into
different contexts, including ‘‘shop’’, ‘‘hospital’’, ‘‘school’’,
‘‘bank’’, ‘‘salon’’, and ‘‘other’’. Furthermore, we also classi-
fied the SignboardText dataset based on the specific locations
where the images were captured, such as ‘‘fashion shop,’’
‘‘grocery store,’’ ‘‘bakery,’’ ‘‘food store,’’ ‘‘coffee shop,’’
and more. The distribution of our dataset’s contexts can
be observed in Figure 3. The diverse range of locations is
one of the main factors contributing to the wide variety of
fonts, styles, and backgrounds present in our dataset. Some
representative samples from our dataset are illustrated in
Figure 2.

To annotate the images, we divided them across 15 anno-
tators and utilized the PPOCRLabel3 tool for annotation.
Following the ICDAR15 standard [2], we annotated each
image with all of the text instances, polygons, and content

3https://github.com/Evezerest/PPOCRLabel

FIGURE 3. Categories of signboards in SignboardText.

that were present. Manual annotations were done on each
and every image. After completing their workloads, each
annotator uploaded their work to a shared storage location
for cross-checking purposes. Team members view and cross-
check each other’s work, and their annotations are reviewed
to ensure that all requirements have been met. This cross-
checking process ensures the accuracy and consistency of
the annotations. Before completing the annotations, the team
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members discuss and resolve any discrepancies or errors that
they find. Images with serious conflicting annotations are
removed from the dataset, e.g., unreadable or hard-to-read
text in poor imaging conditions.

B. DATASET STATISTICS
SignboardText contains 79,814 text instances with both
line-level and word-level annotations for text detection and
recognition. The annotation includes a wide variety of
text types, including words, characters, digits, and also
special characters such as dashes, dots, etc., as summarized
in Table 5. In addition, taking into account an accented
language, such as Vietnamese, the dataset includes new
challenging issues with text detection and recognition
regarding tone marks. The different tone marks in the same
word can lead to different meanings, such as a, á, à, ã, , a. .
As a result, even missing or confusing a single tone mark in
a word might result in fatal recognition results. The diversity
of words with tone marks as well as background/text color,
font styles, and font size in our dataset, SignboardText, can
be seen in Figure 4, which serves as an example. The small
size of the tone mark compared to the size of the whole
word can be difficult for the recent scene text detection
and recognition methods that mostly train on unaccented
languages like English or Chinese. Besides, detecting text
with tone marks may suffer because of the background. The
tone mark makes the regions covered by a word much larger,
hence including more background regions. This can result
in decreased accuracy and increased false-positive rates for
text detection algorithms, as theymay struggle to differentiate
between the actual text and the surrounding background.
Moreover, the presence of tone marks can also introduce
challenges in text recognition as it requires specialized
algorithms that are capable of accurately interpreting and
understanding the meaning behind these marks. Addressing
these challenges is crucial for improving the performance
of text detection and recognition algorithms in various
applications.

FIGURE 4. Examples of texts cropped from signboard images.

As shown in Table 3, the majority of images in Sign-
boardText have dimensions that are less than 1,000 pixels
in both width and height. There are a few images with
dimensions greater than 3,000 pixels. The presence of images
with dimensions greater than 3,000 pixels indicates the
potential variability in image sizes within the dataset. There

TABLE 3. A summary of the sizes of images, annotated word boxes, and
annotated line boxes.

TABLE 4. A summary of the word length statistics of the annotated words
in the dataset. The word lengths are divided into five different length
categories.

are various word sizes in SignboardText. The mean width
is 128 pixels, while the mean height is 60. However, the
maximum width or height can be 20 times larger than the
minimum ones. A similar observation is found with lines.
This diversity in sizes of images, words, and lines poses great
challenges for text detection and recognition algorithms,
as they need to be able to handle images of different scales
effectively.

The average number of words per image is 40 (as shown
in Figure 5). And words with 1–5 characters (word length)
make up 79.42% of the annotated words. Most of the
words (95.54%) have less than 10 characters. Long words
are mainly related to email addresses or website addresses
on signboards. A summary of word length statistics is
shown in Table 4.Beside word length, Table 5 provides
more detailed information on the types of characters that
appear in words. Due to the nature of this domain, words
do not solely contain alphabets; a large portion of words
also include digits and special characters such as email
addresses, social network links, websites, and telephone
numbers. We also annotate signboard boxes with text that
is unreadable in this dataset. The label ’###’ (unreadable)
is used to indicate text in a box that is not readable by
humans. Low resolution, small size, or deformed text are the
main causes of unreadable texts. Texts that are unreadable
can provide valuable information for scene analysis and
understanding. They serve as crucial context clues to enhance
other algorithms like image classification, object detection,
or semantic segmentation. Therefore, even though they may
be illegible to human readers, their presence in a scene is
important for comprehensive analysis.

IV. EVALUATION AND ANALYSIS
We conducted an extensive evaluation of recent state-of-the-
art (SOTA) methods on SignboardText in order to identify the
limitations of current state-of-the-art approaches to solving
the extremely challenging issues of scene text detection and
recognition in this domain.
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FIGURE 5. Number of words (i.e., labels) per image in SignboardText. The average number of words per image is 40.

TABLE 5. A summary of text instance types. When the text contained within a text box is not legible to human readers, they are designated with the
notation ’###’ (unreadable). Most unreadable texts are due to low resolution, small size, or distorted text. In a category denoted as ‘special characters’,
text comprise characters other than alphabets and digits such as ’@’ (found in emails), ’-’ and ’.’ (found in telephone numbers), ’/’ (found in Facebook
addresses), and so forth, as shown on signboards.

A. EVALUATION METRICS
We select standard and popular metrics for evaluation.
To evaluate text detection methods, we employ Precision,
Recall, and H-Mean following the evaluation protocol
called TedEval (Text Detection Evaluation) [86]. With
regard to TedEval, detectors are evaluated via an instance-
matching policy and a character-level scoring policy. TedEval
is considered more suitable than other evaluation proto-
cols for text detection and less sensitive to ground-truth
quality.

We employ accuracy and Levenshtein distance to evaluate
text recognition methods. Accuracy reflects the ratio of
the number of correctly recognized words (or lines) to
the ground truth. A prediction is considered correct if all
characters of the word (or the line) match the character labels.
Meanwhile, Levenshtein distance is a lexical similarity
measure that identifies the distance between a pair of
predictions and the ground truth. It basically relies on
counting the number of single-character edits (i.e., insertions,
deletions, or substitutions) required to change one word
into another. This measure provides a more comprehensive
evaluation of the system’s performance beyond simple word
matching.

We also analyze the speed and processing time of the mod-
els to assess their practical applicability. We use the frame
per second (FPS) statistic to compare the speed of different
models. Furthermore, we assess the resource requirements of
deep learning-based methods, with a particular emphasis on

TABLE 6. Detection results at the world-level of the SOTA methods with
pretrained models on SignboardText. † denotes the best performance. ‡
indicates the second.

the consumption of computational resources such as RAM
and GPU usage.

B. DETECTION EVALUATION
We evaluate several recent state-of-the-art (SOTA) scene
text detection methods on the SignboardText dataset. These
methods include TextSnake [4], PANet [7], PSENet [6],
Differentiable Binarization (DBNet) [5], DRRG [8], FCENet
[9], and DPText-DETR [10], as well as the end-to-end
methods from the ABCNet series, such as ABCNet v1 [17],
ABCNet v2 [18], and DeepSolo [19]. The SignboardText
dataset covers various challenges encountered in real-world
signboard text detection. By evaluating these state-of-the-art
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TABLE 7. Detection results at the world-level of the SOTA methods on various datasets, including Ours (SignboardText), ICDAR2015, and Total-Text. *
denotes a reproduced result.

TABLE 8. Detection results at line-level of the SOTA methods with
pretrained models on SignboardText. † denotes the best performance. ‡
indicates the second.

TABLE 9. Speed and GPU usage of the detection methods.† denotes the
best performance. ‡ indicates the second.

methods on this dataset, we aim to provide insights into their
strengths and weaknesses, contributing to the advancement of
text detection techniques for signboard images.

1) TextSnake [4]
In TextSnake, a text instance is described as a sequence
of ordered, overlapping disks centered at symmetric axes,
each of which is associated with a potentially variable radius
and orientation. Such geometry attributes are estimated via a
Fully Convolutional Network (FCN) model.

2) PANet [7]
Wang et al. have designed a lightweight segmentation
framework consisting of two modules, namely the feature

pyramid enhancement module (FPEM) and the feature fusion
module (FFM), where FPEM generates scale-wise feature
maps from an input image and FFM aggregates those
multi-scale feature maps to generate the final feature map.
Then, a pixel aggregation method is applied to predict text
instances on a final feature map. The pixels of text instances
are aggregated with the appropriate text kernels nearest to
the corresponding text instances. This method yields high
accuracy and efficiency due to its low-cost segmentation
process.

3) PSENet [6]
This method specifies each text instance with multiple
predicted segmentation areas, denoted ‘‘kernel’’ for simpli-
fication. Each kernel has the same shape as the original text
representation but in different proportions. To get the final
findings, the Breadth-First-Search (BFS)-based progressive
scaling algorithm is used.

4) ABCNet [17]
In order to accurately localize oriented and curved text,
Liu et al. introduce a new concise parametric representation
of curved scene text using Bezier curves. They also proposed
a new sampling method called Bezier Align, an advanced
sampling method that gives better results than RoI sampling,
which was proposed back in the early stages of Mask RCNN.

5) DBNet [5]
Liu et al. proposed integrating amodule namedDifferentiable
Binarization in the network to help the binary encoding in the
image segmentation step faster; it also makes the detection
process faster and more accurate.

6) DRRG [8]
The authors present an innovative local graph that bridges
a text proposal model via Convolutional Neural Network
(CNN) and a deep relational reasoning network via Graph
Convolutional Network (GCN), making the network end-to-
end trainable. Every text instance is divided into a series of
small rectangular components, and the geometry attributes
(e.g., height, width, and orientation) of the small components
are estimated by a text proposal model.
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7) FCENet [9]
In the method proposed by Yiqin et al., features extracted
by the backbone (ResNet50 with DCN) and FPN are fed
into the shared header to detect texts. In the header, the
classification branch predicts both the heat maps of text
regions and those of text center regions, which are pixel-
wise multiplied, resulting in the classification score map.
The regression branch predicts the Fourier signature vectors,
which are used to reconstruct text contours via the Inverse
Fourier transformation (IFT). Given the reconstructed text
contours with corresponding classification scores, the final
detected texts are obtained with non-maximum suppression
(NMS).

8) DPText-DETR [10]
DPText-DETR, a Dynamic Point Text DEtection TRans-
former network, as a solution to the limitations of existing
Transformer-based methods for scene text detection. DPText-
DETR addresses the issues of sub-optimal training efficiency
and performance caused by coarse positional querymodeling.
It leverages explicit point coordinates to generate position
queries and dynamically updates them progressively. The
Enhanced Factorized Self-Attention module improves the
spatial inductive bias of non-local self-attention by providing
circular shape guidance to point queries. Additionally, a new
positional label form is designed to improve detection
robustness. DPText-DETR offers a concise and effective
approach for scene text detection using dynamic point-based
modeling.

9) DeepSolo [19]
DeepSolo is an innovative approach to text spotting that
integrates text detection and recognition in a unified frame-
work, taking inspiration from the methodology employed in
DETR [87]. It achieves this by employing a single Decoder
with Explicit Points Solo, enabling simultaneous processing
of both tasks. Text instances are represented as ordered
points and modeled using learnable explicit point queries.
These queries, which are sampled using Bezier curves as
introduced in [17] and [18], are then decoded to extract
crucial information such as the center line, boundary, script,
and confidence of the text. This novel technique demonstrates
promising potential in the field of text spotting.

Table 6 presents detection results at word-levels of
the evaluated methods with their pretrained models on
SignboardText. The main goal of these experiments is to
realize the performance of these SOTA methods in this
new domain without fine-tuning. By using precision, recall,
and H-mean simultaneously, we may broadly observe their
strengths and weaknesses. In terms of precision, we learn that
the most recent works, i.e., DPTExt-DETR and DeepSolo,
have the best performance, as they take the top two precision
scores with over 90%. Without retraining in a new domain,
their performance is remarkable. This observation is also
reasonable since they are carefully designed to deal with

irregular texts at the word-level and irregular texts take up a
large portion of the text on signboards. However, their trade-
off on recall is significant, as they missed approximately
40% of the words appearing on the signboards. In some
applications, this level of recall may lead to a failure in
content extraction and understanding. In terms of recall,
PSENet and PANet achieve the best performance with
78.09% and 71.92%, respectively. Besides, they also achieve
equivalent precision with 82.06% and 78.98%. In addition to
their remarkable performance in terms of precision and recall,
PSANet and PANet also excel in terms of H-mean. This
metric takes into account both precision and recall to provide
an overall measure of a model’s effectiveness. With their
well-balanced levels between precision and recall, PSANet
and PANet emerge as the top two methods in terms of H-
mean.

Table 7 provides a comprehensive evaluation of the SOTA
detection methods at word-level across different datasets.
The results reveal that the methods’ overall performance
on SignboardText, specifically the H-mean, is significantly
lower than their performances on ICDAR2015 and Total-
Text. This discrepancy can be attributed to the fact that
diacritics, tonal marks, and artistic design from non-English
texts made a significant impact on the performance of
pretrained models that were originally trained in English
settings.

In Table 9, we present the speed and GPU memory
usage of the evaluated methods. Due to its lightweight
segmentation framework, PANet is recognized as the fastest,
with 34.18 frames per second. PSENet, with the advantage
of the segmentation-based method, proves more powerful
at word-level detection (84.29% H-mean). This method
can be efficient for splitting close instances of text and
detecting cases of text with arbitrary shapes. By relying
on a Breadth-First-Search (BFS) based progressive scaling
algorithm to formulate the final results, this results in a low-
speed inference process (7.14 FPS). PANet has both the
advantages of high speed (34.18 FPS) and average accuracy
(78.62% H-mean at line level) since it is equipped with a low
computational-cost segmentation head and learnable post-
processing. However, it requires a large amount of resources
(2065 MB of GPU memory). This can be problematic since
many embedding systems are resource-constrained.

Table 8 summarizes the detection performance at line-
levels of the methods on SingboardText. Compared to
word-level detection, line-level detection is more sensitive to
background noise and aspect ratios of detection boxes. PANet
achieves the highest precision on line-level detection with
80.43%. And ABCNet v1 is followed up with 78.45%. The
two most recent methods, DPTExt-DETR and DeepSolo, are
among the methods with the lowest precision. This is because
DPTExt-DETR and DeepSolo are not intentionally designed
to deal with line detection. In terms of recall, TextSnake
and FCENet are the two best methods. Overall, PANet and
FCENet demonstrate the strongest performance in terms of
both precision and recall, as indicated by their high H-mean
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scores of 78.62% and 76.52%, respectively. This suggests that
these methods are effective in accurately detecting lines while
also minimizing false positives. However, it is worth noting
that PANet achieves significantly higher precision compared
to FCENet, indicating its superior ability to accurately
identify line-level detections.

C. RECOGNITION EVALUATION
For recognition evaluation, we use a training set of 7,850,000
images generated by SynthText and 530,000 images gener-
ated using TextRecognitionDataGenerator. By this, we expect
that the models can learn with large variations of text to
be able to deal with challenging cases in SignboardText.
We chose evaluate recent SOTA methods which have shown
remarkable performance on other standard benchmarks.

1) DeepText [88]
The framework consists of four phases aimed at text
recognition. The first step involves transforming text data
of various shapes into straight text to facilitate processing.
This transformed information is then passed through a
convolutional neural network to extract relevant features
(known as the feature extraction phase). Subsequently, the
extracted features are fed into amodel that learns and employs
the relationship between sequences of characters (known
as the sequence modeling phase). Finally, the framework
predicts the characters present in the image to be recognized
(known as the prediction phase).

2) PaddleOCR [11]
Researchers from Baidu have proposed the PaddleOCR
architecture, which is based on upgraded, lightweight neural
networks. The proposed framework consists of three main
modules: text border detection, text corner correction, and
text recognition. All three modules employ lightweight
backbone networks to improve computational efficiency and
make the method suitable for embedded applications. The
first module employs a segmentation network-based text
detector whose objective is to identify and segment the area
of the image that contains the text. To correct the detection
box, a geometric transformation is given to the image area
in the second module. A convolutional recurrent neural
network (CRNN) is utilized in the last stage, text recognition,
to identify the text in the rectified bounding box.

3) STAR-Net [12]
STAR-Net introduces a Spatial Transformer Network (STN)
to rectify text areas, making them more suitable for recog-
nition. This approach is particularly effective at handling
curved or distorted text, proving to be a valuable tool
in scenarios where scene text is not perfectly aligned or
formatted.

VietOCR4 is a method proposed for recognizing Viet-
namese handwritten and optical characters. It includes

4https://github.com/pbcquoc/vietocr

two main models: AttentionOCR, which is a combination
of CNN architecture and attention seq2seq architecture,
and TransformerOCR, which is a combination of CNN
architecture and Transformer architecture.

4) SAR [90]
SAR presents a simple yet efficient method for recognizing
irregular text. SAR combines a sequence-to-sequence model
with an attention mechanism, where 2D vector maps are used
as input to an attention module, resulted in ‘‘glimpse’’ vectors
(as one of the input of LSTM module).

5) SATRN [13]
SATRN makes use of the self-attention mechanism to
investigate the 2D spatial relationships among characters.
In combination with innovative 2D positional encoding, the
encoder of SATRN mitigates the absence of crucial location
information resulting from self-attention. As a result, this
approach is capable of managing extreme cases, such as
severe distortion.

FIGURE 6. Examples of signboards with artistic text. Texts with artistic
styles are extremely common on signboards.

6) ViTSTR [14]
ViTSTR is a simple yet efficient implementation of vision
transformers. It comprises only 12 identical encoder blocks
without a decoder, and its prediction layer is a basic linear
layer for projecting encoded features into predictions. Addi-
tionally, the authors improve the accuracy of ViTSTR through
the application of diverse and multiple data augmentation
techniques.

7) ABINet [15]
ABINet employs a language model to uncover the connection
between visual and textual information. Furthermore, it intro-
duces a bidirectional cloze network (BCN) to create feature
representations that consider information from both the left
and right directions. In addition, ABINet utilizes iterative
refinements, starting with predictions from the vision model
and then refining them through iterations using the language
model.
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TABLE 10. Recognition results of the evaluated SOTA methods on SignboardText. MJ, ST denotes MJSynth, SynthText respectively. † denotes the best
performance. ‡ indicates the second.

TABLE 11. Recognition results of the evaluated methods on various datasets, including Ours (SignboardText), ICDAR2013, ICDAR2015, Total-Text, and
COCO-Text. The ICDAR2013, ICDAR2015, Total-Text, and COCO-Text consist of 1,095, 2,077, 2,201, and 9,837 images, respectively, as outlined in the
conventions introduced by DeepText [88]. * denotes a reproduced result. A citation on the right of a result indicates that the result is derived from the
cited papers.

FIGURE 7. Examples to illustrate that the detection methods are confused by the artfully designed parts of the text.

8) PARSeq [16]
PARSeq leverages permutation language modeling to train
an ensemble of internal autoregressive language models
with shared weights. This approach combines context-aware
AR (auto regressive) inference and context-free non-AR,
along with iterative refinement using bidirectional context
(iterative refinement is introduced in ABINet [15]). By doing
so, PARSeq provides a unified solution that overcomes the
shortcomings of traditional AR models and improves the
overall accuracy and efficiency of context-aware STR.

9) SVTR [91]
SVTR represents another vision-only model that con-
textualizes dependencies at both the local level (such
as stroke-like features) and the global level (such
as inter-character features). This method employs a
significantly simpler architecture compared to other
methods that fall under the encoder-decoder category,
like those mentioned in [13] and [15]. Consequently,
it reduces both the computational time and resource
requirements.
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FIGURE 8. Examples of threshold sensitivity. With the IoU threshold equal to 0.5, the detected box does not cover the tone mark, thus leading to
the wrong recognition. If the IoU is set to 0.7, the box is rejected. This may cause a drop in the recall.

TABLE 12. Speed and GPU usage comparison of recognition methods. *
denotes the models that belong to the DeepText framework.

With the evaluation results shown in Table 10, VietOCR-
TransformerOCR achieves the highest accuracy at 76.84%,
while PARSeq comes in second with an accuracy of 68.55%,
trailing VietOCR. The reason for this performance difference
is that both VietOCR and PARSeq are trained on real-
life datasets, which have distributions that closely match
the target data. In contrast, synthetic datasets like MJSynth
and SynthText have different characteristics. Table 12
summarizes the speed and GPU usage of the evaluated
methods.

In Table 11, we summarize the recognition results of the
evaluated methods across datasets, including SignboardText,
ICDAR2013, ICDAR2015, Total-Text, and COCO-Text.
Compared to ICDAR2013 and ICDAR2015, the performance
of the methods significantly drops as they are applied to
SignboardText. This indicates that SignboardText covers
more challenging cases than ICDAR2013 and ICDAR2015,
where the majority of texts are predominantly horizontal
(as observed in Table 2). However, as we observed in the
group of three datasets, including SignboardText, Total-
Text, and COCO-Text, the performances of the evalu-
ated methods are at the same low level. SignboardText
demonstrates itself as a challenging dataset for SOTA text
recognition methods. It is also worth noting that the size
of SignboardText is smaller than that of the other two
datasets. Hence, its source of challenge is not mainly
scale related issues. This lower accuracy is attributed
to the presence of unique challenges in the signboard
domain.

We observe that one of the main challenges of detecting
and recognizing texts from signboard images is related to
texts with artistic styles (examples shown in Figure 6).
Designers usually use artistic text on signboards to create
a visual impact and attract attention. Artistic text can also
convey a message or a mood that is related to the brand or
the product. For example, some designers use typography
that has a distinctive identity and style. Typography is the art
of arranging typefaces in various combinations of font, size,
and spacing. Some designers also use text art as a form of
expression and creativity.

Beside the extreme variations of text instances with
different art styles, tone marks in text are another challenging
issue. Tone marks may cause the text recognizer to be
confused with other artfully designed parts of the text, which
are not helpful in recognizing the text. And bounding boxes
of words with tone marks usually cover a larger background.
This injects more noise from background regions into the
learning models. Larger bounding boxes (to cover tone mark
regions) also cause text detection results to be more sensitive
to the IoU threshold. Tightly detected boxes are easily
considered failure detection. Some examples are given in
Fig. 7 and Fig. 8.
Although handling artistic text is challenging, it is

important for scene understanding. Art text recognition on
signboards can improve image understanding and analysis by
providing additional data that can be used to train or test the
models for these tasks. For example, art text recognition can
help identify the location of a signboard in an image and use
it as a reference point for other tasks. Art text recognition can
also help to extract the text content from signboards and use
it as a source of information for other tasks.

Moreover, the texts in signboard images are obtained from
the real world, and as such, they are subject to direct influence
from different factors such as low resolution, blurring,
multiscale, diverse density, multilinguality, and invisibility.
In these situations, text recognition is another issue that
garners community interest.

V. CONCLUSION
We present SignboardText, an in-the-wild signboard dataset,
for scene text detection and recognition. The dataset com-
prises 2,104 images, of which 79,814 instances of text

VOLUME 12, 2024 62953



T. Do et al.: SignboardText: Text Detection and Recognition in In-the-Wild Signboard Images

have been manually annotated at the word and line levels.
SignboardText incorporates a diverse range of words to
represent various real-life scenarios, such as those involving
a cluttered background, curved or distorted text, varied type-
faces, or distinct artistic styles. The art-style texts combined
with the system of tone marks, which is common in many
language systems, are a prominent attribute of the dataset,
leading to challenging detection and recognition cases of
generic design methods. We comprehensively evaluated
recent state-of-the-art (SOTA) approaches for text detection
and recognition on the dataset. Based on experimental results
and analysis, we exposed the barriers of current state-of-the-
art approaches to solving the extremely challenging issues of
scene text detection and recognition in this new domain.
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