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ABSTRACT In the context of service provisioning, the integration of Network Functions Virtualization
(NFV) enhances the flexibility, scalability, and programmability of telecommunication networks. However,
this integration introduces challenges, particularly in optimizing the placement of Virtualized Network
Functions (VNFs) within the NFV Infrastructure (NFVI). Existing studies have predominantly focused on
well-connected, mains-powered ecosystems like datacentres and cloud networks. In contrast, the aim of this
paper is to identify a solution that distributes and deploys aWireless Mesh Network (WMN) as the backbone
for a disaster management communication and service infrastructure. Given the mobility of mesh routers
in such scenarios, these devices are often battery-powered. Consequently, the placement of VNFs directly
impacts the energy consumption in the network and, subsequently, its lifetime. The proposed solution for
the energy-efficient placement of VNF is formulated as a multi-objective optimization problem. This context
introduces different approaches and proposes a heuristic algorithm to optimize the placement of VNFs. The
evaluation results indicate that the proposed algorithm outperforms prior alternatives in various scenarios.
Notably, it surpasses established methods like the Nondominated Sorting Genetic Algorithm II (NSGA-II),
commonly used to solve similar problems. This research signifies a significant advancement in addressing
the specific challenges associated with NFV integration in wireless mesh networks, particularly in disaster
management contexts.

INDEX TERMS Energy efficiency, disaster network, network function virtualization, wireless mesh
network.

I. INTRODUCTION
Network Function Virtualization (NFV) strives to enhance
flexibility, scalability, and programmability in telecommu-
nication [1]. This framework advocates the separation of
network functions into software components within vir-
tual machines or containers, detached from the underlying
hardware components (servers with computing power, mem-
ories, and switches) [1]. While promising, this paradigm
shift introduces challenges, particularly regarding the opti-
mal placement of Virtual Network Functions (VNFs) on
the Network Functions Virtualization Infrastructure (NFVI).
The placement of a VNF directly impacts the power con-
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sumption of the host server (processing component) and
indirectly influences the power consumption of the switches
involved in packet transport to and from its current loca-
tion (forwarding components). Consequently, strategically
allocating VNFs is crucial for optimizing the energy effi-
ciency of the communication network, as emphasized in
previous studies [2], [3], [4], [5], [6], [7]. Notably, no prior
research has addressed this challenge in the context of a
Wireless Mesh Network (WMN), specifically considering
survivability and lifespan [8]. A WMN, characterized by
decentralization and wireless communication among devices
(wireless routers) through point-to-point links or multiple
hops, is particularly suited for disaster communication due to
its self-organizing, self-configuring, and self-healing proper-
ties [9], [10]. This study builds upon prior research on energy
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FIGURE 1. NFV optimised WMN architecture.

optimized VNF placement, with a distinct focus on WMN
for disaster management, where computational and power
resources are inherently limited. The infrastructure character-
istics introduce a second objective for optimization alongside
minimizing energy consumption, specificallymaximizing the
network lifetime. In a Wireless Mesh Network (WMN), the
network lifetime refers to the duration until a mesh router
fails due to energy depletion, an event critical to avoid during
disasters as it results in reduced network coverage. Balancing
energy consumption and network lifetime is exemplified in
a scenario where a user’s queries are efficiently handled
by placing the Virtual Network Function (VNF) at the net-
work edge, minimizing energy consumption related to packet
forwarding. However, if the router has insufficient residual
energy, deploying the VNF on another mesh router becomes
more efficient to prevent failure.

The paper is structured as follows: Section II intro-
duces the network architecture, outlines requirements for
energy efficient VNF placement in the WMN, and analyzes
previous works. Section III implements the mathematical
formulation of the energy-efficient allocation problem for
VNFs in mesh networks. Given the NP-Hard nature of
the problem, Section IV proposes various algorithms for
its solution. Section V presents simulations evaluating the
proposed algorithms, comparing network lifetime increase,
tested VNF allocations, and their ability to handleWMN con-
straints, such as medium sharing and throughput in multi-hop
WLAN. Finally, Section VI concludes the paper, summariz-
ing achievements and suggesting potential avenues for future
research.

II. USE CASE AND RELATED WORKS
In a disaster scenario, the deployment of a Wireless Mesh
Network (WMN) typically involves distributing numerous
mesh routers across the affected area, as illustrated in Figure 1
[9], [10], [11], [12]. These routers, often battery-operated
due to damage or limited availability of the power sup-
ply network, serve as access points for connecting end-user
equipment, such as smartphones or laptops, to the network.
Communication between WMN routers occurs through mul-
tiple radio interfaces, operating on different channels to

prevent interference and ensure high throughput for network
users [13], [14]. Clusters are formed by routers operating on
the same radio channel and within transmitting or receiving
range of each other [14]. As depicted in Figure 1, the example
WMN comprises 25 clusters configured to run on 9 non-
overlapping channels, preventing interference. This scalable
network can be expanded by adding new routers as needed.
Emergency workers establish and configure the network,
intending it to operate throughout the entire rescue operation
or until the conventional communication network is restored,
serving three critical tasks. The first task involves support-
ing rescue operations by facilitating communication between
rescuers and different leaders in the field’s chain of com-
mand. The second task is to establish a backbone connecting
various user groups participating in the rescue operation,
including organizations (e.g., civil protection, police, and Red
Cross), individuals in distress (e.g., injured people), and other
affected individuals. The third task is to establish connections
with external networks, such as mobile or satellite networks,
providing an Internet uplink.

In an earlier study [11], we proposed leveraging Net-
work Functions Virtualisation (NFV) to deliver essential
services in disaster scenarios. Given the traffic aggregation
and network structure, the placement of a Virtual Network
Function (VNF) directly impacts the power consumption
of the hosting node (mesh router) and indirectly influences
nodes involved in packet forwarding to and from its current
location. This presents novel opportunities for optimizing
energy consumption. For instance, VNF migration to routers
with high residual energy can extend the network’s lifes-
pan. Real-time migration of network services to follow the
movement of helper teams as they progress in their work and
move to the next location is another strategy, reducing energy
consumption in the forwarding process. This study aims to
optimize VNF placement in a WMN infrastructure by using
the network lifespan as main optimization criterion.

Previous research in this domain, exemplified by [2], [3],
[4], [5], [6], and [7], address the problem of energy-efficient
placement of VNFs in telecommunication networks by mod-
elling the network to be optimized including a subset of
specific processes and relationships, such as energy con-
sumption, hardware resource constraints, or communication
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patterns of the enduser terminals. The success of the proposed
models can be evaluated against the requirements of a typical
WMN for disaster. These requirements can be classified into
three main categories.

Service-specific requirements are defined by two charac-
teristics of the requests: their distributed nature and their
dynamic nature. In a disaster network, enduser nodes are
spread throughout the network and service requests, such as
requests sent to a webserver, are sent from different locations,
through different nodes, and taking different routes in the
network. In contrast, in a data center scenario, all the service
requests have the same ingress/egress port and the same
communication path through the network infrastructure. This
requirement has not been taken into account in any of the
previous work. An exception is the work in [4], where the
model considers that a VNF can be in charge of handling
more than one request. However, this fact is not considered
when it comes to finding the optimal location for this VNF
within the network, as only the traffic is forwarded to it and
no further instance is created if the network capacity allows it.
The dynamic nature of the requests relates to the movement
of enduser nodes. Due to the mobility of the helpers, progress
in the rescue operation, and other users, the number of service
requests sent from a specific access point changes over time.
This model requirement is fulfilled in [2] and [6], with both
studies modelling the network as a dynamic systemwhere the
traffic that must be handled by each VNF changes over time
and the optimization must be performed repeatedly.

The infrastructure-specific requirements take into account
the characteristics and limitations of the hardware ecosystem.
In the case of WMN, nodes invariably have limited comput-
ing resources and VNFs will have to be run on these nodes.
Although the resources (CPU and memory) on a mesh router
are much more limited than on a datacentre server, there is
no difference in modelling. All the models studied take into
account that these resources are limited when choosing the
optimal location for the VNFs.

One aspect not considered in models that replicate a wired
infrastructure is the dynamic nature of the network. Due to
nodes joining and leaving the network, the infrastructure in
a disaster scenario is subject to changes. This requirement is
included in the model introduced by [2] as the work deals
with the energy-efficient placement of VNFs in a mobile
environment which includes mobile devices, but the solution
presented by the study only partially addreses the impact of
network changes.

The biggest challenge faced by WMNs is the limited
power, as typical routers in disaster scenarios are battery-
powered. As a result, optimization should not be limited to the
energy consumption but should also consider and model the
total lifetime of the network. Given the constraint, a preferred
solution may be one whereby the overall power consumption
is higher than a theoretical minimum, but allows the network
to run for longer, as VNFs are transferred between the nodes
to balance transport and functionality while avoiding black-
outs. This requirement is partially addressed in [2], but the

model is limited to detecting the battery level and migrating
the VNFs when the device they are running on has too little
residual energy, rather than ensure survivability.

Finally, the third class of characteristics are wireless-
specific and focus on the media and traffic. The link quality
in WMN has no fixed capacity. The speed at which data can
be transferred over a link depends on the number of stations
using the same channel and if they have data to send [15]. The
same, link quality (and therefore the link capacity) in WMN
is subject to different changes over time (e.g., environmental
changes or interferences). Summarizing the two sources of
uncertainty, the speed at which data can be transferred over
a link depends on the number of stations using the same
channel, the amount of data that they are sending, and the
characteristics of the medium that connects the communicat-
ing nodes. This combination of requirements has not been
modelled in previous work.

TABLE 1. Evaluation of previous works with the focus on the energy
efficient placement of VNFS.

Table 1 outlines how the prior studies addressed the WMN
disaster model requirements. It shows that none of the prior
research can be directly applied to the current use case,
as they do not encompass all the aspects highlighted in
this section. In the scope of this study, we leverage these
earlier works as a baseline and construct a more comprehen-
sive model that accounts for all identified requirements and
constraints, enabling a more precise optimization process.
Notably, we tackle the challenge of limited energy supply
by introducing a second optimization objective—maximizing
the network’s lifetime. In the context of wireless networks,
we account for interferences arising when devices operate
on the same channel within each other’s interference range.
Furthermore, recognizing the dynamic nature of the network,
we incorporate a dynamicmodel into our considerations. This
forces a new optimization after a period 1t during which the
system is considered constant.

III. WMN MODEL
Section II defined the requirements for a WMN disaster
network model and, highlighted the limitations of the opti-
mization formulation in prior studies. As mentioned, the
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FIGURE 2. A measurement of the power consumption for different VNFs depending on the egress traffic.

unique characteristics of WMNs, limited power, wireless
communication medium sharing, high dynamics, and distri-
bution of service requests, have not been taken into account
by the previous work. We aim to improve the mathematical
model by focusing on the energy consumption of a mesh
router.

The authors in [5] and [6] deal with the energy-efficient
placement of VNFs in datacentres by employing a linear
model. There, the energy consumption of a server depends
linearly on the current CPU load and a constant base energy
consumption. The CPU load in turn depends on the VNFs
currently running on the server and the traffic they have to
handle. For the energy consumption due to the forwarding
of the data packets, a switch is assumed in [7] whose energy
consumption depends on the number of active ports. In addi-
tion, there is a constant base energy consumption when the
switch is on. In [3] the authors instead assume that the energy
consumption due to forwarding increases linearly with the
traffic.

While the assumptions made for datacentre scenarios are
likely to be correct, prior studies did not investigate whether
this server model is also applicable to small devices such

as mesh routers. It is worth noting that a mesh router com-
bines both server (hosting of VNFs) and forwarding (access
point and routing) functionalities. Given the significant dif-
ferences between the two types of devices, we performed
a series of experiments to derive an empirical energy con-
sumption model for the following VNFs: access point (AP),
openvswitch (OVS), DHCP, DNS, web and call server. The
experimental testbed is outlined in Figure 2. The setup con-
sisted of a mini-PC configured as a mesh router, an ammeter
for measuring the current and a constant voltage generator
that generates a constant voltage of 12V. The Mini-PC is
equipped with an Intel Pentium N4200 processor, 8 GB
RAM, two Compex 2 × 2 MIMO 2.4/5 GHz (WLE600VX)
WLAN modules, running Ubuntu Server 18.04.

This infrastructure was used to run three rounds of exper-
iments. The aim of the experiments was to fully describe
the energy usage of a WMN node while undertaking vari-
ous tasks, from idle to full loading. This would produce a
more accurate and realistic model in comparison with the
linear-additive approach from earlier studies.

The first round of measurements observed the baseline the
power consumption of the mesh router, while the machine
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is in idle mode. This power consumption is the minimum
power consumption of a router and corresponds to the energy
required to keep the router in ON state. In this series of mea-
surements, the current was repeatedly measured for 12min
after the start-up process was completed. The resulting aver-
age was 7.3W.

The second series of measurements measured the power
consumption for forwarding functions, which required theAP
and routing functionality. The WLAN interfaces increased
power consumption from 7.3 to 7.5W for one interface and
to 7.7W with both interfaces switched on; this increase was
independent of the configuration of the WLAN interface as a
mesh or access point. A follow-up round of measurements
observed the power consumption as a function of the data
rate of the trafic forwarded by AP or by the OVS router. The
measurement was performed over a period of 2 minutes and
for traffic rates of 1, 5, 10, 20, 50 and 80Mbit/s and the results
are displayed in Figure 2. The measured power consumption
shows a linear increase with the data rate for both OVS
and AP functions. The coefficient of increase is 0.023W/Mb
and 0.034W/Mb for OVS and AP respectively. The energy
consumption per Mb/s is higher for the AP because it has to
switch between transmit and receive mode. This is not the
case with the OVS when two interfaces are used and the data
is only transmitted in one direction like in the tested scenario.

The final round of experiments measured the impact of
processing of incoming service requests on the overall power
consumption, with a focus on four typical VNFs: DNS,
DHCP, web, and call server. These VNFs were provided
within Linux containers (LXC). For each VNF, the power
consumption was measured depending on the number of
requests to be processed. For the call server, a distinction was
made between registration and session setup. The size of the
accessed web page on the web server was 20Mbit. In this test,
it was not possible to measure the power consumption of the
VNFs independently of a forwarding function. For example,
the AP which was necessary to access the VNF hosted on
the mesh router. Because the highest power consumption is
caused by sending and not by receiving data packets, Figure 2
shows the measured power consumption depending on the
egress traffic in Mbit/s. The data traffic that is generated in
response to a request (egress traffic) was determined with
the help of the analysis tool wireshark. Each VNF had to
handle 1, 10, 50, 80 and 100 requests/s. Generally, it can
be observed that the power consumption increases linearly
with the data traffic for each examined VNF. Furthermore,
as expected, this increase is higher than with the AP because
it could only be measured in combination with the AP. The
smallest increase (0.041Ws/Mbit) was measured for user reg-
istration and the highest increase (2.320Ws/Mbit) for DNS.

The results of these measurements show that the energy
saving potential resulting from adequate positioning of VNFs
in WMN is particularly large. As an example, a mesh router
consumes about 20%more energy when hosting a web server
that has to process 1.6 requests/s (20Mb/request). This under-
pins the importance of this work. Moreover, these results

allow us to make the following assumptions for the rest of
the paper: the power consumption of a mesh router v at a
specific time t , can be defined as follows: Pv = Pbasic (v) +

Pforwarding (v) + Pprocessing(v). The basic power consumption
Pbasic(v) has a constant value. Pforwarding (v) and Pprocessing(v)
are linear functions from the current traffic that they process.

In this work, the WMN infrastructure is represented by
a graph G, where the set of nodes (mesh routers) is anno-
tated by V (G) and the connections between them by E(G),
respectively. E(G) represents the set of clusters C(G). For a
specific time slot 1t in which the state of the network can
be considered constant (no changes in the network infras-
tructure and the behavior of the users), the energy efficiency
can be reached through the minimisation of the total power
consumption

min (Energy consumption) = min(
∑

v∈V (G)

Pv × 1t) (1)

The second goal of the optimisation is to maximise the
lifetime of the network. This can be reached through the min-
imisation of the residual energy variance by battery-powered
nodes.

min (variance) = min(
∑

v∈V (G)

(
R̄− Rv

)2) (2)

R̄ is the expected average residual energy at the end of
the upcoming time interval 1t and Rv is the expected resid-
ual energy of router v. Both values depend on the chosen
allocation for VNFs. Since

∑
v∈V (G) Pbasic (v) = const

and
∑

v∈V (G) Pprocessing(v) = const , minimising the power
consumption in equation (1) means minimising the power
consumption caused by forwarding packets in the network∑

v∈V (G) Pforwarding(v). In a network where all requests come
from an single AP, the optimal location is the access router.
Since this router is used more often, it loses power quickly
and fails sooner. This situation can be avoided by the second
objective in equation (2). To achieve a possible equal distri-
bution of the residual energy, the VNF is placed on another
router even if the total energy consumption increases.

Besides these two objectives, the following constraints can
be defined: ∑

j∈V (VNF)

δjvc(j) ≤ cv,max (3)

mC = sum diag(AC .TC ) ≤ 1 (4)∑
v∈V (G)

δjv = 1 (5)

Equation (3) shows that the maximum capacity cv,max of the
physical resources (CPU, memory) on a router must not be
exceeded. c(j) represents the physical resources required by
the VNF j and δ

j
v is a binary number that is equal to 1 when

the j is running on the router v and 0 otherwise. Equation (4)
shows that the wireless medium usagemC in a cluster C must
not be overloaded. Here AC is the inverse of the adjacency
matrix where each column represents for a node the quality
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FIGURE 3. Example: Calculation of medium usage in a WMN with two clusters.

of connection with others cluster member in Mbit/s and is
equal to 0 for node itself. TC is the transmission matrix of the
cluster. Each column in TC represents for a node the traffic
sends to other cluster members and is equal to zero for the
node itself. Equation (5) shows that each VNF can only have
one location in the network.

Figure 3 shows an example of a WMN consisting of seven
routers V (G) = {V1,V2,V3,V4,V5,V6,V7} and two
clusters C (G) = {C1,C2}. Packets can be transmitted
between the routers with a maximum data rate of 80Mbit/s
or 100Mbit/s depending on their distance. Assume that each
router provides an access point function through which the
end devices can connect. Assume that these end devices
generate data traffic of 1 Mbit/s in the direction of a web
server located on router V1. In response to these requests, the
web server generates data traffic of 10 Mbit/s in the direction
of the routers. This data traffic is forwarded via the shortest
path in the network (see Figure 3). The medium usage of
cluster C1 or cluster C2 can be calculated as follows:

mC1 = sum diag




0 1
100

1
80

1
100

1
100 0 1

100
1
80

1
80

1
100 0 1

100
1

100
1
80

1
100 0

 .


0 1 4 1
10 0 0 0
40 0 0 0
10 0 0 0




= 0, 77

mC2 = sum diag




0 1
100

1
80

1
100

1
100 0 1

100
1
80

1
80

1
100 0 1

100
1

100
1
80

1
100 0

 .


0 1 1 1
10 0 0 0
10 0 0 0
10 0 0 0




= 0, 3575

IV. VNF PLACEMENT ALGORITHMS
This section proposes four algorithms to address the place-
ment of VNFs in WMN based on the mathematical formula-
tion of the optimization problem in section III.

A. ENUMERATION (BF)
Similar to a brute force search, all potential network con-
figurations are sampled. For each network configuration,
the objective functions (1) and (2) must be calculated and
the satisfaction of the constraints in equations (3) to (5)
must be checked. Since this is a multi-objective optimisa-
tion problem, the algorithm will return the set of network
configurations that best optimise the trade-off between the
problem objectives, called the Pareto front. These are all
feasible configurations where a reduction in energy consump-
tion can only be achieved by a worse distribution of the
residual energy. The main disadvantage of this method is
the high number of possible network configurations. This
number increases exponentially with the number of VNFs
sn, because for each chosen location for a VNF, all possible
positions for the other VNFs have to be checked depending
on each other. As an example, in a network consisting of
100 routers, and where 8 VNFs have to be placed, there
are 1008 possible configurations. The enumeration method is
therefore not possible for large networks with a high number
of VNFs. This algorithm will be referred to as ‘‘Brute Force
(BF)’’ in the rest of the paper.

B. RANDOM MIGRATION (RM)
The random migration of VNFs in the network is a proce-
dure that, in many aspects, can be seen as the opposite of
an exact procedure such as enumeration. While all possible
network configurations are tested in the enumeration proce-
dure, in random migration, the next location of each VNF is
determined at random. The advantages of such a placement
algorithm become more apparent with the example of a web-
server that has to be placed in a WMN and has to handle
equally distributed requests from the entire network. Due to
the random migration of the webserver, the energy consump-
tion due to the processing of the requests is evenly distributed
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across the network. Similarly, the energy consumption due
to the forwarding of traffic is also distributed evenly across
the network. As a result, in this scenario, the expected gain
from the costly optimisation using the enumeration method
is similar to the gain from the random migration of the
webserver. This method is easily applicable in large networks
with a high number of VNFs because it does not require
any calculation. Although the expected gain of the random
migration in the previously described scenario is supposed
to be similar to the gain by an elaborate optimisation using
the enumeration method, the outcome is no longer trivial
in case of unequal distributions of requests, time-dependent
distribution of requests (e.g., due to themovement of helpers),
or unequal distribution of residual energy. Furthermore, ran-
dom migration does not check the fulfillment of constraints
such as the available resources on hosting mesh routers.

C. MULTI-OBJECTIVE EVOLUTIONARY ALGORITHM
(MOEA)
Multi-objective evolutionary algorithms (MOEAs) offer a
compromise between the accurate enumeration method and
the ‘‘possibly’’ inaccurate random migration of VNFs. The
set of solutions that offer the best trade-off between the
problem objectives are called Pareto optimal, and form the
Pareto front. MOEAs are inspired by processes in natural
evolution and rely on the principles of natural selection to
evolve a population of candidate solutions that the Pareto
front. A widely used MOEA is the so-called Nondominated
Sorting Genetic Algorithm II (NSGA-II) [16]. To apply the
NSGA-II, the population size and the number of generations
must be specified. The working principle of the NSGA-II
algorithm can be explained most simply with an example.

Suppose a webserver needs to be placed in a WMN that
consists of 100 routers andNSGA-II is usedwith a population
size of 10 and a number of generations of 5 (see Figure 4a).
For the first generation, 10 out of 100 possible network con-
figurations are chosen at random. From these initial solutions,
a child population is created by applying crossover and muta-
tion operations to the so-called parent solutions to generate
child solutions. These child solutions are evaluated under the
problem objectives, and the parent and child populations are
combined to perform elitist selection – wherein the best solu-
tions from either the parent and child populations are retained.
Selection in NSGA-II is based on two mechanisms. First,
non-dominated sorting is used to identify a partial ordering
of solutions that are used as a basis for retaining the fittest
solutions according to the objectives Figure 4b illustrates
non-dominated ranks, with the rank 1 solutions being the
most preferred (assuming, without loss of generality, that
both objectives are to be minimised), followed by the rank
2 solutions, and finally the rank 4 ones. Any ties are broken
using the crowding distance operator, which prefers solutions
that have a greater distance to their nearest neighbours to
preserve solution diversity. A major advantage of NSGA-II is
that the number of network configurations tested can be freely

chosen by specifying the population size and the number
of generations. The result of optimising the problem with
NSGA-II is a set of solutions that approximate the Pareto
front, from which a decision maker must identify the final
operating solution.

D. PROPOSED HEURISTIC (OBF)
Besides metaheuristic algorithms such as NSGA-II, which
can be applied to solve a whole class of problems, heuristic
algorithms are developed to solve a specific problem. The
last algorithm (OBF) presented in this paper belongs to this
group. It was specifically designed to solve the problem of
energy-efficient placement of VNFs in WMN. In order to
find a suitable network configuration with little effort (few
numbers of tested configurations), the optimisation problem
in section III is modified as follows:
Step 1: The objective functions in equations (1) and (2) are

converted into constraints. The first objective of the optimi-
sation is to minimise the energy consumption in equation (1).
Since this is a linear equation, it is equivalent to minimising
the energy consumption when placing the individual VNFs.
Instead of minimising this energy consumption, allowable
energy consumption is now defined for each VNF. This
means that the minimisation of energy consumption over the
entire network is now ensured by not exceeding the allowed
energy consumption when placing the individual VNFs. The
allowed energy consumption during the placement of a VNF
is variable and depends on three main parameters. Among
them is the number of requests it has to handle. The higher
the number of requests, the higher the energy consumption
for processing them. The second parameter is the type of
VNF. The energy consumption of a webserver is different
from that of a DHCP server. The third parameter that plays
a role is the topology of the network (size and connectivity).
The larger and more poorly connected a network, the more
likely a packet will have to be forwarded before reaching
the destination router. In this paper, the permissible energy
consumption for a VNF j is defined as follows.

Eallowed =

(∑
i

αj × Ei +
∑
i

αAP × Ei

+

∑
i
(Ii + Ei) × L × αfor

)
× 1t (6)

Here, Ii respectively Ei is the ingress respectively egress
data traffic to the VNF j with the mesh router i as access
respectively output router.

∑
i αj × Ei is the linear factor

describing the power consumption of the VNF j as a func-
tion of the egress traffic according to the measurements in
section III. The value of αj depends on the VNF type (e.g.
αj = 0.0462 Ws/Mbit for a webserver).

∑
i αAP × Ei is the

linear factor describing the power consumption due to the
required access point functionalities at egress routers (e.g.
αAP = 0.034 Ws/Mbit). Both factors are independent of the
network topology. L denotes the average path length (number
of hops) in the network. αfor is the energy consumption
incurred by a router due to forwarding (e.g. αOVS = 0.023
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Algorithm 1 Proposed Heuristic

Ws/Mbit). Equation (6) allows to define a range around the
optimal solution in which the energy consumption is accept-
able. For example, assume a webserver needs to be placed in
a WMN where all requests come from a single access point.
The optimal solution would be to allocate the webserver on
the router where the traffic is generated. The acceptable range
for the webserver consists of all routers whose distance to this
router is less than the average path length in the network. All
other positions in the network belong to the existing solutions,
which leads to too high energy consumption.

The second objective of the optimisation is to maximise
the lifetime of the network. As introduced in section III,
this can be achieved by minimising the variance of the
residual energies (see equation (2)). This objective function
is now to be replaced by a limitation. For this purpose,
a tolerable deviation from the average residual energy is
defined. That means, during the optimisation, it is avoided
that the residual energy of a router falls below a defined
percentage of the average residual energy. This ensures in
an indirect way that the variance of the residual energies
remains low.

Step 2: The locations for the VNFs and, consequently, the
tested network configurations are selected randomly. The
probability Pi of a mesh router i being selected as a location
for a VNF depends on the following parameters:

• Traffic to the VNF and traffic from neighboring routers
to the VNF (in the current implementation, both data
traffic are weighted with 50 %). Routers with high data
traffic or routers whose neighbors have high data traffic
are preferred.

• The residual energy on the router. Routers with high
residual energy are preferred. By choosing them more
frequently as a location for the VNFs, their power con-
sumption increases. As a result, their residual energy
decreases, and so does the variance (see equation (2)).

• The congestion of the clusters over which the router
communicates.

Pi =

1 +

1
2 (Ii + Ei) +

1
2 ×

1
m

m∑
j=1

(
Ij + Ej

)
I + E

×

(
Ri
R

)

×

(
1 − C1i

C

)(
1 − C2i

C

)
(7)

The probability of a router being chosen as a host for a VNF
is therefore defined by the following equation (7). Where
C is the average cluster usage, C1i respectively C2i is the
medium usage of the cluster, which is reachable via interface
1 respectively 2, and I respectively E is the average ingress
respectively egress traffic to the VNF.
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FIGURE 4. Illustration of the function of the NSGA-II algorithm (a) First (blue),
second (red) and third (green) –generation and parents of the third generation
(yellow); (b) First, second, third and fourth Pareto front [18].

The optimisation is terminated when a solution is found
that satisfies all the restrictions in step 1 and the con-
straints (3) to (5) in section III.

Algorithm 1 shows the flow chart of the proposed heuristic
algorithm. TheVNFs are placed in the network independently
of each other. They are first sorted according to their prioriti-
sations (ordered_list_of_VNFs). An example of prioritisation
could be the expected amount of data processed by each
VNF (VNFs with high traffic are placed first in the network).
Another possibility would be to prioritise the VNFs according
to the organisations or user groups to which they belong
(services for helpers are placed first and those for affected
people last). As a third possibility, a combination of both
would also be considered. This combination was used for the
simulations in section V.

For each VNF in the sorted list of VNFs, it is first checked
whether the current location of the VNF can continue to be
used. This is the case if the expected energy consumption

at the current location (en_cons) is below the allowed value
(al_en_cons), the residual energy at no router falls below the
allowed variance of the average residual energy due to the
newly placed VNF (av_res_en), the current router has enough
physical resources available such as CPU or memory and the
expected medium usage (med_us) is not overloaded at any
cluster. If one of these conditions is not fulfilled (i.e., the
previous position can no longer be used), or if it is a new
service, the second step is to search for another location for
the VNF. For this, the next possible position for the VNF is
chosen randomly. The probability of each router being chosen
is calculated using equation (7). The draw is repeated until a
location is found where all conditions are fulfilled or until all
locations in the network are tested.

An important advantage of this algorithm is that the loca-
tion of each VNF is tested for a maximum of the number s of
routers that build the WMN. This results in a maximum num-
ber n×s of tested network configurations. Another advantage
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FIGURE 5. Time to test a network configuration.

is that the optimisation can be stoppedwithout all VNFs being
placed. This is for example advantageous when the network is
working at its limit. Only as many services are made available
as the network allows. VNFs with a low priority are not
placed in WMN if the resources are not sufficient. The third
advantage is that VNFs with a high priority are placed in the
network in order of priority and do not have to wait until the
end of the optimisation. In the further course of the work,
this algorithm will be referred to as ‘‘Optimised Brute Force
(OBF)’’.

V. EVALUATION
This section evaluates the algorithms for energy-efficient
placement of VNFs in WMN, as presented in section IV,
by using a number of simulated scenarios. The simulation
of the energy consumption of a router is based on labo-
ratory measurements in section III. The implementation of
the MOEA50 and MOEA100 solutions uses the NSGA-II
algorithm from the Platypus framework. For MOEA50 and
MOEA100, the population size and the number of genera-
tions are chosen so that the number of network configurations
tested equals n×s

2 and n× s, respectively.

A. MAXIMUM NUMBER OF VNFS
The first simulation series is used to determine the maximum
number of VNFs that can be placed in a WMN depending
on the network size; in terms of performance, the critical
parameter is the time required by the algorithm to provide
a placing solution for a given network configuration. This
time depends not only on the network size but also on the
current location of the VNF and the number of routers that
are currently acting as entry or exit points for data traffic with
the VNF.

Figure 5 shows the measured placement time as a function
of network size for a single VNF. The assumption for the
simulation is that each router serves as an entry or exit point
for the data traffic. The values shown are the average of the
measurements from all possible locations for the VNF.

Themeasured times provide a direct indication of the delay
incurred when determining the optimal network configura-
tion, calculated by multiplying the measured time for testing
a single configuration by the number of tested configurations.
As an example, in a WMN with 100 routers and 8 VNFs,

enumeration would require testing a total of 1008 configura-
tion, whileMOEA100would only require 8×100 tests. Based
on the preliminarymeasurements, aWMNconfigurationwith
100 routers takes 0.0267s on average on a laptop without
graphics card optimisation. This results in an expected com-
putation time of 2.67 × 1014s (approx. 8.4 million years) for
the enumeration method and, respectively 21.36s when using
the MOEA100 algorithm.

Figure 6 presents the expected computing time depending
on the number of VNFs for different network sizes (50, 100,
200, and 400 routers). In order to balance the responsiveness
of the network when changes occur with its stability, a theo-
retical threshold of 10min was set as a maximum duration for
the calculation. The two images indicate that the exponen-
tial increase in the degree of difficulty (number of network
configurations to be tested) lead to problems when using the
enumeration method (BF) even in small networks.

The linear increase in the degree of difficulty of MOEA50,
MOEA100, and the proposed heuristic algorithm (OBF)
allows these algorithms to be used in large networks (e.g., in a
network with 100 respectively 200 routers, the optimal net-
work configuration for the placement ofmore than 100VNFs,
respectively 23 VNFs can be determined with MOEA100 or
with the heuristic algorithm). However, even these algorithms
are of limited use in networks with more than 200 routers due
to scalability reasons.

After confirming the time efficiency of the proposed alter-
natives, in comparison with the enumeration method, the next
step is to determine the quality of the identified network
configurations. The evaluation was performed on a simulated
WMN consisting of 100 routers, each equipped with two
physicals mesh interfaces to communicate with the neigh-
boring routers. The maximum transmission rate between
neighboring routers in a row or column was set to 100Mbit/s
and 80Mbit/s along a diagonal.

B. INFLUENCE OF THE DATE TRAFFIC
In order to investigate the relationship between data traffic
and the performance of the algorithms for the energy-efficient
placement of VNF, a set of time-based simulations investi-
gated the optimal position for a webserver and its impact on
the network lifetime.

The webserver has a set workload of 3000 requests, uni-
formly distributed over the entire network and over a time
interval of 10 minutes. The following size of the requested
page was simulated: 1, 7, and 20Mbit. This leads to a aver-
age data traffic of 5, 35, and 100Mbit/s with the webserver
depending on the size of the requested webpage. Figure 7
shows the results of the simulation with regards to the net-
work lifetime gain and the number of tested configurations.
Firstly, as shown in Figure 7a, it is apparent that the gain
in network lifetime through optimisation depends strongly
on the web page’s size and thus on the traffic. For a 1Mbit
request, the average gain is less than 2.2%; this gain increases
up to 42.2% for a 20Mbit request. Secondly, as illustrated
in Figure 7b, the results are comparable across the four
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FIGURE 6. Influence of the number of VNFs on the estimated computer duration for network size.

FIGURE 7. Influence of the data traffic on the performance of the proposed algorithms.

algorithms with regards to lifetime gain, but the computa-
tional effort varies significantly, as reflected by the number
of tested configurations. It can be observed that the number
of tested configurations is the same for enumeration and
MOEA100. This is because the scenario includes a single
VNF to be placed in the network and, for each interval, both
algorithms will test 100 configurations, independently of the
traffic with the webserver. The slight decrease in the number
of tested configurations with the increase in traffic, seen in
Figure 7b, is due to the decrease in network lifetime with the
increase in traffic, as more energy is used for data forwarding.

Comparatively, MOEA50 tests 50 positions per time inter-
val, therefore the cumulative number of tested configurations
is half of the number in MOEA100 and the enumeration
method (BF). It is also observed that the actual required
number of tested configurations in the proposed heuristic
solution (OBF) is significantly lower than the other three
alternatives. As the traffic increases, the energy consumption
increases, which in turns requires the algorithm to run more
often in order to determine the optimal position. The random
method was included in the set as an extreme case, as it does
not require any network configuration testing. The results
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FIGURE 8. Influence of the number of VNFs on the performance of the proposed algorithms.

FIGURE 9. Influence of the distribution of requests on the performance of the proposed algorithms – Single VNF.

indicated that the probability of selecting an unfavorable loca-
tion during migration increases with the data traffic. In the
case of 20Mbit requests, the random allocation led to the
medium usage being overloaded in 12% of the time.

C. INFLUENCE OF THE NUMBER OF VNFS
A separate set of simulations aimed to determine the rela-
tionship between the number of VNFs placed and the
performance of the algorithms. This set of simulations con-
sisted of two placement scenarios, one with 2 VNFs and one
with 4 VNFs. For consistency with the previous set of exper-
iments, including a single VNF, the simulation assumes the
same scenario: the simulated VNFs are webservers, and each
webserver has to process 3,000 requests of either 7Mbit or
20MBit within 10 minutes, equally distributed over the entire
network. Figure 8a shows the gain in network lifetime com-
pared to service provision without migration of the VNFs.
In the simulation of the standard case (without migration),
the VNFs to be placed are distributed over the network as
optimally as possible. From the graph in Figure 8a, it can

be seen that the gain from migrating the VNFs decreases
with the number of VNFs when the VNFs are optimally
distributed across the network. This result can be explained
by the better distribution of energy consumption across the
network compared to the case with a single VNF. It can
also be noted that the optimisation gain remains relatively
high (about 13% when the size of the accessed web page is
7Mbit, respectively 36% when the size of the accessed web
page is 20Mbit). Finally, it can be observed from the same
graph that the lifetime gain is similar across the analysed
algorithms. In Figure 8b, as expected, the number of tested
network configurations increases linearly with the number of
VNFs when MOEA50 or MOEA100 are applied. For exam-
ple, the cumulative number of tested configurations increases
by 192% respectively by 383% when the number of VNFs
increases from 1 to 2 and respectively to 4. The measured
increase in the number of tested configurations is less than
200% and 400% because it is a cumulative value. The total
lifetime of the network becomes shorter with additional VNFs
because more energy is consumed. For the proposed heuristic
solution, the number of tested network configurations also
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FIGURE 10. Influence of the distribution of requests on the performance of the proposed algorithms – Multiple VNFs.

increases with the number of VNFs, but this number remains
far below the maximum theoretical value of 35,000 respec-
tively 71,600 tested in MOEA100. For the randommigration,
the probability of an invalid network configuration increases
with the number of VNFs. For example, approximately 49%
of all configurations result in medium congestion in a WMN
with two webservers and a web page size of 20Mbit. In a
WMN with a single VNF, this number is around 12%.

D. INFLUENCE OF THE DISTRIBUTION OF REQUESTS:
SINGLE VNF
Until now, the simulations have assumed that the requests to
the VNF are uniformly distributed across the entire network.
In practice, in the event of a disaster, population is not uni-
formly dispersed and the level of impact on across a large area
is also variable. The variations of these two factors should
also lead to differences in the distribution of requests for a
specific VNF. In this test series, the aim is to investigate how
the uneven distribution of requests affects the performance
of the algorithms. For this purpose, it is assumed that the
3,000 requests that have to be processed by the webserver
in 10 minutes are distributed over five areas as follows (see
Figure 11):

• City centre (8 routers): 1,200 requests;
• High-rise housing estate (1 router): 300 requests;
• Helper center (2 routers): 300 requests;
• Hospital (1 router): 100 requests;
• Railway station (1 router): 100 requests.

The remaining requests are equally distributed over the rest
of the area.

The simulation is performed for a 7Mbit and a 20Mbit
big website. Figure 9a shows the relative gain in lifetime
compared to the service provision without optimisation.
In general, the gain with optimisation in a WMN with
unequally distributed requests is smaller than with equally
distributed requests. This is due to the fact that the location
of the webserver was optimally selected close to both the city
center and the high-rise housing estate during the simulation.

These two above areas generate, as per our scenario, 1,500
requests. Because of its location, less energy is consumed in
the forwarding of packets. Figure 9b shows the cumulative
number of tested network configurations. For MOEA50 and
MOEA100, this number is independent of the distribution
of the requests. The visible difference in the graph can be
explained by the difference in the lifetime of the network.
A network with unequally distributed requests lives for a
shorter time because there is a non-optimisable energy con-
sumption on the routers with more traffic due to the access
point functionality. The number of tested network configura-
tions becomes smaller in a WMN with unequally distributed
requests when the proposed heuristic algorithm is used. This
is because this algorithm uses the traffic as a parameter for
selecting the location for the VNF. Finally, the probability
of an invalid configuration with random migration increases
from 12% to 17%.

E. INFLUENCE OF THE DISTRIBUTION OF REQUESTS:
MULTIPLE VNF
The previous subsection investigated the influence of an
unequal distribution of requests on the performance of the
algorithms for energy-efficient placement of VNFs in WMN.
This involved finding the optimal location for a webserver
that handles requests from the entire network. In some cases,
the number of requests for a particular service may be so high
that a single VNF cannot handle them. This may be the case,
for example, if there is no router with insufficient compu-
tational resources to host the VNF. In this case, additional
VNFs are created, and the traffic is distributed between them.
For example, if the webserver in the previous scenario must
process 30,000 requests in 10 minutes instead of 3,000, this
will create an average traffic of 350Mbit/s with the webserver
when the requested page size is 7Mbit. Given the network
transmission speed is 100Mbit/s in a cluster, this service
cannot be provided by a single VNF. A possible solution to
this problemwould be to provide the service through 8 VNFs,
each responsible for one area of the network as follows:
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FIGURE 11. Helper distribution – Single VNF: City center (red), High-rise housing
estate (blue), Helper center (purple), Hospital (brown), Railway station (green), and
Rest of the city.

• City centre (8 routers): 12,000 requests → 2 webservers
for the northern and southern part;

• High-rise housing estate (1 router): 3000 requests →

1 webserver;
• Helper centre (2 routers): 3000 requests→ 1 webserver;
• Hospital (1 router): 1000 requests → 1 webserver;
• Railway station (1 router): 1000 requests → 1 web-
server.

• On the remaining area, 10,000 requests are generated in
10min, processed by two further webservers. One web-
server is responsible for the eastern part of the network
and one for the western part.

Figure 10a shows the gain in network lifetime compared to
the simulation without optimising the VNF locations. The
locations of the VNFs were chosen as optimally as possible
in the simulation without VNF migration to maximise the
network lifetime. This means that they were placed as close
as possible to the areas they are responsible for. Figure 10a
shows that a gain of about 9% could be achieved when
using the proposed heuristic algorithm, despite this optimal
positioning. This gain is smaller for the MOEA solution but
increases with the number of network configurations tested,
from 6.5% for MOEA50 to 7.2% for MOEA100. The worst
result is achieved with the random migration of VNFs, where
the gain is only 2.2%. When randomly migrating VNFs in
a network with unequally distributed requests, the energy
consumption due to traffic forwarding increases if the VNFs
are not placed near the locations with the most traffic.

As expected, random migration also leads to a very high
number (approximately 96%) of invalid network config-
urations, because they have clusters where the expected
medium utilisation is higher than the capacity. For MOEA,

the probability of having an invalid configuration at the end of
the optimisation decreases with the number of configurations
tested, dropping from 30.6% for MOEA50 to 19.6% for
MOEA100. In this scenario, the heuristic algorithm alone
provided valid network configurations at the end of each
optimisation. Moreover, the graph in Figure 10b shows that
the real number of tested configurations for the proposed
heuristic solution (OBF) is about 5.2% from the theoretical
maximum value tested for MOEA100.

VI. CONCLUSION
The aim of this paper is to provide an energy-efficient solu-
tion for the placement of VNFs in a WMN. The focus is
on a widespread use case of the WMN, namely as a back-
bone network for disaster communication. Section II defined
the requirements for the model, which allowed a system-
atic performance comparison with previous research in other
communication networks. From this comparison, it became
apparent that earlier formulations of the optimisation problem
cannot be applied to the specific scenario of a disaster WMN,
due to the unique properties such as the battery supply of
the hardware, shared wireless communication medium, high
WMN dynamics, and the distribution of service requests. All
these properties represent requirements for the model and
have not been considered or had limited priority in previous
works. Section III proposed a model by formulating the opti-
misation problem mathematically. The WMN was defined as
a graph consisting of several subgraphs, referred to as clus-
ters. This allowed defining the two objective functions and
the associated constraints for the optimisation. The formu-
lated problem is a multi-objective optimisation problem. The
first objective of the optimisation is to minimise the energy
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consumption in the network. This problem was formulated
as an Integer Linear Programming (ILP) problem with the
objective of finding the location of all VNFs (set all δ

j
v ∈

{0, 1}) such that the objective function in equation (1) has the
minimum value and the constraints in equations (3) to (5) are
satisfied. As an ILP, this problem is NP-hard as shown by the
authors in [17]. The second objective of the optimisation is
to maximise the lifetime of the network. This optimisation
problem has been defined as Nonlinear Programming (NLP).
The objective of the optimisation is to find the location of all
VNFs (set all δ

j
v ∈ {0, 1})) so that the objective function in

equation (2) has the minimum value and the constraints in
equations (3) to (5) are satisfied. Section IV proposed four
algorithms to solve the optimisation problem, using the enu-
meration method, random migration of the VNFs after each
time interval, a multi-objective genetic algorithm (NSGA
II) applied in the literature to solve similar problems, and
a heuristic algorithm developed specifically for this prob-
lem. As a multi-objective optimisation problem, no optimal
solution exists for the defined energy-efficient placement of
VNFs in WMN. Even if the network allows the use of the
enumeration method (small network with a small number of
VNFs), the optimisation often provides a list of network con-
figurations where a reduction in energy consumption can only
be achieved by a worse distribution of the residual energy.
In this case, the network configuration that has the most
equal distribution of residual energy while consuming as little
energy as possible is chosen (precedence to network lifetime
- second objective function). In randommigration, no optimal
solution is sought. In NSGA II, the network configuration is
chosen that gives the best result in terms of residual energy
distribution after a defined number of tested network configu-
rations. In the proposed heuristic procedure, without knowing
the (theoretical) optimal solution, an attempt is made to guess
a solution (using an Oracle). If this solution is considered
close enough to the optimal solution, it is chosen as the
network configuration. The performance and complexity of
these four algorithms was investigated in section V. Beyond
lifetime evaluation, the influence of other factors was also
observed, including the number of VNFs, the distribution of
traffic, and the distribution of service requests. While the
results of the simulations for the enumeration method and
the random migration of the VNFs provided relatively low
benefits, the proposed heuristic algorithm performed signifi-
cantly better than the MOEA algorithm for the same number
of tested network configurations. This result can be explained
as follows: If it is assumed that f1 (x⃗) is the first objective
function that gives the total energy consumption depending
on the current location of the VNFs x⃗ and f2 (x⃗) is the second
objective function that gives the variance of the residual
energy depending on the current location of the VNFs x⃗ in the
network, the proposed heuristic solution can be considered
as a mathematical function (x⃗ → f1, f2) which tries to select
the VNFs positions x⃗(e.g., based on the traffic or based on
the residual energy) so that the resulting energy consumption
f1 and the resulting variance of the residual energy f2 are

above the allowed values. While the MOEA algorithm can
be considered as a mathematical function (f1, f2 → x⃗) which
based on the evaluation of the objectives functions f1 and f2,
optimises the best possible placement for the VNFs x⃗. The
problem is that parameters such as the residual energy of each
router, the data traffic with the VNF, or the current load of the
clusters are not considered. This complicates the process of
finding a suitable network configuration.

The work presented in this paper has two limitations. First,
the comparison of algorithms for the energy-efficient place-
ment of VNFs in WMN was tested based on self-defined
scenarios. A better comparison would be possible with data
from previous disaster events. Unfortunately, this data could
not be found to the desired extent. Second, the monitoring of
resources and its influence on energy consumption was only
indirectly considered in the model because its contribution
to the total energy consumption was assessed as negligible.
These two limitations will be addressed in future work.
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