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ABSTRACT With the wide application of a modular multilevel converter in various power conversion
fields, submodule open-circuit fault diagnostics have attracted increasing attention, as some of the existing
diagnosis methods have a single function and limited localization speed. Therefore, a simplified and
innovative multifunctional hybrid machine learning-based fault diagnosis strategy for the submodules is
proposed. Starting from the output characteristics of the faulty submodule, the eigenvalues of the bridge arm
current and submodule capacitor voltage during faults are extracted, and the eigenvalues are utilized for fault
detection and location via the integration of improved supervised learning and unsupervised learning. Finally,
the effectiveness of the proposed method is verified by simulated and experimental results in a three-phase
modular multilevel converter topology. In addition, it can diagnose multiple fault types and achieve a high
fault identification probability.

INDEX TERMS Artificial neural networks, data processing, fault diagnosis, fault detection, fault location,
multilevel converters, machine learning, power conversion, supervised learning, unsupervised learning.

I. INTRODUCTION
Modular multilevel converters (MMCs) are becoming pop-
ular circuit topologies in HVDC applications [1], [2], [3],
where they offer the advantages of high flexibility, flexible
changes in voltage and power levels, and lower switching
frequency and power loss. Therefore, MMCs are widely used
in the fields of energy storage [4], [5], microgrids [6], [7],
power electronic transformers [8], [9], renewable power gen-
eration [10], motor drive [11], rail transport [12], and flexible
DC transmission [13], [14]. Compared with other power
electronic converters, the submodule (SM) faults are the
main factor affecting the reliability of the MMCs [15]. These
faults include wiring failure, capacitor failure, semiconductor
device failure and other failures (as shown in Figure 1).

The associate editor coordinating the review of this manuscript and
approving it for publication was Gerard-Andre Capolino.

FIGURE 1. Probability of submodules with different fault types. While
39% of the faults may be wiring faults, 30% may be capacitor faults, 21%
may be semiconductor device failures, and 10% may be other faults.

Moreover, the fault probability of the MMC increases with
the number of SMs.

Generally, power electronic device faults include short-
circuit faults and open-circuit faults. The former can cause
overcurrent and damage the circuit. Thus, gate drivers are
typically integrated with short-circuit protection functions
to protect devices immediately when a short-circuit fault
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is detected [16], [17]. In contrast, the latter is difficult to
detect in a timely manner [18] and can overcharge capaci-
tors [19] and deteriorate the system output quality [20]. For
a high-capacity MMC system, a wire-bonding IGBT module
can be connected in parallel to form the MMC system. Under
such conditions if an SM is in a prolonged short-circuit state,
the SM can easily turn into an open-circuit fault. Therefore,
SM open-circuit faults are an urgent problem that need to be
solved in MMCs. In this context, open-circuit fault detection
and location (OCFDL) of SMs is beneficial for improving the
reliability of MMCs. Thus, OCFDL is the main topic of this
paper.

OCFDL methods for MMCs have been extensively stud-
ied in previous works. However, there are few reports on
multifunctional hybrid fault diagnosis models in which SM
fault locations do not need to collect fault samples data.
At present, these fault diagnosis methods can be divided into
three main categories: hardware-based, model-based and AI-
based methods. For hardware methods, a hardware detection
circuit was designed for fault detection in [21]. However,
only unitary SM open-circuit faults can be diagnosed via
this method, and multiple SM open-circuit faults cannot be
identified. A fault detection, localization, redundancy and
recovery strategy was proposed in [22], which requires lim-
ited hardware and software resources. Nevertheless, with the
increase in the number of SMs in an MMC system, this
approach would be suitable for applications in high voltage
fields due to its high cost and increased circuit complexity.
In [23], a method for detecting IGBTs in an open-circuit
fault is proposed for each grouping detection device, which
consists of two submodules and a voltage sensor. This method
has a high-speed fault detection advantage, however, it cannot
achieve SM fault location fuctionality. Regarding model-
based methods [24], [25], [26], [27], [28], solutions for fault
diagnosis have been developed. In [24], a multipoint SM
fault diagnosis strategy under a low modulation index was
proposed, which improves upon the existing sliding-mode
observer and achieves rapid location of the faulty arm. In [25],
a concurrent and direct fault diagnosis method was been
proposed by comparing the measured and estimated values
using an amending Kalman filter. Nevertheless, the above
two methods are not suitable for applications in high-voltage
fields due to their high-accuracy model and algorithm com-
plexity. A grouping capacitor voltage estimation method with
capacitance self-updating was designed for OCFDLs [26],
and at least a few sampling cycles are required to iden-
tify the severe aging or faulty capacitors used in MMCs.
A fast and simple OCFDL scheme was proposed by analyz-
ing the similarity of capacitor voltages under both normal
and fault conditions [27]. However, [26] and [27] need a
longer capacitor voltage charging process, which increases
the cost of the fault diagnosis time. In [28], a threshold
adaptive diagnosis strategy was proposed in which the fault
is diagnosed by determining whether the SM capacitor volt-
age exceeds the threshold. Nevertheless, this method is not

equipped with a diagnostic function for multiple open-circuit
faults.

The most popular fault diagnosis methods are mainly AI-
based methods. An open-circuit fault diagnosis method based
on extreme gradient boosting is proposed [29], [30], which
has excellent robustness against external noise with an accu-
racy as high as 99.2% within 20 ms. Because this method
adopts a nonparallel structure, the occurrence of multiple SM
faults is not perfectly resolved. A two-dimensional trajectory
pattern-based fault detection method for SMs was proposed
in [31]. Kiranyaz et al. [32] presented real-time fault detection
and identificationmethods forMMCs using 1D convolutional
neural networks, which achieved an average identification
probability of 0.9993 in less than 100 ms. Bai et al. [33]
presented a dual 1D CNN diagnosis and recognition method
based on the sub-unit voltage and bridge arm current. How-
ever, the above three methods can increase the computational
burden by training on many fault samples. Ke et al. [34] pro-
posed a novel multimodal attention fusion (MAF) model in
which the fault diagnosis accuracy of the proposedmodel was
98.4%. However, this method has poor generalizability and
robustness and is sensitive to system changes caused by envi-
ronmental noise. In [35], a novel fault diagnosismethod based
on shorttime wavelet entropy integrating a long short-term
memory network (LSTM) and a support vector machine
(SVM) was proposed, where only the bridge arm current
signal was used as the sampling signal. However, this method
does not mention the fault location of the SM. In addition,
many electrical signal samples should be trained. Ke et al.
[36] proposed a compound fault diagnosis method based on
an improved capsule network. Tong et al. [37] proposed a
methodology to deploy aDNNwith fault diagnosis purpose at
the edge. Wang et al. [38] proposed a machine learning-based
fault self-test, which can quickly determine the fault item in
time and reduce the maintenance cost later. However, [36],
[37], and [38] have obvious drawbacks that are not applicable
to multiple SM open-circuit faults and increase the time cost
of sample training.

In summary, these existing OCFDL methods involve com-
pleting fault diagnosis within the desired index. Nevertheless,
hardware-based and model-based methods for fault diagnosis
usually have limited localization speeds or are difficult to
apply in practical systems. Furthermore, the conventional
machine learning-based fault diagnosis methods have a single
diagnostic function or require considerable time for training
fault samples. Faced with the large number of SMs in actual
MMC systems, a new strategy urgently needs to address the
issues of a single diagnosis function or the high time cost of
training samples. Therefore, an innovative OCFDL method
for MMCs based on hybrid machine learning is proposed
in this article. This method has multiple diagnostic func-
tions and reduces the time cost of diagnosis. In other words,
the proposed method can locate multiple faults effectively
without training fault samples, which is more suitable for
enormous MMC systems.
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To address the above challenges, we leverage the hybrid
machine learning scheme for MMC fault diagnosis, which
integrates the supervised learning of a long short-term mem-
ory (LSTM) neural network and the unsupervised learning
of K -means. The main contributions of this paper are high-
lighted as follows:

1) The proposed method can determine the fault location
without training fault samples, and a single faulty SM
or multiple faulty SMs can be localized within 10 ms.

2) The hybrid machine learning model does not require
accurate mathematical models or additional sensors.

3) An improved LSTM neural network was constructed
by the quantum particle swarm optimization (QPSO)
algorithm for SM open-circuit fault detection.

4) To cluster data more conveniently, an improved
K -means method is implemented by defining an eval-
uation function, which reduces the dependence on
manual values.

5) A hybrid machine learning model is designed by
the integrating supervised learning and unsupervised
learning.

The remainder of this paper is organized as follows:
Section II briefly introduces the SM open-circuit fault analy-
sis of MMCs. In Section III, the supervised and unsupervised
hybrid machine learning methods are presented. The simula-
tion and experimental verification and analysis are performed
in Sections IV and V, respectively. Conclusions are drawn in
Section VI.

II. ANALYSIS OF SM OPENCIRCUIT FAULTS FOR MMCs
A. MMC TOPOLOGY
An MMC comprises many SMs with the same structure.
Considering each bridge arm with 4 SMs, the structure of
the three-phase MMC is shown in Figure 2. Each phase in a
three-phase MMC circuit topology is divided into upper and
lower arms, and each arm consists of N identical SMs and a
bridge arm inductance L0. The SM is a typical half-bridge
structure that includes a DC capacitor, two IGBT devices
(T1 and T2) and two antiparallel diodes (D1 and D2). Udc
is the DC-link voltage, USM is the output voltage across the
SM, and C is the SM capacitance. Because there are many
switching devices in the MMC system, if an open-circuit
fault occurs during SM operation, then the output voltage and
bridge arm current of the system will be distorted. To extract
fault features, it is therefore necessary to analyze the principle
of various faults for SMs.

B. SM OPEN-CIRCUIT FAULT ANALYSIS
Typically, T1 and T2 in a half-bridge SM work in a comple-
mentary manner. The working state S of the SM is defined as
follows:

S =

{
1, T1 turns on and T2 turns off
0, T1 turns off and T2 turns on

(1)

FIGURE 2. Topological diagram of a three-phase MMC. Where each phase
contains many submodules with the same circuit topology.

FIGURE 3. Current flow path of the SM under a T1 open-circuit fault with
S = 0 (a), iarm >0 (b), iarm <0.

When an open-circuit fault occurs in an SM, T1 or T2 may
be in either the on or off state. Different working states of SMs
may exhibit different fault characteristics. Figures 3-6 show
a comparison of the current flow paths before and after an
open-circuit fault occurs in T1 or T2. The green dashed line
represents the current path under normal conditions, while
the red dashed line indicates the current path after a fault.
When T1 experiences an open-circuit fault under S = 0, the
capacitor of the faulty SM is in the cutoff state. Figure 3 shows
that the open-circuit fault of T1 has no effect on the input or
output current paths of the SM when S = 0.

In Figure 4, a T1 open-circuit fault occurs at S = 1, and the
current direction of the SM affects the fault characteristics.
If iarm >0, the T1 fault does not affect the current flow path of
the SM.However, if iarm <0, the current will be forced to flow
through the antiparallel diode D2, and the capacitor current of
the SM will be 0. The SM capacitor lacks a discharge path,
which signifies that means it can only be charged and cannot
be discharged. Thus, the capacitor voltage of the SM will
continue to increase.

Figure 5 shows that T2 exhibits an open-circuit fault at
S = 0, and the current direction of the SM affects the fault
characteristics. If iarm <0, the T2 fault does not influence
the SM current path. However, if iarm >0, the current will
be forced to flow through the antiparallel diode D1, and the
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FIGURE 4. Current flow path of the SM under a T1 open-circuit fault with
S = 1 (a), iarm >0 (b), iarm <0.

FIGURE 5. Current flow path of the SM under a T2 open-circuit fault with
S = 0 (a), iarm >0 (b), iarm <0.

FIGURE 6. Current flow path of the SM under a T2 open-circuit fault with
S = 1 (a), iarm >0 (b), iarm <0.

capacitor voltage of the SM will continue to rise. Figure 6
shows that the T2 open-circuit fault at S = 1 has no effect on
the current direction of the SM.

In summary, the current and voltage of the SM after the
occurrence of an open-circuit fault are shown in Table 1,
which shows that the fault feature of a continuous voltage
rise in the capacitor of the faulty SM can be used for fault
location.

TABLE 1. Current and voltage of the SM after Occurrence of an
open-circuit fault.

FIGURE 7. Single-phase equivalent circuit for the MMC topology diagram.

The structures of each bridge arm in the MMC are com-
pletely identical, and the voltage of each bridge arm cannot
be completely constant in the steady operation state. There
will be a circulating current in the upper and lower bridge
arms. Therefore, the following discussion presents a specific
analysis of the relationship between the bridge arm current
and the circulating current. Without loss of generality, the
equivalent circuit diagram of one phase of the MMC is
used for analysis, as shown in Figure 7, where uj (j =

a,b,c) is the output voltage of the AC measurement, ipj (j =

a,b,c) is the upper bridge arm current, inj is the lower bridge
arm current, Idc is the DC current and O is the fictitious
midpoint.

The following mathematical equations can be obtained by
Kirchhoff’s circuit laws:

ipj = icirj +
ij
2

(2)

inj = icirj −
ij
2

(3)

where icirj is denoted as the circulating current and ij (j =

a,b,c) is the three-phase output current.
By subtracting (2) from (3), the equation of the output

current can be derived as

ij = ipj − inj (4)

By summing (2) and (3), the equation of the circulating
current can be obtained as

icirj =
ipj + inj

2
(5)

The circulating current icirj consists of two parts: one part
is the DC component with Idc/3, and the other part is the
AC component including the circulating current idfn caused
by the three-phase voltage imbalance. It contains even har-
monics that are mainly composed of 2, 4 and 6 frequency
components.
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The equations of the three-phase circulating currents can
be expressed by

icira =
Idc
3

+

∞∑
n=2

Idfn cos(nω0t + ϕdfn)

icirb =
Idc
3

+

∞∑
n=2

Idfn cos((nω0t −
2
3
π ) + ϕdfn)

icirc =
Idc
3

+

∞∑
n=2

Idfn cos((nω0t +
2
3
π ) + ϕdfn)

(6)

where Idc is the DC-side current, Idfn is the n times the
circulation harmonic peak and ϕdfn is the initial phase.
The upper and lower arm currents of each phase include the

AC component of the circulating current and the harmonic
components. Therefore, when a T1 or T2 open-circuit fault
occurs, the harmonic components in the circulating current
will affect the output of the bridge arm current. Due to the
inductance of the bridge arm, the bridge arm current iarm can
continue to flow. However, during the zero crossing of the
forward current after the T1 fault and the zero crossing of the
reverse current after the T2 fault, the iarm is intermittent and
fluctuates around the zero value, which prevents the circuit
from normally generating the reverse current (T1 fault) or
forward current (T2 fault). Moreover, the capacitor voltage of
the faulty SM will continue to increase. Therefore, the fault
characteristics of the intermittent bridge arm current after an
open-circuit fault can be used to detect the faulty bridge arm
within half a cycle time.

III. PROPOSED FAULT DETECTION AND
LOCATION ALGORITHMS
To address the problem of fault diagnosis when an SM
experiences an open circuit, an OCFD approach is proposed.
Figure 8 shows the flowchart of the proposed hybrid machine
learning method, which is divided into data processing, fault
detection and fault localization steps.

A. THE PRINCIPLE OF QPSO-LSTM
TheQPSO algorithm determines the optimal solution through
collaboration and information sharing within a group [35],
[39]. It is a widely used approach in optimization, neural
network training, fuzzy system control and other application
fields. The algorithm is improved on the basis of particle
swarm optimization (PSO), which cancels the movement
direction attribute of particles and increases the randomness
of particle positions.

LSTM comprises forgetting gates, updating gates and out-
put gates, as shown in Figure 9.

The entire process operation is called the forget gate, and
the specific equation is expressed by (7):

ft = σ (Wf · [ht−1, xt ] + bf ) (7)

where Wf is the weight of the function, bf represents the
intercept of the function, the neural network output ht−1 at
t-1 is combined with the input data xt−1 at t-1 for linear

FIGURE 8. Flowchart of the proposed hybrid machine learning method
for MMC diagnosis, which includes data processing, fault detection and
fault localization.

FIGURE 9. Architecture of the LSTM neural network model, which
contains a forget gate, update gate and output gate.

transformation, and Ct−1 is the unit state at the previous
t-1 moment.
The gate updating process can be expressed as:

it = σ (Wi · [ht−1, xt ] + bi) (8)
∼

Ct = tanh(WC · [ht−1, xt ] + bC ) (9)

Ct = ft ∗ Ct−1 + it ∗
∼

Ct (10)

whereWi and W C are the weights of the function and bi and
bc represent the intercepts of the function.

The output gate is modeled using (11) and (12):

Ot = σ (Wo[ht−1, xt ] + bo) (11)

ht = ot ∗ tanh(Ct ) (12)

where Wo and bo are the weight of the function and the
intercept of the function, respectively.

The QPSO algorithm is used to optimize four important
parameters of the LSTM, including Ct in (10), ht in (12), the
number of iterations M, and the learning rate Ir .Figure 10
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FIGURE 10. Architecture of the QPSO-LSTM neural network model, where
Ct and ht represent the hidden layer, M is the number of iterations and Ir
is the learning rate.

shows the framework of the QPSO-LSTM. The optimization
of the LSTM using the QPSO algorithm includes two parts:
the left side of the framework is the QPSO algorithm part,
and the right side is the LSTM training part. The particle
represents the weight and threshold in the LSTM. The pre-
diction error calculated by the right network is taken as the
particle fitness. The left and right parts are called back and
forth, respectively, to iteratively find the optimal particle, this
process is called the QPSO-LSTM algorithm.

Based on the above parameters, the learning rate Ir ranges
from [0.0001, 0.01]. The QPSO algorithm is used to optimize
the four parameters Ct , ht , M and Ir of the LSTM. The fitness
value of each particle is determined by the mean square error
(MSE). The MSE is expressed by (13), where yt is the real
data and pt is the predicted value:

MSE =
1
N

∑N

t=1
(yt − pt )2 (13)

The MSE of the trained network and the optimization
results of the QPSO algorithm are shown in Figure 11.
Figure 11(a) shows that when the QPSO algorithm is iterated
20 times, the MSE of the trained network with respect to the
optimization parameters is essentially stable, reaching a min-
imum error of approximately 0.042. Under these conditions,
the number of neuronsCt in the first hidden layer equals 2, the
number of neurons ht in the second hidden layer approaches
178, the number of iterationsM is 20, and the learning rate Ir
changes with the number of iterations and is equal to 0.0014,
as shown in Table 2. Therefore, the QPSO algorithm can
optimize the four main parameters of the LSTM network in
fewer iterations, as shown in Figure 11(b).

TABLE 2. Parameter values of the QPSO-LSTM neural network model.

FIGURE 11. Parameter optimization of the LSTM neural network model by
the QPSO algorithm (a), MSE of the trained network (b), parameters of
the four optimized algorithms.

The proposed QPSO-LSTM fault detection algorithm is
implemented in MATLAB 2021a on a personal computer
(PC) with an Intel i5-9300(HQ) 2.4 GHz CPU and 8 GB of
RAM. TheQPSO-LSTMmodel is initializedwith 200 hidden
layers, a learning rate of 0.005 and 1000 iterations. One
thousand samples are used as training data for each classifi-
cation. Similarly, the Elman neural network, recurrent neural
network (RNN), and radial basis function (RBF) neural net-
work were constructed on the aforementioned dataset using
MATLAB. Each algorithm is repeatedly tested 15 times, with
five different test sets used each time. The corresponding
results show that the QPSO-LSTM algorithm exhibits supe-
rior prediction ability, with the highest detection accuracy and
fastest detection time among the five algorithms, as shown in
Table 3.

TABLE 3. Comparison of different neural network algorithms.
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B. IMPROVED K-MEANS ALGORITHM
Considering the limitations of the K-means algorithm [40],
[41] and combined with the characteristics of SMs after
open-circuit faults, the main factor affecting data cluster-
ing is the selection of the K value. Therefore, a mixed
evaluation function method is proposed to determine the K
value in this paper. The mixed evaluation function method
comprehensively considers the differences in cluster density
and dispersion. Equation (14) defines the mixed evaluation
function:

M (i) =
b(i) − a(i)

max(a(i), b(i))
(14)

Equation (14) shows that the value range of the function is
[−1,1], where a(i) represents the average distance between
sample i and other sample points in the same cluster. b(i)
reflects the average value of the distance between sample i
and other nonclustered sample points. When M (i) is close
to 1, the distribution of sample i is reasonable.

C. HYBRID MACHINE LEARNING
The fault diagnosis method implemented in this paper adopts
a hybrid machine learning approach, as shown in Figure 12.
This hybrid approach comprises supervised machine learn-
ing and unsupervised machine learning. The QPSO-LSTM
neural network is a supervised machine learning method that
collects the bridge arm current as the input and is responsi-
ble for SM open-circuit fault detection. The QPSO-LSTM
neural network needs to train the collected bridge arm cur-
rent data, therefore, this algorithm is a type of supervised
machine learning. Moreover, the K -means algorithm is an
unsupervised machine learning algorithm that is used for
SM open-circuit fault location. When an open-circuit fault
is detected in the upper or lower bridge arm of a certain
phase, the SM fault location is activated to collect and cluster
the capacitor voltage data of all SMs on the faulty bridge
arm. For the QPSO-LSTM neural network algorithm, the
bridge arm data do not require much collection. However, this
approach requires higher accuracy for fault detection. For SM

FIGURE 12. Framework of hybrid machine learning for MMC fault
diagnosis, mainly includes supervised machine learning and
unsupervised machine learning.

TABLE 4. Comparison with different fault diagnosis approaches.

fault location, supervised machine learning is not applicable
because a large quantity of data needs to be collected. The
K -means algorithm does not require training on sample
data and can quickly locate faulty SMs, therefore, this
algorithm is a type of unsupervised machine learning.
Finally, by combining the advantages of both machine learn-
ing methods, hybrid machine learning methods have been
developed.

D. COMPARISON WITH EXISTING OCFDL METHODS
To demonstrate the outstanding performance of the proposed
OCFDL approach, several recently proposed methods for the
MMC OCFDL are selected and compared with the proposed
method, as shown in Table 4.

Generally, method [32] exhibits the highest accuracy,
reaching 99.93%. The other methods listed in [29] and [34]
exhibit lower accuracies than the proposed method, which
exhibits 99.4% accuracy. In terms of the OCFL time, the pro-
posed approach also achieves a faster OCFL speed (<15 ms)
than do the other methods [22], [26], [27], [28], [29], [31],
[32], [34]. The methods listed in [21], [22], [23], [24], [25],
[26], [27], [28], [29], [30], and [31] rely on the manual
setting of the empirical threshold. However, the thresholds
change with the change in operation conditions of the MMC.
Table 4 shows that several methods, such as [21], [22],
[23], [24], [25], and [31], can handle multiple faults at
the same time. The proposed approach is robust to exter-
nal noise, does not require an empirical threshold and is
suitable for multiple faults. This approach is a highlighted
method.

IV. SIMULATION VERIFICATION AND ANALYSIS
To validate the effectiveness of the proposed data-driven
method, a three-phase MMC system, as shown in Figure 2,
is simulated in PSIM software. TheOCFDLmodel was estab-
lished using MATLAB and Jupyter notebook software. The
simulation parameters are shown in Table 5.
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TABLE 5. Parameters of simulation and experiment for the MMC
prototype.

FIGURE 13. Schematic of the sliding window algorithm.

A. DATABASE BUILDING
The OCFDL method requires the use of a comprehensive
database based on historical measurements or simulations.
The characteristic values of six bridge arm currents in the
normal working state are collected.

B. SLIDING WINDOW
In this paper, the voltage dataset of the SMs is characterized
using statistics, with each SM voltage characterized by the
maximum value uSM−max, minimum value uSM−min, root
mean square value uSM−rms, and average value uSM−avg. The
bridge arm current data need to be sampled. The sliding
window method is used to segment the offline data and
dynamically update the sampled voltage and current data. The
offline data processing scheme is shown in Figure 13.
After off-line sampling and saving of the complete bridge

arm current data, a window with a length of Lwin is used
to intercept the original information sequence with a length
of L, and a data fragment with a length of Lwin is obtained
for each interception. Using sliding step segmentation, a new
data fragment is obtained. The window continues to slide
until the offline data have been fully segmented. If the number
of remaining samples is less than the step size of the sliding
window, then the window stops sliding.

The sliding window segmentation of each voltage
sequence allows for the interception of all fragments of the
original voltage sequence. The number of intercepted sliding
windows Snum can be obtained by the window length Lwin,
the data length L, and the sliding window step Lstep. The
corresponding equation is as follows:

Snum =

⌊
L − Lwin
Lstep

⌋
+ 1 (15)

⌊x⌋ = max {n ∈ Z |n ≤ x } (16)

where, ⌊x⌋ represents the largest integer not greater than x.

C. OFFLINE SIMULATION TEST AND ANALYSIS
To verify the effectiveness of the proposed fault diagnosis and
location method, the SM capacitance and bridge arm induc-
tance are adjusted by 5%, and 20 dB white Gaussian noise
is added to the sampled signals. Considering the highly sym-
metrical structure of the three-phase MMC system, 20 sets of
simulations are carried out. The sequence length is 100 ms
(including 500 samples), the length of the sliding window
during the fault detection stage is 20 ms, and the step size
is 1 ms.

1) CASE 1 NORMAL OPERATION
The simulation results of the bridge arm current waveforms
under normal operation conditions are shown in Figure 14(a),
which are basically symmetrical and sinusoidal. The capaci-
tance voltages of the SMs in phase A during normal operation
are shown in Figure 14(b), and the capacitance voltage bal-
ancing effect is favorable and fluctuates approximately 250V.
Moreover, the QPSO-LSTM is used to predict the bridge arm
current of phase A. The predicted results are essentially con-
sistent with the recorded current, as shown in Figure 14(c),
which indicates that the network has completed model train-
ing and has the ability to predict the bridge arm current.
To evaluate the prediction accuracy of the various algorithms
for the bridge arm current, the predicted current values of the
LSTM, PSO-LSTM and QPSO-LSTM models are compared
with the actual values, as shown in Figure 14(d). The figure
shows that the current values predicted by the QPSO-LSTM
model are closer to the experimental values.

2) CASE 2 SM1 OPEN-CIRCUIT FAULT AT 0.35 S
SM1 of the upper bridge arm in phase A is assumed to expe-
rience an open-circuit fault at 0.35 s. The faulty bridge arm
current is shown in Figure 15(a). After the fault occurs, the
bridge arm current is severely distorted, and the current tends
to zero without a negative value. Moreover, the operation
time is approximately 5 ms, and fault detection is completed.
Figure 15(b) shows the capacitance voltages of the faulty
bridge arm SMs, and it is clear that SM1 is far from SM2-
SM4. As shown in Figure 15(c), the voltage of fault SM1 is
clustered into one category, and the normal SMs are clustered
into another category. In addition, the time is 10 ms, and the
fault location is completed. The simulation results verify the
effectiveness of the proposed fault diagnosis approach.

V. EXPERIMENTAL VERIFICATION AND ANALYSIS
To evaluate the effectiveness of the proposed fault diagnosis
method, a downscaled three-phase MMC prototype with four
SMs per arm was constructed in the laboratory. The experi-
mental parameters are shown in Table 5. The configuration of
the experimental setup is shown in Figure 16.
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FIGURE 14. Output currents and voltages of the 5-level MMC under
normal conditions in simulation (a), three-phase output currents (b),
output capacitor voltages of the SMs in A-phase (c), actual values and
predicted values of the A-phase bridge arm current (d), predicted values
of the A-phase bridge arm current under different algorithms and actual
values.

All the data acquisition, data processing, and PWM gener-
ation steps are implemented by an ARM (STM32H750IBK6)
and an FPGA (EP4CE10F17C8N). The ARM is mainly
responsible for the control algorithm and data processing,
while the FPGA is responsible for PWM generation, capac-
itance voltage equalization and other functions. The two
are coordinated and operated through SPI communication.
In the experiment, an IGBT open-circuit fault is simulated
by blocking the corresponding gate drive signal. Finally, all
the experimental data are transmitted to the upper computer
for fault diagnosis.

A. NORMAL OPERATION
Figure 17 shows the experimental results of the three-phase
MMC system during normal operation. Figure 17(a) shows
that the three-phase voltages are essentially symmetrical and

FIGURE 15. Output currents and voltages of the 5-level MMCs under an
open-circuit fault in simulation (a), output current of the A-phase bridge
arm (b), output capacitor voltages of the SMs in the A-phase, and (c) fault
localization of SM1.

FIGURE 16. Experimental platform of the three-phase MMC prototype,
mainly includes the experimental platform, main circuit and SMs of one
phase.

sinusoidal. However, the waveform of ua clearly decreases
when the SM fails. Therefore, the performance of the MMC
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FIGURE 17. Experimental results of the 5-level MMC under normal case
(a), three-phase output voltages. (b), waveforms of bridge arm currents
and SM capacitor voltages in A-phase. (c), waveforms of predicted ipa
and actual bridge arm currents in normal state.

system degrades. Figure 17(b) shows the bridge arm currents
and the capacitance voltages of the two SMs for phase A.
Figure 17(b) shows that the capacitance voltages of the SMs
are essentially the same, fluctuating at approximately 20 V.
The currents of the upper and lower bridge arms vary pos-
itively and negatively, respectively, under normal conditions
and contain harmonics. Figure 17(c) shows the ipa waveforms
of the predicted and actual bridge arm currents in the normal
state. The predicted bridge arm current is basically consis-
tent with the actual current, indicating that the QPSO-LSTM
model is accurate.

B. T1 FAULTS IN THE SM1
Figure 18(a) shows the changes in the bridge arm currents and
SM capacitor voltages before and after the T1 open-circuit
fault of SM1 of the upper bridge arm on the phase A. After
the fault occurs, the capacitor voltages of the SMs increase
synchronously. Clearly, the rate of increase in the capacitance
voltage of the faulty SM is significantly greater than that of
the healthy SM. The upper bridge arm current ipa has no
negative value, and the minimum current of the bridge arm
is basically zero due to reverse blocking of the freewheeling
diode when a fault occurs.

The current ina has little effect, and the capacitor of each
SM of the lower bridge arm can still be charged and dis-
charged normally. After a period, the capacitor voltage of the

FIGURE 18. Experimental results of the 5-level MMC under the SM1 T1
open-circuit fault case at 0.35 s (a), waveforms of bridge arm currents and
SM capacitor voltages in A-phase (b), fault detection result of SM1 (c),
fault localization result of SM1.

faulty SM deviates from that of the normal SM. The T1 fault
detection result for SM1 is shown in Figure 18(b). The error
between the predicted current ipa and the true value of the
bridge arm is greater than the set threshold. Moreover, as the
residual value increases, it almost reaches 0.3 A at 0.36 s, and
the fault detection time is 10 ms. To prevent the system from
mislocating, the location duration is extended by 3 cycles
(60 ms) to make the distinction between the faulty and the
normal SMs clearer. Therefore, the system detects the faulty
bridge arm and activates the fault isolation mechanism.

The fault location results are shown in Figure 18(c). The
capacitor voltages of the normal and fault SMs increase
almost synchronously. The improved K-means clustering
algorithm divides the data into two categories, and the result
of the SM1 value being far from those of SM2-SM4 indicates
that SM1 has an open-circuit fault. The above analysis reveals
that T1 of SM1 has an open-circuit fault.

C. T2 FAULTS IN THE SM5
The time to complete the fault detection and location is
approximately 80 ms. Similarly, Figure 19(a) shows the
changes in bridge arm currents and SM capacitor voltages
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FIGURE 19. Experimental results of the 5-level MMC under the SM5 T2
open-circuit fault case at 0.35 s (a), waveforms of bridge arm currents and
SM capacitor voltages in A-phase (b), fault detection result of SM5 (c),
fault localization result of the SM5 (d), output of the A-phase circulating
currents.

before and after the T2 open-circuit fault of SM5 of the lower
bridge arm in phase A. As shown, the amplitude of the bridge
arm current ina decreases, the capacitor voltage of the fault
SM increases, the capacitor voltages of the normal SMs
decrease, and the difference is clear. The T2 fault detection
result for SM5 is shown in Figure 19(b). The fault location
results are shown in Figure 19(c). The data are divided into
two categories, which are consistent with the theoretical anal-
ysis. The fault detection and location results are the same as
those for the set position, and the time needed to complete
the fault detection and location is approximately 80 ms.

FIGURE 20. Experimental results of the 5-level MMC under the SM1 T2
and SM5 T2 simultaneously open-circuit fault cases at 0.35 s (a),
waveforms of bridge arm currents in A-phase (b), fault detection results
of SM1 and SM5 (c), waveforms of SM capacitor voltages in A-phase (d),
fault localization results of SM1 and SM5.

Figure 19(d) shows that the waveform for the circulating
current and the vibration of the waveform intensify when the
fault occurs.

VOLUME 12, 2024 61539



Y. An et al.: Open-Circuit Fault Diagnosis for a MMC Based on Hybrid Machine Learning

D. T2 SYNCHRONOUSLY FAULTS IN SM1 AND SM5
Figure 20(a) shows the changes in bridge arm currents before
and after the open-circuit fault of SM1 and SM5 in phase A.
There is no negative phase current on the upper bridge arm
or the lower bridge arm when the fault occurs. Figure 20(b)
shows the fault detection results for SM1 and SM5. The
error between the true and predicted values of ipa increases,
reaching almost 0.3 A at 0.36 s, and the fault detection time
is 10 ms. ina has little impact on the fault. After a period,
the error between the true and predicted values of ina also
increases, reaching almost 0.3 A at 0.365 s. Figure 20(c)
shows that the capacitor voltages of SM1 of the upper bridge
arm and SM5 of the lower bridge arm increase, and the
residual SM capacitor voltage decreases, which is consistent
with the theoretical analysis.

Figure 20(d) shows that the improved K-means clustering
algorithm can accurately and quickly distinguish fault SMs
from healthy SMs. A large amount of data show that this
method can accurately detect and locate different open-circuit
faults, such as open-circuit faults of one SM, multiple SMs of
the same bridge arm, SMs of upper and lower bridge arms for
a single phase, and similar open-circuit faults between phases,
moreover, the total time for fault diagnosis and location is
nearly 80 ms.

VI. CONCLUSION
The MMC system has low reliability due to the large number
of SMs. The problems of detecting and locating open-circuit
faults in SMs are studied in this paper. The sampled bridge
arm current and the capacitor voltage of each SM are col-
lected by the sliding window algorithm. The QPSOmethod is
used to optimize several key parameters of the LSTM neural
network to achieve the optimal balance between diagnostic
accuracy and diagnostic speed. The proposed QPSO-LSTM
method can predict the current of a bridge arm and accurately
detect open-circuit faults in SMs, with a prediction accuracy
of 98.69%. The improved K -means clustering algorithm can
quickly locate faulty SMs, and the total time for fault diag-
nosis under various open-circuit fault conditions is close to
80 ms. In addition, accurate mathematical models are not
needed, preventing the collection of fault samples. The simu-
lation and experimental results demonstrate the effectiveness
of the proposed OCFDL scheme, which has favorable appli-
cation value for fault diagnosis of complex MMC systems.
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