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ABSTRACT Weakly supervised video anomaly detection (WS-VAD) is a crucial research domain in
computer vision for the implementation of intelligent surveillance systems. Many researchers have been
working to develop WS-VAD systems using various technologies by assessing anomaly scores. However,
they are still facing challenges because of lacking effective feature extraction. To mitigate this limitation,
we propose a multi-stage deep-learning model for separating abnormal events from normality to extract the
hierarchical effective features. In the first stage, we extract two stream features using pre-trained techniques:
the first stream employs a ViT-based CLIP module to select top-k features, while the second stream
utilizes a CNN-based I3D module integrated into the Temporal Contextual Aggregation (TCA) mechanism.
These features are concatenated and fed into the second-stage module, where an Uncertainty-regulated
Dual Memory Units (UR-DMU) model is employed to learn representations of regular and abnormal
data simultaneously. The UR-DMU integrates global and local structures, leveraging Graph Convolutional
Networks (GCN) and Global and Local Multi-Head Self Attention (GL-MHSA) modules to capture video
associations. Subsequently, feature reduction is achieved using the multilayer-perceptron (MLP) integration
with the Prompt-Enhanced Learning (PEL) module via the knowledge-based prompt. Finally, we employed
a classifier module to predict the snippet-level anomaly scores. In the training phase, the based function
transfers the snippet-level scores into bag-level predictions for learning high activation in anomalous cases.
Our approach integrates these cutting-edge technologies and methodologies, offering a comprehensive
solution to video-based anomaly detection. Extensive experiments on ShanghaiTech, XD-Violence, and
UCF-Crime datasets validate the superiority of our method over state-of-the-art approaches by a substantial
margin. We believe that our model holds significant promise for real-world applications, demonstrating
superior performance and efficacy in anomaly detection tasks.

INDEX TERMS Temporal contextual aggregation (TCA), uncertainty-regulated dual memory units (UR-
DMU), graph convolutional networks and global/local multi-head self-attention (GL-MHSA), weakly
supervised video anomaly detection (WS-VAD) anomaly detection.
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I. INTRODUCTION
Fully supervised, unsupervised, and weakly supervised are
the three prevailing paradigms in the field of video anomaly
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event detection (VAED). The fully supervised paradigm is
primarily characterized by its exceptional performance [1].
However, it is important to note that the training data for
this paradigm necessitates the inclusion of frame-level nor-
mal or abnormal annotations, which in turn requires video
annotators to identify and label abnormalities within the
videos. Given that abnormalities can occur at any given
moment, it becomes imperative for the annotators to spot
nearly all frames. Regrettably, the process of accumulating a
fully annotated large-scale dataset for supervised VAED can
be both non-automated and time-consuming. On the other
hand, the unsupervised paradigm involves training models
exclusively on samples of normal events. It is based on
the common assumption that unseen anomaly videos will
exhibit high reconstruction errors [2], [3], [4]. Unfortunately,
the performance of unsupervised Variational Autoencoder
Decoder (VAED) tends to be substandard. This can be
attributed to its limited comprehension of anomalies and its
incapacity to encompass various forms of normality vari-
ants [5]. Consequently, weakly supervised approaches are
widely regarded as the most viable paradigm. They out-
shine both unsupervised and supervised paradigms due to
their competitive performance and cost-effectiveness regard-
ing annotations. These approaches reduce cost by utilizing
video-level labels instead of laborious fine-grained annota-
tions [6], [7]. In recent time, WVAED has evolved into a
well-established technical path of research for VAED [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16]. The WVAED
issue is primarily perceived as a MIL (multiple instance
learning) problem [8]. Generally speaking, WVAED models
directly generate scores for anomalies by comparing the spa-
tiotemporal features of normal and abnormal events through
the MIL technique. The MIL approach deals with training
data organized into sets known as positive and negative bags.
In the context of MIL, a video is seen as a bag containing
numerous instances, where each instance corresponds to a
video snippet. A negative bag encompasses the entirety of
normal snippets, whereas a positive bag encompasses both
normal and abnormal snippets without any indication of the
temporal boundaries of abnormal events. The conventional
Multiple Instance Learning (MIL) framework assumes that
all negative bags exclusively contain negative snippets and
that positive bags contain at least one positive snippet. Super-
vision is solely provided for complete sets, and the individual
labels of the snippets within the bags are not given [17]. The
outputs of WVAED are inherently more reliable than those
of unsupervised VAED due to its ability to comprehend the
fundamental variability between normal and abnormal [18].
However, in the WVAED approach, the frames labelled as
abnormal in the positive bag are often influenced by the
frames labelled as normal in the negative bag, making it
challenging to distinctly identify an abnormality in contrast to
normality. Consequently, the detection of anomalous snippets
can become problematic. Numerous researchers (e.g., [8],
[9], [10], [19], [20]) have endeavoured to address this issue
by employing multiple instance learning (MIL) frameworks.

Many of the existing methodologies encode the extracted
visual content by utilizing a backbone such as C3D [21]
and I3D [22], which have been pre-trained on tasks related
to action recognition. Nevertheless, Visual Activity Detec-
tion (VAD) requires representations that are able to clearly
depict the events occurring in a given scene. Consequently,
these current backbones are unsuitable for VAD due to the
existence of a domain gap. In order to overcome this limita-
tion, Joo et al. decided to draw inspiration from the recent
achievements in vision-language research, specifically the
works of [23], [24], and [25], which demonstrated the effec-
tiveness of feature representation derived from contrastive
language-image pretraining (CLIP). To achieve this, they
employed the visual features encoded by the vision trans-
former (ViT) from CLIP. However, it is worth noting that
the performance of WVAED methods based on MIL heavily
relies on pre-trained feature extractors.

The drawback of the study is that they processed the video
in individual frames or short clips to extract the long-range
semantic contextual information. To overcome the prob-
lem, shao et al. proposed a Temporal Context Aggregation
for Video Retrieval (TCA) framework for video representa-
tion learning. This innovative approach integrates long-range
temporal context among frame-level features through the uti-
lization of the self-attention mechanism [26], [27]. They used
contrastive learning to reduce loss or error rate in the eval-
uation. To enhance the TCA features, Tean et al. employed
Robust TCA features, including multiple instance learning
(MIL) loss calculation approach [19]. They reported 84.30%
and 97.21% AUC for the UCF-crime and Shanghai Tech
datasets, respectively. To improve the AUC rate by increasing
the feature effectiveness, PU et al. employed TCA to enhance
the long-range dependency and PEL instead of contrastive
learning to increase the correct prediction rate by reducing the
error [28]. They employed MLP with PEL to reduce the fea-
tures and casual convolution (CC) for the classification. PEL
mainly integrates semantic priors utilizing knowledge-based
prompts aiming to increase the recognition rate by boosting
the discriminative capacity while ensuring high separability
between subclass between the anomaly, and finally, they
calculate the score and the error rate with the MIL loss func-
tion: the reported AUC rate 86.76%, 85.59% and 98.14% for
UCF-crimes, XD-Violence and Shanghai Tech dataset
respectively. To improve the recognition rate, Zhao et al. pro-
posed a new temporal feature extraction using graph-based
transformers, namely Uncertainty Regulated Dual Memory
Units. (UR-DMU) through the I3D backbone pre-trained fea-
tures [29]. They reported 86.97% and 94.02% for UCF-crime
and XD-violence datasets, respectively. To improve the per-
formance, more recently, sharif et al. proposed a two-stream
pre-trained feature-based temporal feature enhancement
module where they first extracted CNN-based I3D features in
the first stream by selective top-k score and ViT-based Clip
feature in the second stream [30]. Finally, they fused the two
features and employed MLP and classification module for
the classification. They reported 88.97% and 98.66% AUC
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for the UCF crime and the Shanghai tech dataset, respec-
tively. The drawback of this model is that it did not achieve
satisfactory performance for the real-time deployment due
to a lack of feature effectiveness. Also, they utilized CNN
and ViT-based pre-trained model features and temporal fea-
ture enhancement, but they did not consider the graph-based
feature enhancement and spatial feature enhancement in the
module. Also, the UR-DMU [29] utilized the graph-based
feature enhancement, but they did not discuss time-varying
enhancement and TCA [26], [28] reflected the vice versa
problem. In addition, UR-DMU [29], TCA [26], [28] and
I3D-CLIP [30] they are having lacking the extracting all
possible kind of the feature. This research group inspired us to
work here to extract all possible kinds of features to increase
the anomaly detection rate. To overcome the challenges,
we proposed here a multi-stage graph and general deep
learning (DL) feature enhancement-based anomaly detection
system. In the study, we proposed including CNN and ViT-
based pre-trained features, temporal features, graph-based
temporal features and spatial enhancement of the features.

The main contributions of the proposed model are given
below:

• Stage 1: General Deep Learning Model Based
Dual-Stream Feature Extraction:
The first stage of our methodology is characterized
by the innovative use of two streams, each contribut-
ing distinct yet complementary features to the anomaly
detection process. Leveraging CLIP and I3D, we extract
rich semantic information and spatiotemporal features,
respectively, setting a solid foundation for subsequent
analysis. Building upon the extracted features, we seam-
lessly integrate them into the Temporal Contextual
Aggregation (TCA) mechanism. This module helps
to capture comprehensive contextual information by
reusing the similarity matrix and implementing adaptive
fusion. This integration facilitates the effective capture
of temporal dependencies across video frames, enhanc-
ing the model’s ability to discern anomalous patterns
amidst dynamic scenes.

• Stage 2: Graph-Based UR-DMU Model Integration
and Refinement:
In the second stage, we introduce the Uncertainty-
regulated Dual Memory Units (UR-DMU) model,
renowned for its ability to simultaneously learn rep-
resentations of regular and abnormal data. By incor-
porating global and local structures through GCN and
Global/Local Multi-Head Self Attention (GL-MHSA)
modules, our model captures intricate associations
within video data. Additionally, refinement through
a Multi-Layer Perceptron (MLP) enables non-linear
mapping, further enhancing the model’s discriminatory
capabilities.

• Stage-3 Feature Reduction Classification and Evalu-
ation with Impact and Promise:
In the third stage, we used a feature reduction module
using two-layer multilayer perception (MLP) integrated

with PEL to refine and learn discriminative features
through knowledge-based prompts. This integration of
non-linear mapping further enhances the model’s abil-
ity to differentiate between normal and anomalous
behaviour.

• Classification and Evaluation Finally, we employed a
classifier module to predict the snippet-level anomaly
scores. In the training phase, the based function transfers
the snippet-level scores into bag-level predictions for
learning high activation in anomalous cases. We eval-
uate the proposed model with three benchmark datasets,
namely UCF-Crime Dataset, ShanghaiTech Dataset,
and XD-Violence. The extensive performance result
proves the superiority of the proposed model. Through
the integration of these cutting-edge technologies and
methodologies, our approach offers a comprehensive
solution to video-based anomaly detection. We believe
that our model holds significant promise for real-world
applications, demonstrating superior performance and
efficacy in anomaly detection tasks.

II. LITERATURE REVIEW
The methodologies utilized in WVAED rely on labels at the
video level, which consistently adhere to the MIL ranking
framework [8]. According to the MIL approach, a regres-
sion model is trained using the WVAED method with the
assumption that the maximum score of the positive bag
is greater than that of the negative bag in order to assign
scores for video snippets. These [8], [9], [19], and [6],
[11] all incorporated pre-trained models based on convo-
lutional neural networks into their experimental procedure
setups. In addition, Sultani et al. [8] meticulously curated
pre-annotated normal and abnormal video events at the video
level to construct the widely recognized UCF-Crime dataset.
The dataset was employed for anomaly detection by utilizing
a weakly supervised framework. Within the confines of this
framework, C3D features [31] were extracted for video seg-
ments, and then a ranking loss function was used to train a
fully connected neural network (FCNN). The purpose of this
function was to compute the loss between the most highly
scored rank examples in the positive bag and the negative bag.
Tian et al. [19] presented a model and utilized the C3D [31]
and I3D [22] models for the aiming of feature extractors in
their WVAED model. They contended that by selecting the
top 3 features based on their magnitude, a more pronounced
differentiation can be achieved between normal and abnormal
videos (AVs). Specifically, in cases where multiple abnormal
snippets exist within an anomalous video, the average snippet
feature magnitude of the anomalous video surpasses that of
normal videos (NVs). Hang et al. [9] presented a model to
extract positive and negative video-segmented C3D features
by using a temporal convolution network [31]. Specifically,
they trained the network between the previous adjacent seg-
ment and the current segment. Further, they used inner and
outer bag ranking losses to train the model based on two
branches of an FCNN. This loss accounted for the greatest
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and lowest-scoring parts in terms of the positive bags and
negative bags.

Similarly, Zhong et al. [6] and Zhu et al. [11] imple-
mented models that trained a feature-based encoder and
classifier simultaneously. Zhong et al. [6] analyzed WVAED
and performed it as a supervised learning problem using noise
labels. Extensive experiments were undertaken to evaluate the
universal applicability of their model, using both temporal
segment network [32] and C3D [31]. Zhu and Newsam [11]
integrated an attention block to their MIL ranking model
to account for temporal context. They claimed that motion
information features extracted by C3D [31] and I3D [22]
outperformed features obtained from individual images using
pre-train model VGG16 [33] and Inception [34]. ViT-based
pre-trained models can be classified into two types: single-
stream and dual-stream. In the single-stream approach, text
and picture (or video) representations are modeled using a
single transformer in a single framework, while the dual-
stream model uses a decoupled encoder to encode text and
image (or video) separately. Among the most notable ViT
feature extractors are CLIP [35], ViLBERT [36], Visual-
BERT [37], and data-efficient CLIP [38]. For the WVAED
problem, Joo et al. [20] recently presented a temporal
self-attention framework for CLIP-assisted [35]. They imple-
mented the experiments on open accessible datasets to per-
form their end-to-endWVAEDmodel. Li et al. [39] presented
a multi-instance learning network based on transformers
to get anomaly scores for both videos and snippets. They
used the video-level anomaly probability in the inference
stage to lessen the snippet-level anomaly score’s volatility.
Lv et al. [40] introduced an unbiasedMIL scheme that trained
an unbiased anomaly classifier and a tailored representation
for WVAED. In view of the available solutions, it has been
observed that, in general, CNN and ViT are typically utilized
in isolation. To leverage the benefits offered by both CNN-
and ViT-based pre-trained models, an architecture known as
CNN-ViT-TSAN, which is supported by Multiple Instance
Learning (MIL), has been devised. This architecture aims
to establish a range of models for addressing the prob-
lem of Weakly Supervised Variational Autoencoder Design
(WVAED). The drawback of the study is that they pro-
cessed the video in individual frames or short clips to extract
the long-range semantic contextual information. To over-
come the problem, shao et al. proposed a TCA framework
for video representation learning. This innovative approach
integrates long-range temporal context among frame-level
features through the utilization of the self-attention mecha-
nism [26], [27]. They used contrastive learning to reduce loss
or error rate in the evaluation. To enhance the TCA features,
Tean et al. employed Robust TCA features, including mul-
tiple instance learning (MIL) loss calculation approach [19].
They reported 84.30% and 97.21% AUC for the UCF-crime
and Shanghai Tech datasets, respectively. To improve the
AUC rate by increasing the feature effectiveness, PU et al.
employed TCA to enhance the long-range dependency and
PEL instead of contrastive learning to increase the correct

prediction rate by reducing the error [28]. They employed
MLP with PEL to reduce the features and casual convo-
lution (CC) for the classification. PEL mainly integrates
semantic priors utilizing knowledge-based prompts aiming
to increase the recognition rate by boosting the discrim-
inative capacity while ensuring high separability between
subclass between the anomaly, and finally, they calculate
the score and the error rate with the MIL loss function: the
reported AUC rate 86.76%, 85.59%, and 98.14% for UCF-
crimes, XD-Violence and Shanghai Tech dataset respectively.
To improve the recognition rate, Zhao et al. proposed a
new temporal feature extraction using graph-based trans-
formers, namely Uncertainty Regulated Dual Memory Units.
(UR-DMU) through the I3D backbone pre-trained fea-
tures [29]. They reported 86.97% and 94.02% for UCF-crime
and XD-violence datasets, respectively. To improve the
performance, more recently, sharif et al. proposed a two-
stream pre-trained feature-based temporal feature enhance-
ment module where they first extracted CNN-based I3D
features in the first stream by selective top-k score and
ViT-based Clip feature in the second stream [30]. Finally,
the fused the two features and employed MLP and classifi-
cation module for the classification. They reported 88.97%
and 98.66% AUC for the UCF crime and the Shanghai tech
dataset, respectively. The drawback of this model is that it
did not achieve satisfactory performance for the real-time
deployment due to a lack of feature effectiveness. Also,
they utilized CNN and ViT-based pre-trained model features
and temporal feature enhancement, but they did not con-
sider the graph-based feature enhancement and spatial feature
enhancement in the module. Also, the UR-DMU [29] utilized
the graph-based feature enhancement, but they did not discuss
time-varying enhancement, and TCA [26], [28] reflected the
vice versa problem. In addition, UR-DMU [29], TCA [26],
[28] and I3D-CLIP [30] they are having lacking the extracting
all possible kind of the feature. This research group inspired
us to work here to extract all possible kinds of features to
increase the anomaly detection rate. To overcome the chal-
lenges, we proposed here a multi-stage graph and general DL
feature enhancement-based anomaly detection system. In the
study, we proposed including CNN andViT-based pre-trained
features, temporal features, graph-based temporal features,
and spatial enhancement of the features.

III. DATASET
Anomaly detection datasets play a crucial role in developing
and evaluating algorithms aimed at identifying irregular or
unexpected events within data streams. These datasets pro-
vide diverse scenarios, allowing researchers to train and test
their models under various conditions. Also, there are many
datasets available for anomaly detection, and we used the
following most usable benchmark datasets, such as Shang-
haiTech [41], the UCF-Crime [8], and XD-Violence [29],
which offer different scales, backgrounds, and types of
anomalies, catering to different research needs. By utiliz-
ing these datasets, researchers can benchmark their anomaly
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detection methods, assess their performance, and contribute
to advancing the field of anomaly detection in real-world
applications.

A. ShanghaiTech DATASET
This dataset represents a medium-scale anomaly dataset com-
prising 317,398 frames of video clips. These clips capture
scenes from various locations within the ShanghaiTech Cam-
pus. The dataset includes 13 distinct background scenes,
consisting of 307 NVs and 130 anomaly videos. The earliest
dataset [41], serves as a common benchmark for VAED.
In this dataset, the training set contains NVs, while the testing
set contains both normal and anomalous videos. In order
to create a weakly supervised training set that encompasses
all 13 background scenes, Zhong et al. [6] reorganized
the dataset. Their approach involved selecting a subset of
anomalous testing videos and using them as training data.
We followed the procedure outlined by Zhong et al. [6] to
transform the ShanghaiTech dataset into this weakly super-
vised setting.

B. UCF-CRIME DATASET
This dataset consists of a large-scale anomaly detection
dataset that includes 1900 untrimmed videos collected from
real-world street and indoor surveillance cameras. There
are 128 hours of video in total. The dataset covers 13 dif-
ferent real-world anomalies such as abuse, arrest, arson,
assault, accident, burglary, explosion, ‘‘fighting’’, ‘‘rob-
bery’’, ‘‘shooting’’, ‘‘stealing’’, ‘‘shoplifting’’, and ‘‘vandal-
ism’’. Unlike the static background in the ShanghaiTech
dataset [41], the UCF-Crime [8] dataset has more com-
plicated and diverse backgrounds. The training set of the
UCF-Crime dataset contains 1610 videos, with 800 labeled
as normal and 810 labeled as anomalous. The testing set con-
tains 290 videos, with 150 labeled as normal and 140 labeled
as anomalous, and includes frame-level labels.

C. XD-VIOLENCE
XD-Violence dataset comprises a variety of media formats,
specifically videos and audio. The dataset encompasses a
diverse range of backgrounds, such as movies, games, and
live scenes. It consists of a total of 4754 videos, with
3954 videos designated for training purposes and equipped
with video-level labels. Additionally, 800 testing videos have
been labelled at the frame-level [29].

IV. PROPOSED METHOD
In our proposed model for video-based anomaly detection,
we leverage a sophisticated combination of state-of-the-
art technologies to enhance the accuracy and robustness
of anomaly identification. Figure 1 demonstrated the pro-
posed model where we used a multi-stage DL approach.
This study is mainly designed to extract characteristics that
are more indicative of anomalies. In our approach, similar
to previous work [28], [29], [42], we extract features from
each video with 10-crop augmentation for the UCF-Crime

and Shanghai-Tech datasets and 5-crop augmentation for the
XD-Violence dataset using pre-trained models. We divided
the untrimmed video into non-overlapping snippets by uti-
lizing a 16-frame sliding window. Then, we introduce a
multi-backbone framework, combining a CLIP model trained
on Kinetics with an I3D model also pre-trained on Kinet-
ics. This dual-backbone approach leverages the strengths of
both architectures to enhance the feature extraction process
for video anomaly detection. Subsequently, this enhanced
feature set is streamlined via TCA, CNN, UR-DMU and a
two-layerMultilayer Perceptron (MLP), optimizing it for fur-
ther analysis or applications. In the procedure, we employed
three stages. Where the first stage was constructed with two
streams and the initial stream, we utilised CLIP (Contrastive
Language-Image Pre-training) and selected the top-k fea-
tures, which are considered as the feature of the first stream.
In the second stream, we used a pre-trained I3D (Inflated
3D ConvNet) network to extract rich semantic information
that fed into the Temporal Contextual Aggregation (TCA)
mechanism for integrating contextual information across
frames, effectively capturing temporal dependencies. Then,
we employed the CNN module for spatial enhancement of
TCA output to extract spatiotemporal features from video
frames as a feature of the second stream. We concatenated
the CLIP-based first stream and the I3D-based second stream
feature that fed into the UR-DMU [29]model, which employs
dual memory units to learn representations of regular data
and discriminative features of abnormal data simultaneously.
This model incorporates both global and local structures
through GCN [14], [15], [16] and Global/Local Multi-Head
Self Attention (GL-MHSA) modules, facilitating the capture
of associations in videos. In the third stage, we used a fea-
ture reduction module using two-layer multilayer perception
(MLP) integrated with PEL to refine and learn discriminative
features through knowledge-based prompts. This integration
of non-linear mapping further enhances the model’s ability
to differentiate between normal and anomalous behaviour.
Finally, we employed a classifier module to predict the
snippet-level anomaly scores. In the training phase, the based
function transfers the snippet-level scores into bag-level pre-
dictions for learning high activation in anomalous cases.
By integrating these cutting-edge technologies, our model
offers a comprehensive approach to video-based anomaly
detection, promising superior performance in real-world
applications.

A. PEPROCESSING
In WVAED, the training set solely comprises video-level
labels. Considered a set of training video can expressed as
below W = Vv, yvwv=1 where each video Vv = Framei

Nv
i=1 ∈

RNv×W×H represent the sequence of frames Nv and each
frame consists with width = W and height = H . In addition,
the label of each video Vv contained in yv = 0, 1 is associated
with the anomaly label. Among the frames of a specific video,
we divided it into a set of snippets, which can be expressed
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FIGURE 1. Proposed Model.

as γi
⌊
Nv
1

⌋

i=1 where each snippet contained same number of
frames 1.

In the preprocessing, we followed the existing system,
and that is first, we divided the untrimmed video into
non-overlapping snippets by utilizing a 16-frame sliding
window [28], [29], [42]. Then, we extracted features from
each sample, using 10-crop augmentation for the UCF-Crime
and Shanghai-Tech datasets and 5-crop augmentation for the
XD-Violence dataset using pre-trained models in stages 1
[28], [29], [42].

B. STAGE 1: PRETRAINED MODEL-BASED FEATURE
EXTRACTION
In the first stage, we introduce a multi-backbone framework,
combining a CLIP model trained on Kinetics with an I3D
model also pre-trained on Kinetics. It is important to note
that our I3D model is configured to process only RGB input.
In this architecture, the I3D RGBmodel extracts features in a
1024-dimensional space, while the CLIP model provides fea-
ture vectors in 512 dimensions. This dual-backbone approach
leverages the strengths of both architectures to enhance the
feature extraction process for video anomaly detection.

1) ViT TRANSFORMER BASED CLIP FEATURE EXTRACTION
STREAM
In the first stream, we employed a based CLIP model to
extract the pre-trained features and then nominate the top
score to select the most relevant video snippets.

a: PRETRAINED CLIP FEATURE FEATURE
CLIP leverages a unified framework for understanding both
text and image data, enabling it to capture rich semantic
information from video frames. Vision-language pre-trained
models leverage ViTs to capture the correlations between
objects or actions depicted in a video and those described in
textual content. These sophisticated models excel at extract-
ing intricate relationships between visual and linguistic
elements, thereby facilitating comprehensive understanding
and analysis across modalities. There are many researchers
used the concept of ViT as a backbone for different kinds

of transformers, namely ViLBERT [36], CLIP [35], Visual-
BERT [37] and data-efficient CLIP [38], aiming to develop
different kinds of the language model and the multi-modal
vision. Generally, CLIP [38] serves as a multi-modal vision
and language model, harnessing a ViT as its foundational
framework for extracting visual features. We considered that
dj = ⌈

1
2 ⌉ is a middle frame for the video and from the

snipped γj, which means we did not consider all frame at a
time. In our study, we employ the CLIP on dj of the snippet
γj to represent its features as φvj ∈ Rℵ, here ℵ represented the
feature dimension, and final feature vector can be constructed
with φvvit = φj

Tv
j=1 ∈ RT×ℵ [30]. We used pre-trained CLIP

models in the first stream to extract effective features from
each video. CLIP consists of a multi-backbone framework.
The CLIP model provides feature vectors in 512 dimensions.

b: TOP-K SCORE NOMINATOR
The output of the CLIP model is fed into the K-Score Selec-
tion Module, which is demonstrated in Figure 2. The top-k
score nominator, as described [42], is a crucial component for
selecting the most relevant video snippets. These scores are
then processed to identify the top most relevant snippets. This
method ensures that the snippets with the highest relevance,
indicated by their score values, are selected for further pro-
cessing. This module involved cloning the input vector, which
comes from the CLIP model output and is known as a score
vector. Then, we added the Gaussian noise and calculated
the magnitude. Based on the magnitude value, we selected
the top K scores. This top-k score nominator is integral for
focusing the model’s attention on the most significant parts
of the video.

2) CNN BASED I3D FEATURE EXTRACTION STREAM
In the second branch of the first stage module, we employed
I3D and then enhanced the information using TCA and
CNN modules. The utilization of the I3D module allows for
the extraction of robust spatio-temporal features from video
sequences. By incorporating spatial and temporal informa-
tion, this module effectively captures motion and appearance
cues, enabling a comprehensive representation of video
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FIGURE 2. Internal structure of the Top K-Score Selection module [42].

content. TCA plays a pivotal role in integrating contextual
information across multiple frames. By considering temporal
dependencies within video sequences, TCA enhances the
model’s ability to discern anomalies. Thismechanism ensures
that the model can effectively capture dynamic changes over
time, improving anomaly detection accuracy. The incorpora-
tion of a 1D CNN, followed by ReLU activation and dropout
regularization, contributes to feature dimensionality reduc-
tion while preserving essential information. This process
ensures that the extracted features are concise yet informative,
facilitating efficient anomaly detection without sacrificing
discriminative power.

a: I3D FEATURES
I3D excels in capturing spatio-temporal features from video
sequences, providing a robust representation of motion and
appearance cues within the temporal context [22]. One of the
most widely used DL models, (CNN), has a lot of potential
for image classification. CNN-based C3D (Convolutional
3D) [21] are the most usable common feature extractors.
Tran et al. [36] showed that C3D can model appearance and
motion information simultaneously and outperform the 2D
CNN features in various video-analysis tasks. Technically,
we calculated the I3D features from the T snippets in the
dimension ℵ́. Assume ´φvcnn = φi

Tv
i=1 ∈ RTv×ℵ́ [30] used to

extract features where for a specific video Vv contained the
Tv number of snippet and feature vector size can be expressed
as Vv. In lieu of employing PCA, we opt for the low-variance
filter algorithm to reduce the dimensionality of the extracted
data. After reducing the dimension, it produces the first stage
feature of this stage and that dimension can be expressed with

´φvcnn ∈ RTv×ℵ́ which comes from the φvcnn ∈ RTv×ℵ where ℵ

is the feature dimension extracted from T snippets.

b: TEMPORAL CONTEXT AGGREGATION MODULE (TCA)
To enhance the temporal contextual information of the I3D
features, we used the TCA model [28]. TCA facilitates the
integration of contextual information across multiple frames,
enhancing the model’s ability to discern anomalies by consid-
ering temporal dependencies effectively. This mainly used as

a video representation learning framework that incorporates
long-range temporal information between frame-level fea-
tures using the self-attention mechanism [26], [28]. It mainly
captures temporal relationships from both local and global
perspectives. Figure 3 demonstrated the TCA calculation
procedure where X is the output of the I3D module, which
is projected here in the latent space utilizing various linear
layers and finally produces the similarity matrix as below:

M = fq(X ) · fk (X )⊤ (1)

Ag = softmax
(

M
√
Dh

)
(2)

Xg = Ag · fv(X ) (3)

Here, query, key and value are represented by fq(.), fk (.)
and fv(.), ⊤ is denoted by the transpose operation, and the
dimension of hidden spaces represented by Dh. In addition,
Ag denotes the global attention, and Xg represents the global
context features [26], [28]. We enhanced the similarity matrix
with the dynamic position encoding (DPE) approach accord-
ing to the following Equation 4:

G = exp(−|γ (i− j)2 + β|) (4)

where i and j denote the absolute positions of two snippets,
and γ and β are learnable weights and bias terms.

In contrast, we also calculated the local attention and local
context features according to the below formulas:

Al = softmax

(
M̃

√
Dh

)
(5)

X l = Al · fv(X ) (6)

Here Al denotes the local attention, and X l represents the
global context features where M̃ represent masking output of
the similarity matrix from Equation (1) [26], [28]

Then we concatenated the global attention head Xg and
local attention head X l to produce the final feature Xo using
Equation (7).

Xo = α · Xg + (1 − α) · X l (7)

After normalizing the features, we concatenated with the
skip connection to overcome lost information. Finally,
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we employed a linear layer and produced the output of the
TCA module feature according to Equation (8).

X c = LN(X + fh(Norm(Xo))) (8)

where global weight, local weight and combination of power
normalization are represented by α, (1 − α), and Norm(·)
respectively.
CNN Module: These features are then processed through a

1D CNN (Conv1d), followed by a ReLU activation function
and a dropout rate of 0.1, reducing the feature dimensionality
to 512.

C. FEATURE FUSION
In the first stream, we used top k Score Nominator [42]
to select the top k segments based on their CLIP feature
relevance to obtain a refined set of 512-dimensional fea-
tures denoted with XT . We got the final feature from the
FC module in the second stream denoted with XCCN . These
features are then concatenated, resulting in comprehensive
1024-dimensional features denoted with Fstage−1 using the
Equation.

Fstage−1 = XT ⊕ XCCN (9)

D. STAGE 2: UR-DMU BASED FEATURE
To produce the graph-based temporal enhancement fea-
ture, we employed the UR-DMU [14], [15], [29] approach,
which is mainly incorporated with dual memory units to
simultaneously learn representations of regular data and dis-
criminative features of abnormal data. The main goal is to
improve the model’s ability to differentiate between nor-
mal and anomalous behaviour. It consists of three main
components demonstrated in Figure 4. Global and Local
Multi-Head Self Attention (GL-MHSA) is crucial for learn-
ing both long and short-temporal dependencies of anomalous
features. It enhances the transformer structure by integrating
global and local structural concepts from graph convolution
networks.

S = σ (
XMt

√
D

),Maug = SM (10)

where X is a feature obtained from GL-MHSA. M is the
memory bank number, D is the number of dimensions of
output,M is queryingmemory banks, σ is sigmoid activation,
and S ∈ RNM is the query score. Following that,Maug is used
to represent the memory augmentation feature produced by a
read operation. We define a dual memory loss as consisting
of four binary cross-entropy (BCE) losses in order to train the
dual memory units.

Ldm = BCE(Snk;n, y
n
n) + BCE(Snk;a, y

n
a)

+ BCE(Sak;n;k , y
a
n) + BCE(Sak;a;k , y

a
a) (11)

where Snk;n is a normal memory score, ynn = 1 ∈ RN ,
Snk;a is a anomaly memory score, yna = 0 ∈ RN . And the
means of Sak;n, S

a
k;a top-K result along the first dimension are

Sak;n;k , S
a
k;a;k ∈ RN . yan, y

a
a are labels and the value is 1. This

helps distinguish hard samples better by comparing feature
similarities with stored templates. Normal Data Uncertainty
Learning (NUL) uses a Gaussian distribution to constrain
the latent normal representation. It’s an approach not com-
monly used in weakly supervised video anomaly detection,
drawing on concepts from unsupervised anomaly detection
methods. For training and testing, pairs of videos with equal
amounts of normal and abnormal footage are processed.
The model generates a score for each video snippet, using
Binary Cross-Entropy (BCE) loss and five auxiliary losses
for discrimination between normality and anomaly. During
testing, the model utilizes only the mean-encoder network
of the DUL module to obtain feature embeddings, which are
then used to label the video snippets and finally produce the
UR-DMU features, which is denoted Furdmu. Then we pro-
duce the final feature of stage 2 FStage−2 by adding the feature
of the UR-DMU Furdmu with the TCA Xc using the following
Equation 12.

XStage−2 = Furdmu + Xc (12)

E. STAGE 3: FEATURE REDUCTION WITH PEL THROUGH
MLP MODULE
To select the effective features from the graph-based
UR-DMU Fstage−2 features, we employedMLPwith the PEL
module, which is described below.

a: MLP
To achieve high-level semantic representations by selecting
the effective feature from the graph-based Fstage−2 features,
we employed a two-layer MLP for feature reduction. MLP
serves as a powerful tool for non-linear mapping and fea-
ture transformation, enabling the model to learn complex
decision boundaries and refine the extracted features for
final anomaly detection. This MLP incorporates two Conv1d
layers, two GELU activations, and two PDropout mecha-
nisms [43]. Prior to the first Conv1d layer, we integrate fea-
tures from TCA. Following the first Conv1d layer, we append
a 512-dimensional feature derived from I3D. Each Conv1D
layer is succeeded by a GELU activation function and a
dropout operation. This methodology is symbolized as fol-
lowing Equation 13:

FMLP−1 = Dropout(GELU (Conv1D(Fstage−2)))

FStage−3 = Dropout(GELU (Conv1D(FMLP−1))) (13)

Finally, we utilize a causal convolution layer to produce
the anomaly scores, integrating both present and past obser-
vations for enhanced reliability. The classifier is represented
as:

S = σ (ft (Xs)) , (14)

where ft (·) denotes the causal convolution layer with a ker-
nel size of 1t , σ (·) represents the sigmoid function, and
si signifies the anomaly score of the i-th snippet. Finally,
we employed themulti-layer instance learning (MIL) as a loss
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FIGURE 3. Working structure of the TCA module [28].

FIGURE 4. Working diagram of the UR-DMU module [29].

function [28], [44]. Specifically, we determine the video-level
prediction pi by computing the mean value of the top-k
anomaly scores. For positive bags, we set k =

⌊ T
16 + 1

⌋
,

and for negative bags, we set k = 1. Given a mini-batch
containing B samples with video-level ground truth yi, the
binary cross-entropy is formulated as:

Lce = −
1
B

B∑
n=1

yi log(pi). (15)

b: PROMPT-ENHANCED LEARNING (PEL)
In this study, we employ Prompt-Enhanced Learning
(PEL) proposed by Joo et al. [28], [42] to enrich visual
representations by integrating knowledge-based contextual
information, improving anomaly detection in complex sce-
narios. It involves three key steps: prompt construction,
fore-background separation, and cross-modal alignment. The
prompt construction mainly selected the common relation
among the categories to form prompts that focus on the high
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TABLE 1. Ablation study performance AUC (%).

occurrence categories and make a relevant semantic relation-
ship dictionary. Then, based on the output of FMLP − 1 and
cross-entropy loss Lce information, it produces the video
label background and foreground features. Finally, the effec-
tive feature is prompted based on the enhanced fine-grained
semantics of visual features. That means PEL assess the like-
lihood of a visual feature matching a particular prompt across
several anomaly classes and 1 normal class. Overall, the PEL
module’s integration of textual and visual modalities enables
a more nuanced and context-aware approach to anomaly
detection in video data. Finally, the cross-modal alignment
loss is computed using the Kullback-Leibler divergence,
compelling the network to discern between the visual content
of the video representing abnormal behavior (foreground)
and irrelevant content (background). The loss function is
formulated as follows:

Lkd = Ep∼p(v)[log pv2t (v) − log qv2t (v)], (16)

where pv2t (v) and qv2t (v) denote the similarity score and
semantic consistency label of the video-prompt pair, respec-
tively. For a positive pair, q = 1; otherwise, q = 0. We added
the Magnitude Contrastive (MC) Loss [45] with the Lkd to
enhance the effectiveness of the loss calculation procedure.

V. EVOLUTION AND PERFORMANCE
To evaluate the proposed model, we used three benchmark
anomaly detection datasets: ShanghaiTech [41], the UCF-
Crime [8], and XD-Violence [29].

A. TRAINING AND TESTING PROCEDURES
During training, we optimize the objective function L =

Lce + λLkd, where λ adjusts the alignment loss. This enables
our model to generate discriminative representations of posi-
tive and negative snippets, improving generalizability. In the
testing phase, we mitigate transient noise impact with a score
smoothing (SS) strategy using distinct pooling operations by
following Equation (17).

s̃i =
1
κ

i+κ−1∑
j=κ

sj (17)

It also helps us to suppress biases and reduce false alarms by
smoothing prediction scores. Also, we skipped feature-length
normalization of the extracted video feature vectors, assum-
ing independence among videos. These vectors underwent

TABLE 2. Performance result.

TSAN processing, producing reweighed attention features.
These features were then fed into the snippet association
network and an MLP-based converter to obtain anomaly
scores. Each score, ranging from 0 to 1, indicates the anomaly
probability of the corresponding snippet. To maintain the
original video order for evaluation against ground truth labels,
each score was replicated 1 times to match the video’s usual
frame length.

1) ENVIRONMENTAL SETUP AND EVALUATION METRICES
The systemwas developed on amachine with a GeForce RTX
4090 24GB series GPU, running CUDA version 11.7 and
NVIDIA driver version 515. The system utilized 64GB
of RAM. During the training processing, the learning set
employed a learning rate of 0.005 and a batch size of 32.
The training process lasted for 300 epochs using the Adam
optimizer on the same RTX 4090 machine. For efficient
implementation of graph convolution and attention with low
computational cost, the Python environment included the
following packages open cv pickle package, panda package,
a [46], [47], [48], these all packages facilitated initial data
processing and model development [47], [48].

We compare the results with the area under the curve
(AUC) of the frame-level receiver operating characteristics
(ROC) for UCF-Crime and ShanghaiTech to the WS-VAD
performance. For XD-Violence, on the other hand, the AUC
of the frame-level precision-recall curve (AP) is utilized.
In ablation experiments, the False Alarm Rate (FAR) and the
anomaly subset consisting of only abnormal data are also uti-
lized. The FAR (false alarm rate) we displayed today was dif-
ferent from the normal implementation. I used the ‘‘Learning
Prompt-Enhanced Context features for Weakly-Supervised
Video Anomaly Detection’’ implementation as is, but this
FAR is limited to normal video. In other words, it is the FAR
for video where all frames are 0. Also, in the ShangihaiTech
dataset, this FAR was exactly 0. This is probably due to the
high AUC of 98.6%. And FAR was not used much as an
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TABLE 3. State-of-the-art comparison of the proposed model for the UCF crime and ShanghaiTech dataset.

indicator. It was used in two papers, but one paper was not
prepared for comparison with the other.

B. ABLATION STUDY
Table 1 demonstrated the ablation study of the pro-
posed model, which also shows the contribution of the
multi-backbone pre-trained model. In the ablation study,
we systematically evaluated the impact of various technolo-
gies on weakly supervised video anomaly detection. The
presence of a check mark indicates the utilization of the
corresponding technology in our experiments. We observed
that integrating I3D alone resulted in a notable improve-
ment in performance across all datasets. Incorporating TCA
alongside I3D further enhanced detection accuracy. CLIP
integration facilitated even better results, particularly on the
UCF crimes dataset. Additionally, employing Top-K selec-
tion improved performance consistently. The introduction
of UR-DMU significantly boosted detection rates, which is
particularly evident in the XD violence and SH tech datasets.
Furthermore, the inclusion of PEL and MC contributed to
further performance gains. Finally, adopting SS alongside all

aforementioned technologies yielded the highest detection
accuracy, showcasing the synergistic effect of combining
these methodologies.

C. PERFORMANCE RESULT OF THE PROPOSED STUDY
Table 2 presents performance metrics for three different
datasets in anomaly detection. The metrics include Area
Under the Curve (AUC), Anomaly AUC, Average Preci-
sion (AP), and False Alarm Rate (FAR) values. For the
UCF-Crime dataset, the AUC is 0.9009, with an Anomaly
AUC of 0.7456 and an AP of 0.4090, and the FAR is 0.0204.
Similarly, the XD-Violence dataset shows an AUC of 0.9509,
Anomaly AUC of 0.8626, AP of 0.8648, and FAR of 0.0013.
Lastly, the Shanghai dataset exhibits an AUC of 0.9869,
Anomaly AUC of 0.8228, AP of 0.7780, and FAR of 0.0000.

D. STATE OF THE ART COMPARISON FOR UCF CRIME AND
ShanghahiTech DATASET
The comparison Table 3 presents an overview of vari-
ous crime detection models developed over multiple years.
Each model is evaluated based on its performance on the
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Shanghai Tech and UCF Crime datasets using the AUC (Area
Under the Curve) metric. In 2018, Sultani et al. [8] intro-
duced models utilizing the C3D and ID3 feature extractors.
These models demonstrated competitive AUC scores on both
datasets, indicating their efficacy in identifying crime-related
activities in videos. Zhong et al. [6] further advanced the
field in 2019 by exploring the use of the C3D and TSN
feature extractors. Their experiments revealed varying per-
formance across the datasets, emphasizing the importance of
feature extractor selection in model development. Addition-
ally, Zhong et al. [9] investigated the ID3 feature extractor,
contributing additional insights into its suitability for crime
detection tasks.

In 2020, Zaheer et al. [7], [49] introduced novel feature
extractors such as C3D-self and C3D, achieving promising
results on both datasets. Wan et al. [50] also contributed
to advancements by exploring the I3D feature extractor,
further diversifying the range of feature extractors used in
crime detection models. The year 2021 marked significant
progress in the field, with studies by Purwanto et al. [13],
Tian et al. [19], Majhi et al. [51], Wu and Liu [44],
Yu et al. [52], Lv et al. [12], and Feng et al. [53] intro-
ducing various feature extractors and achieving competitive
results. These studies highlighted the continuous evolution
and improvement of crime detection models. In 2022, the
research landscape expanded further with a surge in model
diversity. Studies by Zaheer et al. [3], [30], Joo et al. [20],
Cao et al. [63], Li et al. [39], Sharif et al. [30], Yi et al. [57],
Yu et al. [27], and Gong et al. [58] introduced novel
approaches and feature extractors, pushing the boundaries
of performance in video-based crime detection. Finally, the
proposed hybrid model showcased exceptional performance,
achieving remarkably high AUC scores on both datasets. This
model represents a culmination of feature extraction tech-
niques and model architecture advancements, underscoring
the potential for further improvements in crime detection
technology. Overall, the comparison table provides valuable
insights into the evolution of crime detection models over the
years, highlighting the importance of feature extraction tech-
niques and model architecture design in achieving superior
performance. As the field continues to advance, futuremodels
are expected to enhance the capabilities of video-based crime
detection systems, contributing to improving public safety
and security.

E. STATE OF THE ART COMPARISON FOR XD-VIOLENCE
DATASET
Table 4 demonstrated the state-of-the-art comparison for the
proposed model with the XD-Violence dataset. The proposed
model outperforms existing state-of-the-art methods on the
XD Violence Dataset, achieving an impressive average pre-
cision (AP) score of 86.26%. Sultani et al. [8] achieved an AP
of 73.20% using RGB features, while HL-Net [10] attained
slightly higher at 73.67%. Notably, incorporating audio fea-
tures alongside RGB, HL-Net reached 78.64%. RTFM [19]

TABLE 4. State-of-the-art comparison of the proposed model for the XD
Violence Dataset.

and MSL [39] followed closely with scores of 77.81% and
78.28%, respectively. Pang et al. [64] and ACF [65] leveraged
RGBwith audio, achieving 81.69% and 80.13%, respectively.
However, the proposed model significantly surpasses these
benchmarks, demonstrating its efficacy in violence detection.

VI. CONCLUSION AND FUTURE DIRECTION
In the study, we proposed a graph and general DL approach
to extract discriminative features to effectively distinguish
abnormal events from normality in weakly supervised video
anomaly detection (WS-VAD) tasks. By addressing the lim-
itations of existing approaches and proposing a multi-stage
deep-learning model that integrates cutting-edge technolo-
gies, we have demonstrated the effectiveness of our method.
Through the utilization of a ViT-based CLIP module, a CNN-
based I3D module, an Uncertainty-regulated Dual Memory
Units (UR-DMU) model, and GCN and Global/Local Multi-
Head Self Attention (GL-MHSA) modules, we have suc-
cessfully extracted and learned representations of regular
and abnormal data simultaneously. The refinement of fea-
tures in our third-stage module, a CNN-based MLP, further
enhances the model’s ability to differentiate between nor-
mal and anomalous behaviour. Besides anomaly detection,
we believe that this model can be used to detect crimes and
contribute to crime control automatically. Extensive exper-
iments on multiple datasets have validated the superiority
of our approach over state-of-the-art methods, showcasing
its potential for real-world applications in anomaly detection
tasks. We believe that our comprehensive solution offers
significant promise, demonstrating enhanced efficacy and
performance in video-based anomaly detection.

ABBREVIATIONS
WS-VAD Weakly supervised video anomaly detection.
UR-DMU Uncertainty-regulated dual memory units.
MLP Multilayer perception.
TCA Temporal contextual aggregation.
GCN Graph convolutional networks.
GL-MHSA Global/Local multi-head self attention.
MIL Multiple instances learning.
NVs Normal videos.
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AVs Anomalous videos.
DL Deep learning.
CNN Convolutional network.
ViT Vision transformer.
BCE Binary cross entropy.
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