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ABSTRACT Encryption systems play a vital role in the transfer of sensitive data, and the integration of
chaotic systems into this domain has garnered significant attention. However, these systems often grapple
with complexity and insufficient security, posing challenges for real-world implementation. Researchers
introduced the synchronization techniques to fix these problems, which means making sure that the chaotic
systems in both the transmitter and receiver systems behave in a way that can be understood so that
accurate signal recovery can happen. Chaotic system synchronisation presents challenges and security risks
besides the limited of the encryption keys make them subjected to attacks. Because of their advantages
over traditional chaotic systems in terms of flexibility, adaptability, and computational efficiency, artificial
neural networks, or ANNSs, are being used more and more to study chaotic systems. This paper presents
NeuroChaosCrypt, a novel cryptographic framework employing unique methodologies for secure data
transmission. It utilizes an Artificial Neural Network (ANN)-based chaotic system at both transmitter and
receiver, eliminating the need for synchronization. A comprehensive case study, including audio signal
transmission, underscores NeuroChaosCrypt’s efficacy. Comparison with a traditional encryption system
integrating a Linear Quadratic Regulator (LQR) controller reveals comparable security levels, correlation
coefficient (cc), Signal-to-Noise Ratio (SNR), Peak-to-Root Mean Square Distortion (PRD), and encryption
time. NeuroChaosCrypt, enhanced by ANNs, excels in decryption speed, key-space coverage, and hardware
implementation using field-programmable gate arrays (FPGAs). This methodology achieves a higher
maximum frequency while requiring fewer logic units. The comparison offers valuable insights into audio
encryption methods, aiding informed decision-making for selecting the most suitable solution based on
specific application requirements. Finally, we introduce an application of the proposed NeuroChaosCrypt
for image encryption to ensure that the study can exploit other data types for broader applicability.

INDEX TERMS ANN-based chaotic systems, jerk chaotic system, hardware implementation, FPGA, image
cryptosystem, security.

I. INTRODUCTION are known for their intricate and unpredictable behavior,

The protection and privacy of sensitive data are the highest
priority in the current digital age. Data encryption methods
are extensively utilised for protecting data from unauthorized
access or interception. An area of great interest in cryptogra-
phy is the application of chaotic systems. Chaotic systems
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making them suitable for generating cryptographic keys and
enhancing encryption algorithms [1], [2].

Chaotic systems, characterized by their sensitivity to initial
conditions and the occurrence of nonlinear dynamics, have
garnered considerable attention in various scientific disci-
plines. These systems exhibit behavior that appears random
yet possesses underlying patterns and structures. Encryp-
tion systems incorporating chaotic systems have gained
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prominence, using chaotic signals as encryption components
[31, [4], [5], [6], [7]. These signals function as encryption
keys, pseudo-random number generators, or the founda-
tion for cryptographic transformations [7], [8]. Integrating
chaotic systems into encryption adds complexity, making
it tougher for unauthorized parties to decipher encrypted
data. Chaotic-based encryption spans image encryption,
secure communication protocols, and data storage systems
[91, [10], [11].

Chaotic synchronization occurs when multiple oscillators
are linked or influence one another, ensuring coordinated
phase changes between systems. This synchronization is vital
for secure communication and data transmission, ensuring
sender and receiver systems exhibit similar chaotic behaviors
for successful transmission and decryption [12], [13], [14].
The Linear Quadratic Regulator (LQR) is a widely used
technique for chaotic system synchronization [15], [16]. LQR
facilitates synchronization between master and slave chaotic
systems, aligning the slave’s behavior with the desired master
behavior, pivotal for reliable and secure communication
[17], [18].

Artificial Neural Networks (ANNs) have revolutionized
various fields [19] especially modeling chaotic systems
through training on chaotic-generated data [20], [21], [22].
This capability to mimic chaotic behavior opens new
encryption avenues [23], [24], allowing ANNSs to replicate
chaotic dynamics for secure encryption key generation and
algorithm development. ANNSs offer flexibility, adaptability,
and computational efficiency compared to traditional chaotic
systems.

Field-Programmable Gate Arrays (FPGAs) offer a ver-
satile platform for efficient and secure encryption system
implementation [25], [26]. They provide high-speed par-
allel processing and can implement complex encryption
algorithms in real-time, ideal for applications requiring
fast and secure data processing [27], [28], [29]. FPGA-
based hardware implementation ensures efficient resource
utilization, enhanced security, and customization based on
specific application needs [8].

The motivation for this study arises from the difficulties
and constraints presented by traditional chaotic encryp-
tion systems, which need synchronization techniques to
guarantee coherent communication between the transmitter
and receiver. The efficacy and integrity of the encryption
process are compromised when synchronization methods are
used, since they add complexity and possible weaknesses.
Furthermore, traditional chaotic encryption systems could be
vulnerable to assaults since they depend on a limited set of
keys that are derived from system characteristics. An alterna-
tive method for simulating and modelling chaotic systems is
provided by artificial neural networks (ANNs). They provide
benefits including adaptability, flexibility, and computing
efficiency and can reduce the requirement for synchronisa-
tion. This paper aims to present the NeuroChaosCrypt, a new
type of cryptography system. This framework use artificial
neural networks (ANNSs) to precisely depict and simulate
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chaotic systems, guaranteeing secure data transmission. The
research seeks to establish the efficacy and superiority of
NeuroChaosCrypt over a traditional encryption system that
integrates a chaotic system with a LQR controller. The article
presents a detailed examination of audio encryption through
a case study, evaluating the effectiveness, level of protection,
and feasibility of two systems using various metrics and
tests. The study also includes detailed information about the
hardware development for both systems that makes use of
field-programmable gate arrays (FPGAs). It evaluates their
effectiveness and resource use as well.
Our main technical contributions are as follows:

1) Introducing NeuroChaosCrypt, an innovative crypto-
graphic framework that uses ANNs to model and
simulate chaotic systems for secure data transmission.

2) Using both NeuroChaosCrypt and a traditional encryp-
tion method that depends on a chaotic system and an
LQR controller in an in-depth case study on audio
encryption.

3) Utilising a variety of parameters to compare the
security and performance of the two systems and
provide insightful analysis of their advantages and
disadvantages.

4) Assessing the FPGA-based hardware implementation
of both systems and emphasising the benefits of
NeuroChaosCrypt in terms of operating speed and
resource consumption.

The structure of the paper is as follows: The traditional
and NeuroChaosCrypt systems are presented in Section II;
the audio encryption case study is described in Section III;
the security performance of both systems is analyzed in
Section IV; the FPGA implementation of both systems is
discussed in Section V; the overall performance of both
systems is compared in Section VI; and the paper is
concluded with suggestions for future work in Section VII.

Il. TRADITIONAL AND NEUROCHAOSCRYPT SYSTEMS
Traditional cryptographic systems have long protected con-
fidential information that employs established techniques
and algorithms. By using mathematical transformations and
principles for both encryption and decryption, these systems
provide a solid basis for data security. When employing
chaotic systems for secure communication, synchronization
becomes necessary. Achieving synchronization ensures that
the chaotic dynamics exhibited by the transmitter and
receiver, enabling successful encryption and decryption of the
transmitted data.

To realize synchronization between chaotic systems,
a syncronization controllers are often introduced. These
controllers aim to establish and maintain coherence between
chaotic behaviors of the communication systems. The
cryptographic system becomes more sophisticated when
synchronisation controllers are integrated. Typically, these
controllers use feedback mechanisms to modify system
parameters that affect the overall efficiency of the system.
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Figure 1 illustrates the block diagram of Traditional Cryp-
tosystem, consisting of two part; transmitter and receiver.
On the transmitter side; the encryption algorithm that uses the
chaotic oscillator to encrypt the sensitive data which could
be bio-medical signal, image, or audio signal generated the
encrypted signal that transmit through the communication
channel to the receiver side.

On the receiving end, the encrypted signal is decrypted
using the decryption function, which utilizes the chaotic
oscillator to recreate the recovered message. Ensuring the
effective recovery of the encrypted signal on the receiver
side necessitates a complete alignment between the chaotic
systems employed in the transmitter and the receiver.
However, achieving such alignment is very improbable in
practice due to the delicate nature of chaotic systems. If a
slight change in one initial value of our chaotic system
occurred in the receiver, this would produce a dramatic
difference between the recovered and the original signals.
To overcome this problem, synchronization between master
and slave chaotic systems is required.

The challenges posed by synchronization mechanisms and
their associated complexities have prompted a paradigm
shift toward integration Artificial Neural Networks (ANNs)
to obviate the need for chaotic system synchronization
controllers. Figure 2 demonstrates the incorporation of
ANN-based chaotic systems into cryptosystems. Notably, the
transmitter and receiver components in the NeuroChaosCrypt
resemble those in the traditional cryptosystem. The key
distinction lies in the use of ANN-based chaotic oscillators
in place of chaotic oscillators. This innovation effectively
eliminates the necessity for synchronization controllers.

IIl. CASE STUDY: AUDIO SIGNAL TRANSMISSION
THROUGH TRADITIONAL AND NEUROCHAOSCRYPT
SYSTEMS

A. THE JERK CHAOTIC SYSTEM

This section presents the dynamic equations describing the
attractors for the 3-D jerk system (proposed in [30])used in
this study. which decribed with the equations (1).

)51 =X

x'2 = X3

o 2 2

X3 =axy — bxy — x3 — cxox3 — x{ — x5 €))]

where x1, xp, and x3 are state variables. a, b, and b are positive
parameters. The system exhibits a chaotic behavior when the
coefficient parameters take the following valuesa = 7.5, b =
4,and ¢ = 0.3.

The Lyapunov exponents (LE) of the hyperchaotic system

are obtained as follows: (L1, L2, L3) = (0.1631, 0, —1.1631).

Figures 3a, 3b, and 3c illustrate phase attractors of the
3-D jerk chaotic oscillator. The fourth-order Runge-Kutta
integrator with a fixed step size equal to (0.001) produces the
simulation results. Where the constant parameters will take
the following values [a, b, c] = [7.5, 4, 03]. The initial values
of the variables are set to [xy,, x2,, x3,] = [0.3, 0.2, 0.3].
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B. TRANSMISSION THROUGH NEROCHAOSCRYPT
SYSTEM

Our NeroChaosCrypt system typically comprises multiple
components that secure a message or data transmission. The
Overall block diagram for the audio encryption system is
shown in Figure 4 consisting of two sections; transmitter and
receiver.

On the transmitter side, the audio encryption process is
divided into two distinct phases, each with its own set of
operations.

The first phase is signal masking; this phase aims to make
the original audio signal more difficult to detect and decipher
by using the ANN based jerk system. To do this, the original
signal s(f) combines with the output of the artificial neural
network (ANN) jerk model, which produces random outputs
X1, X2, x3, in accordance with Equation 2. The new signal
sm(t) that is produced by this process is hidden and more
challenging to recognise.

Sm(t) = s(t) + x1(1) + x2(1) + x3(7) (@)

After the signal is masked, it can be subjected to encryption
using the encryption function during the second phase. This
function requires four inputs: x1, x2, x3, which are the secret
keys created by the ANN based jerk system, and s,,(¢), which
is the masked signal produced in phase one. The encryption
function generates the encrypted output s.(¢) in the prescribed
way by applying several mathematical operations to the given
nputs:

se(t) = (1 + x1(2) 4 x2(2) + x3(0) s ()
+ (er (0)xa(0) + x1 (0)x3(0) + x2()x3(0) (3)

Splitting the Encryption process into two separate phases,
this approach can increase the complexity of the signal and
the unpredictability. Which in turn making the signal more
difficult for an unauthorised party to intercept or decode.

On the receiver side, once the encrypted signal s.(7) the
intended recipient receives, it must be decrypted to recover
the original audio signal. The decryption process consists of
two main phases, which are the reverse of the encryption
process:

The first decryption phase involves applying the decryption
function to the encrypted signal. The decryption function is
designed to use the encrypted signal with the same inputs as
the encryption function, which are y1, y», and y3 generated by
the ANN-based jerk system. Its goal is to recover the hidden
signal by reversing the encryption process. This phase can be
represented as follows:

s4(1) = (o1 (D)x2(1) + x1(B)x3(1) + x2(t)x3(1))
(A 4+ x1() + x2(t) + x3(1))3)

For the recovery of the original signal, the masked signal
is unmasked in the second decryption phase. To do this,
the actions taken during the masking phase are reversed.
Specifically, the masked signal is passed through a ANN
based jerk system that removes the added layer of chaos,
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FIGURE 1. Model 1, the traditional encryption system using chaotic oscillator.
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FIGURE 2. Model 2, the NeuroChaosCrypt encryption system using ANN-based chaotic oscillators.

leaving behind the original signal. To do this, the output of the
ANN based jerk system is added and subtracted from signal
s4(t), resulting in recovered audio signal s,(¢) that matched
the original signal s(z).

sp(t) = sa(t) — (x1(2) + x2(2) + x3(1)) &)

The use of ANN based jerk system guarantee that the
encrypted signal can be successfully recovered on the receiver
side. Hence there is no need to use any synchronization
method.

1) THE ANN MODEL THAT MIMICS THE JERK

CHAOQTIC SYSTEM

This section is dedicated to constructing an Artificial Neural
Network (ANN) model that can forecast chaotic time series.
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The specific type of ANN topology utilised is the Feedfor-
ward Neural Network (FFNN). FENN, unlike other artificial
neural network topologies, operates by processing data in
a unidirectional manner without any feedback connections.
To put it another way, the output data x(i) is predicted using
the input data x(i—1).

The ANN is designed to predict a jerk chaotic system
consisting of three inputs, three outputs, and one hidden layer
consists of 10 neurons. The Artificial Neural Network (ANN)
model used to predict the jerk system shown in Figure 5.
The state variables x1, xp, andx3z are represented by the three
inputs and outputs of the model. The input layer receives
the cipher key, and 10 neurons compose the hidden layer.
In contrast, three neurons in the output layer showed values
for the state variables x1, x», andxs.
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FIGURE 3. Phase attractors of the 3-D jerk chaotic oscillator.

The training process of the ANN model is done using
MATLAB software. Using a dataset from the jerk system, this
model is trained to forecast the initial step in the future, which
consists of 10,000 samples. The model is trained using each
and every sample. Next, the testing data is used to do the ANN
prediction in the following manner: each output is fed back
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to the input and creates the prediction data iteratively once
the beginning conditions have been determined. Figures 6a,
6b, and 6¢ demonstrate the comparison between x original
and x prediction, and x-y original and x-y prediction will be
performed using the first future step prediction.

The predicted output produced by the ANN model almost
matches the original outputs, as shown in Figure. However,
to measure the overall performance precisely, the MSEs and
RMSEs between the ANN outputs and the target outputs
are used to measure the training performance effectively.
Table 1 illustrates the values of MSE and RMSE for each state
variable x,y, and z.

_1 a2
MSE = " Z(xl £9) (6)

/1
N )2
RMSE = . E (x; — X)) @)

TABLE 1. Performance metrics for the ANN designs.

1 xT9 xrs3
MSE 1.6917¢=% | 1.3144e=% | 3.4201e=8
RMSE 0.00013 0.00011 0.00018

The waveforms obtained from NeuroChaosCrypt are
illustrated in Figure 7; the original audio’s waveform is shown
in Figure 7a. While Figure 7b illustrates the encrypted audio
waveform. The decrypted speech waveform in Figure 7c
matches the original audio waveform on the transmitter side.

C. TRANSMISSION THROUGH TRADITIONAL
ENCRYPTION SYSTEM

To demonstrate the efficiency of our NeuroChaosCrypt
encryption system, we will compare it with another system
uses the chaotic jerk system and LQR controller for
encryption and decryption. Figure 8 shows the comparative
audio encryption system’s block diagram, derived from our
NeuroChaosCrypt model by replacing the ANN based jerk
system with a master jerk chaotic system on the transmitter
side, and slave jerk system with LQR controller on the
receiver side. The Overall block diagram for the Traditional
Crypto System is shown in Figure 8 consisting of transmitter
and receiver.

The master chaotic system’s randomized outputs are
employed to mask the audio signal on the transmitter side.
After the signal is masked, it may be encrypted using the
encryption function, which is comparable to the encryption
function found in our encryption system, NeuroChaosCrypt.
With the use of the secret keys produced by the master jerk
chaotic system, this function encrypts the decoy.

The encrypted signal is then subjected to the decryption
process on the receiving end. This function mainly accepts
the encrypted signal and the same inputs as the encryption
function, which are produced by the slave jerk system.
By utilizing these inputs, the decryption function reverses the

VOLUME 12, 2024



T. Bonny, W. A. Nassan: NeuroChaosCrypt: Revolutionizing Chaotic-Based Cryptosystem With ANNs

IEEE Access

Audio Message

iTransmitter | . Receiver |
! ANN Based Jerk Encryption I o|  Channel | .| Decryption |, ANN Based Jerk | -
| Model |  Function |7 - | Function | Model |
| 1 :

Si . Signal |

ignal Masking Unmasking '

Recovered
Message |

L

FIGURE 4. The NeuroChaosCrypt audio encryption system using an ANN-based jerk oscillator.

INnput Laver
FIGURE 5. The ANN designs used for chaotic time series prediction.

encryption process and retrieves the masked signal. Then, the
obtained signal is unmasked to recover the original signal
where the masked signal is passed through a slave jerk
chaotic system producing the recovered signal that matched
the original signal.

To guarantee full matching between chaotic systems in
the transmitter and the receiver, the synchronization between
master and slave chaotic systems is required. In this paper,
the synchronization is implemented using a Linear Quadratic
Regulator (LQR) for the slave jerk system on the receiver
side, as explained in the next section.

1) SYNCHRONIZATION USING LINEAR QUADRATIC
REGULATOR (LQR)

The main goal of optimal control is to find the control vector
u(t) that is added to the dynamic equations on the slave

VOLUME 12, 2024

Hidden Layer

Output Layer

side. This control input shapes the behavior of the controlled
system (slave oscillator) to minimize a cost function and
maximize the system’s output. Optimal control methodology
aims to control a system most favorably, considering a cost
index that includes optimization metrics. For the master jerk
chaotic system described by Equations 1, the equations of the
slave system with the added control law can be expressed as:

V1 =y2+u
Y2 =y3+un
Ys=ayi —by, —ys—cyys =y —ys+uz  (8)
Here, u = [ul, u2, u3] represents the control vector
stabilizing the slave system to follow the desired trajectory.

To derive the linear quadratic regulator, we consider
a state-space representation for the nonlinear master and
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FIGURE 6. The results of training the ANN model.

slave systems:

X =Ax + g(x)
y=Ay+g0) +u
In these equations, x and y are state vectors in R”, g(.) is
the vector of continuous nonlinear functions, u is a control
vector that keeps the slave system on the intended trajectory,
and A is a n x n matrix that represents the linear terms. The
definition of the system’s error vector is:
e=y—x
e=Ae+h(x,y)+u )

where h(x,y) = g(y) - g(x). The purpose of the control low is
making the error e converge to zero as t gets closer to infinity.
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FIGURE 7. Waveform plots for the NeuroChaosCrypt encryption system:
(a) Original speech, (b) Encrypted speech, and (c) decrypted speech.

where u is the sum of linear and nonlinear terms:
u=—hx,y)+ By (10)

B is an n x m matrix, then substituting Equation (10) into
Equation (9), we have:

e = Ae + Bu;
Let’s assume the linear control term is given by:
u = —Ke

where K is an m x n linear gain matrix. In this case, the
dynamic error can be written as:

é=(A—BK)e

A linear control method called the Linear Quadratic
Regulator (LQR) can be used to determine the gain matrix K.
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FIGURE 8. The traditional audio encryption system using the jerk system.

Considering the cost function:
o0
J = / f(x, u)dt
0

=/ (X7 OX + ul Rujldt (11)
0

where Q and R are positive definite matrices ensuring a
positive cost function. According to optimal
Control theory, the optimal control gain is given by:

up = —R'BT Pe

Here, P is a positive symmetrical matrix obtained as a
solution to the Algebraic Riccati Equation (ARE):

0=Q+A"P+PA—PBR'B"P

For the master and slave jerk systems, the values of A, g(x),
and g(y) are as follows:

0 1 0
A=|0 0 1
la —-b -1
i 0
glx) = 0
| —CX2X3 — x12 — x22
i 0
gy = 0
| —cy2y3 =y — 3

The control matrix B is the identity matrix, /3x3. Based on
these values, the Simulink block diagram for the chaotic jerk
system is shown in Figures 9 and 10 for the master and slave
jerk systems, respectively.

Figure 11 illustrates the Simulink block diagram of the
LQR controller. Let’s choose Q = 100 x Iyx4andR =
11x4. According to the LQR method, the control law can be
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obtained by solving the Riccati equation in MATLAB using
the ‘lqr’ command to determine the matrices P and K.

11.7608  —0.2795  3.2745
P=K=|-0.2795 10.3547 —1.1463
32745  —1.1463  9.2559

Figure 12 shows the result of the master-slave system sim-
ulation where the initial conditions. In the Matlab/Simulink,
the master and slave system initial values were set as
x0=[0.3,-0.2,0.3] and y0=[0.2,-0.5,0.2]. The simulation
results show that our designed LQR controller with a jerk
chaotic system had good synchronization performance and
stability. In addition, the master-slave systems achieved
synchronization quickly.

On the other hand, Figure 13 shows the waveform
obtained from the Traditional Crypto System; the original
audio’s waveform is shown in Figure 13a. Comparatively, the
encrypted audio waveform is shown in Figure 13b. Figure 13c
displays the encrypted speech waveform, corresponding to
the original audio waveform from the transmitter.

IV. SECURITY ANALYSIS

A. STATISTICAL TESTS

Many tests were run to show the effectiveness and security
of the NeuroChaosCrypt, correlation coefficient, signal-to-
noise ratio (SNR), and peak-to-random deviation (PRD)
tests to evaluate and compare the security performance of
the encryption system. These measurements shed light on
several facets of how well encryption technologies protect
the confidentiality and integrity of data. These metrics offer
information on multiple aspects of how well encryption
technologies maintain privacy and secrecy.

The correlation coefficient indicates the straight line that
connects the original and encrypted data. A higher correlation
coefficient indicates a greater similarity, potentially revealing
patterns that an adversary can exploit. A lower correlation
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FIGURE 10. Matlab/Simulink block diagram of the slave jerk system.
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FIGURE 11. Matlab/Simulink block diagram of LQR controller.

coefficient suggests a higher level of randomness and
encryption strength.

The SNR measures how strong the encrypted signal
is in relation to any distortion or noise that may have
been added. A higher SNR indicates a stronger and more
reliable encryption system, ensuring accurate retrieval of the
original information. A lower SNR may compromise the
confidentiality and integrity of the encrypted data.

For the given original audio signal x(i) and obtained
encrypted speech signal y(i), the SNR is defined as:

2
220 p (12)

SNR = 10l —o2
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PRD calculates the power ratio between the highest potential
signal strength and the amount of random noise in the
encrypted data. A lower PRD implies a lower level of noise
and better encryption quality. A higher PRD value signifies
more noise or distortion, potentially compromising data
security.

2 (x() — y(0)?

PRD = 100( S 607

) 13)

where x(i) and y(i) represents the original and encrypted
audio signals respectively.
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FIGURE 12. Synchronization of the mater-slave systems vary with time
using LQR.

The measurement results for various performance metrics
are presented in two separate tables, corresponding to each
encryption system. These measurements were obtained from
six different audio signals with a sampling rate of 8000 Hz
and eight quantization bits.

The security performance of the NeuroChaosCrypt utilis-
ing an ANN-based jerk system and the Traditional Crypto
System employing a jerk system and LQR, respectively, are
shown in Tables 2 and 3. The findings indicate that the
two systems have comparable efficacy in maintaining the
confidentiality and integrity of data. There are similarities in
the measures between the two systems, such as the correlation
coefficient, SNR, and PRD. Considering the security and
integrity of the encrypted data, these results show that
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FIGURE 13. Waveform plots for the NeuroChaosCrypt encryption system:
(a) Original speech, (b) Encrypted speech, and (c) decrypted speech.

TABLE 2. Comparison of security performance metrics for the
NeuroChaosCrypt encryption system.

Name CC SNR in dB PRD
Audio 1 | 0.000149 -75.2313 5.7752e+05
Audio 2 0.0031 -76.0982 6.3813e+05
Audio 3 0.0037 -74.3844 5.2387e+05
Audio 4 0.0038 -73.9910 5.0067e+05
Audio 5 0.0042 -73.6286 4.8021e+05
Audio 6 0.0049 -72.5083 4.2210e+05

the NeuroChaosCrypt encryption system and the traditional
cryptosystem are equally secure.
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TABLE 3. Comparison of security performance metrics for the traditional
encryption system.

Name CC SNR in dB PRD
Audio 1 | 0.0028 -75.5598 5.9978e+05
Audio 2 | 0.0026 -76.2820 6.5178e+05
Audio 3 | 0.0033 -74.3196 5.1997e+05
Audio 4 | 0.0032 -74.7692 5.4759e+05
Audio 5 | 0.0036 -74.0134 5.0196e+05
Audio 6 | 0.0043 -72.9010 4.4162e+05

TABLE 4. Comparison of security performance metrics for the traditional
encryption system.

Encryption Time
0.0092 (sec)
0.0089 (sec)

Decryption Time
0.0080 (sec)
0.0149 (sec)

NeuroChaosCrypt
Traditional system

B. ENCRYPTION AND DECRYPTION TIME COMPARISON
Table 4 presents a comparison of the encryption and
decryption times between the NeuroChaosCrypt system and
a traditional encryption system. The table illustrates how
long each operation took in seconds, demonstrating the
effectivness of the NeuroChaosCrypt method.

Remarkably, the NeuroChaosCrypt system and the tradi-
tional encryption method have the exact encryption times—
the former lasting around 0.0092 seconds and the latter
taking about 0.0089 seconds. However, the true distinction
lies in the decryption times. One notable characteristic of the
NeuroChaosCrypt system is its decryption procedure, which
takes only 0.0080 seconds to complete. This amazing speed
is especially impressive when contrasted with the traditional
encryption method, which takes about 0.0149 seconds to
decipher. This significant difference can be attributed to the
existing of Linear Quadratic Regulator (LQR) synchroniza-
tion in the traditional system, allowing it to outperform the
traditional approach regarding decryption efficiency.

C. KEY-SPACE ANALYSIS

Key-space analysis is a method used to assess the strength
of a cryptographic algorithm by analyzing the possible
combinations of keys that can be generated. The key-space
represents the entire set of possible keys that can be used
with a particular algorithm. The primary goal of key-space
analysis is to determine the size and complexity of the key-
space, which directly impacts the algorithm’s resistance to
various attacks.

For the traditional encryption system, the jerk chaotic system
consists of three parameters and three initial conditions
in the proposed algorithm. All these parameters constitute
the keyspace. On the other hand, for the NeuroChao-
sCrypt system, the ANN-based chaotic oscillator consists of
73 parameters for weight/bias. Thus, the NeuroChaosCrypt
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FIGURE 14. The top-level entities of the NeuroChaosCrypt encryption
system.

system is robust and rigid to be attacked since it has larger
keyspace than the traditional encryption system.

V. FPGA IMPLEMENTATION

FPGAs play a crucial role in implementing chaotic encryp-
tion algorithms due to their inherent characteristics, including
parallel processing capabilities and real-time responsiveness.
This section illustrates the hardware implementation of both
studied audio encryption systems.

A. FPGA IMPLEMENTATION OF THE NEUROCHAOSCRYPT
ENCRYPTION SYSTEM

Figure 14a shows the top-level entity of the transmitter
consisting of three inputs; clock, reset, and audio signal, and
one output representing the encrypted signal.

Similarly, the top-level block diagram for the receiver is
shown in Figure 14b. The inputs of these systems are the
encrypted signal, clock, and reset.

The detailed block diagrams are shown in Figures 15a
and 15b for the transmitter and receiver, respectively. In those
figures, the ANN model that mimics the jerk system is
identical, consisting of a clock, reset, three inputs represent-
ing the current state variables xi[k], x2[k], x3[k], and three
inputs represent the initial conditions x[0], x2[0], x3[0], and
three output representing the future state variables xj[k +
11, xo[k+1], x3[k+1]. At the beginning, the initial conditions
x1[0], x2[0], x3[0] define the starting values of the state
variables. Then, to generate a chaotic sequence, the outputs
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of the ANN model are fed back to the inputs to calculate the
future values.

The encryption equations utilize the outputs of the ANN
based jerk system and the audio signal to create the encrypted
signal. The Encryption equations in Figure 15a, represent
a set of mathematical operations that manipulate the audio
signal using the generated chaotic values. These operations
include signal masking 14 and then encryption using the
encryption function 15, where the values generated by the
ANN based jerk system are used as encryption keys, data
modifiers, and parameters for the encryption function to
enhance security.

Smlk] = slk] + x1[k] + x2[k] + x3[k] (14)
selk] = (1 4 x1[k] + x2[k] + x3[k1)> spulk]
+ (u1[kealk] 4 x1[kIxs[k] 4 xalklxs[k])  (15)

The Decryption Function in Figure 15b, performs math-
ematical operations to decrypt and reconstructs the infor-
mation signal. While the specific decryption equations are
not provided, this subsystem likely includes algorithms
or formulas necessary to reverse the encryption process.
The decryption function obtains the recovered information
signal by applying the decryption equations to the outputs
of the ANN-based jerk system. Using the chaotic values
produced, the decryption equations represent a series of
mathematical processes, which alter the audio signal. These
operations include signal decryption using the decryp-
tion function in Equation 16 and signal unmasking in
Equation 17.

sg[k] = O1lkly2lk] + yilklys[k] + y2lklysk])
(1 + y1[k] + y2lk] + y3[k]1)3)
smlk] = slk] — 1 [k] + y2[k] + y3[k]) (17)

(16)

B. FPGA IMPLEMENTATION OF THE TRADITIONAL
ENCRYPTION SYSTEM

The top-level entity for the transmitter and receiver of this
system is similar to the previous system in Figures 14a
and 14b. The detailed block diagram of those entities are
shown in Figures 16a and 16b for the transmitter and receiver
respectively.

In Figure 16a, the encryption system employs a master
chaotic system and encryption equations to ensure secure
and robust data encryption. This system aims to exploit
chaotic systems’ complex and unpredictable nature to
generate encryption keys and scramble the data effectively.
Now let’s examine the mathematical representation in more
depth.

The main source of randomness and unpredictability for
the encryption process is the master chaotic system, which
also acts as the key generator. In order to modify the data
and create encryption keys, it creates chaotic values. The
mathematical representation of the master chaotic system can
be described using a set of differential equations. The forward
Euler integration method will be utilised for the numerical
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system.

!

rst clk

x1[k-1]
x2[k-1]
x3[k-1] x1[k]
Master
Jerk  xalk] Encryption
System Equations
x1[0] x3[k]
x2[0]
x3[0]

Encrypted Audio
l—

I

Original Audio

1

(a) The detailed entity of the transmitter

yilk-1]
y2lk-1)
yalk-1] xafk]|
xalk] Slave
Jerk i Decryption
W System Equations
0l

Recovered Audio
—

Encrypted Audio

(b) The detailed entity of the receiver

FIGURE 16. The detailed entities of the traditional encryption system.

solutions of the aforementioned system. Consequently, the
numerical solution for the master chaotic oscillator system
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given by Equations 1 would be as follows:

x1lk + 1] = x1[k] + dtxo[k]
x2lk + 1] = xo[k] + dtxs[k]
x3[k + 1] = x3[k] + dt(ax1 [k] — bxa[k] — x3[k]
—cxa [kl [k] — xFk] — x3[k]) (18)

In the provided equations, k represents the current state,
k + 1 denotes the subsequent state, and dr signifies the
discretization step size. The implementation of the chaotic
oscillator system on a digital FPGA will utilize these discrete-
time equations.

The VHDL entity that represents the master jerk system
is shown in Figure 16a consisting of a clock, reset,
and three inputs represent the current state variables
x1lk], x2[k], x3[k], and three inputs represent the initial
conditionsx1[0], x2[0], x3[0], and three output representing
the future state variables xi[k + 1], x2[k + 1], x3[k + 1].
Initial conditions x1[0], x2[0], x3[0] specify the initial values
of the state variables at the outset. The future values are then
calculated by feeding the outputs back into the inputs in a
chaotic sequence.

The encryption equations perform mathematical opera-
tions to encrypt the information signal is similar to the
previous system. These blocks apply Equations 14 and 15
to the inputs of the master chaotic system in order to get
the mask and encrypt the information signal, respectively.
The Slave Chaotic System, the Linear Quadratic Regulator
(LQR), and the Decryption equations are the three interre-
lated subsystems that make up the decryption system seen
in Figure 16b. Every subsystem contributes to the overall
functioning of the code by carrying out a certain function.

The slave chaotic oscillator system represented by Equa-
tions 8 has a numerical solution that can be explained as
follows:

yilk + 1] = yilk] + dty2 [k]
yalk + 1] = y2[k] + dry3[k]
yalk + 1] = ys[k] + dt(ay; [k]
—by2[k] — y3[k] — cyalklyslk]
— yiIk] — y3IkT) (19)

The VHDL entity that represents the slave jerk system is
shown in 16b consisting of a clock, reset, three inputs
represent the current state variables yp[k], y2[k], y3[k], and
three inputs represent the initial conditionsy; [0], y2[0], y3[0],
and three inputs representing the control signal from the LQR
system for synchronization purposes. The system utilizes
these inputs to predict the future state variables.xi[k +
1], x2[k+1], x3[k+1]. At the beginning, the initial conditions
v1[0], ¥2[0], y3[0]. The outputs are fed back to the inputs to
calculate the future values.

The LQR system is used for synchronization between
the master and slave systems. It receives inputs from both
the master system and the slave chaotic system.While the
inputs from the slave chaotic system yi[k], y2[k], y3[k] offer
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information on the present state of the slave system, the
inputs from the master system x1[k], x2[k], y,[k] specify the
intended synchronisation behaviour. Using a linear quadratic
optimisation method, the LQR system processes these inputs
and outputs u1, us, uz, three control signals. The following is
a description of the equations that control the LQR system:

uy = Ky1(xy[k] — y1lk])
+ Kip(oa[k] = y2[k]D) + Ki3(xs[k] — y3lk])
up = Koy (x1[k] — yilk])
+ Koo (xalk] — yalk]) + Koz(xalk] — yalk])
uz = K31(x1[k] — y1[k])
+ K300 [k] — y2[k]D) + K33(x3[k] — y3[k])
— (—exalklxs[k] — x1 [k]* — x2[k]%)
+ (—cyalklys[k] — yi k1> — ya[k1?) (20)

Here, K11, K12, K13, K21, K22, K23, K31, K32, abdK33 are the
LQR gain parameters that determine the strength of the
control signals. These gain parameters are obtained through a
design process to optimize the synchronization performance.

The Decryption Function performs mathematical oper-
ations to decrypt and reconstructs the information signal.
While the specific decryption equations are not provided,
this subsystem probably contains the formulae or meth-
ods required to undo the encryption. By applying the
decryption equations to the slave chaotic system’s outputs,
vilk], y2lk], andys[k], the Decryption Function can recover
the information signal. With the help of the produced
chaotic values, the decryption equations signify a series
of mathematical operations that modify the audio stream.
Using the decryption function in Equation 16, these processes
include signal decryption, and signal unmasking, which
involves Equation 17.

VI. OVERALL PERFORMANCE COMPARISON

In this section, we will compare two encryption systems,
the NeuroChaosCrypt encryption system and the traditional
encryption system, based on various aspects, including secu-
rity metrics correlation coefficient, Signal-to-Noise Ratio
(SNR), Peak-to-Root Mean Square Distortion (PRD), and
FPGA hardware implementation considerations such as the
number of utilized logic units and the maximum frequency
(Fmax). Table 5 offers a thorough summary of the different
characteristics that have been assessed. The values for each
aspect are provided for the NeuroChaosCrypt encryption
system and the standard encryption method, enabling a
straightforward comparison between the two systems.

Upon examination of the results, it is evident that the
security characteristics, such as correlation coefficient, SNR,
PRD, and encryption time, are identical for both the
NeuroChaosCrypt and traditional encryption methods. The
match between the two systems demonstrates how both
systems’ encryption procedures provide equivalent levels of
security and signal quality. The character in the user’s text is
a backslash.
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TABLE 5. Comparison table between the systems A and B.

Security Metrics
Metrics NeuroChaosCrypt encryption system | Traditional encryption system
Correlation coefficient 0.0031 0.0026
SNR -76.0982 -76.2820
PRD 6.3813e+05 9.9496e+04
Encryption time (seconds) 0.0092 0.0089
Decryption time (seconds) 0.0080 0.0149
Key-space 73 6
FPGA Implementation
NeuroChaosCrypt encryption system | Traditional encryption system
Transmitter Receiver Transmitter Receiver
Logic Units Utilization 1661 1578 1475 4541
Maximum Frequency 17.24 17.41 17.54 3.99

(a) The original image

(b) The encrypted image

(c) The decrypted image

FIGURE 17. Experimental result: (a) The original image (b) The encrypted image (c) The decrypted image.

However, the NeuroChaosCrypt system stands out with
distinct advantages over current encryption techniques when
comparing parameters like the time it takes to decrypt, the
range of potential keys, and the hardware implementation.
Because the NeuroChaosCrypt system does not require
a synchronisation controller, its reduced decryption time
is indicative of its efficacy. A more expansive key-space
increases the intricacy of the system and fortifies its defence
against attacks. Furthermore, the NeuroChaosCrypt system’s
simple integration into FPGA requires fewer logic units,
which has implications for cost-effectiveness, low power
consumption, and efficient resource use. In addition, the
NeuroChaosCrypt technology provides a higher maximum
frequency (Fmax) than the prior encryption technique. The
NeuroChaosCrypt system operates at a higher speed because
to its higher Fmax, which enables faster encryption and
data processing and transfer. The NeuroChaosCrypt system
performs better because to its increased maximum frequency
(Fmax), particularly when real-time encryption is required.

In summary, the NeuroChaosCrypt encryption system
performs very well regarding data decoding speed because
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TABLE 6. The correlation between adjacent pixels in the original,
encrypted and decrypted images.

Model Original Image | Encrypted Image | Decrypted Image
Horizontal 0.9913 0.0266 0.9927
Vertical 0.9857 0.0196 0.9863
Diagonal 0.9792 0.0272 0.9812

of its effective hardware implementation and enlarged key
space, which increases complexity and security. Because of
its enhanced Fmax and capacity to reduce the requirement for
logic units in FPGA integration, the NeuroChaosCrypt sys-
tem provides a special set of advantages. Consequently, these
attributes collaborate to improve the efficiency and speed
of encryption procedures, establishing the NeuroChaosCrypt
system as a remarkably secure and persuasive alternative to
the traditional encryption technique.

VII. APPLICATION FOR IMAGE ENCRYPTION USING THE
NEUROCHAOSCRYPT SYSTEMS

In this section, we will demonstrate the application of
our proposed NeuroChaosCrypt (depicted in Figure 2) for
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FIGURE 18. The correlation disribution between adjacent pixels in the original, encrypted and decrypted images.

image encryption and decryption. The encryption process
utilizes a state vector derived from an Artificial Neural
Network (ANN)-based chaotic oscillator model, denoted as
[x1, x2, and x3], as the encryption key.

Firstly, the encryption function employs the x; state
variable to permute the original image. Subsequently, the per-
muted image undergoes diffusion using the x; state variable.
The permuted and diffused images are then combined using
XOR operations to generate the ciphered image.
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On the decryption side, an identical ANN-based chaotic
oscillator model is employed to generate the same state
vector used during encryption for decrypting the ciphered
image. The decryption process reverses the operations
conducted during encryption. Initially, the ciphered image
is un-permuted using the x; state variable, followed
by un-diffusion using the x, state variable. Finally, the
un-permuted and un-diffused images are XOR-ed to produce
the decrypted image. Figure 17 illustrates the results of
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implementing the Neurocryptosystem for image encryption.
The encrypted image exhibits noise and deviation from
the original, yet the decrypted image matches the original
precisely.

A. CORRELATION COEFFECIENT
The robust encryption method applied to the encrypted
image aims to reduce the correlation or likeness between
neighboring pixels, even though there may be a significant
correlation among adjacent pixels in the original image.
Plain images typically show a strong correlation among
neighbouring pixels, whereas encrypted images are expected
to show no correlation at all. In order to gain more
insight, we tested both the encrypted and decrypted images
and looked at the correlation between adjacent pixels.
The correlation distribution between adjacent pixels in all
directions for the original and encrypted images is shown
in Figure 18, respectively. There is a strong correlation
between adjacent pixels, as seen by the original image’s linear
correlation distribution. In contrast, there appears to be no
discernible connection between any pixels in the encrypted
image, suggesting that the pixels are distributed randomly.
Therefore, we can conclude that correlation analysis poses
no threat to our cryptosystem’s security. Table 6 illustrates
the correlation values along the diagonal, horizontal, and
vertical axes between neighbouring pixels in each original
image, encrypted image and decrypted image. Based on the
findings presented in Table 6, it is evident that the correlation
coefficient among adjacent pixels in the encrypted image is
notably low, nearing zero. This observation highlights the
effectiveness of our algorithm in disrupting pixel correlation,
demonstrating its robustness against statistical attacks.

B. INFORMATION ENTROPY

One important metric to evaluate the degree of randomness
in the value distribution of an image is information entropy.
An information source is considered to provide 256 symbols,
and an optimal information entropy value of 8 is found.
An encrypted image with a higher information entropy is
more secure against attacks and makes it more difficult
for adversaries to extract important data. The information
entropy value in our suggested system measures at 7.4326.
These results clearly show that the encrypted image’s entropy
value closely approximate the ideal value of 8.

C. DIFFERENTIAL ATTACK

To evaluate the impact of altering a single pixel on the
entire image encrypted through the proposed algorithm, two
standard metrics were employed: NPCR and UACI. NPCR
assesses the rate of change in the pixel count of the encrypted
image when a single pixel in the original image is modified.
On the other hand, UACI, or the unified average changing
intensity, gauges the average intensity of discrepancies
between the original and encrypted images. In this context,
we designate the encrypted Il, and the encrypted image
resulting from altering the gray value of the first pixel is
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labeled as I2. Researchers commonly employ NPCR and
UACI as benchmarks to evaluate the algorithm’s resilience
against differential attacks. Here, we utilize equations 21, 22,
and 23 to compute NPCR and UACI.

cipo |0 G =120 e
’ 1, ifI1G,)) # 123, ))
T . C(,
NPCR = Z‘—IMZ’—;V “I 100 (22)
X
oS 3G, ) — 123, )]
UACT = =1 szsslxMiN %100 (23)

In these equations, C(i,j) represents the indicator function
which evaluates to O if the corresponding pixels in I1 and 12
are equal, and 1 if they are not equal. M and N denote the
dimensions of the image. The simulation yielded an NPCR of
99.49% and a UACI of 0.39%. These findings indicate that
our algorithm exhibits robust resistance against differential
attacks.

VIIl. CONCLUSION

This study presents NeuroChaosCrypt, an innovative crypto-
graphic paradigm that utilizes new approaches to guarantee
safe data transport. In NeuroChaosCrypt, both transmitting
and receiving ends harness an ANN-based chaotic system,
eliminating the need for synchronization methods and further
enhancing security.

To underscore the effectiveness of NeuroChaosCrypt,
an extensive case study involving audio signal transmission
is conducted. A comparative analysis between NeuroChao-
sCrypt and a traditional encryption system, incorporating
a Linear Quadratic Regulator (LQR) controller, is carried
out. The analysis showcases comparable levels of security,
correlation coefficient (cc), Signal-to-Noise Ratio (SNR),
Peak-to-Root Mean Square Distortion (PRD), and encryption
time for both systems. Notably, the NeuroChaosCrypt,
fortified by ANNSs, excels in terms of decryption time,
key-space, and hardware implementation using FPGA. This
innovative approach reduces logic unit requirements while
achieving an elevated maximum frequency.

Through this comparative exploration, valuable insights
into the strengths and limitations of audio encryption systems
are illuminated. With the use of this data, decision-makers
will be better equipped to choose a system that meets the
needs of a certain application. The excursion into the complex
world of audio encryption technology shows how inventive
and practical methods are always being used to improve data
security.

Future research directions for NeuroChaosCrypt could
involve investigating techniques to optimize the neural
network architectures used in NeuroChaosCrypt to improve
computational efficiency and enhance encryption/decryption
performance.
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