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ABSTRACT In fifth-generation and beyond (5GB) wireless communication systems, Cloud Radio Access
Network (C-RAN) is recognized as a vital technology. In this endeavor, User-Centric C-RAN (UC-RAN)
promises a significant reduction in the channel training overhead because only the intra-cluster channel
state information (CSI) is necessary for successful high data rate transmission. However, the network
performance may be degraded by inter-cluster interference. Furthermore, such networks are susceptible
to the pilot contamination effect, which leads to a major restriction on overall system performance.
To tackle this issue, we introduce a channel estimation (CE) approach based on iterative variational Bayesian
inference (IVBI)- called the least square IVBI (L-IVBI) scheme. This method consists of two stages:
initialization and iteration, and is designed for the UC-RAN system. The initialization stage includes a
coarse channel estimate, further refined in the iteration stage. We follow the alternative minimization method
to estimate the desired channel in the iteration stage. Extensive simulation results for the UC-RAN system
validate the proposed algorithms.We also provide the derivation of the Bayesian Cramer-Rao bound (BCRB)
for the proposed estimator. The novel approach significantly outperforms the state-of-the-art in terms of
normalized mean square error (NMSE), spectral efficiency (SE), and bit error rate (BER).

INDEX TERMS User-centric cloud radio access network, millimeter wave, channel estimation, iterative
variational Bayesian inference, pilot contamination.

I. INTRODUCTION
The idea of a Cloud Radio Access Network (C-RAN) is
to enhance the conventional Radio Access Network (RAN)
architecture to improve Spectral Efficiency (SE), Energy
Efficiency (EE), resource utilization, and Base Station (BS)
utilization rate [1]. The C-RAN architecture consists of a
Remote Radio Head (RRH) as a lighter version of the Base
Station (BS), while the Base Band Unit (BBU) of various
BSs is centralized in a location known as the BBU pool.
The link that connects the RRHs to the BBU pool is called
the fronthaul link, which can be either wired or wireless,
depending on the traffic patterns of the specific geographic
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area and the resources available to the mobile operator [2].
The traditional cell-based network architectures are slowly
moving towards clustering-based network architectures for
5G and beyond, where clustering involves Network Centering
Cluster (NCC) [3] and User-Centric Cluster (UCC) method-
ologies. The User Equipment (UE) on the cell/cluster edge
may still face outage issues with Cell and NCC clustering
technologies. UCC technology offers seamless coverage and
uniform Signal-to-Interference-Noise-Ratio (SINR) across
all UEs, making it a popular choice. As the UCC is
dynamic in nature, cooperation among BSs is necessary to
keep it updated with respect to coverage availability at the
UE [4]. The practical implementation of Coordinated Mul-
tipoint (CoMP) makes the C-RAN architecture the optimal
choice for implementingUCC [5]. Hence, the combination of
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C-RAN and UCC technologies is called User-Centric Cloud
Radio Access Networks (UC-RAN).

The millimeter Wave (mmWave) communication is pre-
ferred in UC-RAN despite its problems, such as high
propagation path loss, blockage issues, and hardware
complexity [6]. This is because there is a large amount
of available bandwidth in the mmWave spectrum, which
provides high data rates [7]. Additionally, the short wave-
length of mmWaves allows for implementing massive
MIMO (mMIMO) technology, making it easier to place
a greater number of antennas at the UE and RRH [8].
Therefore, utilizing mmWave-based UC-RAN can be highly
beneficial, especially in indoor communications and ultra-
dense networks. However, the technology also poses its
own set of issues, such as the challenge of acquiring
Channel State Information (CSI) [9]. The RRH’s limited
capacity to store and process CSI and the highly dynamic
nature of the channel coefficients make CSI acquisition
in UC-RAN difficult. Furthermore, interference from other
UEs in the network, the large number of channels, and the
dense deployment of RRHs add to the complexity of CSI
estimation. As a result, real-time and accurate processing of
channel estimation is crucial for the successful operation of
UC-RAN [10].

The distinctive characteristics of UC-RAN, such as dis-
tributed signal processing and interference management, may
render traditional CSI acquisition methods unsuitable. The
most prevalent approach for acquiring CSI involves transmit-
ting Uplink (UL) pilot signals, where a predetermined pilot
signal is sent from the UE, and all RRHs can simultaneously
estimate the channel response from the pilots [11]. When
there is a need to estimate the channel response from
multiple transmitting antennas, orthogonal pilot signals are
generally required to differentiate the signals from the
transmitting antennas [12]. Although pilot-based methods
are popular, they are susceptible to pilot contamination,
which arises when the pilots from various UEs in the UL
interfere, leading to inaccurate CSI estimates. Even though
UC-RAN systems have a distributed structure with relatively
few antennas per RRH, making pilot contamination less
of a concern compared to conventional mMIMO systems,
it still cannot be ignored. To address this problem, several
techniques have been proposed, including Pilot Assign-
ment (PA), pilot power control, pilot decontamination, and
pilot reuse, which take into account the careful design of pilot
sequences.

A. BACKGROUND AND RELATED WORKS
In situations where more UEs are requesting access or
being served across a particular carrier than the length of
the pilot sequence, having an efficient PA policy becomes
crucial. To achieve this, UC-RAN can implement PA policies
that ensure co-pilot UEs are as far apart as possible while
identifying which UEs require a dedicated pilot to minimize
pilot contamination. A regular pilot reuse structure can be

created through a clustering-based pilot assignment proposed
in [13] to maximize the minimum distance between co-
pilot UEs. This approach significantly reduces the pilot
overhead required to keep pilot contamination at acceptable
levels. However, optimizing the PA policy in UE-scheduling
optimization problems [14], [15] becomes challenging when
the number of UEs is significantly greater than available
resources. Therefore, PA policies should rely on offline
metrics such as UE locations, considering the overhead and
computation complexity, to avoid wasting time construct-
ing them.

In [16], the authors studied how to assign pilot
sequences to control pilot contamination in a coexistence
scenario of UC-RAN and D2D communication. They
proposed two methods for pilot sequence assignment:
the greedy algorithm [17] and the graph coloring-based
algorithm [18], [19]. The greedy algorithm assigns the
same pilot sequence to UEs with the minimum data rate
to minimize the sum of the Large Scale Fading (LSF)
coefficients, but it does not guarantee optimal performance
as trying all combinations is impractical. In contrast,
the graph coloring-based method selects co-pilot UEs
individually tominimize potential interference and constructs
an interference graph based on the LSF coefficients to achieve
optimal pilot assignment among UEs. The results show a
significant improvement in per-UE throughput compared to
random pilot allocation schemes.

A graph-coloring theoretic approach is utilized to solve
the PA problem in a user-centric clustered network in [20].
Another approach is presented in [21], which suggests a
scheme based on the worst-performing UE and implements
different stopping criteria for the pilot reassignment process.
In [22], a framework is proposed to reduce pilot con-
tamination by optimizing pilot transmission power through
a min-max optimization problem. This problem aims to
minimize the largest NormalizedMean Square Error (NMSE)
of UEs and is solved using a sequential convex approximation
method.

To mitigate the issue of pilot contamination, [23] put
forward a technique based on Time of Arrival (TOA) that
estimates the TOA of the multipath channel and then elimi-
nates interfering signals from distant RRHs. This TOA-based
channel estimation relies only on the current received signal
and does not require channel statistics. Power control for
the pilots can be implemented to enhance the accuracy of
CSI estimation for reused pilots. Evaluation metrics for this
technique could include the Bit Error Rate (BER) or Mean
Square Error (MSE) of the channel [24]. Meanwhile, [25]
introduced a Downlink (DL) training method for UC-RAN
systems that improved achievable throughput significantly
by utilizing max-min fairness-based power control. However,
this study exclusively focuses on the use of mutually
orthogonal DL pilots. Constructing a PA policy that reduces
the pilot sequence length but takes considerable time to
construct adds communication overhead, similar to using a
longer pilot training period.
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A Flexible Denoising Convolutional Neural Network
(FFDNet) to address the high computational complexity
associated with CSI estimation in mmWave unified UC-RAN
is proposed in [26]. FFDNet is selected for its capacity to
minimize training and testing latency while handling various
noise levels using a single neural network [27]. To improve
the quality of channel estimation by treating the channel
matrix as an image, Convolutional Blind Denoising Network
(CBDNet) is developed to enhance the denoising perfor-
mance for noisy images encountered in real-world scenarios.
In [28], the authors propose using CBDNet-based channel
estimation for mmWave M-MIMO systems. A pilot utility-
based method for assigning orthogonal pilots in UC-RAN
using deep learning is presented in [29]. Reference [30]
proposes ELM-based CE for enhancing RIS-assisted OFDM
systems affected by insufficient CP and imperfect hardware,
utilizing LS estimation and ELM networks with hidden-
layer standardization. A joint model and data-driven receiver
scheme for Data-dependent superimposed training (DDST),
addressing symbol misidentification due to hardware imper-
fections is proposed in [31]. It combines linear receivers and
nonlinear solutions, utilizing LS estimation, ZF equalization,
and shallow neural networks (CE-Net and SD-Net) for
improved channel estimation and data detection. In [32]
authors explore the use of a Data-nulling superimposed pilot
scheme to investigate the transfer learning (TL)-based Chan-
nel Estimation (CE) inOrthogonal FrequencyDivisionMulti-
plexing (OFDM) systems, introducing a novel network called
ReCNN. The proposed scheme combines Convolutional
Neural Networks (CNN) to enhance the accuracy of Deep
Learning (DL)-based CE by integrating linear and nonlinear
solutions.

In UC-RAN, the limited capacity of RRH makes it
challenging to train Deep Neural Network (DNN)s due
to the need for a large amount of data. Therefore, there
is a need for more efficient and scalable solutions for
CSI acquisition. While Compressed Sensing (CS)-based
channel estimation can reduce the overhead and latency
associated with pilot-based channel estimation, it can be
computationally intensive at the BBU and a bottleneck
in frequently updating UC-RAN. To ensure the success
of UC-RAN, the Bayesian Inference approach is crucial
in accurately estimating the CSI using prior knowledge
about the channel. In [33], a Bayesian approach that uses
the covariance of channel vectors is employed to estimate
CSI. The covariance matrix of channel vectors provides
information about the mean and spread of multipath Angles
of Arrival (AoAs) at the RRH. This approach is then used to
develop a coordination protocol for assigning pilot sequences
to UEs.

Researchers have proposed various classical algorithms
for mmWave CE. One such algorithm is spatial grid-based
OMP [34], sensitive to dictionary and stopping criteria.
Another method, sparse Bayesian learning (SBL) [35],
automatically determines non-zero elements, promising
for joint estimation. However, deriving posterior PDF

remains challenging. Variational inference [36], [37] approx-
imates parameter posterior for mmWave MIMO channel
estimation. The authors of [36] addressed the issue of
detecting user activity and estimating channels within the
fronthaul link of C-RANs. They presented Variational
Bayesian Inference (VBI) that uses the sparsity of both user
activity and signals spatial distribution. By employing a
two-layer prior student’s-t distribution graphical model, the
proposed VBI algorithm mitigates bias. The VBI algorithm
is widely used for estimating sparse vectors [38], and
since the mmWave channel is inherently sparse, it may be
employed for channel matrix estimation. However, VBI-
based CSI estimation has not been implemented in a pilot-
contaminated mmWave-based UC-RAN system. Inspired by
the earlier discourse, we put forward a least square iterative
variational Bayesian Inference (L-IVBI) channel estimation
approach aimed at resolving the challenge of channel esti-
mation in pilot-contaminated mmWave UC-RAN systems.
This method capitalizes on the sparse nature of mmWave
channels.

B. CONTRIBUTIONS
• The mathematical framework for user-centric pilot
contaminated UC-RAN system over mmWave channel
is designed.

• We introduce a Bayesian channel estimation algorithm
called L-IVBI, designed specifically for the pilot-
contaminated UC-RAN system. This algorithm appro-
aches channel estimation as a sparse Bayesian problem,
aiming to estimate both the desired and the integrated
interfering channels from the superimposed signal using
an alternate minimization technique. By computing
posterior distributions for all hidden variables, our
approach significantly enhances the accuracy of channel
estimation compared to state-of-the-art methods.

• It eliminates the substantial overhead of estimating inter-
fering clusters’ large-scale fading coefficients. From
the received symbols, an estimate of the sum of the
large-scale fading coefficients of the interfering UEs is
calculated.

• Additionally, we delve into the procedure of design-
ing hybrid precoders and combiners based on the
Orthogonal Matching Pursuit (OMP) algorithm for data
transmission using the estimated channels.

• We derive a Bayesian Cramér-Rao Bound (BCRB) on
the NMSE of the proposed estimator for the UC-RAN
system. We observe through simulations that even at
lower SNRs, our technique approaches the BCRB.

The remainder of this paper is organized as follows. Section II
represents the system model of the user-centric C-RAN.
In section III, the proposed L-IVBI channel estimation
method is presented. Section IV presents the data trans-
mission process utilizing designed hybrid precoding and
combining followed by SE calculation. Section V provides
the simulation results analysis, followed by the conclusion of
the paper in section VI.
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Notations: Matrix, vector, and scalar are denoted by A,
a and a respectively. The diagonal elements of the matrix
A are represented by diag[A]. Vectorization of matrix A
is given as vec(A) and the inverse vectorization is denoted
as vec−1(a). The symbols ∥·∥F , (·)H , (·)T , ⊗, ⟨·⟩, and
∥·∥2 denote the Frobenius norm, Hermitian, transpose,
Kronecker product, the expected value of the argument, and
l2 norm respectively.

II. SYSTEM MODEL
We consider a UC-RAN system with K ′ user equipment
(UE) and a group of I ′ spatially distributed RRHs, where
each RRH and UE are equipped with NR and NT antennas,
respectively. As illustrated in Fig. 1, the user-centric cluster
technique is considered, where nearby I ∈ I ′ RRHs serve
each UE exclusively since the signals received by the UE
from distant RRHs are weak in nature due to the severe path
loss. Furthermore, each RRH is assumed to be connected to
the BBU pool via wireless fronthaul links. We consider an
uplink (UL) transmission session comprising K ∈ K ′ UEs
with the same pilot sequences. The CSI of the target cluster
becomes contaminated by the channels of K − 1 interfering
clusters due to pilot contamination caused by the unity pilot
reuse factor. For simple system formulation, we assume
cluster-1 as the desired/target cluster and the remaining K −

1 clusters as interfering clusters. Furthermore, we assume that
there is no cooperation among clusters.

FIGURE 1. User-centric C-RAN Schematic diagram.

The transmission packet structure shown in Fig. 2 com-
prises a training frame consisting of pilots for CE followed
by a data frame. First, each RRH uses the training frame

FIGURE 2. Packet transmission format.

transmitted by the UEs to perform channel estimation using
the proposed methodologies. It is assumed that during
this phase, there is no beamformation. Following CE, the
corresponding CSI is transmitted through control channels
to the UEs. Next, the data transmission phase starts that
involves the hybrid analog and digital (HAD) structure for
beamformation as shown in Fig. 3. Hence, the precoders and
combiners are designed at each node utilizing the estimated
CSI. NS is the number of data streams, NT and MT are the
number of transmitting antennas and RF chains, MR and
NR are the number of receiving RF chain and antennas
respectively. For the data transmission, utilizing the estimated
CSI, each node obtains its respective hybrid analog or radio
frequency (RF) and digital or baseband (BB) precoders and
combiners.

Let sk (n) denote the transmitted signal vector from k-th
UE at time slot n. We assume the channel exhibits quasi-
static behavior, meaning it remains constant throughout each
transmission frame and varies independently across different
frames. Each UE employs both BB and RF precoders to
encode its data. Consequently, after applying the BB precoder
matrix WBBTk ∈ CMT×NS and the RF precoder matrix
WRFTk ∈ CNT×MT , the transmitted signal at the n-th time
instance from the user nodeUEk can be expressed as follows:

xk (n) =
√
pkWRFTkWBBTk sk (n), (1)

where, pk and sk (n) ∈ CNS×1 denotes the transmitted power
and data of nodeUEk respectively. The signal vector, denoted
by y1,i(n) ∈ CNR×1, received at the i-th RRH of the targeted
cluster i.e. UE1 is given as,

y1,i(n) =

K∑
k=1

Hk,ixk (n) + w1,i(n)

= H1,ix1(n)︸ ︷︷ ︸
target cluster

+

K∑
k=2

Hk,ixk (n)︸ ︷︷ ︸
interfering clusters

+w1,i(n), (2)

where, w1,i(n) ∈ CNR×1
∼ CN

(
0, σ 2

wi

)
is the complex

additive white Gaussian noise (AWGN) vector at i-th RRH
of cluster-1. Hk,i ∈ CNR×NT is the mmWave channel matrix
between the k-th UE and i-th RRH defined as,

Hi,k =

√
NTNR
Ncl

β
1/2
k,i

Ncl∑
l=1

αlaR (φl) aHT (θl) , (3)

where Ncl signifies the number of scatterers within the
corresponding channel. βk,i represents the large-scale fading
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FIGURE 3. Illustration of hybrid precoding structure between UE and RRH.

coefficient between the k-th User Equipment (UE) and the
i-th Remote Radio Head (RRH). The complex channel gain of
the l-th path is denoted by αl ∈ C. Additionally, θl ∈ [0, 2π )
and φl ∈ [0, 2π ) correspond to the Angle of Departure (AoD)
and Angle of Arrival (AoA) of the l-th path, respectively. The
steering vectors for the uniform linear receive and transmit
array antennas, aR (φl) ∈ CNR×1 and aT (θl) ∈ CNT×1, are
defined as follows:

aR (φl)

=
1

√
NR

[
1, e−j

2π
λ
dRcosφl , . . . , e−j

2π
λ (NR−1)dRcosφl

]T
,

aT (θl)

=
1

√
NT

[
1, e−j

2π
λ
dT cos θl , . . . , e−j

2π
λ (NT−1)dT cos θl

]T
, (4)

where λ, dT , and dR represent the operating wavelength,
transmit and receive antenna spacing, respectively.Hk,i in (3)
can be written in a more compact way as [34],

Hk,i = ÃRGvk,iÃ
H
T , (5)

where, ÃR ∈ CNR×Ncl and ÃT ∈ CNT×Ncl consist of
the array steering vectors aR (φl) and aT (θl) respectively
and Gvk,i = diag({C}l) ∈ CNcl×Ncl denotes a diagonal
matrix with non-zero complex entries, where {C}l =

β
1/2
k,i αl . The sparse mmWave channel model is developed

by partitioning of the AoD and AoA spaces spanning the
interval [0, π) with grids 2R and 8R, consisting GR,GT ≥

max (NR,NT ) angles, respectively. The quantized angles{
θg ∈ 2R, ∀1 ≤ g ≤ GT

}
and

{
φg ∈ 8R, ∀1 ≤ g ≤ GR

}
are

selected from the following conditions [34],

cos(φg) =
2
GR

(g− 1) − 1, ∀1 ≤ g ≤ GR

cos(θg) =
2
GT

(g− 1) − 1, ∀1 ≤ g ≤ GT . (6)

Therefore, the beamspace representation of the mmWave
channel Hk,i is given as,

Hk,i = ARGk,iAH
T , (7)

where,AR ∈ CNR×GR andAT ∈ CNT×GT contain the receiver
and transmitter array response vectors calculated on GT for
the AoD and GR for the AoA. Gk,i ∈ CGR×GT is a sparse
matrix equivalent to the channel matrix Hk,i.

At the i-th RRH of cluster-1, the received signal y1,i(n)
from (2) is then processed by RF and BB combiners WRFRk
andWBBRk given as,

y̆1,i (n) = WBBRkWRFRky1,i(n). (8)

On reception of the respective signals, each RRH commu-
nicates the same to the BBU pool via wireless fronthaul link.

It is assumed that each RRH and BBU pool follows an
analog beamforming structure. Hence, the i-th RRH applies
precoder i.e., Vi ∈ CNT×NS to the received signal y̆1,i (n).
Therefore, the transmitted signal from i-th RRH is given as,

xi(n) = Viy̆1,i(n). (9)

The signal vector, denoted by yBBU (n) ∈ CNR×1, received at
the BBU after processed by the combiner Ui ∈ CNS×NR is
given as,

yBBU (n) =

I∑
i=1

Ui

(
HBBUixi(n) + wBBU (n)

)
, (10)

where, wBBU (n) ∈ CNR×1
∼ CN

(
0, σ 2

wi

)
is the complex

additive white Gaussian noise (AWGN) vector at the BBU.
HBBUi ∈ CNR×NT is the mmWave channel matrix between
the BBU and i-th RRH. The CSI between each RRH and BBU
pool is assumed to be perfectly known. Therefore, the signal
received at the BBU pool after perfect channel equalization
is given as

y̆BBU (n) =

I∑
i=1

y̆1,i(n). (11)

In the following section III, we propose a CE scheme,
namely L-IVBI, to estimate the desired channel for the
pilot contaminated UC-RAN system discussed in the
algorithm 1.
On completion of CE at each RRH, the corresponding

precoder and combiner of the estimated channel following
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algorithms 2 and 3 of section IV are generated, and the same
are communicated to UE via the control channel to initiate
the data transmission phase.

III. L-IVBI BASED CHANNEL ESTIMATION
This section presents an L-IVBI method for estimating the
desired and the sum of the interfering clusters’ channel
coefficients for the UC-RAN system. The channel gains
estimation is performed in the time domain. The proposed
method employs an alternative minimization technique to
estimate the channel coefficients iteratively. The number
of iterations is maintained at a constant value, specifically
the minimum number necessary for convergence. Our
proposed estimation method comprises two stages: a) Stage-I
(Initialization stage)- In this stage, we obtain the coarse
estimate of the desired channel employing the least square
estimation (LSE) scheme; b) Stage-II (Iteration stage)- Here,
the initial CSI estimate of stage-I is iteratively updated using
the IVBI technique.

We assume that each UE transmits a Np length training
frame. Let xpk represent the 1 × Np transmit pilot vector
from k-th UE. The unity pilot reuse factor gives rise to pilot
contamination i.e., xpk = xp. Therefore, the received pilot at
the i-th RRH of cluster-1 after stacking Np measurements is
given as,

Yp
1,i =

K∑
k=1

Hk,iXp
+ W1,i

= H1,iXp
+

K∑
k=2

Hk,iXp
+ W1,i. (12)

After vectorization of (12), the received pilot is repre-
sented as,

yp1,i =

K∑
k=1

8gk,i + wk,i

= 8g1,i︸ ︷︷ ︸
target cluster

+ 8gint︸ ︷︷ ︸
interfering clusters

+wk,i. (13)

In (13), 8 = ((Xp)T ⊗ INR ) × (conj(AT ) ⊗ AR) , gint =∑K
k=2 gk,i and gk,i = vec (β1/2

k,i Gk,i).
We propose an L-IVBI-based method for estimating the

desired and interfering channels. Hence, RRH employs
the estimation of the channels g1,i and gint from the
received pilot signal using the IVBI method mentioned
in Algorithm 1.

A. INITIALIZATION STAGE
We employ LSE based estimation scheme to obtain the initial
estimate (i.e. m = 0) of channel g1,i (i.e., ĝ

[0]
1,i ) from the

received pilot yp1,i given in (13). Therefore the initial estimate
ĝ[0]1,i is as follows

ĝ[0]1,i = (8H8)−18Hyp1,i. (14)

FIGURE 4. Graphical model for VBI approach.

B. ITERATION STAGE
On completion of the coarse estimation ĝ[0]1,i , an itera-
tive algorithm is proposed to fine-tune the estimate of
g1,i employing IVBI method. Eliminating the estimated
ĝ[0]1,i from the received signal (13), the resultant signal,
y̆[m]1,i , is expressed as,

y̆[m]1,i = 8g[m]int + wk,i, (15)

where m is the m-th iteration stage. Now, with the knowledge
of y̆[m]1,i and 8, estimation of g[m]int (i.e. ĝ[m]int ) is carried out
following the steps 4 to 15 of Algorithm 1. To promote
sparsity, we utilize a two-layer hierarchical Gaussian-inverse
Gamma prior model to estimate the value of gint . The VBI
graphical model is presented in Fig. 4 for the given signal
model in (15). We assume that in the first layer, the non-zero
values of channel vector gint , i.e. (gintn | γn) ∈ n = 1, ..,NB,
are independent and identically distributed (i.i.d) and follow
complex Gaussian distribution with zero mean in the first
layer simplifies calculations and offers flexibility. Hence,

p(gint | γ ) =

NB∏
n=1

N (gintn | 0, γ −1
n )

=
1

(2π )NB/2
∣∣∣Ã∣∣∣−1/2 exp

(
−
1
2
gHint Ãgint

)
, (16)

where, the channel sparsity is denoted by Ã = diag(γ ).
The set of non-negative hyperparameters that regulates the
sparsity of gint is represented as γ = [γ1, γ2, . . . , γNB ]

T ,
where NB = GR × GT . In the second layer, the Gamma
distribution is chosen to serve as the hyperprior for the
hyperparameter γ , i.e., p (γn) = 0 (γn | a, b), with a and
b being small constant values employed to ensure that
these priors remain non-informative with respect to γ . It is
assumed that in (13), wk,i ∈ N (0, δ−1). Therefore, the
hyper-prior for the hyper-parameter δ is given by p (δ) =

0 (δ | c, d). The parameters c, d are small constant values to
make the prior non-informative. The set of the unobserved
variables {gint , γ , δ} is represented by {z}. The log-marginal
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probability of y1,i, i.e. ln p(y1,i) is decomposed into two terms
since the direct computation of p(z|y1,i) is difficult given as,

ln p(y1,i) = L(q) + KL(q||p). (17)

In (17),

L(q) = L(qnqn) =

∫
q(z) ln(

p(y1,i, z)
q(z)

)dz,

KL(q||p) = −

∫
q(z) ln(

p(z|y1,i)
q(z)

)dz, (18)

where qn =
∏

j̸=n qj and q(z) is any probability density
function (pdf) close to p(z|y1,i). Since KL(q||p) ≥ 0,
we find the closest analytical representation of the posterior
distribution p(z|y1,i) by minimizing the KL divergence. The
process of minimization of the KL divergence is essentially
equivalent to maximizing L(q), as the natural logarithm of
p(y1,i) depends solely on y1,i. Therefore, we approximate
p(z|y1,i) by maximizing L(q) while considering the distribu-
tion q(z), i.e., q(gint ), q(γ ) and q(δ). Therefore, the Bayesian
inference is presented as follows.

1) q(gint ):

q(gint ) = N (gint | µ, 6), (19)

where, 6 =
(
⟨δ⟩ 8H8 +

〈
Ã

〉 )−1 and µ =

⟨δ⟩ 68Hy1,i.
2) q(γ ): The posterior distribution of q(γ ) is given as,

q(γ ) =

NB∏
n=1

0(γn | ã, b̃n), (20)

where, b̃n = b+
1
2

〈
g1n

〉2 and ã = a+
1
2 .

3) q(δ): The posterior distribution of q(δ) is given as,

q(δ) = 0(δ | c̃, d̃), (21)

where, d̃ = d +
1
2

〈∥∥y1,i − 8gint
∥∥2〉2 and c̃ = c+

Np
2 .

The approximate posterior distributions in (19), (20) and (21)
are updated iteratively until convergence. Once convergence
is achieved, similar steps are followed to evaluate the desired
ĝ[m]1,i using the known ĝ[m]int .
On completion of the iteration stage, the estimated channel

vector ĝ[m+1]
1,i is given as,

ˆg1,i
[m+1]

= µ = ⟨δ⟩ 68Hy1,i. (22)

Then, the estimated channel Ĥ1,i is given as,

Ĥ1,i = ARvec−1(ĝ[m+1]
1,i )AH

T . (23)

The proposed L-IVBI method is discussed in Algorithm 1.
To obtain the estimate of channel, ĝ[0]1,i is initialized following
steps 1 to 3. Then steps 5 and 15 are followed for estimating
channel ĝ[m]int . Steps 16 and 18 are followed to estimate the
channel, ĝ[m]1,i utilizing the estimate ĝ[m]int . The estimate of the
desired channel is updated in step 20.

Algorithm 1 Proposed L-IVBI Algorithm for Pilot
Contaminated UC-RAN Systems
Input: Observation y1,i, 8,AR,AT and tolerance, τ
Output: Estimated channels, ĝ1,i and ĝint

1 Initialization Stage:
2 y1,i = 8g1,i + 8gint + w1,i from (13)
3 Obtain the coarse estimate of ĝ[0]1,i using y1,i and 8 as,

ĝ[0]1,i = (8H8)−18Hy1,i
4 Iteration Stage:
5 for iteration m = 1, 2, .. do
6 Calculate y̆1,i = y1,i − 8ĝ[m]1,i
7 Initialize: j = 0 and a = b = c = d = 10−6

8 Compute the matrix
8 = ((Xp)T ⊗ INR )(A

∗
T ⊗ AR)

9 while

∥∥∥ĝ[j]int−ĝ[j−1]
int

∥∥∥
2∥∥∥ĝ[j−1]

int

∥∥∥
2

< τ or j ≤ jmax do

10 j = j+ 1
11 Update the hyper-parameter δ following (21)
12 Update the hyper-parameter γ following (20)
13 Compute ĝ[j]int using (22)
14 end
15 ĝ[m]int = ĝ[j]int
16 Calculate updated received pilot,

y̆1,i = y1,i − 8ĝ[m]int
17 Estimate ĝ[m]1,i using y̆1,i and 8 following similar

steps 5 to 14 of the algorithm
18 Update ĝ[m+1]

1,i = ĝ[m]1,i and ĝ
[m+1]
int = ĝ[m]int

19 end
20 Ĥ1,i = ARvec−1(ĝ[m+1]

1,i )AH
T

IV. HYBRID BEAMFORMING-BASED DATA
TRANSMISSION
In Section III, we introduce a channel estimation algorithm
that leverages the sparse characteristics of the channel.Within
this section, we delve into the development of a hybrid
beamforming technique essential for the data transmission
process, making use of the previously discussed channel
estimate Ĥ1,i in Section III.
For designing hybrid precoders and combiners in the UC-

RAN system, we adopt the OMP-based algorithm [39], which
is detailed in Algorithms 2 and 3. These algorithms help
us derive both the digital (BB) and analog (RF) precoders
by maximizing mutual information, employing the optimal
unconstrained precoderWopt as described in Algorithm 2.

To initiate this process, we begin by performing singular
value decomposition (SVD) on the estimated channel matrix,
represented as Ĥ1,i = USV∗. Here, U is an NR× rank(Ĥ1,i)
unitary matrix, S is a rank(Ĥ1,i) × rank(Ĥ1,i) diagonal
matrix, containing singular values arranged in decreasing
order, and V is a NT× rank(Ĥ1,i) unitary matrix. We then
obtain Wopt as V:;1:NS . In steps 4-6, we select columns from
the RF precoder by considering the transmit array response
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Algorithm 2 OMP-Based Hybrid Precoder
Generation
Input:Wopt ,AT ,MT
Output:WBBT ,WRFT

1 WRFT = Empty matrix
2 WresT = Wopt
3 for n ≤ MT do
4 9 = AHT WresT
5 l = arg maxl=1,....,Ncl (99H )l,l
6 WRFT = [WRFT | AT (:,l)]
7 WBBT = (WH

RFTWRFT )−1WH
RFTWopt

8 WresT =
Wopt−WRFTWBBT

∥Wopt−WRFTWBBT∥F
9 end
10 WBBT =

√
NS

WBBT
∥WRFTWBBT ∥F

Algorithm 3 OMP-Based Hybrid Combiner
Generation
Input:WMMSE ,AR, y1,i,MR
Output:WRFR,WBBR

1 WRFR = Empty matrix
2 WresR = WMMSE
3 for n ≤ MR do
4 9 = AHR E(y1,iyH1,i)WresR

5 l = arg maxl=1,....,Ncl (99H )l,l
6 WRFR = [WRFR | AR(:,l)]
7 WBBR =

(WH
RFRE(y1,iyH1.i)WRFR)−1WH

RFRE(y1,iyH1,i)WMMSE

8 WresR =
WMMSE−WRFRWBBR

∥WMMSE−WRFRWBBR∥F
9 end

matrix AT from Algorithm 2. Finally, in step 7, we compute
the unnormalized transmit baseband (BB) precoder as
WBBT = (WH

RFTWRFT )−1WH
RFTWopt . The residue, WresT =

Wopt−WRFTWBBT

∥Wopt−WRFTWBBT∥F
is calculated following steps 8. The BB

precoder is normalized in step 10.
Subsequently, we proceed with the design of hybrid com-

biners as outlined in Algorithm 3. These hybrid combiners are
formulated by minimization of the mean square error (MSE)
between the processed received and transmitted symbols.
Initially, we obtain the optimal unconstrained matrixWMMSE
that minimizes the MSE between the processed received
and transmitted symbols. Similar to the precoder design,
we select columns from the RF combiner by considering the
columns of AR, following steps 4-6 of Algorithm 3. The BB
combiner, denoted asWBBR, is computed in step 7 as follows:
WBBR = (WH

RFRE(y1,iyH1,i)WRFR)−1WH
RFRE(y1,iyH1,i)WMMSE .

Finally, in step 8 of the algorithm, we determine the residue
WresR using the expression: WMMSE−WRFRWBBR

|WMMSE−WRFRWBBR|F
.

Upon calculating the precoders and combiners, the data
transmission process is initiated following the hybrid beam-
forming architecture.

The signal-to-interference-and-noise ratio (SINR) of the
signal received at the BBU is calculated from (10) as follows,

γ BBU =

∑I
i=1 �i,k�

H
i,k∑I

i=1(
∑K

j=1,j̸=k �i,j�
H
i,j + σ 2

wiW
H
RWR)

, (24)

where, �i,k = WH
BBRkW

H
RFRk Ĥi,kWRFTkWBBTk and WR =

WRFRkWBBRk .
Thus, the spectral efficiency (SE) for the proposed system

at the BBU pool discussed in V-B is given by,

R = log2
∣∣I + γ BBU

∣∣ . (25)

A. BAYESIAN CRAMÉR RAO BOUND
In this section, we determine the BCRB for the UC-RAN
system. For the for the channel matrix, g, the Bayesian Fisher
Information Matrix (FIM), J, is expressed as,

J = J ˜yk,i|gk,i + Jgk,i , (26)

where,

J ˜yk,i|gk,i = −E

[
∂2 ln p( ˜yk,i | gk,i)

∂g2k,i

]
, (27)

and

Jgk,i =

(
∂ ln p(gk,i)

∂gk,i

)H (
∂ ln p(gk,i)

∂gk,i

)
. (28)

In (27), ln p( ˜yk,i | g) denotes the log-likelihood of the
measurement vector expressed as,

ln p( ˜yk,i | gk,i)

= constant − ( ˜yk,i − 8gk,i)HC−1( ˜yk,i − 8gk,i), (29)

with C = σ 2
wk,iINR . Hence, we can obtain J ˜yk,i|gk,i =

8HC−18. The actual prior distribution p(gk,i; a, b) for the
sparse channel matrix gk,i simplifies to the following:

p(gk,i; a, b) =

∫
p(gk,i | γ )p(γ ; a, b)dγ

=

∫ NB∏
n=1

N (gk,in | 0, γ −1
n )0(γ n | a, b)dγ n

=

NB∏
n=1

St(gk,in | ξ, λ, ς ), (30)

where, St(gk,in | ξ, λ, ς ) is a Student-t distribution with λ =
a
b , ξ = 0, ς = 2a and is expressed as,

St(gk,in | ξ, λ, ς ) =
0((ς + 1)/2)

0(ς/2)
(

λ

πς
)1/2(

4

ς
)−

ς+1
2 ,

(31)

where, 4 = ς + λ(gk,in − ξ )2. The prior distribution of gk,in
is obtained as,

p(gk,in ) = St(gk,in | ξ, λ, ς ). (32)
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The log-likelihood function of p(gk,in ) is given as,

L(gk,in ) = ln
ς − 1
ς − 2

−
1
2
lnπς +

ς + 1
2

ln ς

+
1
2
ln λ −

ς + 1
2

ln4. (33)

The first-order derivative of L(gk,in ) is expressed as,

U (gk,in ) =

[
−
(ς + 1)gk,inλ

4
,
1
2λ

−
(ς + 1)g2k,in

24
,

1
2
ln(

ς

4
) +

λg2k,in − 1

24
−

1
(ς − 1)(ς − 2)

]H
.

(34)

Jgk,i is given as,

Jgk,i = U (gk,i)HU (gk,i), (35)

with U (gk,i) =
∑N

n=1U (gk,in ). Therefore, the BCRB for
channel gk,i is hence given as,

BCRB(gk,i) = Tr(J−1). (36)

B. COMPLEXITY ANALYSIS
The computational complexity of an algorithm is determined
by counting the total number of complex additions and
multiplications involved. The generalized complexity of the
proposed estimator is given as,

C = O(Cini + Citer ), (37)

where O(Cini) is the complexity of the initialization stage.
For L-IVBI, the O(Cini) = O(CiniL−IVBI ) is given by
2NpGRG2

T . The second term O(Citer ) corresponds to the
complexity of the iteration stage. Therefore,O(Citer ) form-th
iteration for the method involve calculation of the covariance
matrix 6 ∈ CGRGT×GRGT in (19). Therefore, O(Citer ) =

G3
RG

3
T denotes the computational complexity associated with

the iteration stage. The computational complexity associated
with estimating channel gains using CoSaMP is expressed
as O(GTGRNRNp). Considering GR = GT = 16,
Np = 100, the O(Cini) = O(8, 19, 200) and O(Citer ) =

O(1, 67, 77, 216). Therefore, the computational complexity
for m-th iteration of L-IVBI is given as O(1, 67, 77, 216)
whereas the complexity of CoSaMP is O(GTGRNRNp) =

O(4, 09, 600). Hence, the proposed estimation method has a
higher computational complexity but improves performance
in NMSE, SE, and BER.

V. RESULTS AND DISCUSSIONS
In this section, we provide simulation results that evaluate
the effectiveness of the proposed channel estimator within
the context of the UC-RAN system. We assume that each
RRH within the UC-RAN system is equipped with a variable
number of receiving antennas, denoted as NR, and taking
values within the range (16, 64, 128). Additionally, each UE
is considered to have a single transmitting antenna, denoted as
NT = 1. Parameters NS = 1,MT = 1, andMR = 4 represent

the number of data streams, transmit RF chains, and receive
RF chains, respectively.

It’s important to mention that we assume a particular
antenna array setup in which the separation between neigh-
boring antenna elements is precisely half of the wavelength
associated with the operational frequency. The mmWave
channel is generated using a model with Ncl = 4 scatterers,
and we assume an ideal mmWave channel with no grid
mismatch. For the VBI process, we configure the maximum
number of iterations as jmax = 100 and set the stopping
tolerance τ to 10−10.

We distribute equal power across the parallel streams, and
the data symbols are modulated using Quadrature Phase Shift
Keying (QPSK). The pilot signal employed is the Zadoff-
Chu (ZC) sequence. For a comprehensive overview of the
simulation parameters, please refer to Table 1.

TABLE 1. Simulation parameters.

The simulation outcomes are averaged across 1000Monte-
Carlo iterations to ensure a reliable and statistically robust
assessment.

The NMSE is expressed as

NMSE = E


∥∥∥Ĥk,i − Hk,i

∥∥∥2
F∥∥Hk,i

∥∥2
F

 , (38)

where, Hk,i and Ĥk,i denote the true and estimated channels
respectively. The SNR at the transmitter side is defined
as pk

σ 2
wi
. We employ state-of-the-art estimator compressive

sampling matching pursuit (CoSaMP) [40] and minimum
mean squared error (MMSE) [41] for comparison, where the
results are regenerated as per the systemmodel. Additionally,
we demonstrate the SE and BER performance of the
UC-RAN system. The algorithm’s performance is assessed
over various receive antenna size configurations and pilot
lengths. We refer the system with NR ∈ (16, 64, 128) and
NT = 1 as 16 × 1, 64 × 1, 128 × 1 respectively for the
simulation.
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For comparison, we propose anothermethod calledV-IVBI
in which the initial estimate of the desired channel H1,i is
obtained by employing the VBI scheme. In this scheme,
it is assumed that the first received frame has no/negligible
interference from the other clusters, i.e., the i-th RRH
receives signal only from the target cluster, i.e., cluster-1.
Therefore, the received pilot at the i-th RRH after stacking
Np measurements of the first frame is given as,

YV1,i = H1,iX
p
1 + W1,i, (39)

where, Xp
1 represents the NT × Np transmit pilot vector

from UE1. After vectorization of (39), the received pilot is
represented as,

yV1,i = 8g1,i + w1,i. (40)

From (40), g1,i is estimated following the VBI method
proposed in section III-B. On obtaining the coarse estimate
in the initialization stage, similar iteration stages section III-B
are being followed for fine channel estimation.

A. NMSE PERFORMANCE AT RRH
First, we examine the NMSE performance versus the pilot
length across different receiver antenna configurations, where
NR takes values from the set 16, 64, 128 at signal-to-noise
ratios (SNR) of 20 dB and 0 dB. This analysis is presented
in Figure 5. There is a significant improvement in NMSE
performance for the proposed L-IVBI method from 10−2 to
10−4 when Np increases from 20 to 100. Therefore, a longer
pilot length achieves higher accuracy in NMSE. Moreover,
for both SNRs, there is a negligible improvement in NMSE
after Np = 100. A similar inference can be drawn for the
system with a higher NR. Furthermore, the NMSE variation
over Np for the V-IVBI method is also depicted in Fig. 5
for 20 dB SNR for the three varying numbers of receiver
antennas. A similar characteristic is also seen in the L-IVBI
method. Moreover, the NMSE performance for varying pilot
length in the case of L-IVBI is better than that of the
V-IVBI method since L-IVBI can achieve NMSE of 10−4

with Np = 80 whereas V-IVBI requires Np = 120 to
accomplish the similar NMSE. Therefore, Np = 100 is being
considered henceforth as the pilot length unless mentioned
otherwise. For the purpose of comparison, NMSE versus
Np for 128 × 1 at SNR of 20 dB is plotted with MMSE
and CoSaMP estimator. For CoSaMP, NMSE saturates in the
range of 10−2 withNp ≥ 100. TheMMSE estimator performs
poorly in estimating the channel gains since it attains NMSE
of 0.07 even with the increase in the pilot length. Hence, the
proposed L-IVBI scheme outperforms V-IVBI and the state-
of-the-art CoSaMP methods.

The iterative phase of Algorithm 1 consists of m iterations.
Therefore, it is crucial to assess the convergence of the
algorithm that we have proposed. The convergence analysis
of 16 × 1 configuration is presented in Fig. 6 for SNR
values of 10 and 20 dB. The improvement in NMSE is
negligible form ≥ 3. Hence, the estimated channel converges

FIGURE 5. NMSE vs. length of pilot performance.

FIGURE 6. Iteration convergence analysis of the proposed algorithm for
16 × 1 configuration.

to its true value within the third iteration, i.e. m = 3.
This further holds true for all the SNR values. Furthermore,
m = 0 represents the NMSE performance of the initialization
stage. The Initialization stage acquires a coarse channel
estimate corresponding to the proposed scheme without the
Iterative stage (i.e.,m=0). Comparatively, the Iterative stage
notably improves performance by iteratively refining the
channel estimate for finer results for both cases. Therefore,
m = 3 is considered for the rest of the paper.
The next metric of performance analysis is NMSE

variation over the number of antennas in RRH, i.e., NR
given in Fig. 7 at 0 dB,10 dB, and 20 dB SNR. As shown
in the figure, there is a significant improvement of NMSE
when NR is increased from 8 to 64 for both the proposed
method of channel estimation. However, for NR ≥ 64, there
is a negligible improvement of NMSE over all the SNRs.
The proposed L-IVBI estimation scheme can attain higher
NMSE over the varying number of RRH antennas than the
V-IVBI method. The state-of-the-art MMSE estimator attains
NMSE of 0.07 and doesn’t improve with the increase in the
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FIGURE 7. NMSE vs NR performance for various SNR values.

pilot length. The CoSaMP estimator depicts a similar nature
of NMSE performance as that of the proposed estimator for
varying antenna sizes. However, it can attain NMSE of 10−2

at SNR of 20 dB. Additionally, the BCRB performance for
SNR 20 dB is depicted, where it can be observed that the
L-IVBI method attains the BCRB.

In Fig. 8, the performance of NMSE versus SNR for
different antenna sizes is depicted. The pilot length Np is set
at 100. The L-IVBI method can attain NMSE of 4.6 × 10−5

at 20 dB for 16 × 1. Further, NMSE performance improves
significantly with the increase in the number of transmit
and receive antennas from 16 × 1 to 128 × 1. Specifically,
for the L-IVBI method with 16 × 1 configuration, NMSE
of 10−4 is obtained at SNR of 16 dB, whereas similar
NMSE is obtained at SNR of 7.5 dB by 128 × 1. Hence,
there is an 8.5 dB SNR improvement with the increase in
the number of RRH antennas. Likewise, for the V-IVBI
scheme, the improvement in NMSE is seen with the increase
in SNR and the increment in the size of RRH antennas.
Additionally, L-IVBI, for 128 × 1, can achieve NMSE 10−5

at 17.5 dB, whereas V-IVBI requires about 3.5 dB more SNR
to attain similar NMSE. The proposed L-IVBI CE method
closely approaches the BCRB performance of all antenna
configurations. Furthermore, the NMSE comparison for the
Initialization and Iterative stages of the L-IVBI algorithm
is shown for 16 × 1 configuration. At 20 dB, the NMSE
achieved by the initialization phase is 0.0031, whereas the
iterative phase of L-IVBI improves the NMSE to 4.56×10−5.
It is evident that the Iterative stage significantly enhances
performance by iteratively refining the channel estimate to
provide finer results.

For comparison, we also employ traditional CoSaMP-based
algorithms to estimate the channel gains within our
simulation setup. We can observe that L-IVBI, for 16 × 1,
attains NMSE of 4.4 × 10−4 at 10 dB whereas, V-IVBI
and CoSaMP can achieve NMSE of nearly 1.5 × 10−3 and
1.5 × 10−2, respectively. However, the MMSE estimator
attains NMSE of 0.08 at 20 dB SNR. Thus, the proposed
method outperforms the conventional MMSE, CoSaMP,

FIGURE 8. NMSE vs. SNR performance.

and V-IVBI channel estimators. Additionally, following
section IV-A, the performance of the proposed estimation
techniques is being evaluated compared to the BCRB. It is
seen that the proposed L-IVBI approaches the BCRB more
closely at higher SNR.

FIGURE 9. NMSE vs. SNR performance.

The relationship between the number of UEs (K ) and
NMSE for different numbers of receiver antennas (NR) is
shown in Fig. 10. It is observed that with the increase in the
number of UEs, the NMSE performance degrades. This is
because the interference also increases with the number of
UEs. For larger numbers of UEs, the NMSE saturates due to
an increase in interference level.

B. SPECTRAL EFFICIENCY PERFORMANCE AT BBU
The next performance measure is the SE attained at the BBU
by the pilot-contaminated UC-RAN system, considering the
L-IVBI channel estimation approach. The SE vs. SNR for
varying NR configuration is plotted in Fig.11. With the
increase in SNR, SE improvement can be observed. A larger
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FIGURE 10. NMSE vs. Number of UEs.

FIGURE 11. SE vs SNR for K = 2, I = 2.

antenna size induces more independent paths, thus improving
the system’s SE. As seen in Fig. 11, the SE of 6 bps/Hz is
achieved for 128 × 1 at 20 dB SNR whereas 64 × 1 and
16×1 attains SE of 5.52 bps/Hz and 3.1 bps/Hz respectively.
However, the increment in SE performance saturates with the
increase in the antenna size.

The SE vs. the number of antennas at RRH is plotted
in Fig. 12 for varying SNR. It can be observed that there
is a significant improvement in the SE from 1.8 bps/Hz to
6 bps/Hz when NR is increased from 8 to 128 at 20 dB
SNR. Even after a further increase in antenna numbers, the
SE saturates beyond NR = 128. Similar behavior can be
observed over all the SNR conditions.

C. BER PERFORMANCE AT BBU
The BER performance of the system at BBU with L-IVBI
estimation is being examined as shown in Fig.13 for
16 × 1 configuration. For this case study, it has been
considered that I numbers of RRHs are present in the desired
UEk cluster, which may or may not be contaminated by
neighboring clusters. The BER measurement is performed

FIGURE 12. SE vs number of RRH antennas NR at varying SNR.

FIGURE 13. BER vs. SNR for varying numbers of contaminated RRHs for
16 × 1 configuration.

at BBU, connected to the RRHs via a wireless link. The
link between BBU and RRH is assumed to be known. For
simplicity, two scenarios are being considered: 1) only one
of the RRHs present on the desired cluster is contaminated
by the neighboring cluster, and the remaining RRHs are
contamination-free, and 2) all the RRHs of the desired
cluster are contaminated by the neighboring cluster. It can
be observed that there is a significant improvement in BER
performance with an increase in the SNR, i.e., BER of 10−6

is achieved at 14 dB SNR with I = 2 when only one of the
RRHs is contaminated. However, the system performance is
degraded by 6 dB to achieve BER of 10−5 when all the RRHs
are contaminated. The system performance can be enhanced
by employing more RRHs, as seen for I = 3, due to the
diversity gain achieved upon employing more RRHs. There is
about a 1.5 dB SNR improvement when the number of RRH
increases from I = 2 to I = 3.

VI. CONCLUSION
This paper estimates channel gains for pilot contaminated
uplink for the UC-RAN communication system. We have
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introduced a channel estimation method based on L-IVBI,
which utilizes an alternating minimization approach. The
proposed algorithm outperforms the state-of-the-art estima-
tion technique with a reasonable increase in complexity. The
numerical results demonstrate the efficacy of the proposed
CE method over state-of-the-art channel estimators such as
CoSaMP in terms of NMSE. The proposed L-IVBI estimator
significantly improves NMSE performance over existing
state-of-the-art algorithms. Performance analysis has been
demonstrated for different large antenna structures. Further-
more, the SE and BER performance of the UC-RAN system
for varying contamination conditions is also addressed.
The results demonstrate that, in the presence of pilot
contamination, the designed channel estimator significantly
improves over the traditional estimator.

REFERENCES
[1] C. Mobile, ‘‘C-RAN: The road towards green RAN,’’ China Mobile Res.

Inst., White Paper Version 1.0.0, 2011, vol. 2.
[2] M. Peng, C. Wang, J. Li, H. Xiang, and V. Lau, ‘‘Recent advances

in underlay heterogeneous networks: Interference control, resource
allocation, and self-organization,’’ IEEE Commun. Surveys Tuts., vol. 17,
no. 2, pp. 700–729, 2nd Quart., 2015.

[3] Y. Shao, Y. Du, Y. Jiang, W. Huang, and K. Sun, ‘‘The outage probability
analysis of network-centric clustering in C-RAN,’’ in Proc. IEEE Int. Conf.
Artif. Intell. Comput. Appl. (ICAICA), Jun. 2021, pp. 224–228.

[4] Ö. T. Demir, E. Björnson, and L. Sanguinetti, ‘‘Foundations of user-centric
cell-free massive MIMO,’’ 2021, arXiv:2108.02541.

[5] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras,
M. S. Berger, and L. Dittmann, ‘‘Cloud RAN for mobile networks—
A technology overview,’’ IEEE Commun. Surveys Tuts., vol. 17, no. 1,
pp. 405–426, 1st Quart., 2015.

[6] J. Shi, Y. Wang, H. Xu, M. Chen, and B. Champagne, ‘‘Performance anal-
ysis of user-centric virtual cell dense networks over mmWave channels,’’
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2018, pp. 1–7.

[7] J. Shi, C. Pan, W. Zhang, and M. Chen, ‘‘Performance analysis for
user-centric dense networks with mmWave,’’ IEEE Access, vol. 7,
pp. 14537–14548, 2019.

[8] B. Zhong, X. Zhu, and E. G. Lim, ‘‘Clustering-based pilot assignment for
user-centric cell-free mmWave massive MIMO systems,’’ in Proc. IEEE
96th Veh. Technol. Conf. (VTC-Fall), Sep. 2022, pp. 1–5.

[9] S. Buzzi, C. D’Andrea, M. Fresia, and X. Wu, ‘‘Multi-UE multi-AP
beam alignment in mmWave cell-free massive MIMO exploiting channel
sparsity,’’ in Proc. 25th Int. ITG Workshop Smart Antennas, Nov. 2021,
pp. 1–6.

[10] X. Zhang, J. Wang, and H. V. Poor, ‘‘Statistical delay/error-rate bounded
QoS provisioning across clustered mmWave-channels over cell-free mas-
sive MIMO based 5G mobile wireless networks in the finite blocklength
regime,’’ in Proc. 54th Annu. Conf. Inf. Sci. Syst. (CISS), Mar. 2020,
pp. 1–6.

[11] G. Wang, Q. Liu, R. He, F. Gao, and C. Tellambura, ‘‘Acquisition of
channel state information in heterogeneous cloud radio access networks:
Challenges and research directions,’’ IEEE Wireless Commun., vol. 22,
no. 3, pp. 100–107, Jun. 2015.

[12] M. Peng, Y. Sun, X. Li, Z. Mao, and C. Wang, ‘‘Recent advances in
cloud radio access networks: System architectures, key techniques, and
open issues,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 3, pp. 2282–2308,
3rd Quart., 2016.

[13] M. Attarifar, A. Abbasfar, and A. Lozano, ‘‘Random vs structured pilot
assignment in cell-free massive MIMO wireless networks,’’ in Proc. IEEE
Int. Conf. Commun. Workshops (ICC Workshops), May 2018, pp. 1–6.

[14] H.A.Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau, andK.V. Srinivas,
‘‘Downlink resource allocation inmultiuser cell-freeMIMOnetworks with
user-centric clustering,’’ IEEE Trans. Wireless Commun., vol. 21, no. 3,
pp. 1482–1497, Mar. 2022.

[15] H. A. Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau, and K. Srinivas,
‘‘Resource allocation and scheduling in non-coherent user-centric cell-free
MIMO,’’ in Proc. IEEE Int. Conf. Commun., Jun. 2021, pp. 1–6.

[16] H. Masoumi, M. Javad Emadi, and S. Buzzi, ‘‘Cell-free massive MIMO
with underlaid D2D communications and low resolution ADCs,’’ 2020,
arXiv:2005.10068.

[17] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
‘‘Cell-free massive MIMO versus small cells,’’ IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.

[18] H. Liu, J. Zhang, S. Jin, and B. Ai, ‘‘Graph coloring based pilot assignment
for cell-free massive MIMO systems,’’ IEEE Trans. Veh. Technol., vol. 69,
no. 8, pp. 9180–9184, Aug. 2020.

[19] X. Zhu, L. Dai, and Z. Wang, ‘‘Graph coloring based pilot allocation to
mitigate pilot contamination for multi-cell massiveMIMO systems,’’ IEEE
Commun. Lett., vol. 19, no. 10, pp. 1842–1845, Oct. 2015.

[20] Z. Chen, X. Hou, and C. Yang, ‘‘Training resource allocation for user-
centric base station cooperation networks,’’ IEEE Trans. Veh. Technol.,
vol. 65, no. 4, pp. 2729–2735, Apr. 2016.

[21] A. Ashikhmin, H. Q. Ngo, T. L. Marzetta, and H. Yang, ‘‘Pilot assignment
in cell free massive MIMO wireless systems,’’ U.S. Patent 9 384 615,
Apr. 4, 2017.

[22] T. C. Mai, H. Q. Ngo, M. Egan, and T. Q. Duong, ‘‘Pilot power control
for cell-free massive MIMO,’’ IEEE Trans. Veh. Technol., vol. 67, no. 11,
pp. 11264–11268, Nov. 2018.

[23] A. Almamori and S. Mohan, ‘‘Estimation of channel state information
(CSI) in cell-free massiveMIMO based on time of arrival (ToA),’’Wireless
Pers. Commun., vol. 114, no. 2, pp. 1825–1831, Sep. 2020.

[24] P. Liu, S. Jin, T. Jiang, Q. Zhang, and M. Matthaiou, ‘‘Pilot
power allocation through user grouping in multi-cell massive MIMO
systems,’’ IEEE Trans. Commun., vol. 65, no. 4, pp. 1561–1574,
Apr. 2017.

[25] G. Interdonato, H. Q. Ngo, E. G. Larsson, and P. Frenger, ‘‘How much do
downlink pilots improve cell-free massive MIMO?’’ in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Dec. 2016, pp. 1–7.

[26] Y. Jin, J. Zhang, S. Jin, and B. Ai, ‘‘Channel estimation for cell-free
mmWave massive MIMO through deep learning,’’ IEEE Trans. Veh.
Technol., vol. 68, no. 10, pp. 10325–10329, Oct. 2019.

[27] K. Zhang, W. Zuo, and L. Zhang, ‘‘FFDNet: Toward a fast and flexible
solution for CNN-based image denoising,’’ IEEE Trans. Image Process.,
vol. 27, no. 9, pp. 4608–4622, Sep. 2018.

[28] Y. Jin, J. Zhang, B. Ai, and X. Zhang, ‘‘Channel estimation for mmWave
massive MIMO with convolutional blind denoising network,’’ IEEE
Commun. Lett., vol. 24, no. 1, pp. 95–98, Jan. 2020.

[29] G. Interdonato, P. Frenger, and E. G. Larsson, ‘‘Utility-based downlink
pilot assignment in cell-free massive MIMO,’’ in Proc. 22nd Int. ITG
Workshop Smart Antennas, Mar. 2018, pp. 1–8.

[30] C. Qing, L. Dong, L.Wang, J.Wang, and C. Huang, ‘‘Joint model and data-
driven receiver design for data-dependent superimposed training scheme
with imperfect hardware,’’ IEEE Trans. Wireless Commun., vol. 21, no. 6,
pp. 3779–3791, Jun. 2022.

[31] C. Qing, L. Wang, L. Dong, and J. Wang, ‘‘Enhanced ELM based channel
estimation for RIS-assisted OFDM systems with insufficient CP and
imperfect hardware,’’ IEEE Commun. Lett., vol. 26, no. 1, pp. 153–157,
Jan. 2022.

[32] C. Qing, L. Dong, L. Wang, G. Ling, and J. Wang, ‘‘Transfer learning-
based channel estimation in orthogonal frequency division multiplexing
systems using data-nulling superimposed pilots,’’ PLoS One, vol. 17, no. 5,
May 2022, Art. no. e0268952.

[33] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, ‘‘A coordinated approach to
channel estimation in large-scale multiple-antenna systems,’’ IEEE J. Sel.
Areas Commun., vol. 31, no. 2, pp. 264–273, Feb. 2013.

[34] J. Lee, G.-T. Gil, and Y. H. Lee, ‘‘Channel estimation via orthogonal
matching pursuit for hybrid MIMO systems in millimeter wave com-
munications,’’ IEEE Trans. Commun., vol. 64, no. 6, pp. 2370–2386,
Jun. 2016.

[35] Y. Ding, S.-E. Chiu, and B. D. Rao, ‘‘Bayesian channel estimation
algorithms for massive MIMO systems with hybrid analog-digital
processing and low-resolution ADCs,’’ IEEE J. Sel. Topics Signal Process.,
vol. 12, no. 3, pp. 499–513, Jun. 2018.

[36] J. Wang, J. Yi, R. Han, L. Bai, and J. Choi, ‘‘Variational Bayesian inference
for channel estimation and user activity detection in C-RAN,’’ IEEE
Wireless Commun. Lett., vol. 9, no. 7, pp. 953–956, Jul. 2020.

[37] K. Liu, X. Li, J. Fang, and H. Li, ‘‘Bayesian mmWave channel estimation
via exploiting joint sparse and low-rank structures,’’ IEEE Access, vol. 7,
pp. 48961–48970, 2019.

VOLUME 12, 2024 61277



S. Bera et al.: Variational Bayesian Approach for CE in Pilot-Contaminated UC-RAN System

[38] D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, ‘‘The variational
approximation for Bayesian inference,’’ IEEE Signal Process. Mag.,
vol. 25, no. 6, pp. 131–146, Nov. 2008.

[39] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath,
‘‘Spatially sparse precoding in millimeter wave MIMO systems,’’ IEEE
Trans. Wireless Commun., vol. 13, no. 3, pp. 1499–1513, Mar. 2014.

[40] D. Needell and J. A. Tropp, ‘‘CoSaMP: Iterative signal recovery from
incomplete and inaccurate samples,’’ Appl. Comput. Harmon. Anal.,
vol. 26, no. 3, pp. 301–321, May 2009.

[41] D. Neumann, T. Wiese, and W. Utschick, ‘‘Learning the MMSE channel
estimator,’’ IEEE Trans. Signal Process., vol. 66, no. 11, pp. 2905–2917,
Jun. 2018.

SOUMYASREE BERA (Graduate Student Mem-
ber, IEEE) received the B.Tech. and M.Tech.
degrees in electronics and communication engi-
neering from SikkimManipal Institute of Technol-
ogy, SikkimManipal University, in 2011 and 2015,
respectively. She is currently pursuing the Ph.D.
degree in telecommunication engineering with
Indian Institute of Technology at Kharagpur,
Kharagpur, India.

Her research interests include 5G/6G commu-
nications, millimeter wave communications, terahertz communications, and
integrated sensing and communication.

VENU BALAJI VINNAKOTA received the B.Tech.
degree in electronics and communication engi-
neering from Jawaharlal Nehru Technological
University, Hyderabad, and the M.Tech. degree
in advanced communication systems from NIT
Warangal. He is currently pursuing the Ph.D.
degree with the G S Sanyal School of Telecom-
munications, Indian Institute of Technology at
Kharagpur, Kharagpur, India. His research inter-
ests include applying stochastic geometry analysis

to user-centric cloud radio access networks, mmWave channel estimation,
and green wireless communications.

DEBARATI SEN (Senior Member, IEEE) received
the Ph.D. degree in telecommunication engi-
neering from Indian Institute of Technology at
Kharagpur, Kharagpur, India, in 2010.

She was a Postdoctoral Research Fellow with
Chalmers University of Technology, Gothenburg,
Sweden, and a Senior Chief Engineer with the
Samsung Research and Development Institute
India, Bengaluru, India. She is currently an Asso-
ciate Professor with Indian Institute of Technology

at Kharagpur. Her research interests include wireless and optical communi-
cation systems, mostly onMB-OFDM, synchronization, equalization, UWB,
BAN, green communications, 60-GHz communications, and baseband
algorithm design for coherent optical communications. She is an editorial
board member of two international journals. She was a recipient of the
Best Paper Award at Samsung Tech. Conference 2010, the IEI Young
Engineers Award 2010, the IETE N. V. G. Memorial Award in 2013,
the DAAD-IIT Faculty Exchange Fellowship in 2014, and the Qualcomm
Innovation Fellowship in 2017.

61278 VOLUME 12, 2024


