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ABSTRACT Anomaly detection is a critical task in ensuring the security and safety of infrastructure and
individuals in smart environments. This paper provides a comprehensive analysis of recent anomaly detection
solutions in data streams supporting smart environments, with a specific focus on multivariate time series
anomaly detection in various environments, such as smart home, smart transport, and smart industry. The aim
is to offer a thorough overview of the current state-of-the-art in anomaly detection techniques applicable to
these environments. This includes an examination of publicly available datasets suitable for developing these
techniques. The survey is designed to inform future research and practical applications in the field, serving as
a valuable resource for researchers and practitioners. It not only reviews a range of state-of-the-art anomaly
detection methods, from statistical and proximity-based to those adopting deep learning-methods but also
covers fundamental aspects of anomaly detection. These aspects include the categorization of anomalies,
detection scenarios, challenges associated, and evaluation metrics for assessing the techniques’ performance.

INDEX TERMS Anomaly detection, human activity recognition, machine learning, pattern recognition,
safety.

I. INTRODUCTION
If a smart environment is considered a living human
organism, where appliances, roads or machines, are its
organs, then a smart environment should behave as an
intelligent body. It knows when it’s temperature exceeded
the limit (e.g. home over heating) and it knows when the
blood is flowing too slowly (e.g. traffic congestion). It knows
how to keep all of its organs healthy and functioning at their
best. Failure to detect or incorrect assumption of unhealthy
situations could cause a loss of critical components that are
necessary for its operation.

As for the health of the human body, similar principles
apply to modern smart environments and their compo-
nents, which are interconnected by modern Information and
Communication Technology (ICT). In the course of the

The associate editor coordinating the review of this manuscript and

approving it for publication was Wei Yu .

digital transformation, all kind of scenarios are becoming
increasingly smart (e.g. smart homes, smart factories, smart
roads, etc.). The term Digital Transformation refers to the
use of digital technologies to transform traditional ways
of doing business and delivering services [1]. Modern
smart environments are now able to automatically gather
knowledge about their environment and apply it according
to the user’s needs, a capability referred to as Smart. The
term Internet of Things (IoT) refers to devices that are
connected to the Internet and used to control and monitor
an environment remotely [2]. IoT devices include various
products embedded with processors, software, sensors (e.g.,
cameras, thermostats) and actuators (e.g., power switches,
engines, valves, and pumps) that can be controlled and
monitored remotely through a network connection.

Sensor technology is increasingly employed to quan-
tify physical variables and accumulate data about human
activities within ecosystems [3], [4], [5]. This technology
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comprises various components specifically selected to align
with the intended application and to ensure the enforcement
of contemporary security standards. Moreover, nowadays,
individuals are more and more utilizing personal sensors and
wearable devices. This practice forms part of a trend known
as the Quantified Self, which involves the self-measurement
of personal physiological characteristics with the aid of wear-
able sensor technology [6]. Younger citizens are particularly
inclined towards using devices like mobile phones [7] and
fitness trackers [8] as tools to monitor and improve their
health. These devices enable the user to measure various
metrics, such as heart rate, the number of steps taken within a
specific time interval, the number of calories burnt, as well as
the localization and measurement of body movements. The
scope of what can be monitored extends well beyond these
examples. The abundance of sensors in smart environments
enables the generation of large datasets that comprise various
types of data. The availability of such rich datasets presents an
exciting opportunity for the scientific community. It paves the
way for the development of innovative algorithms designed to
leverage this data, ultimately aiming to enhance the quality
of life of people, the productivity of a factory or the traffic
conditions.

Smart environments are composed of domains where
people live and work. These domains might include entire
cities, as well as smaller parts such as single buildings,
homes, or infrastructures. Smart environments are designed
with security and safety in mind [9], but it is still possible
for unforeseen situations, failures or attacks to occur.
Smart environments not only enable new opportunities for
automated systems but also increase the need for solutions
that can recognize hazardous situations [10]. IoT devices
commonly have vulnerabilities that can be exploited by
attackers. Therefore, the detection of unforeseen situations,
failures or attacks in smart environments is crucial to prevent
malicious consequences. Enhancing the possibilities of being
accurately aware of the situations and processes in smart
environments is important in order to reduce costs, damage
to critical infrastructure, and threats to people within such
environments.

Abnormal situations can be anything out of the ordinary.
These situations include coordinated attacks, unwanted sys-
tem behaviors (e.g., error states, malfunctions) or unforeseen
situations that are recorded by monitoring sensors. Anomaly
detection (AD) algorithms enable the detection of these
situations and behaviors by recognizing anomalous patterns
in sensory data.

AD and situation recognition are important tools for
improving the safety and security of smart environments.
AD refers to the process of identifying unusual or unexpected
patterns or behaviors in data. Situation recognition, also
known as event or scene understanding, involves using data
from various sources to identify and understand the context
of a situation. This can include recognizing patterns of behav-
ior, determining the location and activities of individuals,

and identifying objects or events that are relevant to the
situation.

Together, AD and situation recognition can help to make
smart cities more secure by providing early warning of
potential security threats and enabling a more rapid and
informed response to incidents. For example, a smart city’s
surveillance systemmight useAD to identify unusual patterns
of activity in a particular area, and then use situation
recognition to understand the context of the situation and
determine an appropriate response. This might involve
dispatching emergency services, issuing an alert to citizens,
or taking other actions to address the threat.

There are several surveys on related topics, since the
scientific community extensively reviewed AD [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20]. The landscape
of AD research, has been extensively explored in these
surveys. However, these surveys have adopted a more general
perspective, focusing broadly on AD techniques without pre-
senting the nuanced characteristics unique to individual smart
environments. This overarching approach, while valuable,
leaves a gap in the literature: a detailed understanding of how
AD is tailored and applied to specific smart environments,
namely smart home, smart transport, and smart industry, each
with its distinct challenges and requirements. This survey
addresses this gap by providing an essential resource for
researchers and practitioners in the field. It goes beyond
the general discussions of AD techniques and explores the
specifics of how these techniques are applied in different
smart environments. This focus is crucial as the dynamics and
data characteristics of each environment vary significantly,
influencing the choice and implementation of AD methods.
This comprehensive approach enables researchers to gain
a more informed understanding of which applications and
research directions have been pursued in previous works, and
what future directions might be most fruitful.

To this end, the contributions of this survey are as follows:
First, we discuss smart environments, their application
domains, and present a market analysis to show the increasing
need for AD solutions. Second, we review on AD fundamen-
tals in order to set the scenes on which kind of anomalies can
exist on IoT time series, as well as, on howAD solutions have
been typically assessed. The core contribution of this work
is, indeed, the review on the advances in deep learning-based
AD techniques compared with traditional techniques. In this
regard, we review deep learning-based AD techniques and
their applications in particular smart environments, including
an analysis of commonly used sensor technologies and
datasets utilized for the development and assessment of the
proposed AD solutions.

The structure of this work is as follows: Section II
introduces smart environments along with a market analysis.
Section III presents an introduction to AD, including
anomaly types, application scenarios, performance metrics,
and development challenges. Section IV-A briefly categorizes
traditional AD techniques. Section IV-B explores deep
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learning-based AD, providing a comprehensive overview of
these techniques and their advantages. Section V investigates
advancements in time series AD, discussing the utilization
of deep learning models and their benefits and limitations.
Section VI reviews datasets used for developing and eval-
uating AD algorithms. Section VII presents applications of
AD in multiple smart environments. A discussion and future
research directions are presented in Section VIII. Finally, this
work concludes in Section IX.

II. BACKGROUND
This section briefly presents background on smart envi-
ronments, and a market analysis regarding the increasing
need for IoT-based technologies in these environments.
Section II-A present background on smart environments and
its components, to get an overview of the topic. Section II-B
presents a market analysis of IoT-based technologies, with
focus on the smart home, smart transport, smart industry, and
smart energy environments that are discussed in this work.

A. SMART ENVIRONMENTS
Smart environments, in a broader sense, encompass smart
cities as a subset. They are defined by the integration
of advanced technologies, such as IoT, Artificial Intelli-
gence (AI), and big data analytics, to enhance efficiency,
sustainability, and habitability in various settings. Smart
environments comprise interconnected smart objects within
any living space, not limited to urban areas. According to
Jakkula and Cook [21] a smart environment is ‘‘a system that
collects data about the inhabitants of a living space and the
environment in order to model and adapt the environment’’.
This concept aligns with the IoT vision, as presented in [22].
The basic idea behind this vision is that various sensors and
actuators can interact to achieve common goals. The key
technologies that enable IoT are presented in their survey,
alongside the IoT principal applications and future benefits.

Structurally, a smart environment is layered, comprising
physical, communication, information, and decision layers
[23]. The automation process in these environments can
be conceptualized as a cyclical process involving three key
stages: perception, reasoning, and action. During percep-
tion, the system utilizes sensors to collect data about the
environment and identifies the current state in a bottom-
up process. The sensors utilize physical components to
monitor the environment and provide information through the
communication layer. The gathered information is stored in
a database in the information layer and processed into more
useful knowledge by other information components, such
as prediction or data mining mechanisms. In the reasoning
stage, the system analyzes the current state by making use
of decision making algorithms (e.g., rule engine) in the
decision layer alongside predefined task goals and possible
actions, thereby deciding on the optimal course of action.
Finally, during the action stage, the system executes the
selected action in a top-down manner. Once a decision is
made, the services layers (information and communication)

communicate the action to the physical layer. The physical
layer utilizes physical components such as actuators to
modify the state of the environment, and triggering a new
perception stage [23].

FIGURE 1. The best-funded smart environments in 2020. Anomaly
detection applications in the green-colored smart environments are
discussed in this survey.

Figure 1 visualizes the most significant smart environ-
ments considering the estimated amount of IoT spending’s
in the year 2020 and the estimated amount of IoT spending’s
over the period 2014-2020. Most of the expenditures were
made for smart finance, smart transport, smart govern-
ment/environment, smart customer experience, smart health,
smart homes, smart energy and smart manufacturing [2].

In this survey, we discuss applications of AD in key smart
environments identified in [2], namely smart transport, smart
manufacturing and smart energy, which we collectively term
as ‘‘smart industry’’, as well as smart home and smart health,
which we group under the term ‘‘smart home’’. We base this
aggregation on shared features and integrative potentials that
these environments possess.

B. MARKET ANALYSIS
This section presents a market analysis of IoT-based
technologies in smart environments. The market for IoT-
based technologies, especially in certain application domains,
is growing rapidly. Homes with integrated health monitoring,
intelligent transportation systems, automated manufacturing
industries, and energy grid systems are some of the main
areas where IoT-based solutions are expected to have themost
impact, with a significant growth forecasted in the upcoming
years.

According to the full-stack development company
Softeq [24], there are indications that the declining demand
for IoT solutions in the automotive, logistics and consumer
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FIGURE 2. The global IoT and smart city market is growing significantly.

electronics industries will be short-lived and that the digital
transformation of traditional analog industries is more likely
to accelerate. Figure 2 illustrates the estimated growth of the
global market revenue for IoT-based technologies and the
estimated growth of the smart city market. The forecast of
the business data platform Statista [25] states that the global
market revenue for IoT is expected to grow to 1600 billion
U.S. dollars by 2025 as compared to 212 billion U.S.
dollars in the year 2019. This indicates the accelerating
demand for IoT-based technologies, underpinning the digital
transformation. The revenue impact firm MarketsandMar-
kets [26] forecasts that the global Smart City market size
will almost double from USD 457 billion in 2021 to USD
873.7 billion by 2026. This growth is driven by factors
such as increasing urbanization, the need for sustainable and
efficient cities, and advancements in technology. Regarding
to the report, the major factors for the growth of the Smart
Cities market are expected to be the demand for efficient
transport, public safety, a healthy environment, and efficient
energy consumption [27]. Another report by Zion Market
Research [28] estimates that the global smart cities market
will increase from $1125 billion in 2021 to $6050 billion in
2028, at a Compound Annual Growth Rate (CAGR) of 26%.
This increases the need for solutions that enhance security
and safety in the transportation, health and energy application
domains.

IoT is a rapidly growing communication paradigm as the
number of connected IoT devices is growing exponentially.
The expected number of connected IoT devices by the year
2025 is 75.44 billion as compared to 30.73 billion in the
year 2020 [29]. According to the market and consumer data
company Statista, forecasts suggest that there will be around
50 billion IoT devices globally by 2030 [30].
It is very important to guarantee security in the energy

sector. This is emphasized by the National Intelligence
Council (NIC) [31] that included IoT in the list of the six
Disruptive Civil Technologies with potential impacts on U.S.
national power.

Transportation will be increasingly automated and mon-
itored remotely. The global management consulting firm
McKinsey & Company reported that the number of new
vehicles sold globally that will be connected to the Internet
increases from around 50 percent in 2021 to about 95 percent
in 2030 [32]. According to MarketsandMarkets Research,
air transportation will have the largest impact on the smart
transportation market in the period 2018–2023 [26]. In the
smart building domain, emergency management will hold the
largest market share. Smart cities in asia pacific regions are
expected to hold the most significant market share because of
their rapid adoption of smart technologies.

Health monitoring systems gain increasing attention. The
Internet of Medical Things (IoMT) has risen in the recent
years. In response to the COVID-19 pandemic, healthcare
providers and digital health companies have progressively
adopted IoMT solutions. Notably, the use of wearable devices
has played a significant role in reducing the workloads of
hospital staff and enhancing operational efficiency [33].

The number of elderly persons is also expected to grow
rapidly. The Department of Economic and Social Affairs
stated that the global population aged 60 years or more
numbered 962 million in 2017, as compared to 382 million
in 1980. Regarding to their report, the number of elderly
persons is expected to reach 2.1 billion by 2050 [34]. The
World Health Organization stated that by 2050, there will
be 400 million people worldwide that are aged 80 years
or more [35]. Monitoring the activities of elderly people
at home remotely by making use of IoT-technologies and
situation recognition algorithms can potentially decrease fatal
consequences for the health of a city’s inhabitants.

Industrial Internet of Things (IIoT) and automation have
recently been seen as job killers in the factory. Today,
manufacturers are turning to IIoT to remotely monitor
equipment and production facilities. Situation recognition
and AD algorithms help to prevent hazards to personnel or
machinery, minimize downtime and save costs. Innovations
in IIoT are being implemented with costs in mind. For the
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FIGURE 3. IoT market analysis.

industrial sector, this means equipping old machines with
sensors, connectivity technologies, and cloud-based analytics
such as AD solutions.

According to the NIC, IoT could contribute to the domestic
economy and the military of the United States but also be
a threat, since access to aggregated sensor data could be
misused for criminal activities in the manufacturing domain.

The market analysis underscores a significant growth
trajectory for IoT-based technologies, with a focus on
sectors like health monitoring, intelligent transportation, and
automated manufacturing. The expansion is marked by a
rapid increase in the global market revenue for IoT. Key
trends include the rising number of connected IoT devices
and advancements in remote health monitoring and IIoT.
These developments highlight the critical need for robust
security measures in IoT implementations across various
domains.

III. ANOMALY DETECTION
This section provides an introduction to AD in general.
The fundamentals of AD are presented in Section III-A.
Section III-B describes how different anomalies can be
categorized. The learning scenarios in which AD techniques
can be applied are presented in Section III-C. Section III-D
presents the performance metrics typically used for eval-
uating AD solutions. Finally, Section III-E presents the
challenges involved in the development of these solutions.

A. FUNDAMENTALS
Deep learning is a sub-field of machine learning that involves
the use of neural networks to learn patterns in data. It has
been widely applied in a variety of areas, including AD. The
aim of AD (also referred to as outlier detection) is to identify
instances that are dissimilar to others, such as instances that
exhibit patterns significantly different from the underlying
distribution of a dataset. The instances being dissimilar are
called anomalies. According to [13], AD is the process of

recognizing patterns that do not conform to the expected
behaviour. AD has various applications, it is an important
tool for credit card fraud detection [36], sensor network
intrusion detection [37], fault detection [38], [39], fraud
detection [40], medical diagnosis [41], human behaviour
analysis [42], [43], computer network threat detection [44],
[45] and many others.

Anomalies can be anything out of the ordinary. According
to [46], outliers are also referred to as abnormalities,
discordants, deviants, or anomalies in statistics and data
mining literature. Previous work suggested various but
similar definitions for anomalies. Traditionally, Hawkin [47]
defined an anomaly by ‘‘an observation which deviates so
much from other observations as to arouse suspicions that
it was generated by a different mechanism’’. Barnett and
Lewis [48] defined an anomaly by ‘‘an observation (or subset
of observations) which appears to be inconsistent with the
remainder of that set of data’’. A more modern view on
AD is biologically inspired. In [49], the authors stated that
expectation and surprise are the two factors in the human
neural system that determine anomalies.

In fact, novelty detection is a related subject that aims
at detecting previously unobserved patterns. Markou and
Singh [50], [51] investigated statistical and neural network
based novelty detection approaches. Novelty detection mech-
anisms are typically applied in scenarios where only the
expected behaviour is known. Novelty detection algorithms
also incorporate novel patterns into the detection mechanism
after they have been detected, such that the mechanism covers
the new notions of normalcy. Nonetheless, novelty detection
algorithms are frequently applied to AD problems [13].
In general AD algorithms mainly work by estimating a

model of normalcy based on data distributions. Anomalies are
identified by measuring the probability that a test data sample
is generated by the estimated model [50], [51].

Detecting anomalies in real-world applications involves
several challenges. The AD algorithms that can be applied
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to a given scenario depend, for example, on data availability.
The main difference between AD and many other statistical
classification problems is that the data used to detect
anomalies is inherently unbalanced. The fraction of labeled
anomalous data instances is generally very low. Typically, it is
not feasible to obtain a dataset that is labeled with all possible
anomalies. Therefore, AD algorithms are usually divided
into three different learning scenarios, depending on whether
labeled data is available or not. Whether or not an observation
is considered being anomalous also depends on the context
in which the observation occurs. A high number of bicycle
trips during summer is very likely, whereas during winter it is
not. Another challenge is that AD methods typically produce
a large amount of false alarms due to corrupt data or faulty
sensors [13].

FIGURE 4. Categorization of previous work on AD algorithms.

Figure 4 illustrates a categorization of previous work
on AD algorithms. The diverse landscape of AD has
been extensively studied across various application domains,
as highlighted in several surveys [11], [12], [13], [14],
[15], [16], [17], [18], [52]. These surveys have discussed a
wide range of approaches including numeric and symbolic
outlier mining techniques [11], AD techniques for ordered
sequences of events [14], time series data [15], and graph-
based structures [16]. Adaptive AD models, which are
particularly useful in dynamically changing environments,
have also been covered [52]. The data distributions recorded
in these environments are changing over time, such that
AD algorithms developed for static datasets cannot be
adequately applied in these environments. Other literature
reviews cover comprehensive reviews and categorizations
of AD techniques [12], [13], various deep learning based
AD methods [17], and advancements in deep AD and key
challenges involved [18]. This literature review, however,

diverges fundamentally from existing surveys by concentrat-
ing on the application of AD algorithms within specific smart
environments, namely smart homes, smart transport, and
smart industry. Unlike general overviews of AD techniques
as presented in [12] and [13], or focused discussions on
deep learning-based methods in AD like the works of [17]
and [18], this survey explores the practical implementation
of these algorithms. The emphasis here is not solely on
the technical sophistication of AD methodologies, but rather
on their applicability and effectiveness in real-world smart
environments. This includes an exploration of the interaction
between AD solutions and the unique dynamics of IoT
devices and sensor networks in smart homes, transporta-
tion systems, and industrial settings. The intricate balance
between technological advancement and practical utility
forms the cornerstone of this review, presenting a more
application-oriented perspective on the field of AD within
smart environments.

B. TYPES OF ANOMALIES
This section presents a commonly used categorization of
anomaly types. According to Chandola et al. [13], anomalies
can be categorized into three basic types: a) point anomalies,
b) contextual anomalies, c) collective anomalies. Figure 5
visualizes examples for the three different anomaly types.

A point anomaly is a single data instance that significantly
deviates from the remaining data instances (i.e. the data
instance lies within a low-density region of values). Contex-
tual anomalies depend on the context in which they occur.
A contextual anomaly is a single data instance that deviates
from the data instances given in the same context (i.e. the
data instance is anomalous with respect to local values). The
data instance might not be considered anomalous if another
context is given. Last but not least, a collective anomaly
refers to a group of data instances that are collectively
considered anomalous. Even though the individual data
instances in a collective anomaly may not be anomalous
themselves, their occurrence together as a collection can be
anomalous [13].

C. LEARNING SCENARIOS
This section presents common learning scenarios in which
AD techniques are applied. Several works [13], [17], [53]
investigated various AD techniques and their applications
in detail and suggested to categorize AD techniques into
three learning scenarios: a) supervised-, b) semi-supervised-,
c) unsupervised- AD techniques. The learning scenarios are
visualized in Figure 6. A brief description is given below.

1) SUPERVISED
Supervised AD techniques are based on classifiers that
categorize data instances into ‘‘normal’’ or ‘‘anomalous’’
instances. However, training classifiers in a supervised
fashion requires training data that is annotated with ground
truth labels [53]. Supervised AD approaches are suspect
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FIGURE 5. Categorization of anomalies into three basic types, namely point anomalies, contextual anomalies, and collective anomalies [13].
The yellow and green spheres represent data instances of a dataset. Green spheres indicate normal data instances, while yellow spheres
indicate anomalous data instances.

FIGURE 6. Categorization of AD techniques into three different learning scenarios, namely supervised, semi-supervised, and unsupervised
learning. According to the models (blue lines) the data instances indicated by yellow spheres would be classified as negative (i.e. the data
instance is anomalous). (a) Supervised learning involves training a model on positive (green spheres) and negative training examples (red
spheres). (b) Semi-supervised learning only requires training examples that are annotated with one specific class label. In the illustration
given above, only positive (i.e., normal) examples are provided in order to estimate the hypothesis function of the model. (c) In an
unsupervised learning scenario, none of the training examples is annotated with a class label. Classification is achieved by grouping
samples based on local density metrics, subsequently identifying anomalies as data instances residing in regions of low density.

to a common issue. The number of samples belonging to
the ‘‘normal’’ class and the number of samples that are
labeled ‘‘anomalous’’ in the training data is often imbalanced.
Usually the number of anomalous samples in the training
data is much lower compared to the number of normal
samples [13], [17]. Typically, labeled real-world dataset that
can be used for the development of AD algorithms are also
very rare.

2) SEMI-SUPERVISED
Semi-supervised AD techniques require that the training data
instances are entirely comprised of normal observations.
A model of normalcy is estimated from the training data. The
likelihood of a test instance being generated by the estimated
model is used to identify whether a data instance is classified
to be normal or anomalous. Observations that deviate from
the learned model are classified as an anomaly. Far more
semi-supervised methods exists in comparison to supervised
methods, because semi-supervised methods are more widely
applicable [13], [17], [53].

3) UNSUPERVISED
Unsupervised AD techniques do not rely on annotated
data instances for model training. Instead, these techniques
identify anomalous data instances based on the intrinsic
properties of a dataset, meaning that they aim to learn the
underlying distribution of the data automatically, and then
use this knowledge to detect data instances that are most
dissimilar to the majority of instances [13], [17], [53].

D. EVALUATION METRICS
This section briefly presents evaluation metrics commonly
used for AD techniques. The evaluation of AD techniques
is crucial to assess their performance and complexity to
compare different methods. The choice of the metrics can
have a significant impact on the results of the evaluation.

1) PERFORMANCE METRICS
a: PRECISION
The precision (also called positive predictive value) repre-
sents the fraction of actual positives among the instances
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FIGURE 7. The Precision and Recall metrics [54].

classified as positive by the model. In the context of AD,
precision quantifies the proportion of data points correctly
identified as anomalies out of all the instances that the detec-
tion algorithm flags as anomalies. Essentially, it measures
the accuracy of the algorithm in classifying anomalies, or in
other words, how often the instances flagged as anomalies
are indeed actual anomalies. However, it is important to note
that precision does not give any information regarding the
anomalies that the algorithm failed to detect. This limitation
can be addressed by considering recall alongside precision to
have a more comprehensive understanding of the algorithm’s
performance. The precision is given by Equation (1) and
visualized in Figure 7.

Precision =
TP

TP+ FP
(1)

b: RECALL
The recall is the fraction of actual positives that are correctly
identified by the model. In the context of AD, the recall
rate refers to the proportion of actual anomalies that are
identified by the anomaly detector. It is essential to recognize
that recall does not take into account false positives, i.e.,
normal instances incorrectly classified as anomalies. As such,
a naive detector that labels every instance as an anomaly will
achieve a recall of 100%, but this isn’t practically useful as
such a detector would fail to distinguish between normal and
anomalous instances. The recall is given by Equation (2) and
visualized in Figure 7.

Recall =
TP

TP+ FN
(2)

c: F1-SCORE
The F1-Score measure is the harmonic mean of precision and
recall [55] and is often used as a overall performance metric.
It is necessary to balance between precision and recall,
especially if a large number of true negative (i.e. normal
instances) exists. The F1 measure is given by Equation (3).

F1 = 2 ·
Precision · Recall
Precision+ Recall

=
TP

TP+ 1
2 (FP+ FN )

(3)

d: TRUE POSITIVE RATE (TPR)
The TPR indicates the number of correctly classified anoma-
lies among all anomalies. Recall and TPR are essentially the
same in the context of evaluating classification models in
machine learning. The TPR follows the same formula and is
given by Equation (4).

TPR =
TP

TP+ FN
(4)

e: FALSE POSITIVE RATE (FPR)
The FPR refers to the number normal data instances that
where mistakenly classified anomalous. The FPR is given by
Equation (5).

FPR =
FP

FP+ TN
(5)

f: TRUE NEGATIVE RATE (TNR)
The TNR represents the number of correctly classified
normal data instances. The TNR is given by Equation (6).

TNR =
TN

TN + FP
(6)

g: FALSE NEGATIVE RATE (FNR)
The FNR refers to the number anomalies that where mistak-
enly classified normal. The FNR is given by Equation (7).

FNR =
FN

FN + TP
(7)

h: RECEIVER OPERATING CHARACTERISTIC (ROC)
The ROC curve is a commonly used metric that reflects the
performance of a binary anomaly detector.

i: AREA UNDER THE CURVE (AUC)
The AUC, specifically for the ROC curve, is a commonly
used evaluation metric to assess the model’s ability to
differentiate between classes [56]. It represents the likelihood
that a randomly selected anomaly is assigned a higher score
by the model compared to a non-anomaly instance [57].

2) COMPLEXITY METRICS
Apart from the commonly used performance measures,
it might be relevant to asses the efficiency of the detection
algorithm depending on the application. For example, if the
detection algorithm should run on an embedded device
with limited computational and storage capabilities, it might
be important to asses the algorithm in terms of time,
computational, and storage complexity.

a: COMPUTATIONAL COMPLEXITY
This measure evaluates the computational resources required
by the algorithm to complete the task.

b: MULTIPLY-ACCUMULATE (MAC)
AMAC operation is a mathematical calculation used in many
areas of science and engineering, particularly in digital signal
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processing and machine learning. It is a simple and efficient
operation that involves multiplying two numbers and then
adding the result to an accumulator, which is a register that
stores a running total. This operation is given by Equation (8).

a← a+ (b× c), (8)

where a is the accumulator, b and c are numbers.

c: FLOATING POINT OPERATIONS (FLOPS)
FLOPs are a standard measure of computational complexity
and represent the number of arithmetic operations (additions
and multiplications) required to perform a computation. The
number of FLOPs required for a forward pass through a
neural network depends on the number and kind of layers,
neurons, and activation functions in the model. To compute
the total number of FLOPs required for a forward pass
through a neural network, we can sum up the FLOPs for
each layer and activation function in the model. Similarly,
to measure the time complexity of a backward pass through
themodel (i.e., computing gradients with respect to themodel
parameters), we can count the number of FLOPs required for
each layer and activation function.

d: STORAGE COMPLEXITY
This measure evaluates the storage requirements of the
algorithm. The storage complexity of a deep neural network
can bemeasured by estimating the total number of parameters
or weights required to store the model. These parameters
represent the learnable components of the model, and
determine the model’s capacity. The storage complexity of
a neural network is computed by counting the number of
parameters in each layer, which depends on the layer’s type
and configuration. An important factor in determining the
storage complexity is the precision of these parameters. For
example, if the model uses 32-bit floating-point numbers
(FP32), each weight or bias would require 32 bits of
storage. The choice of precision, such as FP32, FP16,
or even lower precision formats, directly impacts the total
memory footprint of the model. Lower precision formats
can significantly reduce storage requirements at the expense
of potential losses in predictive performance. To compute
the total storage complexity, the parameter counts across
all layers are summed. This cumulative figure represents
the model’s storage complexity. The consideration of the
storage complexity is especially critical for deployment in
environments with limited storage capacity, such as mobile
or embedded devices.

e: TIME COMPLEXITY
This measure evaluates the time required by the algorithm
to complete the task. The time complexity of a deep neural
network refers to the amount of time required to perform a
forward or backward pass through the network on a single
input example. It depends on the number of operations
required to compute the output and the gradients of themodel,
as well as the size and structure of the model. To measure

the time complexity of a deep neural network, we can count
the number of Floating Point Operations (FLOPs) required
to compute the output and gradients of the model for a
single input example. It’s important to note that while the
theoretical time complexity measured in FLOPs is hardware-
independent, the actual time taken to execute these operations
can vary significantly based on the hardware’s capabilities.
Faster processors or specialized hardware like GPUs can
perform these operations more quickly than less capable
hardware. Therefore, while the number of FLOPs as a
theoretical construct remain constant, the practical execution
time is indeed influenced by the hardware used.

E. CHALLENGES
This section presents typical challenges involved in AD.
Section III-E1 presents challenges typically encountered
when dealing with AD in smart environments. Section III-E2
focuses on challenges specific to time series data.
Section III-E3 examines challenges regarding the evaluation
of AD algorithms. Section III-E4 describes privacy and user
acceptance concerns.

1) SMART ENVIRONMENTS ANOMALY DETECTION
CHALLENGES
This section presents the challenges typically encountered
in AD. Detecting anomalies in smart environments is a
challenging task, as it involves complex dynamics such as
traffic, social, and operational dynamics [58]. Addressing
these challenges can lead to the development of effective AD
methods that can enhance situational awareness and improve
decision-making processes. In this work, we categorize the
challenges involved in AD into five categories: scarcity,
complexity, integration, granularity, and contextualization
challenges. We provide a description of each category below.

a: SCARCITY
The scarcity of annotated anomalous events in datasets
is a major challenge in AD, making it difficult to detect
these events directly [59], [60]. Anomalies are typically
rare occurrences in comparison to normal events, resulting
in highly imbalanced datasets. Moreover, in many cases,
the deviation of an anomalous event from normalcy cannot
be measured accurately since the true data distributions
cannot be estimated based on scarce observations [61].
Manually labeling data instances is often a time-consuming
and expensive process, primarily because human supervision
is required. Supervisedmethods are likely to overfit due to the
imbalance of normal and anomalous events in labeled training
data [62], making it necessary to employ other approaches,
such as unsupervised methods that do not rely on labeled
training data.

b: COMPLEXITY
The complexity of data is another major challenge. The influ-
ence factors of anomalous events in smart environments can
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FIGURE 8. The challenges involved can be categorized as follows:
a) scarcity, b) complexity, c) integration, d) granularity, and e)
contextualization.

be spatial (e.g., region-specific traffic flow) or temporal (e.g.,
weather, time) in nature [59]. AD algorithms must be able to
consider multiple data sources and different combinations of
changes between these data sources to compute the degree
of abnormalcy [60], [63]. High-dimensional data can lead to
computational difficulties and hinder the performance of AD
algorithms. Distance-based AD algorithms typically perform
poorly in high dimensions due to distance concentration [64].
Additionally, the size of the data is important since the AD
algorithms applied must potentially be scalable to very large
datasets. Today’s data-centric ecosystems are focal points
of extensive data accumulation. Smart traffic systems, for
example, are a hub of high-dimensional data, integrating
real-time inputs from countless sensors, cameras, and GPS
systems. These inputs, ranging from vehicle telemetry to
public transportation utilization patterns, aggregate to form
extensive datasets.

c: INTEGRATION
The integration of spatio-temporal data from multiple
sources, and different data formats such as structured
(e.g., weather history) and unstructured data (e.g., citizen
complaints) raises the challenge of data integration [59], [60].
The data may also originate from different domains, and
their distributions and scales may deviate [61], leading to
challenges like domain adaptation.

d: GRANULARITY
The spatial and temporal granularity of data can significantly
impact AD performance. Probabilistic methods typically do
not perform well on highly granular data due to the high

noise-to-signal ratio inhibiting the detection of characteristic
patterns [65]. Therefore, it is important to find an appropriate
balance between the level of granularity and the data
quality. There are multiple possibilities for combining spatial
and temporal information, making it a challenging task
to determine the most suitable granularity for detecting
anomalies [61]. Consequently, determining the optimal level
of granularity for a given application is an important research
direction.

e: CONTEXTUALIZATION
To infer the context in which events take place and
differentiate anomalous from normal events under the given
conditions, the complex relationships between the influence
factors must be considered [60], [63]. The criteria for anoma-
lies under certain conditions differ and must be defined.
Previous work often assumes the data is independent and
identically distributed, whereas in reality, data dependencies
exist that need to be integrated into the ADmodel for effective
detection [60]. Figure 9 visualizes the contextualization
challenges. For instance, when dealing with time series,
temporal data dependencies must be considered. In the case
of images, spatial dependencies between pixels need to
be taken into account. Urban transportation networks can
be naturally represented by graph-like structures, requiring
relational dependencies to be considered in the detection
process.

2) TIME SERIES ANOMALY DETECTION CHALLENGES
This section presents the challenges typically encountered
in time series AD. Time series AD involves identifying
unusual or unexpected patterns in temporal data. While many
challenges in time series AD are common to AD in general,
some are unique or more prominent in time series data. The
time series challenges identified in this work are visualized
in Figure 10 and briefly described below.

a: NON-STATIONARITY IN TIME SERIES DATA
Time series data, such as traffic patterns and driving
behavior, are inherently non-stationary, with their statistical
properties changing over time. This non-stationarity is further
exacerbated by external disruptions, such as pandemics.
For instance, the COVID-19 pandemic significantly altered
traffic dynamics in cities like New York. Traditional AD
methods often assume stationarity in the data, making them
less effective in such environments where historical data
may no longer be representative of the current state. This
necessitates the development of adaptive algorithms capable
of adjusting to these evolving patterns in order to maintain
accuracy in AD [66].

b: SEASONALITY AND TRENDS
Many time series data sources come with seasonal and long-
term shifts [67], [68], [69]. These temporal elements can
significantly influence individual observations, necessitating
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FIGURE 9. Contextualization challenges that need to be considered in the AD process. Effective AD requires considering temporal, spatial,
or relational data dependencies. The contextualization challenges are shown for (a) sequences, (b) images, and (c) graphs.

FIGURE 10. The challenges involved in time series AD can be categorized
as follows: a) seasonality and trends, b) non-stationarity, c) varying data
quality, and d) noise.

a nuanced approach in AD. It becomes imperative to consider
both the current seasonality and overarching trends to accu-
rately discern anomalies. This requirement adds complexity
to the process, as it involves differentiating between typical
periodic variations and genuine anomalies [69]. The determi-
nation of an anomalous temperature measurement depends
on both seasonal variations and long-term trends [70].
This highlights the need to adjust thresholds for anomaly
detection depending on temporal factors, recognizing that
what constitutes an anomaly is not static but varies depending
on the environmental and temporal context.

c: MISSING VALUES
Time series data frequently contain missing values, which
pose a significant challenge in AD. This issue can arise from
various factors such as sensor malfunctions, irregularities
in data recording or synchronization issues, especially
when sensors record data at different timestamps [71],
[72], [73]. Handling missing values is critical because
inadequate treatment can disrupt the temporal structure of
the data and potentially introduce bias, leading to misleading
results. One common approach to address missing values
is interpolation, where values are estimated and filled in
based on the neighboring data points. This process, however,
must be executed with caution, as improper interpolation
can sometimes distort the underlying patterns and trends in
the time series, adversely affecting the performance of the
algorithm. Thus, it is essential to employ appropriate methods
for handling missing values that take into consideration the
temporal dependencies and characteristics of the time series
data [73].

3) EVALUATION CHALLENGES
This section presents the challenges typically encountered
when evaluating AD methods. Some challenges are specif-
ically related to the evaluation of AD algorithms, rather than
the process itself. Figure 11 visualizes the challenges. These
evaluation-related challenges include:

a: LACK OF GROUND TRUTH
In many real-world scenarios, it is difficult to obtain labeled
data indicating whether a data point is an anomaly or not. This
lack of ground truthmakes it hard to evaluate the performance
of the algorithms and compare them to alternative methods.
This challenge is specific to evaluation, as it involves the
difficulty in obtaining labeled data indicating whether a data
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FIGURE 11. The challenges involved in the evaluation of AD algorithms.

point is an anomaly or not, which is necessary for assessing
the performance of an algorithm. However, training a model
is possible without ground truth labels, using unsupervised
methods [74].

b: IMBALANCED DATA
Anomalies are, by definition, rare events. This results
in highly imbalanced datasets where the number of
normal instances far exceeds the number of anomalous
instances [60]. Standard evaluation metrics, like accuracy,
may not be suitable for imbalanced data, as a high accuracy
can be achieved bymerely classifying all instances as normal.
Alternative metrics like precision, recall, F1-score, and AUC
may be more appropriate in such cases [74], [75]. While
imbalanced data is a common characteristic of AD problems,
the challenge of choosing appropriate evaluation metrics
to account for the imbalance is specific to the evaluation
process.

c: APPROPRIATE THRESHOLD
AD often involves setting a threshold to distinguish between
normal and anomalous data points. Choosing an appropriate
threshold can be challenging, as it may depend on domain
knowledge or the specific goals of the analysis. The choice
of threshold can significantly impact evaluation metrics and
the perceived performance of the algorithm [75]. Although
setting a threshold is often part of the process, determining
an appropriate threshold to assess algorithm performance
and compare different methods is a challenge unique to
evaluation.

d: SUBJECTIVITY IN DEFINING ANOMALIES
The definition of an anomaly can be subjective and may vary
depending on the application or domain. This subjectivity
can make it difficult to consistently evaluate and compare
different algorithms. The challenge of subjectivity in defining
anomalies is related to evaluation because it affects the
consistency and reliability of performance assessments and
comparisons between different algorithms [76].

e: SENSITIVITY TO PARAMETER SETTINGS
Many algorithms require the selection of parameters or
hyperparameters. The performance of these algorithms can be
highly sensitive to the chosen settings, making it challenging
to ensure a fair comparison between different methods.

f: GENERALIZABILITY
AD algorithms may perform well on a specific dataset or
within a particular domain but fail to generalize to other
datasets or domains. Evaluating the generalizability of an
algorithm can be challenging, as it requires testing across
diverse settings [76], [77].

4) PRIVACY AND USER ACCEPTANCE CONCERNS
This section focuses on the privacy and user acceptance
concerns associated with AD in smart environments. The
growing reliance on data-driven methods and the increasing
availability of data make techniques more effective and
valuable. However, as smart environments rely on the
collection and analysis of large amounts of personal data,
privacy and user acceptance are crucial issues that need to
be addressed for successful deployments. In the context of
this review on privacy and user acceptance concerns, the term
‘‘users’’ refers to the individuals or groups who interact with
or are affected by the smart environments that employ the
AD systems. These users might encompass a broad range of
individuals. The user acceptance concerns that are described
in the following are particularly important to the residents
or occupants of smart environments, as they are the primary
group whose personal data is being collected and analyzed,
and who are most directly affected by potential issues
like sensitive data exposure, identification risk, perceived
intrusiveness, false positives/negatives, and loss of autonomy
and control. The residents or occupants are the individuals
living or working in spaces where the smart environments
are implemented. This group might include homeowners in
smart homes, employees in smart industrial environments,
or residents in smart cities. The concerns and mitigations
identified in this work are geared toward the concerns of
this group. Figure 12 visualizes the concerns and mitigations,
a brief description is provided below.

a: PRIVACY CONCERNS
Sensitive Data Exposure: AD often requires the collection
and analysis of sensitive information, such as personal [78] or
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FIGURE 12. Concerns and mitigation strategies associated with AD. The
privacy concerns, mitigation strategies, and user acceptance concerns are
colored in red, yellow, and green respectively.

financial data [79]. Unauthorized access to this information
may lead to privacy breaches and potential harm to individu-
als or organizations.
Identification Risk: Anonymization techniques are com-

monly used to protect individual privacy. However, sophis-
ticated adversaries may still be able to re-identify individuals
by linking anonymized data with other publicly available
information, posing privacy risks [80], [81].

b: USER ACCEPTANCE CONCERNS
Perceived Intrusiveness: Users may perceive AD systems as
intrusive or invasive, especially when these systems monitor
personal behavior or require access to sensitive information.
This perception can negatively affect user acceptance and
adoption.
False Positives and Negatives: AD algorithms may pro-

duce false positives (identifying normal instances as anoma-
lies) or false negatives (failing to identify actual anomalies).
Such inaccuracies can lead to significant frustration and
mistrust among users, directly undermining their acceptance
of the system [82]. However, accurately identifying and
analyzing these instances of false positives and negatives is
crucial, as it provides valuable feedback for the optimization
of the AD algorithm.
Transparency and Explainability: The lack of transparency

and explainability in some methods, particularly those based
on complex machine learning models, can hinder user
acceptance. Users may be reluctant to trust systems they do
not understand or cannot easily interpret [83], [84].
Autonomy and Control: Users may feel a loss of auton-

omy and control when automated systems are introduced,

especially if these systems make decisions or take actions
without user input or oversight. This loss can contribute to
resistance and decrease user acceptance [85].
Mitigation Strategies: Privacy and user acceptance are

critical considerations in the deployment of AD techniques.
Addressing these concerns requires a multidisciplinary
approach that considers technical, ethical, and social aspects.
Future research should continue to explore innovative
methods for preserving privacy while maintaining the effec-
tiveness and fostering user acceptance through transparency,
communication, and user-centered design.
Privacy-Preserving Techniques: Researchers can develop

and employ privacy-preserving techniques, such as differen-
tial privacy and secure multi-party computation, to minimize
privacy risks [86], [87].
User-Centered Design: AD systems should be designed

with user needs and preferences in mind. Involving users in
the design process and incorporating their feedback can help
address user acceptance concerns [85].
Explainable AI: Developing explainable and interpretable

algorithms can enhance user trust and acceptance by provid-
ing insights into the system’s decision-making process [83],
[84].

IV. ANOMALY DETECTION TECHNIQUES TAXONOMY
Among the different solutions that have been proposed for
AD, it is possible to distinguish two big categories. The
first works working on AD employed traditional statistical,
proximity, and deviation-based mechanisms to identify
anomalies. However, more recently, the advances in machine
learning have opened new alternatives based on deep learning
algorithms. In the following sub-sections both approaches are
reviewed, providing an outlook on the alternatives for each of
them, as well as, which are their main limitations.

A. TRADITIONAL ANOMALY DETECTION
This section presents traditional AD techniques. Previous
works categorized traditional techniques into statistical,
proximity and deviation based methods [53]. Hereunder,
a more detailed description of the categories is provided,
including key examples of the techniques belonging to each
category.
Statistical Anomaly Detection: Methods that assume

data is generated by probability distributions and identify
anomalies as data instances that deviate significantly from the
expected distribution. Examples include Gaussian Mixture
Models (GMMs) [88] or kernel density estimation [89].
Proximity Anomaly Detection: Methods that identify

anomalies as data instances that are isolated from themajority
based on their distance, density, or clustering [90]. Examples
include k-Nearest Neighbors (kNN) [91], Local Outlier
Factor (LOF) and DBSCAN [92].
Deviation-Based Anomaly Detection: Methods that iden-

tify anomalies as data instances that have a significant devi-
ation from the expected distribution or subspace structure.
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FIGURE 13. Statistical AD techniques. (a) Kernel density estimation estimates the probability
density function of a random variable in a non-parametric fashion. (b) A gaussians mixture
model is comprised of several Gaussians, where each Gaussians is parameterized by its mean
µ and its variance σ .

Examples of algorithms that can be used for deviation-based
include PCA [93] and subspace-based methods like Low-
Rank Representation [94].

1) STATISTICAL ANOMALY DETECTION
Statistical AD methods assume that data is generated
by probability distributions. The probability distributions
are defined by either parametric models (e.g. mixture of
gaussians [95]) or non-parametric models (e.g. kernel density
estimation [89]). Anomalies are identified as data points
that deviate significantly from the probability distribution
(i.e. the probability that a data point is generated by the
model is low). One advantage of statistical AD methods is
that they are theoretically justifiable and objective, as they
provide probabilities to determine whether a data instance
is anomalous [90]. However, the performance of these
methods heavily depends on the choice of model and its
parameters. Figure 13 visualizes basic statistical models,
a brief description is provided below.

a: KERNEL DENSITY ESTIMATION
Kernel density estimation is a non-parametric method for
estimating the probability density function of a random
variable. It estimates the probability density of a point by
convolving the point with a kernel function. The bandwidth
of the kernel function determines the width of the distribution
and hence, the sensitivity of the method to anomalies.
Figure 13a shows an example of kernel density estimation.

b: MIXTURE OF GAUSSIANS
Mixture of Gaussians is a parametric method that models
the data as a combination of several Gaussian distributions.
Each Gaussian distribution is parameterized by its mean µ

and variance σ . The method then calculates the likelihood of
a data point being generated by each Gaussian and uses these
probabilities to determine whether the point is anomalous.
Figure 13b shows an example of mixture of Gaussians.

c: OTHER STATISTICAL METHODS
Other statistical methods for AD include confidence intervals
and regression analysis. These methods can be used to iden-
tify outliers in univariate or multivariate data by comparing
them to the expected distribution.

d: LIMITATIONS
One of the main limitations of statistical AD methods is that
they assume that the data is generated by a stationary and
well-defined probability distribution. In real-world scenarios,
the distribution may change over time, making it challenging
to detect anomalies. Additionally, the choice of model and
its parameters can heavily influence their performance. It is
crucial to carefully make a selection of the appropriate
method and evaluate its effectiveness for a given problem.

2) PROXIMITY ANOMALY DETECTION
Proximity-based AD algorithms identify anomalous data
instances that are isolated from the majority. These methods
are based on the assumption that normal data instances are
dense and form clusters, while anomalies are isolated or
form small clusters. According to [90], Proximity-based AD
algorithms can be broadly categorized into clustering-based,
density-based, and distance-based methods. The fundamental
working principles of these methods are visualized in
Figure 14. Clustering-based methods identify anomalies as
data points distant from cluster centroids, while density-based
methods flag anomalies in low-density regions compared
to neighbors. On the other hand, distance-based methods
consider data points with large distances to neighbors as
anomalies.

a: CLUSTERING-BASED METHODS
Clustering-based methods involve clustering the data and
identifying anomalous data instances as those that do not
belong to any cluster or belong to a small one. In order to
detect anomalous data points, the distance of a data point to
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FIGURE 14. Proximity based AD algorithms identify anomalous data instances that are isolated from the majority. Anomalies can be detected
this way using three different approaches: a) clustering based, b) density based, c) distance based [90].

the cluster centroids (as in Figure 14a) or alternatively, the
size of the closest cluster is evaluated [52], [90].

b: DENSITY-BASED METHODS
Density-based methods measure the local density of data
instances and identify anomalies as those that have a lower
density than their neighbors. For example, if a particular data
point lies in a sparse region (i.e. the number of data points
within a local region is below a threshold, as in Figure 14b),
the data point is considered to be anomalous [90].

c: LOCAL OUTLIER FACTOR (LOF)
The LOF algorithm [96] measures the degree of a data point
being an outlier, depending on how isolated the data point
is in respect to its local neighborhood. LOF calculates the
local density of a data instance and compares it to the local
densities of its neighbors.

d: DENSITY-BASED SPATIAL CLUSTERING OF APPLICATIONS
WITH NOISE (DBSCAN)
DBSCAN [97] is a density-based clustering algorithm that
can also be used for AD. In DBSCAN, data instances that are
not in a dense region are considered anomalous.

e: HIERARCHICAL SPATIAL CLUSTERING OF APPLICATIONS
WITH NOISE (HDBSCAN)
In [98], Campello et al. suggested an integrated framework
for density-based cluster analysis. The HDBSCAN algorithm
the authors proposed, aims at a complete clustering hierarchy
with varying densities. The authors suggest using the
resulting hierarchy to assign a normalized outlier score to
the clusters regarding their global and local neighborhood.
The proposed clustering algorithm can also be used in
semi-supervised learning scenarios by taking user annotated
constraints into consideration.

f: LIMITATIONS
A limitation of proximity-based AD methods is that they
assume that normal data instances are dense and form dense

clusters, while anomalies are isolated or form small clusters.
However, in real-world scenarios, anomalies may not be
isolated or may form dense clusters, making it challenging
to detect them using these methods.

g: DISTANCE-BASED METHODS
In distance-based methods, for example, the k-Nearest
Neighbor, distances for a particular data point can be
evaluated (as in Figure 14c), and an anomaly is detected if
the k-Nearest Neighbor distances are large [90]. Distance-
based methods are effective in detecting both global and local
anomalies but may be sensitive to the choice of the distance
metric and the value of k.

3) DEVIATION-BASED ANOMALY DETECTION
Deviation-based AD methods are based on the assumption
that anomalies have a larger deviation from the normal data
instances in some feature space. These methods generally
involve two steps: (1) obtaining a low-dimensional represen-
tation of the data using a spectral decomposition approach,
and (2) comparing the reconstructed data or reduced space
to the original data to obtain a deviation score. Anomalies
can be identified as data instances that have a high deviation
score [90].

a: RECONSTRUCTION-BASED METHODS
Reconstruction-based deviation methods involve obtaining
a low-dimensional representation of the data and then
reconstructing the original data instances from their lower
dimensional representations. The deviation between the
original data instances and their reconstructions serves as an
anomaly score, with anomalous data instances having a high
reconstruction error. Instead of computing reconstruction
errors by reconstructing the original data from its lower
dimensional representation, anomalies can also be detected
by analysing the reduced space [99]. There are several
approaches that decompose data into normal, anomaly and
noise subspaces such that anomalies lies within the anomaly
subspace [38].
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b: PRINCIPAL COMPONENT ANALYSIS (PCA)
PCA is a well-known linear dimensionality reduction tech-
nique that finds the directions of maximum variance in a
dataset [93]. PCA can be used for AD by reconstructing
data instances using only the first few principal components,
and computing the reconstruction error. Anomalies can be
detected by identifying data instances with high reconstruc-
tion error.

c: SUBSPACE-BASED METHODS
Subspace-based deviation methods involve decomposing
the data into normal, anomaly, and noise subspaces based
on their low-dimensional representation. Anomalies are
assumed to lie within the anomaly subspace and can be
identified as data instances that do not fit into the normal
subspace.

d: LOW-RANK REPRESENTATION (LRR)
The LRR algorithm [94] uses a low-rank decomposition of
the data matrix to obtain the normal and anomaly subspaces.

e: ROBUST-PCA
Robust-PCA [100] is a variant of PCA that is less sensitive to
outliers in the data. In Robust-PCA, the data is decomposed
into a low-rank matrix and a sparse matrix, such that
anomalies are captured in the sparse matrix. The low-rank
matrix captures the underlying structure of the data, while the
sparse matrix is used to identify anomalies.

f: LIMITATIONS
One of the main limitations of deviation-based AD methods
is that they require a careful choice of the feature space
to capture the underlying patterns in the data. In addition,
the performance of these methods can be sensitive to the
choice of the decomposition technique and the number of
dimensions used for the low-dimensional representation.

B. DEEP LEARNING-BASED ANOMALY DETECTION
This section presents deep learning-based AD techniques.
Before the advent of deep learning, traditional AD methods
relied heavily on handcrafted features. These methods have
shown some success in detecting simple anomalies but often
fail to detect complex anomalies [20]. Deep learning based
AD has gained significant attention in recent years for
its ability to learn complex patterns in data using neural
networks. This has led to the development of various deep
learning-based techniques for AD. This section provides
a comprehensive overview of deep learning-based AD
techniques. Table 1 summarises key previous work on deep
learning-based AD. It highlights a significant focus on
semi-supervised learning scenarios, particularly in the realm
of image data because most of the advancements in this
field have been driven by these applications. Section IV-B1
and IV-B2 present two principal approaches: solutions based
on Autoencoders (AEs) and solutions leveraging Generative

Adversarial Networks (GANs). The advancements in time
series AD techniques that consider sequential data will
specifically be presented in Section V.

TABLE 1. Summary of key previous work on deep learning-based AD.

Symbols denote learning scenarios: i
= unsupervised, it

=

semi-supervised, y
= supervised. Among the algorithms examined, the

majority were evaluated on image in semi-supervised learning scenarios.

1) AUTOENCODERS
AEs learn to encode and reconstruct input data. The
original intention of using AEs is nonlinear dimensionality
reduction and feature extraction [118]. Recent work however,
suggests the use of deep AEs for AD [107], [115], [117].
AEs use the reconstruction error as the anomaly score.
Typically, the AE is trained on normal data instances
only in a semi-supervised fashion. During inference, the
AE is able to reconstruct normal data accurately, while
failing to reconstruct anomalous data that has not been
observed during training. Data instances that result in high
reconstruction errors are considered to be anomalous [90].
The sparse feature representation can also be extracted. This
enables AEs to be useful in hybrid approaches in which
the sparse feature representations obtained from the AE are
processed by other AD algorithms [107], [117]. Methods
suggested in previous work require the training data to be
comprised of normal data instances only. However, data
captured using monitoring sensors in real-world applications
is subject to outliers and noise. To overcome this issue,
previous work [102], [103], [117] suggests methodologies
that are robust against corrupted data points. This subsection
discusses various types of AE-based techniques, such as
Denoising Autoencoders (DAEs) [101], [103], Convolutional
Autoencoders (CAEs) [102], and Variational Autoencoders
(VAEs) [90], Adversarial Autoencoders (AAEs) [115], and
hybrid AE approaches [107], [117]. These AEs are designed
to handle different types of data structures and address
specific AD challenges.
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a: VARIATIONAL AUTOENCODERS (VAES)
VAEs learn a generative model by combining the principles
of AEs with those of Variational Inference [119]. The
architecture of a VAE consists of an encoder and a decoder.
The encoder maps the input data to a latent space, and the
decoder generates the data from the latent space. VAEs work
by learning a probabilistic representation of the data, and then
using this representation to identify instances that deviate
significantly from the learned distribution. The encoder and
decoder are trained together [120]. An and Cho [90] proposed
to use a VAE for AD and introduce the term reconstruction
probability which is used as anomaly score. The encoder
of the VAE is used to model the distribution of the latent
variables and thus covers the variability of the latent space.

b: ADVERSARIAL AUTOENCODERS (AAES)
AAEs integrate the concepts of AEs with the adversarial
training approach of GANs. Essentially, AAEs are neural
networks trained to develop a probabilistic model of the
dataset. The structure of an AAE includes an encoder,
a decoder, and a discriminator. The encoder transforms
the input data into a latent representation, the decoder
generates the data from the latent space, and the discriminator
tries to distinguish between the generated data and the
real data. During the adversarial training process, the
encoder, decoder, and discriminator are trained together.
The encoder and decoder try to fool the discriminator by
generating data that closely resembles the real dataset, while
the discriminator tries to correctly identify the generated
data [119]. Beggel et al. [115] adapted an AAE architecture
in order to increase the performance of detecting anomalous
images. The authors proposed a method called Iterative
Training Set Refinement (ITSR) which is used to increase the
robustness against contaminated datasets. Using a variation of
a One-Class Support Vector Machine (OC-SVM), anomalous
instances are identified and rejected during training, which
results in amore robust anomaly detector. By imposing a prior
distribution on the latent representation of the AE, anomalies
are placed in the low likelihood region.

c: CONVOLUTIONAL AUTOENCODERS (CAES)
CAEs combine the principles of AEs with convolutional
neural network layers. CAEs detect anomalies by learning
hierarchical features in data, particularly in image and signal
processing tasks. Chalapathy et al. [102] extended Robust-
PCA [121] by proposing an AE model called Robust
Convolutional Autoencoder (RCAE). This model learns a
nonlinear subspace that captures the majority of data points
while being robust against corrupted data points.

d: DENOISING AUTOENCODERS (DAES)
The primary difference between a DAE and a traditional
AE lies in the training process. While traditional AEs aim
to reconstruct the original input data, DAEs are trained to
reconstruct the clean, noise-free version of the input data

from its noisy counterpart. During the training process, noise
is artificially added to the input data, and the DAE learns
to recover the original, noise-free data from this corrupted
version. By learning to remove noise and reconstruct the
original data, DAEs become more robust to noise and can
capture the essential features of the input data, improving
their generalization capabilities. Sakurada and Yairi [101]
used an AE and a DAE. Temporal dependency has not been
considered because only a single multivariate point at a
specific time step has been provided as input to the AE.
Zhou and Paffenroth [103] proposed extensions that eliminate
outliers and noise from the training data without prior
knowledge. Their method called Robust Deep Autoencoder
(RDA) is based on a combination of a DAE and Robust-
PCA [121].

e: HYBRID AUTOENCODER APPROACHES
Hybrid approaches combine the strengths of multiple tech-
niques to enhance detection performance and adaptability.
These approaches involve using an AE to learn a sparse
feature representation and compute the reconstruction error,
which are then passed to another algorithm for the actual
detection of anomalous data instances. The intuition behind
hybrid approaches is to leverage the AE’s ability to capture
complex non-linear relationships in the data, while utilizing
the strengths of other AD algorithms to effectively distinguish
between normal and anomalous instances. Methods such
as [107] and [117] combine the feature representation and
reconstruction error process of an AEwith another algorithm.
In [122], the authors proposed the Deep Clustering Network
(DCN) algorithm, that combines the representation learning
process of an AE with K-means clustering. Zong et al. [107]
adapted this concept by proposing their Deep Autoencoding
Gaussian Mixture Model (DAGMM) method. Their method
combines the dimension reduction process and reconstruction
error of an AE with the density estimation process of a
GMM. The parameters of the models are jointly optimized.
In [117], the authors proposed a fully unsupervised iterative
process that is based on an AE and clustering. Initially, the
data instances are annotated through distribution clustering.
Clusters with low variances are treated as normal, and these
instances are used to train an AE. The class memberships of
the compressed feature representations are then reevaluated
based on distribution clustering. This process is repeated until
the class membership of the data instances do not change
anymore.

2) GENERATIVE ADVERSARIAL NETWORKS
GAN-based methods are popular deep learning-based AD
techniques. GANs [123] are a type of neural network
architecture that consists of two neural networks, a generator
and a discriminator, that are trained together in a competitive
way with the aim to generate realistic data samples. During
inference, the generator produces fake data that is similar
to the real data, while the discriminator tries to correctly
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identify the generated data. The generated data should
be close enough to the real data, that the discriminator
network cannot tell the difference. The GAN is typically
trained using normal data to learn its underlying probability
distribution. Anomalies are identified as the instances that
have a low probability of being generated by the GAN. In the
recent years, previous work proposed the Wasserstein GAN
(WGAN) [113] and Cycle GAN [124] architectures that can
potentially be used to replace the default GAN architecture.
In the following we present various types of key GAN-based
AD techniques, including AnoGAN [104], f-AnoGAN [112],
GANomaly [106], Efficient GAN [108], Fence GAN [111],
and Skip-GANomaly [114].

a: ANOGAN
Schlegl et al. [104] proposed AnoGAN, that is based on
a Deep Convolutional Generative Adversarial Network
(DCGAN) [125]. According to the authors, AnoGAN
learns normal anatomical variability to assist radiologists in
identifying disease markers in imaging data. The authors
evaluated their experiments using a proprietary dataset that is
comprised of Optical Coherence Tomography (OCT) images
of the retina. Applications of the suggested method include
diagnosis and monitoring of disease progression.

b: GANOMALY
Akcay et al. [106] introduced GANomaly, a GAN-based
adversarial training framework that jointly learns to generate
high-dimensional images, as well as the inference of latent
space. An additional encoder network maps the generated
images to its latent representations such that learning of the
data distribution for the normal samples is emphasized.

c: EFFICIENT GAN
Zenati et al. [108] extended the Bidirectional Genera-
tive Adversarial Network (BiGAN) model proposed by
Donahue et al. [109] to simultaneously learn an encoder,
generator and discriminator during training without the need
of recovering a latent representation at test time.

d: FENCE GAN
Ngo et al. [111] proposed Fence GAN. The authors modified
the loss function of a GAN such that generated samples are
distributed at the boundary of the real data distribution. This
way the resulting discriminator is effectively tuned to the task
of identifying anomalous images and the discriminator score
directly serves as an anomaly threshold.

e: F-ANOGAN
Schlegl et al. [112] proposed f-AnoGAN to combine a GAN
with a trained encoder that enables a fast mapping of
images into the GAN’s latent space to speed-up retinal OCT
image AD. Their neural network architecture is based on
a WGAN [113] in which the discriminator estimates the
Wasserstein distance to differentiate between the real and

the generator data distribution. The authors evaluated their
experiments using a proprietary dataset that is comprised of
OCT images of the retina.

f: SKIP-GANOMALY
The Skip-GANomaly architecture proposed in [114] is
similar to GANomaly [106]. A major difference is that the
authors introduced skip connections in the encoder-decoder
convolutional neural network to capture the multi-scale
distribution of the normal data.

V. ADVANCEMENTS IN TIME SERIES ANOMALY
DETECTION
Time series AD deals with identifying unusual patterns
in sequential data. Recent years have seen significant
advancements in time series AD due to large-scale time series
data and deep learning techniques. Deep learning-based
methods, such as Recurrent Neural Networks (RNNs) [126],
AEs [127], GANs [128], and Convolutional Neural Networks
(CNNs) [129] have demonstrated success in addressing the
challenges posed by time series AD tasks. These models
can learn complex non-linear representations of the data,
adapt to various types of anomalies, and provide better
performance compared to traditional statistical and machine
learning methods. This section covers various categories of
deep neural networks used in time series AD, and their
advantages and disadvantages. Table 2 lists recent literature
on time series AD, summarizing each work based on the
variate approach, the learning scenario, and the algorithms
used.

In the field of time series AD, the choice of learning
scenario often correlates with the specific application. This
includes unsupervised approaches such as [126], [127],
[128], [129], [132], [137], [139], and [140], semi-supervised
approaches [130], [131], [133], [138], and supervised
approaches [135], [136], [142]. Supervised learning, seen
in [135], is prevalent in scenarios with well-defined anoma-
lies, such as robot-assisted tasks, where labeled data is
available. On the other hand, unsupervised learning, utilized
in [137], is more suited to complex scenarios like spacecraft
telemetry monitoring, where anomalies are not predefined
and labeled data is scarce. Semi-supervised learning, as used
in [130], strikes a balance, being useful in situations where
normal data is known but anomalous data is not fully
labeled.

Machine learning models, specifically RNNs and their
variants, gained attention around 2016 [130], [131], [133],
[137]. Malhotra et al. [130] detected anomalous sequences
of unknown length using stacked Long Short Term Memory
(LSTM) networks in a semi-supervised learning context
for Electrocardiogram (ECG), space shuttle valve, power
demand, and engine data. By assuming that prediction errors
have a Gaussian distribution, the likelihood of anomalous
behaviours was estimated. The use of LSTMs continued
with studies like Malhotra et al. [131] in semi-supervised
settings, and Bontemps et al. [133], Hundman et al. [137],
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TABLE 2. Summary of previous works on time series AD. Symbols denote learning scenarios: i
= unsupervised, it

= semi-supervised,y
= supervised. All algorithms examined are suitable for multivariate time series data with the tendency towards unsupervised learning scenarios.

in unsupervised settings. In [131], Malhotra et al. pro-
posed EncDec-AD, an encoder-decoder architecture based
on LSTM networks. Temporal dependencies of the time
series were captured by the LSTM network, and anoma-
lies were detected by computing the reconstruction error.
Bontemps et al. [133] used a LSTM to detect collective
anomalies for network intrusion detection. The authors
suggested to compute predictions errors that are above a
threshold from multiple time steps to identify collective
anomalies. Hundman et al. [137] proposed an unsupervised
and non-parametric thresholding approach. Anomalies are
identified by computing the residual of the predicted
value and the true value for each variable in the time
series separately. Their approach has been evaluated using
expert-labeled telemetry anomaly data from theMars Science
Laboratory rover (MSL), Curiosity and the Soil Moisture
Active Passive satellite (SMAP).

Novel machine learning models like VAEs, Gated Recur-
rent Units (GRUs), and GANs began to gain attention around
the year 2017. Works like Park et al. [138], Su et al. [127],
and Geiger et al. [128] reflect this trend. Park et al. [138]
combined a LSTMwith a VAE by replacing the feed-forward
network of the VAE with a LSTM network. Using the
architecture multiple signals are fused and their temporal
dependencies are projected into the latent space of the
encoder. The deviation between the expected distribution
and the reconstructed distribution of the data is used
to identify anomalies. Similarly, Su et al. [127] proposed
OmniAnomaly, a stochastic RNN bymaking use of stochastic
latent variables for robust data representations. A VAE
maps the input data distribution into stochastic variables
while GRUs model the temporal dependencies between these
stochastic variables. Anomalies are detected by evaluating
the reconstruction probability of an observation. The authors
evaluated their method using the SMAP satellite [137] and

MLS rover [137], and Server Machine Dataset (SMD) [127]
datasets.

Geiger et al. [128] proposed to train an LSTM-based
GAN model composed of an encoder, generator and
discriminator. The encoder encodes the input sequence
into a low-dimensional latent space, the generator tries
reconstructing the input from the latent space, and the
discriminator tries to classify it as either generated or real.
To ensure that the generator reconstructs the input, they
combine the Wasserstein loss function for GANs with the L2
reconstruction loss.

Ensemble methods also emerged, as seen in Kieu et al.
[140], who used an ensemble of AEs, Sparsely-Connected
RNNs (S-RNNs), and other models on the Numenta Anomaly
Benchmark (NAB) [75] and ECG datasets. Kieu et al. [140]
proposed and ensemble of AEs using S-RNNs which take a
weight vectorwt to decide which hidden states should be used
to compute the next hidden state. By using a different vector
wt for each network of the ensemble, this module learns a
more diverse set of networks. They proposed two methods
of ensembling. The first method uses independent networks
where each encoder-decoder pair predicts an ouput on which
the square error is calculated. In the second method they
concatenate the hidden states of each encoder and use this
concatenated hidden state as the input for a decoder.

Other methods proposed in previous literature for AD
in time-series data leverage a variety of machine learning
techniques and strategies. Shahriar et al. [132] tackled
the problem with an unsupervised approach, focusing on
three-dimensional accelerometer data from dairy cows.
In their methodology, all individual time series were unified
into a single time series, a strategy that closely resembles
the approach by Lu et al. [139]. In the realm of robotics,
Park et al. [135] used an anomaly classification network to
detect faults in a feeding-assistant robot. Their solution
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involved computing temporal features frommulti-modal sen-
sor data with a HiddenMarkovModel (HMM), and extracting
convolutional features from camera images using the VGG16
CNNmodel [143]. Both, temporal and convolutional features
were then fused by a Multi-Layer Perceptron (MLP), which
used a softmax layer for the final anomaly classification.

Hochenbaum et al. [136] introduced Seasonal Extreme
Studentized Deviate (S-ESD) and Seasonal Hybrid ESD
(S-H-ESD) that decompose the time series into median,
seasonality and residue in order to obtain the trend and
seasonal components. Robust statistical metrics, such as
the Median Absolute Deviation (MAD), were used to
detect anomalies. Lu et al. [139] proposed an outlier
detection algorithms that is based on Cross-correlation
Analysis (ODCA). Multiple time series were simplified into
a single time series by using the cross-correlation function.
Zhang et al. [126] proposed their Multi-Scale Convolutional
Recurrent Encoder-Decoder (MSCRED) method, which not
only captures temporal dependencies and inter-correlations
between time series but also provides robustness to noise.
Their MSCRED constructs multi-scale signature matrices,
uses a convolutional encoder and an attention-based Convo-
lutional Long-Short Term Memory (ConvLSTM) network,
and finally employs a convolutional decoder to reconstruct
input signature matrices. Residual signature matrices are
computed to detect anomalies. Munir et al. [129] introduced
the DeepAnT algorithm that used a CNN for time-series
forecasting, detecting anomalies based on the Euclidean
distance between actual and predicted values.

The studies listed in Table 2 show that the majority of
the studies dealt with multivariate data, indicating a trend
towards tackling more complex and realistic datasets in the
field. Furthermore, previous literature reveals an evolution
of time series AD from using classical statistical methods
towards complex machine learning models. It also highlights
the continued use of unsupervised learning, indicating its
importance in scenarios where labeled data are scarce or
costly to obtain.

VI. COMMONLY USED DATASETS
A vital aspect of designing and evaluating AD algorithms
is the availability of comprehensive and diverse datasets.
This chapter briefly presents datasets that have been used
in previous works, and Table 3 lists them thoroughly.
An initial examination reveals several data types present
in these datasets, including TCP dump [134], images (e.g.,
grayscale [144], [145], [146], color [147], [148], [149], [150],
X-ray [106]), video frames [151], [152], and time series (e.g.,
space shuttle valve [153], power demand [154], NAB [75]).
In terms of the number of instances, the KDDCup99
dataset [134] is the largest, with 494.021 instances. The
KDDCup99 [134], MNIST [146], and CIFAR-10 [147]
datasets have been heavily referenced in the literature [90],
[102], [103], [106], [107], [108], [110], [111], [114], [115],
[117], [133], [155], suggesting their prominent role in the
research community. A closer look at the data reveals

diverse dimensionality. Some datasets like Thyroid [134]
and Arrhythmia [134] have fixed dimensions, i.e., 21 and
279 respectively. Others, have varying dimensionality, high-
lighting the diverse nature of data sources and capturing
techniques. The tasks associated with the datasets span a
wide range of applications. While KDDCup99 [134] focuses
on intrusion detection, Thyroid [134] and Arrhythmia [134]
lean towards disease detection. The Fashion-MNIST [144],
USPS [145], andMNIST [146] are geared towards image, and
digit recognition. Other tasks include crime detection [151],
activity detection [152], and baggage threat detection [106].
The majority of the datasets are publicly available. However,
the UBA [106] and FFOB [106] datasets remain private,
due to the sensitive nature of their content. In the following,
we briefly describe several of these datasets.

A. YAHOO! WEBSCOPE S5
The Yahoo! Webscope S5 dataset [141] is a benchmarking
resource, especially for cloud computing infrastructures,
where benchmark datasets are scarce. This dataset is
segmented into four data classes (A1, A2, A3, and A4), were
A1 contains real and A2-A4 contains synthetic web traffic
metrics, tagged with anomalies. It consists of 371 files (67
real data, 304 synthetic data), where the real data has been
human-labeled.

B. NAB
The Numenta Anomaly Benchmark (NAB) dataset [75]
consists of over 60 real-world and artificial univariate time
series data files. The real-world data includes Amazon server
metrics like CPU utilization, online advertisement clicking
rates, data with identified anomaly causes, covering areas
from office temperatures to industrial machinery failures,
traffic information from Minnesota’s Twin Cities Metro
area, as well as Twitter mentions of major publicly-traded
companies.

C. UCR ARCHIVE
The UCR Time Series Data Mining Archive [162] is a
comprehensive collection of over 100 time series datasets.
Among others, the archive includes the Electrocardiograms
(ECG200), space shuttle, and power demand datasets.

D. ECG200
The ECG200 dataset is pivotal for heart health research
as it captures the electrical activity recorded during a
single heartbeat. Normal heartbeat and a heart attack are
distinguished.

E. SPACE SHUTTLE
Space Shuttle dataset [153] consists of solenoid current
measurements of a Marotta MPV-41 series valve, a critical
component for fuel flow regulation in a space shuttle. This
dataset, generously donated by NASA’s Kennedy Space
Center, is instrumental in identifying and understanding
potential anomalies in aerospace missions.
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TABLE 3. Datasets previous work commonly used for the development and evaluation of AD algorithms. The datasets cover a wide array of application
areas such as network intrusion detection, disease detection, image and digit recognition, crime detection, and more, indicating the breadth of AD
applications in different fields.

F. POWER DEMAND
The power demand dataset [154] consists of a year’s
worth power consumption measurements collected at a
Dutch research facility. Such data is invaluable for energy
management and efficiency studies.

G. ENGINE
The Engine dataset is sourced from a real-life industry project
and encompasses readings from 12 different sensors related
to an engine. The dataset is utilized to train detectors using
sequences corresponding to three independent engine faults.
Due to its industry-specific nature, this dataset is not publicly
available.

H. KDDCUP99
The KDDCup99 dataset [134] has been created by MIT Lin-
coln Labs in 1998. The dataset consists of one-hot encoded
TCP network traffic data that was collected over a period
of 5 weeks. It is intended for the development of network
intrusion detection algorithms. A variety of intrusions have
been simulated in a military network environment. The
‘‘normal’’ samples in the dataset are the minorities, for this
reason they are treated as anomalies.

I. THYROID
The Thyroid dataset [134] is obtained from the UCI
machine learning repository. The Thyroid dataset, comprises
3772 training and 3428 testing instances, with 15 categorical
and 6 real attributes. The dataset contains three classes
representing different thyroid conditions. The hyperfunc-
tion condition, being the least common, is treated as an
anomaly. The remaining two classes serve as a contrast.
Commonly, 3772 training instances, with 6 real attributes are
used.

J. ARRHYTHMIA
The Arrhythmia dataset [134] is obtained from the UCI
machine learning repository. The dataset is designed to
distinguish between the presence and absence of cardiac

arrhythmia. Featuring 274 attributes, this set comprises data
on aspects like age, sex, height, weight, heart rate, and various
ECG measurements. The smallest classes (3, 4, 5, 7, 8, 9, 14,
and 15) are merged to form an anomaly class, while the rest
make up the normal class.

K. USPS
The USPS dataset [145] consists of gray-scale digit images
taken from envelopes scanned by the U.S. Postal Service.

L. MNIST
The MNIST dataset [146] has a training set of 60000 images,
and a test set of 10000 images. The gray-scale images have
a resolution of 28 × 28 pixels and show handwritten digits
from 0 to 9.

M. FASHION-MNIST
The Fashion-MNIST dataset [144] has very similar properties
compared to the MNIST dataset. The images size and
proportion of training and testing images are the same. The
images show clothing article from the Zalando’s web shop
instead of handwritten digits. Each image is annotated with a
label from 10 article classes.

N. CIFAR-10
The CIFAR-10 dataset [147] consists of 60000 color images,
divided into 50000 training images and 10000 test images.
Each image has a size of 32×32 pixels and is annotated with
a label from one of 10 object classes.

O. UCF-CRIME
The UCF-Crime dataset [151] comprises 1900 surveillance
videos captured from CCTV cameras. The dataset is
large-scale with a total video length of 128 hours. Each
video is annotated with a label from 13 different categories
of real-world crimes (e.g. abuse, burglary, shooting). The
categories have been selected because they impact public
safety. The UCF-Crime dataset has been specifically created
for development and evaluation of AD algorithms.
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P. UBA
The University Baggage Anomaly (UBA) dataset [106] is
derived from X-ray images. The abnormal classes include
3 sub-classes, namely knife, gun, and gun component.

Q. ASIRRA
The Animal Species Image Recognition for Restricting
Access (ASIRRA) dataset [148] comprises images taken
from cats and dogs. The dataset has been specifically
designed to protect access to web services via the use of
CAPTCHAs (Completely Automated Public Turing test to
tell Computers and Humans Apart).

R. CATVSDOG
The CatVsDog dataset has been extracted from the ASIRRA
dataset [148]. It comprises 12500 color images of dogs and
2500 images of cats that have a resolution of 128×128 pixels.
Since the cat images are the minorities, they are treated as
anomalies.

As shown in Table 3, it is evident that these datasets
are predominantly public and labeled, facilitating their
use in both academic and industrial research. The fields
covered by these datasets range from network intrusion and
disease detection to image classification and crime detection,
highlighting the widespread applicability and importance of
AD across different sectors.

VII. ANOMALY DETECTION IN SMART ENVIRONMENTS
This section reviews recent literature on AD in a variety of
smart environments including, smart home, smart transport,
and smart industry as visualized in Figure 15. The methodol-
ogy employed in this survey is detailed below to clarify the
scope and rigor of the research process.
Period Considered: Recent literature in this context

specifically refers to a period covering the last five years,
from 2019 to the present. The focus on this timeframe was
chosen to ensure that the analysis remains relevant to current
technological advancements and trends in AD.
Database and Queries: The research employed the Digital

Bibliography & Library Project (DBLP) [163] as the primary
database, we also utilized Google Search and Scopus.
Queries were specifically tailored to each domain, namely
‘smart home anomaly detection’, ‘smart transport anomaly
detection’, and ‘smart industry anomaly detection’. This
targeted approach ensured a focused retrieval of relevant
literature.
Filtering Criteria:Tomaintain a high standard of academic

rigor, the selection of papers was filtered based on two
criteria. Firstly, the h5-index of the publisher was assessed
using Google Scholar [164]. Papers published by sources
with an h5-index of 15 or higher were considered. Secondly,
for conference papers, a threshold of 15 or more citations was
set as an inclusion criterion. This dual-filter approach ensured
that well-regarded and influential papers were reviewed.

FIGURE 15. This figure presents a visual summary of the key smart
environments explored in this survey, specifically focusing on AD
applications in smart home, smart transport, and smart industry sectors.

We have also considered works that go beyond these criteria
if they represent innovative steps in the field.

A. SMART HOME
In recent years, the integration of smart technologies into
homes, has been identified as a critical tool in enhancing
the quality of life of individuals, particularly among the
elderly population. Central to this advancement is the
objective to enrich the life experiences of inhabitants through
the incorporation of human-centered applications [165].
Health Smart Home (HSH) refers to a smart home that
has an integrated health monitoring system [43]. HSHs
aim at reducing the needs for healthcare services, so that
elderly individuals can live independently for a longer time.
HSHs also aim at reducing costs and the workload on
the overall health system [42], [43]. In previous work,
technological approaches in facilitating activity recognition
and pinpointing behavioral deviations were proposed. These
are critical components in augmenting healthcare provision
for elderly individuals [165]. According to [166], the current
demographic shift towards an aging population necessitates
a strong focus on home care systems. These structures are
becoming pivotal in addressing the rising need for elderly
care, with Ambient Assisted Living (AAL) environments at
the helm of this revolution.

1) USE CASE SCENARIOS
In the rapidly evolving landscape of smart homes, a diverse
range of techniques have been employed to address var-
ious use cases. According to [167], these use cases can
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be categorized into: a) temporal (duration), b) temporal
(time of occurerence), c) spacial, d) pattern of action, e)
environment changes and f) context switching use cases.
Due to the demographic shift towards an aging population,
home care systems are becoming increasingly important.
According to [166], applications in home care systems
predominantly span across: a) emergency assistance, b)
autonomy enhancement, and c) comfort services. Figure 16
visualizes a comprehensive overview of the various use cases
investigated in previous research. These use cases span across
multiple application areas, each addressing unique challenges
within smart transport environments. In the following, the
application areas and the particular use cases are described
in detail:

FIGURE 16. Use cases for AD in smart homes.

a: ELDERLY CARE
This category encompasses applications designed to enhance
the safety and well-being of the elderly. It includes research
on fall detection [66], [168], [169], recognition of daily
activities [170], and elderly monitoring systems [171].

b: HEALTH MONITORING
This category addresses the monitoring of health and behav-
ioral patterns, including detection of deviations in patient
behavior [165], [172], identification of clinically significant
health events [173], health problem detection [174], andmon-
itoring activities of daily living for health assessment [175].

c: HOME SECURITY
This category encompasses works that focus on home
security (e.g., unauthorized access, potential hazards)
[176], cybersecurity (based on energy consumption) [177],

network cyberattack detection [178], and ensuring trust and
integrity [179].

d: DEVICE SECURITY
This category includes previous work on IoT attack detec-
tion [180] and analyzing IoT network traffic for security
purposes [181].

e: SENSOR OPERATIONAL MONITORING
Previous work in this category is focused on the detection and
diagnosis of sensor failures [182], [183] and the identification
of sensor data corruption [184].

f: DEVICE OPERATIONAL MONITORING
This category encompasses research on device malfunction
detection [185], and operational analysis of smart home IoT
devices [186].

g: OCCUPANCY DETECTION
Previous work on occupancy detection includes [66], [187],
[188].

2) TYPICAL SENSORS
The section elaborates on several types of sensors and their
respective utilities based on previous work.

Electric sensors such as smart meters, have been employed
for cybersecurity [177] and ensuring trust and integrity [179].
Light sensors are used for health monitoring in smart
homes [172] and occupancy detection [66], [187], [188].
Infrared sensors are used for the detection of clinically
meaningful health events [173]. Electromagnetic sensors
such as WiFi-based systems, are used in network cyberattack
detection [178], and IoT network traffic analysis [181].
Wearable localization tags are utilized in fall detection
applications [66], [168], [169]. Temperature sensors are used
for health monitoring [172], occupancy detection [66], [187],
[188], and elderly monitoring [171]. Motion sensors are used
for sensor failure detection [170], [171], [175], [182], [183],
[185]. Magnetic door sensors are employed in the detection
of clinically meaningful health events [173]. Door closure
sensors are used for elderly monitoring [171]. Fusion sensors,
like the Zooz 4-in-1 sensor, are utilized for the detection of
device malfunctions [185]. Weather station sensors are used
for the detection of sensor anomalies [184]. CO2 sensors are
utilized in occupancy detection [66], [188].

3) LITERATURE REVIEW
This section presents a literature review on AD in smart
homes. Table 4 provides a comprehensive overview, showcas-
ing a variety of approaches and applications over the years.
The algorithms used, the learning scenarios, the applications,
the sensors employed, and the datasets used for evaluation are
listed.

The learning scenario often correlates with the applica-
tion, including supervised approaches [66], [168], [169],

64028 VOLUME 12, 2024



D. Fährmann et al.: Anomaly Detection in Smart Environments: A Comprehensive Survey

TABLE 4. Summary of previous work on AD in smart home environments. Symbols denote learning scenarios: i
= unsupervised, it

= semi-supervised,y
= supervised. Additional symbols for anomaly types: � = point anomalies, ⊟ = context anomalies, ⊠ = collective anomalies. The most noticeable

aspect is the predominance of supervised learning approaches ( y), indicating a strong reliance on labeled data for model training. Another standout
observation is the diversity of applications covered. Lastly, the evolution from simpler to more complex algorithms, such as the use of DNNs and
ensemble models, highlights the field’s technological advancements over time.

[172], [181], [183], [186], [187], [188], semi-supervised
approaches [165], [170], [171], [173], [174], [175], [178],
[182], [185], and unsupervised approaches [177], [179],
[180], [184], [192], [193], [195]. Supervised learning, seen
in [168], is common in well-defined scenarios like fall
detection, while unsupervised learning, as used in sensor
AD [184], suits more complex scenarios.
Approaches for health monitoring and elderly care have

been proposed in previous work, with advanced systems
like multi-agent models and deep learning techniques to
detect falls and monitor daily activities [168], [169], [170],
[171], [172], [173], [195]. Mirchevska et al. [168] devel-
oped a method named Combining Domain Knowledge and
Machine Learning (CDKML). This method uses domain
knowledge enriched with machine learning patterns, refined
through genetic algorithms, and adapted online using user
feedback. It involves three phases, namely: initialization,
refinement, and online adaptation. Initially, a classifier is
developed using traditional rule-based and decision tree
algorithms, which is then refined using genetic algorithms
under expert supervision. Finally, an online learning process
adapts the classifier based on user feedback. In [169],
the authors enhanced their confidence system, initially
introduced in [195], by incorporating additional accelerators
to improve the fall detection accuracy. Sprint et al. [172]
developed the Behavior Change Detection (BCD) approach
to discern behavioral changes and their possible correlations
to health alterations. Utilizing machine learning techniques,
including small-window PCAR (swPCAR) and Virtual
Classifier (VC) methods, they demonstrated the feasibility
of monitoring significant health-related behavioral changes.
Dahmen and Cook [173] introduced Isudra, an indirectly
supervised AD system for smart homes, using Bayesian
optimization, focusing on health-related anomalies like
falls and depression. Fahad and Tahir [170] introduced an
approach combining Probabilistic Neural Network (PNN)

and H2O autoencoder for elderly daily activity recognition.
Alaghbari et al. [171] developed a unified deep learning
model for elderly monitoring, integrating activity recognition
via Deep Neural Network (DNN), AD with Overcomplete-
Deep Autoencoder (OCD-AE), and next activity prediction
using LSTM. This comprehensive approach, tested on Aruba
and Cairo datasets, aims to assist caregivers in understanding
and responding to elderly residents needs and behaviors.

Another focus of the research was on the detection of
behavioral deviations in medically monitored patients [165],
[174], [175]. Saives et al. [165] concentrated on detecting
behavioral deviations among medically monitored patients.
Utilizing sequence mining techniques, they synthesized
daily activities of the inhabitants to construct a recognition
model capable of detecting both short-term and long-
term deviations in the patients’ habits, thereby offering an
insightful approach to patient monitoring. Fouquet, Faraut,
and Lesage [174] developed a model-based approach for
AD in the daily lives of smart home inhabitants. Employing
activity ordering and duration analysis, the method aims to
identify behavioral deviations indicative of health issues,
using the publicly available DOMUS database for validation.
In [175], the authors utilized a Multivariate LSTMmodel and
Mahalanobis distance for unsupervised forecasting and AD
of Activities of Daily Living (ADLs) in elderly smart homes.
Their research, based on motion sensor data, aims to detect
changes in health conditions and support independent living
for the elderly.

Approaches for the detection of room occupancy have
been proposed [66], [187], [188], [196]. In [187], the authors
presented several models to tackle the occupancy detection
problem. The evaluated models include Random Forest
(RF), Linear Discriminant Analysis (LDA), Classification
and Regression Trees (CART), and Gradient BoostedModels
(GBM). The performance of these models varied, with
accuracies ranging from 93.06% to 98.76% on the proposed
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UCI Occupancy Detection dataset. Liu et al. [188] pro-
posed a novel deep learning architecture called Multivariate
Convolutional Neural Network (MVCNN). Their MVCNN
was evaluated using both, the PHM 2015 challenge dataset
and the UCI Occupancy Detection dataset. In [66], the
authors proposed an adaption of the Double DeepQ-Learning
(DDQN) algorithm, traditionally rooted in deep reinforce-
ment learning. By extending DDQN with a Prioritized
Experience Replay (PER) strategy, the algorithm enables
rare event classification and showed promising results in
occupancy and fall detection applications.

Other work focused on methods for sensor and device
operational monitoring, such as the detection of sensor
failures [182], [183], device malfunctions [185], and the
operation of IoT devices [186]. Munir and Stankovic [182]
introduced FailureSense, an approach for detecting sensor
failures. Utilizing data from electrical appliances, Failure-
Sense aims at identifying various sensor failures, including
fail-stop, obstructed-view, and moved-location failures. The
method involves learning the typical patterns of sensor activ-
ity in relation to appliance use and detecting deviations from
these patterns as indicators of sensor failure. Jung et al. [183]
developed a DNN-based method for detecting simultaneous
sporadic sensor anomalies in smart homes, utilizing Hyper-
sphere Classification (HSC). Evaluated on the Aruba dataset,
their method demonstrated robustness, especially in scenarios
with multiple faulty sensors. Fu et al. [185] introduced
HAWatcher, a semantics-assisted system for smart homes,
leveraging smart app semantics and event log data. Their
method detects discrepancies between expected and observed
behaviors in IoT environments, achieving high accuracy in
four real-world SmartThings testbeds. Yamauchi et al. [186]
proposed a method for smart home IoT devices based
on learning user behavior patterns and home conditions.
Their method successfully detects anomalous operations,
emphasizing the importance of learning event sequences and
user habits.

Another major application area is focused on Home and
IoT devices security [176], [177], [178], [179], [180], [181],
[184]. In [176], the authors developed an HMM-based
model for identifying simulated attack scenarios. This model
effectively learned and identified typical behaviors, setting a
groundwork for future enhancements in smart home security.
In [184] the authors demonstrated the use of a convolutional
AE for detecting anomalies in smart home sensors. Their
study emphasizes early detection of data corruption in smart
grid systems, using a proprietary dataset from weather
station sensors. Alsabilah and Rawat [177] proposed a
cybersecurity monitoring system for smart homes using the
Kalman Filter and Shapiro-Wilk test. Focusing on energy
consumption data from smart meters, their method detects
cyber-attacks and abnormal device behaviors in smart home
networks. Priyadarshini et al. [179] conducted a study on
time series analysis, employing AutoRegressive Integrated
Moving Average (ARIMA), Seasonal ARIMA (SARIMA),
LSTM, Prophet, Light GBM, and VAR algorithms. Focusing

on energy consumption and weather data, the research uti-
lized the Sequentially Discounting AutoRegressive (SDAR)
based Change Finder algorithm, demonstrating that the
ARIMA model outperformed others in terms of accuracy.
Li et al. [178] developed a method for improving network-
based AD, utilizing traditional and ensemble machine
learning classification methods. Their approach, which
included simulating network attacks, detected anomalies
in IoT device behavior. In [181], Sarwar et al. apply
various algorithms to IoT network traffic analysis using
the UNSW BoT IoT dataset, aiming to improve security
monitoring in smart environments. Meidan et al. [180]
proposed CADeSH, a collaborative AD method using AEs
and k-means clustering. Focusing on IoT device network
traffic, the research leverages a novel, publicly available
dataset from multiple home networks.

4) DATASETS
This section presents various datasets that have contributed
to the development of AD algorithms in smart home
environments. Table 5 presents an overview of these datasets,
including information such as the nature of the data (whether
public or otherwise), the labels associated with the data, the
dimensionality, and the number of instances.

a: UCI OCCUPANCY DETECTION
The UCI Occupancy Detection dataset [187], encompasses
real-world sensory data that can facilitate the creation of
methods to accurately determine room occupancy. This
dataset comprises readings from various sensors monitoring
aspects such as light, temperature, CO2 levels, and humidity,
alongside timestamps and humidity ratios. These factors
are pertinent as many modern smart buildings are already
equipped with these sensors. The dataset is divided into a
training and two testing series. Notably, the ground truth
labels in the dataset were acquired automatically through a
video surveillance system.

b: KASTEREN UBICOMP
The Kasteren Ubicomp dataset [197] was developed for
activity recognition using ambient sensor readings instead
of typical wearable sensors. Recorded in a multi-room
apartment with one resident, it features 1319 sensor intervals
from 14 digital state-change sensors and 245 manually
annotated activity intervals using a Bluetooth headset for
verbal annotations. The data was captured over 28 days, from
25.02.2008 to 23.03.2008.

c: HARVARD OCCUPANCY DETECTION
The Harvard Occupancy Detection Dataset (ODD) [198]
offers a comprehensive collection of sensor readings related
to power consumption, ambient conditions, and weather
patterns. The dataset encompasses readings from power
meters, ambient light sensors, and ambient temperature
sensors. Furthermore, it integrates local weather conditions
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TABLE 5. Smart home dataset overview with general information. A significant aspect is the accessibility of these datasets, with most being publicly
available and often labeled, indicating a trend in the field of smart home AD. Among the datasets listed, the ‘‘MavPad’’ is the largest in terms of instances.

and daily sunrise and sunset data, providing a holistic view
of the environment over a span of approximately 8 months.

d: CASAS
The CASAS dataset [191] is a comprehensive collection
of smart home data accumulated through various testbeds,
primarily focusing on monitoring activities of daily living.
It encompasses data from different geographic locations
named like Kyoto, Tulum, Tokyo, and others, featuring
varied environments ranging from single-resident apartments
to multi-resident homes, and even some inclusive of pets.
A significant portion of this dataset is formed by the
inclusion of data from 30 distinct apartments labeled HH101
to HH130. These apartments, were equipped with smart
ambient sensors, installed by volunteer residents. While
most of these apartments are unique in structure, a few of
them share similar layouts. The datasets gathered from these
apartments primarily involve single-resident environments,
with the exception of HH107 and HH121, which house two
residents each. The sensor setup in each apartment varies,
accommodating the distinct layouts by altering the number
and placement of sensors, although the type of sensors
remains consistent across the board, including light, motion,
magnetic, and temperature sensors. These dataset provides
partial annotations.

e: MAVLAB
The MavLab dataset [199] offers insights into sensor
events recorded in the MavLab testbed, an automated office
environment located in the Engineering Building at the
University of Texas at Arlington (UTA). Spanning themonths
of March and April in 2003, the data encompasses the
daily routines of approximately six students who worked
there regularly. MavLab’s design mirrors a standard office,
complete with cubicles, a lounge, a kitchen, a dining space,
and a meeting room. It’s automation is made possible
with 54 X-10 controllers. The facility is fitted with an array
of sensors that detect light, temperature, motion, humidity,
and the status of doors and seats. Furthermore, the lab
can regulate lights, appliances, fans, heaters, and window
blinds.

f: MAVPAD
The MavPad dataset [199] provides a comprehensive view
of sensor events from the MavPad testbed, an on-campus
student apartment situated in University Village at The
University of Texas at Arlington. This apartment features
a combined living and dining area, kitchen, bathroom,
bedroom, and a walk-in closet. The range of sensors
deployed within this environment is extensive, encompassing
motion, light, temperature, humidity, reed switch, smoke,
and gas detectors. The data presented in this dataset were
accumulated throughout 2005 when the apartment was home
to a single resident.

g: FALL DETECTION
The Fall Detection dataset developed by Kaluza et al. [190]
is a comprehensive collection of local position data gathered
with the purpose of advancing activity recognition and
healthcare for the elderly, ultimately aiming to enhance the
safety of seniors living independently. It utilizes the Ubisense
localization system, featuring four distinct accelerometers
positioned at various body points: the chest, belt, and
both the left and right ankles. It encompasses a total of
164259 samples, divided into 134229 training and 30030 test-
ing samples, further segmented into 25 separate parts, with a
specific allocation of 20 parts exclusively for training and the
remaining 5 parts dedicated to testing procedures. Notably,
the sensor readings within this dataset demonstrate high
volatility, which is captured and wirelessly transmitted in
real-world settings. This data consists of a relatively small
percentage of anomalous samples. Specifically, the training
set contains 4.9% anomalous samples, whereas the testing set
comprises 5.4%.

Among the datasets presented in Table 5, a notable trend is
the availability of public data, essential for developing and
validating smart home AD algorithms [191], [197], [198],
[199]. However, there is a notable lack of datasets that
comprehensively cover multi-resident environments, as most
datasets focus on single-resident settings or specific aspects
of smart home environments, such as occupancy [187] or
fall detection [190]. This gap highlights a potential area for
future dataset development to better address the complexities
of multi-resident AD scenarios in smart homes.
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B. SMART TRANSPORT
Smart transport environments capture data to analyze traffic
patterns in transportation networks. The traffic data originat-
ing from vehicles such as cars, trucks, or bicycles can be
used to detect and classify different types of anomalies. These
anomalies could lead to potential safety issues if not detected
at an early stage [201].

1) USE CASE SCENARIOS
Smart transport systems are increasingly utilizing AD
applications to enhance urban mobility and safety. Figure 17
visualizes a comprehensive overview of the various use
cases investigated in previous research. In the following, the
application areas and the particular use cases are described in
further detail:

FIGURE 17. Use cases for AD in smart transport.

a: TRAFFIC PATTERN ANALYSIS
This category involves detecting anomalous traffic patterns.
It includes traffic pattern analysis [202], root cause analysis
of traffic anomalies [203], traffic anomalies detection [204],
and unusual traffic flow detection [205], [206], [207].

b: TAXI AND DRIVING FRAUD DETECTION
This category focuses on identifying fraudulent activities in
taxi services and driving behaviors. It includes taxi driving
fraud detection [208], [209], [210], [211], anomalous taxi trip
detection [212], dangerous driving behavior detection [161],
and road pavement analysis [213].

c: EVENT AND GATHERING DETECTION
This category covers the identification of significant events
and gatherings. It includes gathering event detection [59],

[61], [88], [214], and unusual event detection like concerts
or accidents [63], [215].

d: TRANSPORTATION SYSTEM SECURITY
This category addresses security aspects, including data
integrity and sensor security in transportation systems.
It encompasses data integrity attacks [216], automotive
sensor security [217], sensor faults and failures [218], and
intelligent transportation system security [219].

e: ENVIRONMENTAL MONITORING AND PUBLIC HEALTH
This category includes studies on environmental factors
and public health, such as air pollution analysis [220],
traffic accident risk assessment [221], and traffic incident
detection [222]

f: ANOMALOUS TRAJECTORY AND LOCATION DETECTION
This category focuses on identifying unusual trajectories
and locations, including anomalous trajectories on road
segments [223], anomalous trajectories detection [224], and
parking location anomalies [225], [226].

g: VARIOUS URBAN ANOMALIES
This category includes the detection of various urban anoma-
lies [226], including noise issues, blocked driveways, illegal
conversions of residential buildings, and illegal parking.

2) TYPICAL SENSORS
This section presents sensors commonly utilized for AD in
smart transport environments.

GPS sensors are extensively used across various applica-
tions such as taxi fraud detection [208], [209], [210], [211],
[215], traffic pattern analysis [202], [203], [204], [205],
[207], [222], event detection [59], [61], [214], [226], and a
variety of other scenarios [206], [212], [213], [218], [220],
[223], [224]. Smartphones equipped with accelerometers and
gyroscopes, are employed for detecting road anomalies [227],
and in road pavement analysis [213]. Loop detectors are
utilized for traffic pattern analysis [202], and play a role in
traffic accident risk assessment [221]. Parking sensors aid
in detecting parking location anomalies [225]. Data from
traffic speed sensors can be used for detecting data integrity
attacks [216]. For automotive sensor security, Inertial Mea-
surement Unit (IMU) sensors are mentioned [217]. Various
air quality sensors (NO, NO2, NOx, PM1, PM10, and PM2.5)
are used in air pollution analysis [220].

3) LITERATURE REVIEW
AD in smart transport environments emerged as a crucial
tool for urban planning and management decision-making.
It equips authorities with the capacity to identify and
promptly respond to abnormal traffic patterns that could
potentially have negative impacts on citizens and infrastruc-
ture [201]. Smart transport AD has been extensively reviewed
in previous work, this is evident through the variety of

64032 VOLUME 12, 2024



D. Fährmann et al.: Anomaly Detection in Smart Environments: A Comprehensive Survey

surveys that have critically examined this field [58], [201],
[228]. Comprehensive reviews on AD algorithms can be
found in [201], [228]. Castro et al. [58], took a closer look
at transportation networks that rely on GPS data. Their focus
was to understand and analyze social mobility and behavioral
patterns. The authors categorized the existing literature into:
a) public transport, b) smart traffic, c) social dynamics,
d) operational dynamics. Djenouri et al. [201] divided exist-
ing solutions into two primary categories: a) flow outlier
detection, b) trajectory outlier detection. According to the
authors, traffic flowAD approaches analyze the movement of
multiple objects over time, such as the quantity of passengers
or vehicles entering or exiting a region per hour. Traffic
trajectory AD approaches identify anomalous routes taken by
vehicles from their origin to their destination [201]. Previous
work on AD in intelligent transportation environments,
including the algorithms used, the learning scenario and the
scope of application are listed in Table 6 and discussed
below.

Studies on traffic pattern analysis aim to understand and
detect unusual traffic behavior, flow inconsistencies, and
traffic incidents. Notable works in this domain include [202],
[203], [204], [205], [206], [207], [234]. In [202], Yang and
Zhou introduced a novel approach to detect abnormal traffic
patterns using a combination of Locally Linear Embedding
(LLE) and PCA. By applying these manifold learning
techniques to traffic data obtained from over 4000 sensors,
they effectively extracted features that represent traffic flow.
Their method proved successful in identifying anomalies in
traffic patterns that aligned with special days like New Year’s
Day and Independence Day, or during extreme weather con-
ditions. Chawla et al. [203] developed a pioneering two-step
approach combining PCA and L1 optimization to infer
the root causes (e.g., re-routing of traffic) of road traffic
anomalies. This method, applied to a vast dataset of nearly
790 million GPS points from Beijing taxis, allowed for the
identification and explanation of anomalies in traffic patterns.
For instance, they were able to discern traffic rerouting
due to specific events like the Beijing marathon. In [204],
the authors proposed a method based on the Likelihood
Ratio Test (LRT) to detect emerging anomalous traffic
patterns using GPS data. The approach involves analyzing
GPS trajectory data from taxis to identify abnormal traffic
behavior across different urban areas. Wang et al. [205]
presented an approach to detect abnormal areas in Beijing
by combining high-level features like passenger flow, as well
as travel time from bus and taxi trajectories. The authors
proposed their Spatio-Temporal Data Cube (STD) model and
an improved version of the LOF algorithm for detecting areas
in which abnormal traffic flow occurs. Hassan et al. [234]
developed an unsupervised method based on Multi-Channel
Singular Spectrum Analysis (MSSA). Their technique was
effective in identifying contextual and collective traffic
anomalies, applying the model to data from the Con-
nected Vehicles and Smart Transportation (CVST) platform.
Peng et al. [207] developed an unsupervised algorithm for

intelligent transportation systems using the Informer and
OC-SVM algorithms. They focused on detecting anomalous
vehicle and pedestrian flows, applying the algorithm to
a real-world dataset from Guiyang City and the public
Skoltech Anomaly Benchmark (SKAB). Kaytaz et al. [206]
introduced their unsupervised Competitive Learning based
Anomaly Detection (CLAD) approach, combining ARIMA
forecasting, CentNNs, and graph-based AD. The approach
effectively analyzedmulti-dimensional sensor data for detect-
ing vehicular traffic anomalies (vehicle velocity, vehicle
count per minute, and lane change activities), leveraging
competitive learning for clustering.

Taxi and driving fraud detection encompasses the detection
of taxi fraud, anomalous taxi trips, and dangerous driving
behaviors [161], [208], [209], [210], [211], [212], [213].
Ge et al. [208] developed a taxi driving fraud detection
system. Their method combines travel route and driving
distance evidence, employing a parameter-free approach for
the former and a generative statistical model for the latter. The
integration of these evidences using Dempster-Shafer theory
enables a more accurate and reliable detection of fraudulent
activities by taxi drivers. In [209], Zhang et al. proposed
their Isolation-Based Anomalous Trajectory (iBAT) detection
method, which isolates trajectories differing significantly
from the majority, using large-scale GPS data from taxis.
This method is particularly effective in applications such
as detecting taxi driving frauds and changes in urban road
networks. Their approach, which notably achieves high
performance offers a novel perspective in exploiting GPS
traces for urban dynamic analysis. In [210], Chen et al.
extended the work of Zhang et al. [209] by introducing their
Isolation-Based Online Anomalous Trajectory Detection
(iBOAT) method. This online model innovatively identifies
segments of a taxi’s trajectory that contribute to its anomalous
nature, addressing the limitations of the previous iBAT
method. Their analysis, based on extensive experiments with
large-scale taxi GPS data, revealed that the majority of
anomalous trajectories were due to intentional deviations
from normal routes by taxi drivers committing fraud.
Belhadi et al. [211] proposed an algorithm for identifying
individual and group taxi trajectory frauds. Their approach,
combining a phase-based algorithm and a GPU-based sliding
windows strategy, was evaluated on both synthetic and
real-world taxi trajectory datasets. In [212], Zhang proposed
a graph-based method for detecting anomalous taxi trips
in New York City. The method focused on identifying
significant deviations between recorded trip distances and
computed shortest paths using a NAVTEQ street map dataset.
By conducting spatial and network analysis, Zhang not only
identified outliers in over 166million taxi trip records but also
contributed to a deeper understanding of urban dynamics.
Kieu et al. [161] proposed to enrich the features space of time
series by extracting statistical features within overlapping
sliding windows. Dimensionality reduction is performed on
the enriched time series using an AE in order to capture
representative latent features. Experiments were conducted
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TABLE 6. Summary of previous work on AD in smart transport. Symbols denote learning scenarios: i
= unsupervised, it

= semi-supervised, y
=

supervised. Additional symbols for anomaly types: � = point anomalies, ⊟ = context anomalies, ⊠ = collective anomalies. The literature examined

predominantly employs unsupervised learning techniques ( i) across various application areas. A notable aspect is the use of GPS sensors to track the
position of vehicles.

using CNN and LSTM based AEs. Anomalies such as dan-
gerous driving behaviours are detected by deviations between
the enriched and reconstructed time series. Seraj et al. [213]
introduced a road pavement anomaly detector based on
wavelet decomposition analysis and SVM. Their method,
named RoADS uses data provided by built-in smartphone
sensors in order to detect road pavement anomalies such as
manholes, speed humps, patches, cracks, and potholes.

Event and gathering detection is concerned with identify-
ing significant events and gatherings. It covers the detection
of gatherings, concerts, accidents, and other unusual events.
Key references in this domain include [59], [61], [63],
[88], [214], [215]. Witayangkurn et al. [214] developed a
framework using a HMM to detect gathering events (e.g.,
fireworks festivals, New Year’s events) in urban areas.
They processed 9.2 billion GPS records from 1.5 million
individuals in Japan. According to the authors, natural
events such as earthquakes most affected the occurrence
of anomalous traffic trajectories. Zheng et al. [61] fuse the
information from multiple urban datasets across different
domains so that crowd gatherings can be detected. To address
this challenge, the authors propose a method with three
primary components, namely a Multiple-Source Latent-
Topic (MSLT) model, a Spatio-Temporal Likelihood Ratio
Test (ST_LRT), and a candidate generation algorithm.
Zheng et al. [63] proposed a method for detecting urban
anomalies, such as crowd gatherings, utilizing multiple
spatio-temporal data sources. Their approach involves a
similarity-based algorithm for individual anomaly score
estimation and an OC-SVM algorithm for aggregating these
scores to capture complex anomaly patterns across different

data sources. He et al. [88] explored the detection of urban
events, such as national holiday, cultural events, and natural
disasters in urban mobility networks, evaluating traffic flow
characteristics and anomalies using a pipeline approach.
This method involved community detection, unsupervised
dimensionality reduction, and GMMs to identify outliers
in urban traffic data from New York City and Taipei.
In [59], Zhang et al. presented an approach for detecting
urban anomalies by decomposing urban dynamics into
normal and abnormal components using a neural network
that fuses spatial and temporal features. Their method
identifies gatherings based on deviations from the estimated
normal urban dynamics. Kong et al. [215] proposed their
Hierarchical Urban Anomaly Detection (HUAD) framework,
employing LSTM for predicting traffic flow and OC-SVM
for detecting unusual events such as concerts, particularly
focusing on taxi and subway data across various times and
regions.

Transportation system security addresses security concerns
in transportation systems, focusing on data integrity, sensor
security, and overall system security [216], [217], [218],
[219]. Wilbur et al. [216] presented a decentralized frame-
work, focusing on real-time identification of data integrity
attacks using a two-tiered approach with Roadside Units
(RSUs) and Gaussian Processes.Wang et al. [217] introduced
Hyperdimensional Computing-based Anomaly Detection
(HDAD), a method using hyperdimensional computing for
sensor spoofing attack detection in autonomous vehicles.
Madhavarapu et al. [218] introduced a method utilizing
a folded Gaussian model augmented with active learning.
Their approach efficiently identified anomalies such as sensor
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faults and failures in Traffic Message Channel (TMC) sensor
data, enhancing traffic management and safety in smart
transportation systems. In [219], the author proposed their
Multi-Objective GAN (MO-GAN) approach for intelligent
transportation system security. The authors combined genetic
and a GAN model, to address class imbalances within
intelligent transportation systems.

Studies on environmental monitoring and public health
include [220], [221], [222]. Mignone et al. [220] developed
an unsupervised approach for air pollution detection in
Oslo using the SparkGHSOM algorithm and various air
quality sensors (NO, NO2, NOx, PM1, PM10, and PM2.5).
They enhanced the algorithm for explainable AD, effectively
identifying irregular patterns in air quality and traffic data.
In [222], the authors propose an unsupervised incremental
region growing approximation algorithm for traffic incident
detection, such as fire and emergency response operations.
Zhao et al. [221]. introduced an unsupervised method based
on an AE with attention mechanism for Road Rraffic
Accident (RTA) risk detection. The method effectively
identifies RTA risk by analyzing traffic condition features and
employing an enhanced loss optimization, evaluated on two
real traffic datasets.

Anomalous trajectory and location detection focuses on
detecting unusual patterns in trajectories and locations,
such as the detection of anomalies in road trajectories and
parking location [223], [224], [225], [226]. Wang et al. [223]
developed their Feature-Based method for Traffic Anomaly
Detection (FBTAD) method to detect traffic anomalies by
analyzing features such as travel speed and traffic density.
Their approach efficiently identifies anomalous trajectories
on road segments by monitoring significant changes in traffic
flow characteristics. Wu et al. [224] proposed a probabilistic
approach for traffic trajectory AD. Their Driving Behavior
based Trajectory Outlier Detection (DB-TOD) approach
detects anomalous trajectories that deviate from the his-
torical trajectory distribution. Zheng et al. [225] developed
an approach for detecting anomalous car parking locations
using real-time data from San Francisco. They employed
algorithms such as farthest first clustering, SVDD, and
expectation maximization. Huang et al. [226] introduced the
Crowdsourcing-based Urban Anomaly Prediction Scheme
(CUAPS), a method utilizing spatial and temporal crowd-
sourcing data from NYC’s 311 service platform to predict
various urban anomalies, including noise issues, blocked
driveways, illegal conversions of residential buildings, and
illegal parking.

4) DATASETS
In this section, we present an overview of the datasets that
can be used for traffic AD. These datasets include data from
various sources such as cameras, GPS, and other sensors,
which can provide information on various aspects of traffic
and activity in public spaces, such as the number and types
of vehicles, the speed and direction of traffic, road conditions
and the density of people in a given area. Table 7 presents an

overview of these datasets, including information such as the
nature of the data (whether public or otherwise), the labels
associated with the data, and the number of instances.

a: UAH-DRIVESET
The UAH-DriveSet [231] is an open dataset primarily
aimed at driving analysis, collected through the ‘‘DriveSafe’’
driving monitoring app using smartphone sensors. This
dataset encompasses a wide range of variables, gathered
by six drivers of varying ages and vehicles. The drivers
exhibited three different behaviors that are annotated, namely
normal, aggressive, and drowsy. Two different routes have
been recorded: a) 25 km motorway, b) 16 km secondary
road. The dataset includes over 500 minutes of realistic
driving data, along with raw data and supplementary
semantic information, as well as video recordings of the
drives.

b: 311 SERVICE REQUESTS FROM 2010 TO PRESENT
The ‘‘311 Service Requests from 2010 to Present’’
dataset [237], maintained by NYC OpenData, encompasses a
wide array of information related to various service requests
reported within New York City. This dataset is continuously
updated and falls under the category of social services.
It includes a variety of tags such as city government, social
services, and different types of complaints like rodent issues,
bike problems, and potholes.

c: NYC TLC
The NYC TLC Trip Record Data [229], managed by the
New York City Taxi and Limousine Commission (TLC),
encompasses detailed trip records for yellow and green taxis,
as well as for-hire vehicles (FHV). This data includes fields
for pick-up and drop-off dates/times, locations, trip distances,
fares, rate types, payment types, and driver-reported pas-
senger counts for taxis. For FHV, it captures dispatching
base license numbers, pick-up dates, times, and taxi zone
location IDs. The dataset is updated monthly and stored in
the PARQUET format since May 2022.

d: BIKE DATASET
The City Bike NYC dataset [238], provided by Citi Bike
NYC, offers comprehensive data on bike trips across the
city. The current format of the data includes information like
ride ID, start and end times, start and end station names and
IDs, as well as the latitude and longitude of these stations.
Additionally, it specifies whether the ride was made by a
member or a casual rider. Previously, the dataset included
more detailed information such as trip duration, bike ID,
user type (differentiating between short-term pass users and
annual members), gender, and year of birth.

e: PORTO TAXI TRAJECTORY
The Porto Taxi Trajectory Data [230] is a comprehensive
dataset that captures the trajectories of 442 taxis operating
in the city of Porto, Portugal. This data was collected over a
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TABLE 7. Smart transport dataset overview with general information. These datasets are characterized by their diverse data types, including GPS, textual,
and numerical data, and offer extensive and continuously updated information.

one-year period, from July 1, 2013, to June 30, 2014.
The dataset comprises over 1.7 million taxi journey entries,
reflecting a significant volume of data points, specifically
more than 83 million GPS data points.

Among the datasets presented in Table 7, a notable aspect
is their diversity in data types such as textual, numerical,
and categorical data. All of the datasets listed are publically
available, although anomalies are rarely annotated [231].
Another significant characteristic of these datasets is their
size and dynamic nature, with datasets like the NYC
TLC [229] and City Bike NYC [238] being continuously
updated, providing millions to billions of instances. This
continual update feature makes these datasets particularly
valuable for longitudinal studies in smart transportation
environments.

C. SMART INDUSTRY
This section presents previous work on AD in industrial
environments. With the increasing adoption of IIoT and
Industry 4.0 technologies, industrial environments have
become more complex, dynamic and data-driven. The term
smart factory is not yet defined consistently, as other
terms like U-factory, the factory of things, the factory in
real time frame and the intelligent factory of the future
are frequently used [239]. A smart factory is basically a
collection of network enabled devices and systems that
exchange information with each to automatically coordinate
the fulfillment of production requirements. A Cyber-Physical
System (CPS) forms the basis of a smart factory [240], and
it is characterized by its high degree of complexity [241].
It typically consists of distributed computing elements,
mechanical parts, and electronic parts that communicate
via IT network infrastructure, such as the Internet. CPSs
are augmenting critical public infrastructure [242] such as
transportation, electric power generation, water treatment and
distribution. In the context of Industry 4.0, these systems are
increasingly automated, such that they can dynamically adapt
to production requirements. The German Federal Ministry of
Education and Research refers Industry 4.0 to ‘‘the intelligent
networking of machines and processes for industry with the
help of information and communication technology’’ [243].
The 2030 vision of Industry 4.0 is built on three strategic
fields of action: a) Autonomy, b) Interoperability, c) Sus-
tainability [244]. In previous work [245], an architecture
was proposed, that serves as a reference for IoT-based
smart factories, including an energy management scheme
that increases energy efficiency by integrating energy data in
production management.

1) USE CASE SCENARIOS
This section presents use cases for AD in smart indus-
trial environments. Figure 18 visualizes a comprehensive
overview of the various use cases investigated in previous
research. In the following, the application areas and the
particular use cases are described in further detail:

FIGURE 18. Use cases for AD in smart industry.

a: PRODUCT QUALITY INSPECTION
This category includes research focused on ensuring the
quality of products through various inspection techniques.
It encompasses studies on product quality inspection in
various industries [246], [247], [248], quality monitoring in
manufacturing [249], and industrial product surface defect
detection [250].

b: INDUSTRIAL PROCESS MONITORING AND FAULT
DETECTION
Emphasizing the monitoring of industrial processes and the
detection of faults, this category includes works on fault
detection in steel rolling mills [251], [252], assembly con-
veyor bearing failures [253], parts assembly failures [254],
APU maintenance [255], air-blowing machine monitor-
ing [256], research on food plant safety [257], manufacturing
process failures [258], and general process monitoring [259].
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c: SECURITY IN INDUSTRIAL AND IOT ENVIRONMENTS
This category addresses security concerns in industrial and
IoT settings. It includes research on IIoT security [260] and
intrusion detection in logistics networks [261].

d: ENERGY AND UTILITY SYSTEMS
Focusing on the monitoring and AD in energy and utility
systems, this category includes studies on energy systems
in the steel industry [262], water treatment and distribution
systems [263], and nuclear reactors [264], [265].

2) TYPICAL SENSORS
This section presents sensors that are commonly used for AD
in smart industry environments. Force sensors are used to
detect assembly failures in parts assembly processes [254].
Neutron detectors are employed for monitoring nuclear
reactor perturbations [264], [265]. Water treatment and
distribution application involve sensors such as pressure
meters and flow meters [263]. Various sensors such as
accelerometers, oil pressure, temperature, current, speed,
and torque sensors are used for fault detection in steel
rolling mills [251], [252]. Microphones are employed for
detecting assembly conveyor bearing failures [253]. Product
flow, pressure (heat exchanger), and temperature sensors are
utilized for food plant safety [257]. Cameras are employed for
metal textile quality control [248], industrial product surface
defect detection [250], and product quality inspection [247].
Gas flow sensors are utilized in the energy system of the steel
industry [262].

3) LITERATURE REVIEW
This literature review focuses on the recent developments
and research in the field of AD techniques for smart industry
environments.

Table 8 lists a variety of applications that are discussed
in the following. Product quality inspection is dedicated to
ensuring product quality through various inspection tech-
niques. It encompasses studies on quality inspection across
different industries, monitoring quality in manufacturing,
and detecting surface defects in industrial products. Key
studies in this domain are summarized in [246], [247], [248],
[249], [250]. Zhang et al. [246] introduced a method for
product quality inspection using a Gradient Compensation
Gaussian Restricted BoltzmannMachine (GC-GRBM). Their
method was applied to white wine and cigarette product
quality inspection. Tang and Jung [247] developed the
Reliable Anomaly Detection and Localization (RADL)
system, an approach for industrial product quality inspection,
integrating a pre-trained ImageNet backbone, a Fake Defect
Feature Augmentation (FDFA) strategy, and Hardness-
aware Cross-Entropy loss (HCELoss). Arndt et al. [248]
introduced an approach combining Patch Distribution Mod-
eling (PaDIM) and Self-Training Feature Pyramid Matching
(STFPM) algorithms to aid quality control in metal textile
production. Focused on reducing cognitive load for workers,

the authors aimed at identifying defects in car exhaust gas
regulation filters based on high-resolution monochrome and
depth images. Carletti et al. [249] proposed an unsuper-
vised method to assess feature importance in AD, called
Depth-based Isolation Forest Feature Importance (DIFFI).
Liu et al. [250] introduced the Self-Updated Memory and
Center Clustering (SMCC) framework for AD and localiza-
tion in industrial images, employing pretrained back-bone
models as feature extractors and GMM clustering. Their
method was applied to industrial product surface defect
detection.

Notable contributions in the field of industrial process
monitoring and fault detection can be found in [251], [252],
[253], [254], [255], [256], [257], [258], and [259]. Former
studies, such as Rodriguez et al. [254], suggested the use
of traditional machine learning algorithms. In [254], the
authors employed SVM and PCA in a supervised learning
scenario for failure detection in a automated parts assembly.
Lindemann et al. [258] evaluated the performance of two
data-driven self-learning approaches based on real data
originating from hydraulic press metal forming processes.
Kalør et al. [259] investigated remote AD using PCA
and AE methods on resource-constrained IoT devices, and
their method was applied to industrial process monitoring.
Acernese et al. [251] proposed a two-step AD strategy
for steel rolling mills, combining Reweighted Minimum
Covariance Determinant (RMCD) and HMMs, to efficiently
detect faults in a high-risk industrial setting on real production
data. Sarda et al. [252] proposed a multi-step strategy
for rolling mill fault detection in steel industry, utilizing
RMCD and HMMs. Tanuska et al. [253] developed a system
for bearing failure prediction and detection in assembly
conveyors using sound analysis and MLPs. The authors
trained multiple MLPs using an automated network search
function. Davari et al. [255] developed a learning-based
predictive maintenance framework for Air Production Units
(APU), using a Sparse Autoencoder (SAE) approach. The
study, focused on both analog and digital real-time sensor
data. Velásquez et al. [256] developed a machine-learning
ensemble integrating LOF, OCSVM, and AE for AD in
industrial air-blowing machines. The authors incorporated
data from numerous sensors and conducted extensive pre-
processing prior to the AD process. Tancredi et al. [257]
employed multiple linear regression, a multi-layer percep-
tron, and k-means clustering, demonstrating their efficacy in
enhancing the safety of a industrial food plant pasteurization
system.

Applications on security in industrial and IoT environ-
ments can be found in [260] and [261]. Demertzis et al. [260]
introduced a blockchain security architecture integrating
smart contracts with AEs, focusing on securing IIoT com-
munications. Qi et al. [261] developed their Multiaspect Data
Streams Anomaly Detection (MDS_AD) approach for fast
anomaly identification in logistics networks, leveraging a
combination of Locality-Sensitive hashing (LSH), Isolation
Forest (IF), and PCA.
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TABLE 8. Summary of previous work on AD in smart industrial environments. Symbols denote learning scenarios: i
= unsupervised, it

=

semi-supervised, y
= supervised. Additional symbols for anomaly types: � = point anomalies, ⊟ = context anomalies, ⊠ = collective anomalies.

A notable aspect is the diversity of algorithms used, applied across various industrial areas, utilizing different sensor types. This diversity indicates the
complexity and varied nature of industrial processes and anomalies.

Previous work on energy and utility systems, including
studies on energy systems in the steel industry, water treat-
ment and distribution systems, and nuclear reactors is encap-
sulated in [262], [263], [264] and [265]. Calivá et al. [265]
proposed a deep learning approach based on a 2D CNN
that detects fluctuations in nuclear reactors and localizes the
point the fluctuation originates from. In [264], Tagaris et al.
performed an wavelet-based analysis on changes in neutron
flux in nuclear reactor cores in order to obtain scaleograms.
A convolutional neural network has been trained using the
scaleograms such that it can detect reactor core failures. Their
methodology utilized simulated data from the SIMULATE-
3K tool, focusing on in-core and ex-core neutron flux signals.
Fährmann et al. [263] proposed a lightweight LSTM-VAE
architecture for AD in water treatment and water distribution
applications. In [262], Jin et al. introduced their Varying-scale
Hypercube Accelerated Density-Based Spatial Clustering for
Applications with Noise (VHCA-DBSCAN) method for AD
within the steel industry. Employing Gaussian probability
density estimation, along with a modified LOF for outlier
evaluation.

4) DATASETS
This section provides an overview of related datasets. Unlike
datasets that are generally considered for the application
of AD algorithms, the availability of datasets that contain
industrial sensor and actuator data is limited [272]. Table 9
presents an overview of key datasets, including information
such as the nature of the data (whether public or otherwise),
the labels associated with the data, and the number of
instances.

a: UNSW-NB15
The UNSW-NB15 [270] dataset, intended for network
intrusion detection, was created in the Cyber Range Lab of
the Australian Centre for Cyber Security (ACCS) at UNSW
Canberra. It comprises raw network packets captured with
the tcpdump tool, totaling about 100 GB in size, and stored
as pcap files. It includes nine different types of attacks

(i.e., Fuzzers, Analysis, Backdoors, DoS (Denial of Service),
Exploits, Generic, Reconnaissance, Shellcode, and Worms).

b: MIMII
The Malfunctioning Industrial Machine Investigation and
Inspection (MIMII) [269] dataset contains sounds generated
from four types of industrial machines (i.e. valves, pumps,
fans, and slide rails). The datasets has been captured in real
factory environments and includes normal and anomalous
operating conditions.

c: MVTEC AD
The MVTec AD dataset [271] is a comprehensive collection
of over 5000 high-resolution images across fifteen object cat-
egories, tailored for benchmarking AD methods in industrial
inspection. The dataset is enhanced with pixel-precise defect
annotations.

d: SKAB
The Skoltech Anomaly Benchmark (SKAB) [236] dataset
is designed for benchmarking AD algorithms. It consists
of multivariate time series data from a simulated industrial
control system. The dataset contains 35 individual data files,
encompassing various sensor readings such as temperature
and pressure. Primarily used in the area of industrial process
control andmonitoring, the SKABdataset has a single labeled
anomaly per data file.

e: SWAT
The Secure Water Treatment (SWaT) [276] dataset originates
from a small-scale but fully functional testbed that mimics
a real-world industrial facility, built at the Center for Cyber
Security Research, iTrust [277]. The data collected within
the SWaT testbed was accumulated over 11 days. In the
last four days of data collection, 36 attack scenarios were
executed [278]. The attacks carried out are reflected in
the dataset by modified sensor and actuator values. The
attacks targeted various attack points, including the physical
sensors and actuators, as well as access points to the network
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TABLE 9. Industrial dataset overview with general information. Among the datasets listed, the largest in terms of total instances is the ‘‘SMD’’ dataset
with a total of 1416825 instances. The ‘‘MVTec AD’’ dataset has the highest dimensionality, with images of 2048 × 2048 resolution. For the highest
percentage of anomalies, the ‘‘MIMII’’ dataset stands out with ∼18.86% anomalies.

communication infrastructure of the CPS (e.g., the attacker
sends a malicious command to an actuator). Based on the
large number of possible attack points, 28 attacks focused
on a single attack point, while 8 attacks focused on multiple
attack points simultaneously. In some cases, the researchers
performed the attacks sequentially, and in other cases, they
allowed the system to normalize before the next attack
was executed. Furthermore, the operational processes of the
SWaT testbed are divided into six processes P1-P6. The
attacks either targeted a single process or multiple processes
of the testbed.

f: WADI
The Water Distribution (WADI) [273] testbed can be
considered an extension of the SWaT testbed. Although the
WADI testbed is similar to the SWaT testbed, it contains
components such as analyzers, booster pumps, and chemical
dosing systems [273].

g: BATADAL
This dataset originates from the BATtle of the Attack
Detection ALgorithms (BATADAL) [274] competition. The
competition aims at the proposal of cyberattack detection
algorithms for industrial environments. The dataset contains
samples recorded in a water distribution network that
involves seven storage tanks, eleven pumps, and five valves,
controlled by nine Programmable Logic Controllers (PLCs).
The network was generated with the epanetCPA toolbox,
which allows the injection of cyberattacks and simulates
the network’s response to those attacks. The dataset is split
into two training sets and a testing set. The training set
1 was generated from a simulation that lasted for one year.
It does not contain any attacks; all the data pertain to normal
operations. The training set 2 is partially annotated and was
recorded over 6 months. It contains several attacks, some of
which are approximately annotated. The testing set includes
2089 records with seven attacks. It was recorded over a three-
month-long period and was used to compare the performance
of the algorithms.

h: SMD
The ServerMachine Dataset (SMD) [127] is a comprehensive
5-week-long dataset. It comprises data from 28 different

machines, each forming a separate subset for training and
testing. SMD’s 38 dimensions cover metrics like CPU
loads, network usage, and memory usage, making it a
vital multivariate time series dataset for AD in industrial
environments.

The datasets presented in Table 9, encompass a diverse
range of industrial applications, including water distribu-
tion, server machines, spacecraft, and network intrusion,
highlighting the varied nature of industrial processes and
anomalies. They vary in data types, featuring sensor readings,
network packets, as well as industrial machine sounds. These
datasets focus on different types of anomalies, some with
detailed annotations, reflecting the complex and specialized
requirements of industrial AD. The mix of public and
restricted datasets indicates a balance between open-source
data availability and the need for security sensitive contexts.
This diversity illustrates the evolving and nuanced challenges
faced in industrial AD research.

VIII. DISCUSSION AND FUTURE RESEARCH DIRECTIONS
The rapid evolution of these smart environments, spanning
across domains like smart homes, smart transportation, and
smart industry, brings forth unique challenges and unexplored
territories, particularly in the realm of AD. This section
discusses existing gaps across these three key domains,
proposing future research directions.

A. SMART HOME APPLICATIONS
Smart home environments present unique challenges, par-
ticularly in capturing the complex interactions of multiple
inhabitants. Current datasets predominantly focus on single-
inhabitant scenarios, limiting the scope of AD applications.
The suggested future research directions are visualized in
Figure 19 and described in the following.

1) MULTI-INHABITANT DATA COLLECTION
There is a significant need for datasets that capture inter-
actions among multiple inhabitants. This would enable
the development of applications like conflict detection in
resource usage (e.g., simultaneous demand for heating and
cooling in different rooms), or health monitoring systems
that distinguish between individuals’ activities and provide
personalized alerts.
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FIGURE 19. Future research perspectives for smart home AD.

2) BUILDING-LEVEL ANOMALY DETECTION
Public datasets from multiple homes could aid in detecting
building-wide anomalies, such as power outages or pipe
bursts. Further applications might include detecting unusual
patterns in energy consumption indicative of electrical faults
or proactive maintenance needs in building infrastructure.

3) SELF-ADAPTIVE SYSTEMS
Research could focus on creating self-adaptive systems that
continuously learn and adjust to new patterns and behaviors in
smart homes. These systems would dynamically update their
models, thereby maintaining effectiveness even as household
routines and environmental conditions change over time.
This would be particularly relevant for adapting to lifestyle
changes, seasonal variations, or the introduction of new smart
home devices.

4) INTEGRATION OF AUGMENTED REALITY
Exploring the use of AR technologies to visualize anomalies
in the smart home environment is a cutting-edge research
direction. This could involve developing AR applications
that overlay real-time data and anomaly alerts over the
physical environment, providing homeowners with intuitive
and interactive ways to understand and respond to anomalies.

B. SMART TRANSPORT APPLICATIONS
The diversity of transportation modes and the varied spatial
and temporal granularity of datasets collected by different
agencies pose challenges in forming a cohesive under-
standing of urban dynamics. The suggested future research
directions are visualized in Figure 20 and described in the
following.

FIGURE 20. Future research perspectives for smart transport AD.

1) INTEGRATED MULTI-MODAL TRANSPORTATION DATA
Developing datasets that integrate various transportation
modes (taxis, buses, trams, bikes) can provide a more holistic
view of city dynamics, aiding in efficient urban planning and
congestion management.

2) HARMONIZING DATA COLLECTION
Efforts to standardize the spatiotemporal granularity of data
across agencies could facilitate real-time data integration and
analysis.

3) PRIVACY-PRESERVING DATA COLLECTION
Innovative approaches are needed to collect detailed spatial
data without infringing on individual privacy, possibly
using anonymization techniques or differential privacy
methods.

4) AUTONOMOUS VEHICLE SAFETY
Beyond traffic analysis, there’s potential for detecting
anomalies in autonomous vehicles, such as recognizing unex-
pected pedestrian behaviors or road blockages. Additional
applications could include real-time monitoring of vehicle
health and predictive maintenance alerts.

C. SMART INDUSTRY APPLICATIONS
Industrial environments, particularly power plants, pose chal-
lenges due to the vast number of sensors and the complexity
of determining the source of anomalies. The suggested future
research directions are visualized in Figure 21 and described
in the following.
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FIGURE 21. Future research perspectives for smart industry AD.

1) REALISTIC INDUSTRIAL DATASETS
There is a need for more comprehensive datasets that
accurately reflect the complexity of industrial environments,
to enhance the realism and applicability of AD models.

2) SOURCE IDENTIFICATION OF ANOMALIES
Future research should focus on pinpointing the exact source
of an anomaly within a network of interconnected sensors,
improving the precision of diagnostic systems.

3) HANDLING DATA TRANSMISSION DELAYS
Addressing the delays in data transmission due to distributed
sensors and varied communication channels is crucial.
Research could focus on developing models that account for
these delays to ensure accurate real-time AD.

4) SCALABLE AND LIGHTWEIGHT SOLUTIONS FOR
INDUSTRIAL APPLICATIONS
The presence of vast arrays of sensors and distributed
infrastructures in industrial environments presents unique
challenges. Industrial environments often comprise compu-
tational instances with limited computational power (e.g.,
PLCs), necessitating solutions that are not only scalable but
also lightweight. The scalability ensures that the solution
can handle the extensive data generated by numerous
sensors, while the lightweight nature allows for deployment,
adaptability and efficient operation even in devices with
constrained computational resources [263].

IX. CONCLUSION
In this survey, we have comprehensively explored applica-
tions of AD in smart environments, particularly focusing on
smart home, smart transport, and smart industry domains.

We have discussed the advancements in deep learning-based
AD techniques and their significant role in enhancing the
safety and security of these smart environments. This survey
has also delved into a variety of datasets used in these
domains, emphasizing their importance in developing and
evaluating effective AD algorithms.

This work investigated recent applications of AD in these
domains, highlighting the critical need for robust and efficient
AD systems. In smart homes, the focus lies on ensuring
safety and comfort of residents through monitoring daily
activities and utility usages. In smart transport, the emphasis
lies on ensuring the smooth and safe operation of various
transportationmodes, including public transit systems, public
gatherings, and overall infrastructure security. In smart
industry, AD plays a pivotal role in maintaining the integrity
and efficiency of industrial processes, which often involve
complex machinery and extensive sensor networks. Future
research directions emphasize the need for scalable and
lightweight solutions. These solutions are necessary to adapt
to environments with instances of limited computational
power, ensuring efficient and real-time AD.

This survey presents a detailed overview of the state-of-
the-art in AD techniques across key smart environments,
serving as a valuable resource for researchers and practi-
tioners in the field. The advancements in AD technologies
and their diverse applications underscore their significance in
the ever-evolving landscape of smart environments. As these
technologies continue to develop, they will undoubtedly play
an increasingly vital role in shaping the future of smart
cities, improving the quality of services for citizens and
ensuring the safety of individuals, as well as the security of
infrastructure.
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