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ABSTRACT A previously developed Deep Reinforcement Learning-based Vehicle Routing (DRL-VR)
algorithm aims to be used for providing the shortest Origin-Destination (OD) travel time path in dynamic
traffic environment. However, several issues may still arise regarding uncertainty associated with mixed
traffic conditions coexisting Automated Vehicles (AV) and Human-driven Vehicles (HV), particularly in a
wide-area urban road network. To develop a robust and interoperable route guidance algorithm based on
the DRL approach, this study proposes Transfer learning-based deep reinforcement Learning Algorithm
for Route Guidance (TLARG). It is an extended framework on the previous approach by incorporating
transfer learning scheme that enables the DRL model of TLARG to converge even in a wide-area urban road
network. The TLARG is evaluated in terms of OD travel time based on diverse OD trips with different urban
road networks, including narrow- and wide-area road networks. This research conducts several evaluation
studies based on microscopic traffic simulation experiments. The simulation result shows that the TLARG
enables the agent to complete its OD trips not only with flexible routes but also with reductions in travel
time depending on given traffic situations irrespective of network type. Furthermore, it demonstrates that
the robustness of the proposed approach by measuring the error of Estimated Time of Arrival (ETA) for
various OD trips in different urban road networks under the mixed traffic conditions. Such findings suggest
that the TLARG has great potential to enhance the punctuality of mobility service by providing robust route
guidance, even in the era of coexisting AVs and HVs.

INDEX TERMS Deep reinforcement learning, mixed traffic condition, origin-to-destination travel path,
route guidance algorithm, transfer learning.

I. INTRODUCTION
As one of the ongoing efforts for continuous advancement
in the global mobility industry, there has been a dedicated
focus on the development of automated driving technology
to provide a safer and more efficient mobility service imple-
mented with future mobility systems. Such automated driving
technology is being integrated into diverse forms of mobil-
ity services, including ride-sharing, car-hailing, and Demand
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Responsive Transit (DRT) services with flexible routes as
well as public transit buses operating on fixed routes [1],
[2], [3], [4]. However, since the current automated driving
technology is not yet in a mature stage to cover all the traffic
situations [5], the advent of using Automated Vehicle (AV)-
based mobility services during the initial phase of increasing
penetration rates of AVs is expected to result in potential
challenges such as traffic disruptions caused by AV-involved
event occurrences [6]. For instance, a commercially avail-
able AV at the present stage suffers from a longer headway
distance than that of Human-driven Vehicle (HV) when
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actuating the function of adaptive cruise control [7], [8],
which amplifies the speed fluctuation in downstream region
and affects upstream traffic flow, often resulting in a capacity
drop [9]. In addition, secondary incidents or accidents may
also occur since the Operational Design Domains (ODD) of
existing AVs are limited to specific predetermined Dynamic
Driving Tasks (DDT) depending on their levels of driving
automation [10], which can lead to changes in the human
drivers’ driving behaviors [11]. Moreover, the AVs tend to
operate at slower speeds compared to HVs due to their con-
servative design for accident prevention [12], which may
contribute to frequent traffic congestions.

In the context of dealing with such challenges, implement-
ing a reliable mobility service in the mixed traffic conditions
coexisting with AVs and HVs requires the development of
technology for providing a robust route guidance service.
For instance, an Origin-Destination (OD) travel path that can
bypass road links within the scope of influences, including
unexpected congestions caused by the AVs, is one of the
most effective methods in uprating the service reliability by
reducing the variability of OD travel time [13]. Most of
conventional route guidance methodologies have considered
Dijkstra algorithm or A∗ algorithm based real-time traffic
information using the latest traffic information [14], [15],
[16], based on the traffic data obtained from Intelligent
Transportation Systems (ITS), such as inductive loop detector
or vision-based vehicle detection system. These approaches
iteratively determine their optimal paths from their current
locations to destinations given the real-time traffic informa-
tion by modeling the travel costs of each road link associated
with time-varying variables. However, using the real-time
traffic information does not guarantee to anticipate the poten-
tial changes in traffic flow patterns, which substantially affect
the consequences of the route guidance algorithms. As a
result, the sequential en route diversion using the latest traffic
information is highly likely to be suboptimal [17].
More recently, there have been enormous efforts to

enhance the qualities of route guidance services by the
advanced route guidance methods combined with the use of
predictive traffic information. A previous research showed
the benefits of incorporating predictive data on future traffic
situations in terms of OD travel time [18]. Likewise, a hier-
archical route planning algorithm employing a time-varying
graph model has been proposed [19], which could find the
effects of potential dynamics at future traffic states by using
the information on traffic prediction. In addition, a Deep
Learning (DL)-based proactive approach for predicting the
future state of the traffic network has been developed to
redirect vehicles from traffic congestion using vehicle data
collection system in the field of ITS [20]. Similarly, a DL-
based fine-grained path planning algorithm has also been
considered in [21], which executes a gridded path planning
based on the use of traffic prediction information. However,
despite the extensive development of traffic prediction mod-
els utilizing state-of-the-art DL algorithms, there are still

prediction errors in the prediction models. Moreover, most
of the existing algorithms using DL-based traffic prediction
information have focused on recurrent congestions rather
than non-recurrent congestions, though the latter requires
more attention than the former [22]. Furthermore, since there
remains uncertainty in predicting future traffic states due to
the non-recurrent congestions caused by the instability of
AVs, such routing algorithms using the prediction informa-
tion still hold a high probability of not being an optimal
solution.

Nowadays, Deep Reinforcement Learning (DRL)-based
route guidance algorithm is gaining attention as a candidate
to uprate the performance of mobility system associated with
uncertain traffic conditions. The conventional approaches to
the DRL-based route planning algorithms in the field of
Vehicle Routing Problems (VRP) have focus on determining
the optimal sequences for multiple vehicles to visit the loca-
tions of passengers or customers [23], [24], [25]. In contrast,
there have been only few studies related to the DRL-based
approach for OD route guidance taking into account dynamic
traffic conditions [26], [27], [28], which basically considers
an agent’s OD travel path as a consequence of sequential
decision-making processes on selecting road links in a target
service area. The sequential decision-making process ismath-
ematically formulated as Markov Decision Process (MDP),
which is represented by a tuple of state, action, transition
probability, reward, and discount factor. In order to describe
the current dynamic traffic situation, a previous research
formulated the state of MDP using multiple traffic variables
for the first time [26]. The traffic variables involved in the
state representation include the number of vehicles, average
speed, and length of road link the DRL agent vehicle travels.
The previous study inspired another research that developed
a DRL-based cooperative route planning algorithm with the
prioritization of urgent vehicles [27]. Similar to the previous
one, the state definition of the MDP also incorporated one
dynamic traffic variable, such as the number of vehicles on
the road link where the agent is located, which assumed that
the real-time traffic data could be obtained from Cooperative
ITS (C-ITS). However, these previous algorithms are still
doubtful of feasibility in terms of OD route guidance. Neither
the existing ITS nor C-ITS facilities can detect the entire vehi-
cles on a road since both of them mainly cover a single point
or local area. Every single vehicle passing through a road
link in a target area needs to have in-vehicle C-ITS devices
if the state input would be measured by using the C-ITS
facilities on the road. Moreover, even if all the state variables
could be identified given the current traffic situation, theywill
not be able to provide the OD route guidance service. For
instance, most of the conventional DRL-based route guidance
algorithms generate an OD travel path from sequential local
paths for en route diversion. Each local path indicates the
consequence of DRL agent’s action given the current state.
However, since the existing approaches cannot specify the
state of MDP in future dynamic traffic conditions, it still
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shows limitations on generating the sequential local paths.
Therefore, it is imperative to address such problems associ-
atedwith the generation of OD travel path in the research field
of DRL-based route guidance algorithm.

To deal with the related issues, a preliminary study
of developing a pioneering framework on predictive traf-
fic information-based Deep Reinforcement Learning-based
Vehicle Routing (DRL-VR) algorithm has been pro-
posed [28]. It was the first study that allows the DRL-VR
algorithm to generate the OD travel path by involving a
predictive traffic state representation in the state of MDP.
The DRL-VR was design to be used to provide the shortest
OD travel path in dynamic traffic environment. Nevertheless,
the previous study still has some drawbacks on providing the
OD travel path in the mixed traffic condition coexisting AVs
and HVs, particularly in a wide-area urban road network.
The DRL-VR already showed its benefits in uncertain traffic
conditions caused by non-recurrent congestions compared
with those of existing algorithms, including Dijkstra, A∗,
and DRL-based conventional routing algorithm without pre-
dictive representation. However, it could not be applied to
different places not explicitly experienced during training
process due to the state and reward function with a low
interoperability. Especially when reaching the agent’s des-
tination in a wide-area urban road network where the AVs
and HVs coexist, the complexity of sequential actions on
each decision-making exponentially increases as the traffic
uncertainty increases. Consequently, it is highly likely to
observe the divergence from the reward model used in the
DRL-VR, otherwise the travel path generated by the trained
DRL model does not guide the agent vehicle to the desired
destination. These issues are the primary motivations of the
present study.

The main objective of this study is to develop a robust and
interoperable DRL-based route guidance algorithm used for
the near future coexisting AVs and HVs in a wide-area urban
network. To accomplish the research goal, this study pro-
poses Transfer learning-based deep reinforcement Learning
Algorithm for Route Guidance (TLARG). It is an extended
framework on the previously developed DRL-VR by incor-
porating transfer learning scheme that enables the DRL
model of TLARG to converge even in a wide-area urban
road network. The TLARG is evaluated in terms of OD
travel time based on diverse OD trips with different urban
road networks, including narrow- and wide-area urban road
networks. This research conducts several evaluation studies
based on microscopic traffic simulation experiments consid-
ering various traffic scenarios involved with non-recurrent
congestions caused by AVs. The evaluation studies include
case study, performance review, and comparison study. The
case study explores the characteristics of the TLARG with
respect to different network configurations and OD trips. For
the generalized performance of the proposed algorithm, the
performance review performs simulation experiments multi-
ple times to assess its overall performance based on statistical
results. Lastly, the comparison study conducts a case-by-case

comparison regarding the performance differences among
the models of TLARG. Such numerical studies will demon-
strate that the robustness and interoperability of the proposed
approach with respect to various OD trips in different urban
road networks under the mixed traffic conditions.

The contribution of this research can be highlighted as
follows:

• This research develops an extended framework for
DRL-based route guidance algorithm by incorporat-
ing transfer learning scheme, which can provide more
reliable route guidance service than previous ones, par-
ticularly in diverse OD with mixed traffic conditions.

• This study proposes a modified MDP formulation to
allow the transfer learning scheme to be applied for
different urban road networks, even in a wide-area road
network.

• This research demonstrates the robustness of advanced
TLARG model by comparing between predicted and
actual Estimated Time of Arrival (ETA) for diverse OD
trips both in narrow- and wide-area urban road networks
under uncertain traffic conditions caused by the advent
of AVs.

The remainder of this paper is organized as follows.
Section II provides the detailed descriptions on the TLARG.
Section III describes the details of evaluation approaches
used in numerical studies. Section IV presents the results and
analyses of the numerical studies. Then, this paper ends with
the concluding remarks in the last section.

II. METHODOLOGY
There are several key elements to implement the TLARG for
providing a reliable OD route guidance in the mixed traffic
conditions. The following subsections provide the details of
vital components to be considered for the route guidance
service in the proposed algorithm.

A. USE OF PREDICTIVE TRAFFIC INFORMATION
The TLARG basically follows the concept of the previously
proposed DRL-VR algorithm [28], which incorporates a pre-
dictive traffic state representation in the MDP. Unlike the
conventional approaches concerning DRL-based route guid-
ance algorithms, which only produce the local travel path for
en route diversion, the TLARG expresses the time-varying
variables as the predictive representation in the state variables
of the MDP formulation. Therefore, it enables the TLARG to
generate the OD travel path by specifying the corresponding
values of the state variables for any given time, even before
reaching a specific state. Furthermore, using the predictive
information on traffic dynamics allows the TLARG to model
the sequential decision-making process under uncertainty
associated with future traffic condition, particularly in the
mixed traffic.

For the predictive state representation used in the
DRL-based route guidance algorithm, the TLARG consist
of two fundamental functions, including traffic prediction
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and route guidance. The former provides traffic predic-
tion information using a DL-based model, while the latter
uses the output values generated by the traffic prediction
to produce the OD route guidance data based on a DRL
model. Note that any sophisticated DL and DRL models
can be used for those functions in the proposed framework.
For the sake of convenience, this study considers that the
traffic prediction and route guidance functions are imple-
mented with Graph WaveNet and Prioritized Experience
Replay-based Double-Deep Q-Network (PDDQN) model,
respectively [29], [30], [31].

Fig. 1 shows the details of the learning methods on the traf-
fic prediction and route guidance model used in the TLARG.
The traffic prediction model provides predicted speed values
of each road section by considering spatiotemporal charac-
teristics on historical traffic flows on a target road network.
As shown in Fig. 1, L spatiotemporal layers are considered
in the traffic prediction model to capture spatial and temporal
features of the traffic flows on the target road network. Each
layer has building block with two gating mechanism-based
Temporal Convolutional Networks (TCN) and one Graph
Convolutional Network (GCN). The TCN plays a vital role
in extracting temporal features based on Dilated Causal Con-
volution Neural Network (DCCNN) [32]. The GCN is used
for identifying the latent spatial dependencies using learnable
parameters without a priori knowledge, based on Diffusion

FIGURE 1. The learning methods of traffic prediction and route guidance
model in the TLARG.

Convolutional Recurrent Neural Network (DCRNN) [18].
The TCN shows a notable reduction in computing time and
the ability to consider long-range sequence data based on
dilated causal convolutions, which allows it to have a large
receptive field without using a prohibitively large number
of parameters. On the other hand, the GCN captures the
characteristics of each node and the relationships between
neighboring nodes based on node embedding and adaptive
adjacency matrix, where it regards a road link as a node. Such
approach enables the prediction model to consider both the
node’s own features and the features of its neighbors when
making predictions.

The concept of building block in the traffic prediction
model is identical to the original Graph WaveNet, excluding
loss function. The TLARG computes the training and valida-
tion losses based on Root-Mean-Square Errors (RMSE). The
loss function L in the prediction horizon I can be expressed
as follows:

L(X̂
(t+1):(t+I )

; θp) =
1
IJK

√√√√√ I∑
i=1

J∑
j=1

K∑
k=1

(X̂
t+i
jk − X

t+i
jk )2,

(1)

where X̂ indicates the predicted output vector, θp denotes the
learnable parameter sets in the traffic prediction model of
the TLARG, J represents the number of traffic detectors in
the target road network, K describes the number of features
associated with each traffic detector, and X is the desired
output vector.

As described in Fig. 1, the predicted information of the traf-
fic prediction module interacts with environment in the route
guidance model, which allows the DRL to specify agent’s
state s given traffic situation. Based on the agent’s current
state, the environment also plays a crucial role to determine
the reward r corresponding to the action a determined by
the policy πθ of Q-network parameterized with θ as well
as its next state s′. The experience transitions (s, a, r,s′)
are transmitted to replay buffer, which is well known for
effectively reducing the impact of sequential dependencies
by eliminating the temporal correlation between consecutive
experiences in the off-policy DRL model. Still, the agent’s
experiences do not contribute equally to learning. Moreover,
the learning environment often shows sparse rewards when
the agents have various OD trips, especially in a wide-area
road network. Hence, the route guidance model considers the
PER to address such challenges by prioritizing and replaying
rare and informative experiences, which can maintain a more
consistent and effective training trajectory.

The learning method used in the route guidance model is
DDQN [30], which aims to reduce the discrepancy between
the predicted and target Q-values by minimizing the Tempo-
ral Difference (TD) error δ, as formulated in (2).

δ = r + γQθ− (s
′, argmax

a′
Qθ (s′, a′))− Qθ (s, a), (2)
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where γ is the discount factor, θ− represents the learn-
able parameters of the target Q-network, a′ describes
the action taken in the next state s′, and θ indicates
the learnable parameters of the online Q-network. θ− is
periodically updated with the copy of θ for the online
Q-network, while θ is adjusted using a learning rule
combined with the PER method, as described in (3)
and (4).

θ ← θ + ηgwδ
∂Qθ (s, a)

∂θ
, (3)

where ηg denotes the learning rate used in the route guidance
model, w indicates the importance sampling weight associ-
ated with the PER algorithm.

w = (
uα∑
b u

α
b
B)−β , (4)

where uα describes the priority of given transition with the
prioritization exponent parameter α, b represents the mini-
batch size, B indicates the size of the replay buffer, and
β refers to the importance sampling exponent parameter.
More detailed descriptions of the parameter values used in
the traffic prediction and route guidance model are provided
in B. TUNING WORK of III. DATA DESCRIPTION.

B. INTEROPERABLE MDP EXPRESSION
The TLARG follows the concept of using the use of predictive
information on the road traffic network, which enables the
DRL-based route guidance algorithm to incorporate the pre-
dictive traffic state representation in the MDP. Therefore, the
TLARG can be used for providing the OD travel path even in
the mixed traffic condition. However, the TLARG still needs
to consider the modification of the MDP involved in the pre-
viously developed DRL-VR algorithm, which cannot address
the complexity associated with diverse OD trips. Moreover,
the conventional expression of the MDP in the DRL-VR
algorithm requires a more flexible approach to generate the
OD route guidance data in spaces not explicitly represented
during training.

With these backgrounds, the TRLARG introduces an inter-
operable MDP expression, which can be applied to any
arbitrary spatial configuration, even in different OD trips.
Key variables of the MDP formulation in the TLARG are
illustrated in Fig. 2.

FIGURE 2. Overview of key variables associated with the MDP
formulation of the TLARG: (a) state and (b) distance reward.

The route choice of DRL agent is based on an action
space (A), where actions are encoded as discrete values:
Right-turn(R) with 0, Go-straight(S) with 0.5, and Left-
turn(L) with 1. The action is going to be determined when the
agent reaches Action Point APi at time step i, as shown in (a)
of Fig.2. The timing of APi is calculated by the decision area
di, which depends on the minimum distance mi, as expressed
in (5) and (6).

mi =
(Vmax

i
)2

2amax
dec
+ Piτ, (5)

where Vmax
i and Pi indicate the maximum speed limit and

predicted speed of the road section where the agent is located
at time step i, dmaxdec represents the maximum deceleration
rate, and τ denotes the perception-reaction time for the lane
change to follow the route choice.

di =
Li
2
− mi, (6)

where Li is the length of the road section where the agent
vehicle travels at time step i.
Regarding the state definition, the TLARG considers

future traffic dynamics. Unlike the existing DRL-based route
guidance algorithms, all of the variables involved in the state
definition can be specified for any given time before the
agent actually faces the dynamic traffic environment, even
not in places the agent has not experienced during the training
process. The TLARG formulates the state for a link at time
step i as (7).

si = [Li,Vmax
i ,Pi,Di,Ci,PRi ,P

S
i ,P

L
i ], (7)

where Ci represents the agent’s moving direction that is
identical to the previous action choice at time step i-1, pR,S,L

i
describes the predicted speed values of subsequent road links
connected to the road link where the agent is located at time
step i, and Di indicates the relative distance from the current
position to destination compared to the OD-distance at time
step i, as shown in (8).

Di =
EAPi→D

EO→D
, (8)

whereEAPi→D represents the Euclidean distance betweenAPi
and destination, and EO→D indicates the Euclidean distance
between origin and destination.

Note that Di and Ci are newly incorporated into the state
definition of the TLARG compared to that of the DRL-VR
algorithm. They enable the agent to have diverse OD trips
in road networks with different configurations. Furthermore,
no matter how much the penetration rates of in-vehicle C-
ITS devices with respect to HVs are in the road network
where the AV-based mobility service is implemented, it is not
feasible for all the vehicles to directly communicate with the
C-ITS facilities for sharing information on the non-recurrent
congestions caused by theAVs. Thus, the source data required
for the traffic variables in the state definition of the TLARG
can be obtained in real-time based on the assumption for
widespread ITS detectors in the service area.
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The objective of modeling the TLARG with the MDP
framework directly relates to the reward function. It plays a
pivotal role to obtain the optimal policy for maximizing the
expected return, which is the expected cumulative rewards
over the course of an episode. To generate a robust route
guidance data under traffic uncertainty associated with the
mixed traffic condition, the reward function ri consists of four
parts, including distance reward ri,distance, time reward ri,time,
prediction reward ri,prediction, and trip completion reward
ri,completion. The details of the reward function is as follows:

ri = ri,distance + ri,time + ri,prediction + ri,completion, (9)

where

rt,distance

= 1−
2(Eai −min(ERi ,ESi ,ELi ))

max(ERi ,ESi ,ELi )−min(ERi ,ESi ,ELi )
, (10)

ri,time

= clip(2−
TTi+1 − TTi
mi
Vmax
i
+

Li+1−mi+1
Vmax
i+1

,−1, 1), (11)

ri,prediction

= clip(1−

∣∣∣∣1− 1
TTi+1 − TTi

(
mi
Pi
+
Li+1 − mi+1

Pi+1
)

∣∣∣∣ ,−1, 1),
(12)

rt,completion

=

{
T , if desired destination
−T , otherwise

(13)

where ER,S,L
i indicates the Euclidean distances between the

agent’s destination to several virtual points that are the
orthogonal projection of APR,S,L

i to the OD line, as depicted
in (b) of Fig. 2, and Eai describes the Euclidean distances
between the destination to a virtual point determined by an
action a at APi, which corresponds to one of ER,S,L

i ; TT i
represents the travel time from the agent’s origin to APi; T
means the target value for the agent’s trip completion in the
terminal state.

The TLARG requires several intrinsic rewards to effec-
tively improve the policy based on the MDP framework
since there are sparse rewards in dealing with the route
guidance problem, particularly in interacting with uncertain
traffic environments. Hence, the TLARG involves both intrin-
sic and extrinsic rewards, where the intrinsic rewards are
ri,distance, ri,time, and ri,prediction, while the extrinsic reward is
rt,completion. Note that the most distinctive characteristic of the
reward function used in the TLARG is modifying ri,distance,
which is inversely proportional to the Euclidean distance
between the destination to a virtual point determined by a
route choice a at APi. Such modification allows the TLARG
to guide the DRL agent for its trip completion. In addition,
it is designed to range from −1 to 1, which is the same scale
with other intrinsic rewards.

It is straightforward that the time reward function ri,time
intends to minimize the agent’s OD travel time, which is the

ultimate goal of using the route guidance algorithm. On the
other hand, the prediction reward rt,prediction is designed to
enhance the reliability of route guidance service by reducing
the variability of ETA. Such approach plays an important role
in learning the optimal policy since an acceptable level of
errors between the expected and actual travel time directly
determines whether the service user is satisfied with the
quality of route guidance service.

Finally, the TLARG incorporates the extrinsic reward
employing trip completion reward ri,completion. A substantial
positive reward is assigned when the agent complete its trip,
which means that the agent arrives its desired destination link
when it reaches terminal state. It is useful to monitor the
performance of the TLARG in the training process when the
agents have diverse OD pairs.

C. TRANSFER LEARNING SCHEME
Fig.3 depicts the system architecture of the TLARG, which
mainly consists of traffic predictionmodule and route genera-
tion module. The traffic prediction module collects real-time
traffic data obtained from the ITS detectors, which is not only
stored in a historical traffic database with information related
to the corresponding road section but also used for predicting
the future traffic states of each road section.

FIGURE 3. The framework of proposed approach.

Based on the historical traffic data, the traffic prediction
module trains and validates the modified Graph Wavenet
model in batch process. Simultaneously, it uses the trainedDL
model to predict the future speed of each road section based
on the real-time traffic data. The predicted output vectors for
the target area will be used to update the state variables of the
DRL model involved in the route generation module when
generating route guidance data in real-time process.

The historical traffic data is also used to generate sim-
ulation data for training the PDDQN model in the route
generation module. The training process of the DRL model
is conducted with the transfer learning, as highlighted with
the yellow one in Fig. 3. The transfer learning-based training
approach includes a pre-training and fine-tuning process. The
DRL model can be fine-tuned through the transfer learning
process and be used to generate guidance data for OD travel
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FIGURE 4. The process on transfer learning of TLARG.

path.More detailed explanations of the operational flow asso-
ciated with the transfer learning in the TLARG are shown
in Fig. 4.

With a batch process, the route generation module first
pre-trains the DRL model based on the generated simulation
data in a narrow-area road network, which is easy to obtain
a fast convergence rate. However, the target area for route
guidance service is generally more complex and wider than
the service area used in the pre-training process. Moreover,
it requires more explorations to find the optimal policy, which
may tend to face challenges in achieving prompt model
convergence when training the DRL model from scratch.
To accelerate the exploration process by providing a starting
policy that already captures some useful strategies, the route
generation module uses the pre-trained model to fine-tune the
DRL model. The fine-tuning process on a target area can be
formulated as follows:

θfine−tunedπ = θpre−trainedπ + ηt · ∇θπEτ∼πθπ
[
T∑
t=0

R′(st , at )],

(14)

where θ
fine−tuned
π and θ

pre−trained
π represent the learnable

parameters of the Q-networks associated with the route gen-
eration module in the fine-tuning and pre-training processes,
ηt indicates the learning rate used in the fine-tuning process,
and R′(·) describes the output of the reward function used in
the target area.

It is worth noting that the transfer learning-based training
approach can facilitate the effectiveness and efficiency of the
learning process [34], which allows the TLARG to be applied
for the route guidance service in a wide-area road network.
Finally, the fine-tuned DRLmodel will be used for producing
route guidance data in real-time process when requesting an
OD travel path in a service area.

III. DATA DESCRIPTION
To explore the effect of employing the TLARG on the
route guidance service in different urban road network

configurations with mixed traffic environments, this study
conducts microscopic traffic simulation experiments based
on the Simulation of Urban MObility (SUMO) [35]. Several
experimental scenarios are necessary to describe the uncer-
tain traffic conditions caused by the AV-involved congestions.
In addition, the tuning works on determining the hyperpa-
rameters used in the traffic prediction and route generation
modules are also required to perform the evaluation studies
for the performance of the TLARG. The details are discussed
in the following subsections.

A. EXPERIMENTAL SCENARIO
The simulation experiments are conducted in different road
network configurations to analyze the robustness and interop-
erability of the proposed algorithm. Suppose that a route guid-
ance service provides an agent vehicle with a global travel
path from its origin to destination. Then, the global travel
path can be composed of diverse combinations of sub-origins
and sub-destinations given a target area. Therefore, the par-
tial trips between sub-origins and sub-destinations can be
regarded as the OD travel paths associated with the target
area.

The number of OD travel paths determined by the possible
combinations of sub-origins and sub–destinations increase
as the target area increases. To increase the complexity of
finding the optimal solution, the simulation experiment con-
siders three types of target areas, as shown in Fig. 5. The
target area includes 3 × 3, 5 × 5, and 8 × 8 grid-shaped
urban road networks. Both of study sites consider two major
eastbound and northbound traffic demands as well as two
minor westbound and southbound traffic demands. In addi-
tion, there are four lanes in each link of the study sites, where
the maximum speed limit is 50 km/h, the lengths of road
links L1 and L2 are 200 m and 300 m, respectively. Every

FIGURE 5. Experimental simulation scenarios with different road network
configurations.
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single intersection is signalized intersection with a four-phase
signal plan. An adequate coordination between eastbound
consecutive signals is applied to the simulation experiments,
so that it can prevent the massive eastbound traffic flow from
inducing traffic queue spillback at intersections.

The asymmetric inbound traffic flow is intended to
describe the characteristics of traffic flow in urban area
during peak hours [36]. Every single experiment generates
the inbound traffic flows with Gaussian random variables in
order to mimic the stochastic daily traffic demands. With the
trip generation, the dynamic traffic assignment is conducted
based on SUMODUArouter tool, which can assign the traffic
flow with different time intervals [37]. This suggests that it
is more appropriate to describe the day-to-day variations in
traffic demand based on heterogeneously loaded traffic flow
throughout the study site, rather than other traffic assignment
tools, such as JTRrouter, OD2trips, MArouter, and DFrouter.
Moreover, in order to generate the near future traffic environ-
ment that involves non-recurrent congestions associated with
low penetration rates of AVs, a few slow-moving vehicles are
assigned to the study sites. Furthermore, several randomly
distributed stopped vehicles are intentionally involved in the
simulation experiments, which generates queue discharge
flow reduction, capacity drop, and shock wave propaga-
tion [38], [39], [40], often resulting in unexpected traffic
delays. Consequently, there will be traffic prediction errors,
which highly affects the performance of the route guidance
service. It is expected that the DRL agent either avoids the
abnormal congestions by en route diversion or sticks to initial
OD travel path despite additional time required for passing
through the congested road. Apart from the route choices, the
initial route guidancemay show take a reliable OD travel time
path that does not involve any congested roads. Hence, the
performance of the TLARG can be evaluated appropriately
in such experimental scenarios that describe the mixed traffic
conditions in the near future.

B. HYPERPARAMETER TUNING
There have been numerous C-ITS implementation projects
in Europe and USA [41]. However, it is still deployed with
a pilot project at low levels of penetration [42]. Besides,
additional C-ITS infrastructures should be required when the
penetration rate of AVs will significantly increase in the far
future. In contrast, the data observation on the traffic flow in
the near future is still going to be monitored and be detected
by the legacy ITS sensors. Hence, this study assumes that the
real-time traffic data can be obtained from thewidespread ITS
detectors installed at each road link in the study sites.

This study generates the training, validating, and testing
datasets of the proposed algorithm based on 30 days of
observation data obtained from the experimental scenarios.
The observation data for the first 24 days are considered as
the training dataset, while the rest of data for the following
consecutive 3 days and the remaining 3 days are applied to
the validating and testing of the traffic prediction model and

route guidance model involved in the TLARG, respectively.
Every single day has 4 hours of simulation runtime based on
the observation data with a 5-minute resolution, which means
that the unit time interval for the traffic prediction model cor-
responds to 5 minutes. The values of hyperparameters used
in the traffic prediction model of the TLARG are provided in
Table 1.

TABLE 1. The values of hyperparameters involved in the traffic prediction
model of TLARG.

The traffic prediction module of the TLARG trains the
traffic prediction model with the hyperparameter values in
batch process. With the trained traffic prediction model, the
traffic prediction module provides the traffic prediction val-
ues, which are transmitted to the historical traffic database
and the route generation function, in order to specify the
state variables of the MDP in the route guidance model.
More specifically, the prediction values can be utilized for
pre-training and fine-tuning the route guidance model in
batch process as well as inferencing in real-time process.

Similar to the traffic prediction model used in the traffic
prediction module of the TLARG, the route guidance model
involved in the route generation module of the proposed
algorithm also requires to determine the specific values of its

TABLE 2. The values of hyperparameters involved in the route guidance
model of TLARG.
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hyperparameters. The values of hyperparameters involved in
the route guidance model of TLARG are shown in Table 2.
The route generation module of the TLARG pre-trains the
route guidance model with the hyperparameter values in
batch process. The pre-trained route guidance model is used
for transfer learning in fine-tuning other route guidance
models of different target areas. The fine-tuned models are
deployed to mobility service areas where a robust OD route
guidance service is required.

In order to verify the effectiveness of imposing the
TLARG, this study considers three types of TLARG-based
models, including Baseline Model (BM), Basic Transfer
Model (BTM), and Advanced Transfer Model (ATM). The
BM indicates the route guidance model trained from scratch
without using transfer learning given a target area. The
BTM represents a basic TLARG model. It is the fine-tuned
model derived from the pre-trained with BM, where
the target area of BTM is wider than that of BM. Likewise,
the ATM describes an advanced TLARG model, which is the
fine-tuned model obtained from the pre-trained with BTM.
The ATM is fine-tuned on a wider-area urban road network
than the one the BTM has been pre-trained on. For instance,
when there are 3 × 3, 5 × 5, and 8 × 8 urban road network
scenarios, the ATM model of the 8 × 8 network scenario
can be fine-tuned based on the BTM pre-trained from the
5 × 5 network scenario. Similarly, the BTM model of the
5 × 5 network scenario can be fine-tuned based on the BM
pre-trained from the 3× 3 network scenario.
Fig. 6 shows the trends in average rewards of different

TLARG-based models with respect to given urban road net-
works, where the average reward is calculated by the mean
of rewards in five consecutive episodes. It is easily observed
that there is only the BM in the 3× 3 road network scenario,
where its average reward converges after approximately
500 episodes although the average reward does not get close
to the optimal value in earlier episodes due to the exploration
process. The overall trend is consistent with the finding of the
previous study [28], which considered only 3× 3 urban road
network scenario. However, unlike the narrow-area road net-
work scenario, the wide-area road network scenarios require
much more episodes to reach exploitation, as shown in the
second and third column of the BM in Fig. 6. It is also
found that the DRL agent often fails to get to its desired
destination, even in the exploitation process. As highlighted
with orange circles in Fig. 6, this phenomenon becomes more
easily observable as the network size increases.

Compared to the outcome of the BM in the 5 × 5 road
network scenario, the BTM shows much less exploration pro-
cesses. In addition, it does not suffer from the event associated
with agent’s undesired destination arrival. Such trend can also
be seen in the 8 × 8 road network scenario. Unlike the BM,
the BTM exhibits model convergence even though it shows
some undesired events during exploration process.

The most remarkable outcome can be observed in the
ATM, as shown in the last column of Fig. 6. The ATM has a
few episodes for its exploration process, even in a wide-area

FIGURE 6. Trends in average rewards of different TLARG-based models
with respect to given road networks.

road network. Moreover, it is also found that the agent shows
its trip completion every episode after the exploration pro-
cess. Such trends suggest that the convergence speed of using
the TLARG is much faster than that of conventional one,
particularly in a wider-area urban road network with mixed
traffic condition.

It is worth noting that the robustness and interoperability of
the TLARG are evaluated in wide-area road networks using
5×5 and 8×8 road network scenarios, rather than 3×3 road
network scenario. Such scenarios cover the mixed traffic in
urban area, where the agent faces never-before-seen traffic
and diverse trip conditions. Moreover, the traffic demands,
AV-involved congestions, and agent’s OD considered in the
training and validating process do not overlap with those used
in the testing process. Thus, it is expected that this study
can demonstrate the performance validation of the TLARG
in diverse uncertain traffic environments.

Furthermore, each simulation experiment is conducted
based on a specific computational environment: Python
3.8.10 platform on an Ubuntu 20.04 (Intel(R) Core(TM) i9-
13900K CPU 32 cores with 5.80GHz processing, 64 GB
RAM, and NVIDIAGeForce RTX 3060 12GB). Based on the
code optimization and parallel computing techniques, it could
observe that the average inference times for generating the
OD paths in the three different road network scenarios were
12, 14, and 15ms, which are much less than one second.
Consequently, it is no doubtful of feasibility for the real-time
application of the proposed algorithm.

IV. RESULT AND ANALYSIS
This study conducts several numerical studies, including
case study, performance review, and comparison study, based
on the experimental traffic scenarios stated in the previous
section. The case study analyzes the details of outcomes from
different models in several specific experimental scenarios.
The performance review provides the overall performances
of each model with respect to diverse experimental scenarios.
Lastly, the comparison results of models’ performances are
discussed in the comparison study.

A. CASE STUDY
Through the case study that describes several specific traf-
fic conditions and agents’ OD trips in different urban road
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networks, the characteristics of each derived from the
TLARG are explored in terms of OD travel path and travel
time. In addition, since the existing DRL-based route guid-
ance algorithms do not convergence in a wide-area urban road
network, the agents following the policy trained by the previ-
ous approaches do not tend to get to their destinations. Thus,
the case study focuses on examining the performances of the
TLARG-based models, rather than conventional DRL-based
route guidance models.

Fig. 7 represents several examples of route guidance
services with the TLARG-based models in different road
networks with different traffic conditions and OD trips. There
are two different OD trips in 5 × 5 and 8 × 8 road network
scenarios, respectively. As shown in (a) of Fig. 7, there are
four slow-moving and stopped vehicle-involved events in the
5 × 5 urban road network in order. One can observe that
all agents guided by the proposed algorithm reaches their
destinations, which implies that the modification of MDP
expression enables the DRL agent to complete its OD trip.
In addition, it is found that both the BM and BTM provide
the OD travel paths avoiding the traffic interruptions induced
by the unexpected congestions. The agent of following the
route guidance generated by the BM takes the travel route
from the left boundary link to the top boundary link of the
road network. In contrast to the case of BM, the BTM guides
the agent to pass through the study site using some links
located inside the road network. Even though the agents have
different OD travel paths, they spend similar amounts of
OD travel time in reaching their destinations since they have
not encountered the abnormal traffic interruptions caused by
the AVs.

On the other hand, when considering different traffic con-
ditions and OD pairs on the same road network, different
outcomes can be found in (b) of Fig. 7. Despite following
the similar OD travel path as the previous OD path, signif-
icant differences are observed in the OD travel time for the
OD trips. One can find that the agent encounters the traffic
congestions caused by the AV-involved incident at the upper
road link of the network when following the route guidance
generated by the BM. It is also seen that the agent of using
the BM needs approximately 27% additional time to get to
its destination compared to the previous case in (a) of Fig. 7.
In contrast, the agent following the policy of BTM does not
face any abnormal traffic congestions until arrival. More-
over, the BTM reduces the OD travel time by nearly 36%
compared with that of the BM, even in the identical traffic
conditions. Such trend is also found in the 8×8 road network
scenarios.

More detailed explanation on the effect of flexible route
guidance for the proposed algorithm given dynamic traffic
situations can refer to (c) and (d) of Fig. 7, where there are
eight slow-moving or stopped vehicle-involved events in the
8×8 urban road network. As shown in (c) of Fig. 7, it is easily
found that each agent completes their OD trips, even in the
wide-area road network, which is consistent with the previous
findings in the cases with (a) and (b). Such finding confirms

FIGURE 7. Examples of route guidance services with TLARG-based
models in different road networks with different traffic conditions and
ODs: (a) 5 × 5 road network with OD case 1 (b) 5 × 5 road network with
OD case 2 (c) 8 × 8 road network with OD case 1 (d) 8 × 8 road network
with OD case 2.

that the interoperable expression of the MDP can address the
critical issues of the DRL-based approaches associated with
the diverse OD trips in spaces not explicitly experienced dur-
ing training. In addition, one can observe that each OD route
consists of different combinations of links within the target
area.Moreover, it is also found that all of the proposedmodels
guide the agents to use their OD travel paths bypassing the
AV-induced congested roads, where they show low OD travel
times in the order of ATM, BTM, and BM.

Such similar tends can also be found in (d) of Fig. 7.
It is shown that each model guides the agents to complete
their OD trips. In addition, the magnitude of OD travel
time is in the order of BM, BTM, and ATM. However, the
results of the travel paths provided by each model show some
differences in consequence. One can find that the TLARG-
based models, including BTM and ATM, show flexible travel
routes for the given the OD trips and traffic conditions,
except for the BM. This implies that the transfer learning
of the TLARG contributes to improving the performance
of DRL-based route guidance algorithm by the effective
utilization of pre-trained models to accelerate learning in
new tasks. Moreover, it is easily observed that the agents of
using the BM and BTM pass through the AV-involved con-
gested links, which highly affects the time of arrival, whereas
the ATM bypasses the congested links. Consequently, the
agent of using the ATM can reduce its OD travel time by
approximately 23% compared to that of BTM. Such findings
suggest that the proposed algorithm allows the DRL agent to
complete its OD trips not only with flexible routes but also
with reductions in OD travel time depending on given traffic
situations.
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B. PERFORMANCE REVIEW
Through the case study in the previous section, it could be
found that the DRL-based route guidance models fine-tuned
by using the TLARG provided the robust OD travel paths
both in the 5 × 5 and 8 × 8 urban road networks with
mixed traffic conditions. However, it still lacks sufficient
evidence to generalize the effect of employing the TLARG,
based solely on few specific cases. In other words, the overall
performances of each model with respect to various traffic
conditions and OD trips in different urban road networks
have not yet been fully explored. Thus, this research consid-
ers different independent and identically distributed (i.i.d.)
conditions to evaluate the generalized performance of the
proposed algorithm. The following simulation experiments
are generated by 500 i.i.d. random samples in each network
scenario.

A statistical summary of OD travel times with each model
in the two urban road networks is presented in Table 3, where
the statistics represent themean and standard deviation values
of OD travel times in the i.i.d. cases. It is seen that the average
and standard deviation values of BTM’s OD travel times are
less than those of BM’s OD travel times in the 5 × 5 road
network scenario. One can also observe that the mean value
of OD travel times in the 8 × 8 road network scenario is
the greatest in the order of BTM, BTM, and ATM, while the
standard deviation value of OD travel times in the wide-area
network is the largest in the reverse order.

TABLE 3. Statistics of mean and standard deviation for OD travel time
with each model in different road networks (unit: second).

Such statistical results represent that the DRL-based route
guidance algorithms can benefit from the fine-tuned models,
includingBTMandATM in terms ofOD travel time, since the
average values of OD travel times for the basic and advanced
TLARG models are less than that of the baseline model.
However, in the cases of 8 × 8 road network scenario, it is
found that the standard deviation values ofOD travel times for
the BTM and ATM are greater than that of BM.Moreover, the
ATM exhibits a larger standard deviation in OD travel time
compared to the BTM. Hence, it is plausible to doubt that
several exceptional instances could underestimate the basic
and advanced TLARG models.

To further analyze the effect of imposing transfer learning
in the TLARG, this comparison study introduces an addi-
tional performance metric, which is time saving. It is directly
measured by the reduction in OD travel time for each i.i.d.
case in 8×8 road network. Themeasurements of time savings

for the BTM and AM are formulated as (15) and (16).

S(BTM ) = (1−
OD Travel Time of BTM
OD Travel Time of BM

)× 100(%),

(15)

S(ATM ) = (1−
OD Travel Time of ATM
OD Travel Time of BM

)× 100(%),

(16)

where S(BTM) and S(ATM) indicate the percentage of rel-
ative time saving for the BTM and ATM compared with
the BM.

Fig. 8 describes the ECDFs of time savings for the BTM
and ATM in 8 × 8 road network. It is easily found that
incorporating the transfer learning scheme in the TLARG
always have positive outcomes since the minimum value of
time savings for the BTM and ATM is equal to 0. In addition,
it is observed that the BTM shows time savings of less than
5% in 40% of cases, and time savings of less than 10% in
approximately 70% of cases. One can also observe that the
BTM exhibits time savings ranging from 10 to 20% in nearly
15% of cases, and time savings larger than 20% in the rest
of cases, with the largest time saving over 30%. On the other
hand, it is found that the ATM generally provides better time
savings than the BTM. The ATM shows time savings of more
than 10% in 80% of cases. In addition, it is also observed that
the ATM yields time savings larger than 20% in more than
half of all cases. Furthermore, more than 22% of cases shows
time savings greater than 30%with the ATM compared to the
BTM, with the largest time saving close to 44%.

FIGURE 8. Empirical Cumulative Distribution Functions (ECDF) of Time
savings for BTM and ATM in 8 × 8 road network.

C. COMPARISON STUDY
In order to verify the performance differences among the
models in each identical OD trip and traffic environment,
the comparison study performs several Wilcoxon signed rank
tests based on some paired comparisons, such as BM-BTM,
BM-ATM, and BTM-ATM. The Wilcoxon signed rank test is
conducted with one-sided hypothesis test with a significance
level of 0.01. The hypothesis is set up by using the difference
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TABLE 4. P-value on wilcoxon signed rank test for OD travel time with
each paired comparison model.

in OD travel time between paired comparisonmodels in given
traffic condition c, which is represented as δc. Thus, δc for
s i.i.d. conditions is indicated as δs, where s is 500. Table 4
shows the results of the one-sidedWilcoxon signed rank tests.
One can observe that there are p-values of much less than
0.01 in each scenario with the paired comparison models,
which suggests that there is enough evidence to accept the
alternative hypothesis. This implies that the BTM and ATM
exhibit shorter OD travel times than the BM in the i.i.d.
cases, which coincides with the previous research finding in
B. PERFORMANCE REVIEW. Moreover, it is also found that
the ATM provides shorter OD travel time paths compared to
the BM and BTM even in a wide-area urban road network
with mixed traffic conditions. In other words, the transfer
learning of TLARG enables the advanced model to have a
significant advantage over the conventional DRL approaches
without retraining the model from scratch when a DRL-based
route guidance algorithm is applied to certain urban area with
uncertain traffic conditions.

One the other hand, it is still imperative to consider the
service reliability of the route guidance service when apply-
ing the TLARG-based routing algorithm to the service area
coexisting with AV-based mobility services, which is highly
affected by the robustness of the TLARG for the changes in
near future traffic conditions. Hence, the comparison study
explores the robustness of the proposed algorithm by com-
paring between predicted and actual ETAs for the i.i.d. cases.
The error between predicted and actual ETAs at the cth i.i.d
case ec is measured by (17).

ec = (
predicted OD Travel Timec
actual OD Travel Timec

− 1)× 100(%) (17)

Fig. 9 shows the boxplots of errors in ETA with respect
to different TLARG-based models in 5 × 5 and 8 × 8 road
networks. As seen in (a) of Fig. 9, the median error for BM
is much lower than that for BTM, whereas the absolute value
of the median error for BM exceeds that for BTM by more
than twice. Moreover, one can also find that the BTM exhibits
a smaller Interquartile Range (IQR) than that of BM. Such
results indicate that the BTM shows less variability of OD
travel time compared with the BTM.

As shown in (b) of Fig. 9, the median error for BM
in the wide-area road network is much lower than before,
which suggests that it is not appropriate to apply the base-
line model without the transfer learning to a wide range of
service network. In addition, it is still observed that the BM
often provides the travel paths which tend to underestimate

FIGURE 9. Boxplots for errors in Expected Time of Arrivals (ETA) with
different TLARG-based models in each road network: (a) 5 × 5 road
network (b) 8 × 8 road network.

the ETA. Furthermore, one can also observe that the BTM
shows a larger IQR than before, though the median error for
BTM is close to zero. This indicates that the BTM shows
poor reliability of route guidance service due to increases in
variability of OD travel times in the wide-area urban network
with mixed traffic conditions.

The most exceptional outcome can be observed in the
advanced TLARG model. It is easily found that there is the
median error close to zero in the ATM. Moreover, it is also
seen that the ATM exhibits a very small IQR compared to
other models. Therefore, it suggests that more reliable route
guidance service can be provided by using the ATM, rather
than the BM and BTM, particularly in the wide range of
service area with uncertain traffic conditions. In other words,
it demonstrates that the robustness of the advanced TLARG
model by measuring the error of ETA for diverse OD trips
in the wide-area urban road network with the mixed traffic
conditions.

V. CONCLUDING REMARKS
The main objective was to design a robust and interopera-
ble DRL-based route guidance algorithm used for the near
future coexisting AVs and HVs in a wide-area urban network.
This research proposed the TLARG algorithm, which is an
extended framework for the previously developed DRL-VR
algorithm by incorporating transfer learning scheme. The
use of predictive traffic information and interoperable MDP
expression were considered for implementing the transfer
learning scheme in the TLARG. The former was used for
describing the time-varying dynamic variables as the pre-
dictive representation in the state variables of the MDP
formulation. Therefore, it allowed the TLARG to generate
the OD travel path by specifying the state variables for any
given time, even before reaching a specific state. The lat-
ter was utilized for dealing with the complexity related to
diverse OD trips in different road networks. Furthermore,
it enabled the TLARG to generate the OD route guidance data
even in spaces not explicitly experienced during training pro-
cess. Consequently, the TLARG could provide more reliable
route guidance service than previous one in a wide-area road
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network, particularly in diverse OD trip with mixed traffic
conditions.

This research conducted several evaluation studies based
on microscopic traffic simulation experiments in different
ranges of urban road network with uncertain traffic condi-
tions caused by the AV-involved congestions. The evaluation
studies performed case study, performance review, and com-
parison study based on using three types of TLARG-based
models, including BM, BTM, and ATM. The case study
explored that the characteristics of the TLARG-based mod-
els with respect to different service networks and agents’
OD trips. Through the case study, it could observe that the
TLARG enabled the agent to complete its OD trips not only
with flexible routes but also with reductions in travel time
depending on given traffic situations irrespective of network
type. Such research findings suggest that the TLARG can
be used for regenerating a new global path even if a given
driving situation enforces the Automated Driving System
(ADS) to satisfy its safety envelope at operational or tactical
level when the AV encounters an imminent Object and Event
Detection and Response (OEDR). In addition, unlike the
case study that was based solely on few specific cases, the
performance review analyzed the generalized performances
of each TLARG-based model with respect to various traffic
conditions and OD trips in different urban road networks.
Based on the performance review, it could find that incor-
porating the transfer learning scheme in the TLARG always
have positive outcomes. In addition, it is also found that the
ATM generally provided better time savings than the BTM.
The comparison study verified that the ATM provided shorter
OD travel time paths compared to the BM and BTM, even in a
wide-area urban road network with mixed traffic conditions.
Furthermore, the comparison study also demonstrated that the
robustness of the advanced TLARG model by measuring the
error of ETA for diverse OD trips in the wide-area urban road
network with the mixed traffic conditions. Hence, this study
conclude that the TLARG has great potential to enhance
the punctuality of mobility service by providing robust route
guidance, even in the era of coexisting AVs and HVs.

There are several variations of TLARG that can be further
extended in future research. One can enhance the perfor-
mance of TLARG by replacing the RL-based traffic predic-
tion model as well as the DRL-based route guidance model
used in discrete action space with other advanced models,
such as Graph Multi-Attention Network (GMAN), Spatio-
Temporal Graph Attention Network (ST-GRAT), Conserva-
tive Q-Learning (CQL), and Implicit Q-Learning (IQL) [43],
[44], [45], [46]. The choice of routes might also be consid-
ered to include U-turn that can increase the combinations of
links for OD travel paths within the target area of mobility
service. In addition, someMulti-Agent Reinforcement Learn-
ing (MARL) schemes will be incorporated in the TLARG
to accelerate its convergence speed. Furthermore, additional
analyses might also be conducted regarding the impact of
changes in penetration rates of AVs on the proposed algorithm
in future study.
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