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ABSTRACT Industrial parts are usually shapedwith complex surface structures and they require high surface
quality. The surface defects influence the precision and performance of them. The efficient optical inspection
equipment and defect detection and classification method are important for improving t productivity. There
are two main difficulties in the visual detection of surface defects of industrial parts. One is difficult to
develop visual inspection equipment for complex surfaces. Second is that the optimal feature set extracted
by the commonly used feature fusion classification methods is not sensitive to defects with high defect
similarity, which affects the defect classification accuracy. To solve difficulty 1, We have researched the
principles of refraction and reflection when a light beam reaches the interface of a non-homogeneous
medium, and develop a high-performance optical inspection equipment, which is available for 360◦ image
acquisition of the external surface of an industrial part. To solve difficulty 2, a feature fusion classification
method based on defect similarity measurement is proposed. The main idea is to measure the similarity
between various types of defects by calculating the Euclidean distance between class centers and to classify
defects with similarity higher than a threshold into one category. Subsequently, a two-step feature extraction
and classification strategy is adopted. In the first step, the lower similarity types are separated, and then in
the second step, the higher similarity types are separated. Deep learning methods and traditional machine
learning methods are used for validation, respectively. Experimental results indicate that the proposed
method achieves a 5% improvement in overall classification accuracy, and also has significant improvements
in precision, recall and many other indicators compared to several other advanced classification methods.

INDEX TERMS Complex surfaces, defect classification, feature set, multi-feature fusion, similarity, two-
step feature extraction and classification.

I. INTRODUCTION
With the improvement of imaging technology and computer
performance, computer vision techniques are widely used
in various scenarios, such as camera calibration [1], [2],
face recognition [3], target detection [4], etc. Recognition of
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defect types in the products used in the industry is of great
significance for improving the production processes. A large
number of scholars have already applied vision inspection
technology in practical engineering, e.g. rail surface [5], elec-
tronic components [6], metal pipes [7] etc.

For the research on the surface optical properties of
industrial products and optical inspection equipment, many
scholars have conducted relevant studies. For example,
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Chang et al. [8] developed an optical inspection platform
combining parallel image processing with high-resolution
opto-mechanical modules for defect detection in touchscreen
glass. Dongyun et al. [9]developed an optical device for
detecting cracks in metal wheels. Yinchao et al. [10] devel-
oped an automated optical inspection machine for defect
detection of glass micro-optical elements. Wang et al. [11]
investigated a non-contact optical automatic inspection sys-
tem to identify defects in manufactured paper cups. Lee
and Kim [12] developed an advanced 3D stacked visual
placement inspection system for high-precision positioning
of electronic packages. Comprehensive research of many
scholars, it can be found that the following two conclusions:
(1): Non-contact optical inspection equipment in the indus-
trial product surface defect detection is increasingly widely
used, is a field worthy of in-depth research. (2): for different
detection of objects, generally need to design special optical
inspection equipment, many of the current and the equipment
structure is relatively simple, it is difficult to adapt to the
shape of the complex structure of the industrial products of
the automated detection.

In the research of defect detection classification, a fusion
of multiple types of image-based features can lead to better
accuracy of classification algorithms [13]. The key issue in
a multi-feature fusion classification task is how to achieve
better feature fusion.With different implementation methods,
it can be divided into traditional machine learning methods
and deep learning methods.

Some representative traditional machine learning methods
are as follows. The traditional feature fusion method is rel-
atively simple. One way is to concatenate all features into
one feature. However, this method has several shortcomings
including the ‘‘curse of dimensionality’’ and information
redundancy. The local linear embedding-basedmethod (LLE)
can be employed to reduce the features’ dimensions. How-
ever, this method ignored the metric of the original structure
[14]. Local canonical correlation analysis can maximize
the relevance of local neighbors [15]. Canonical correla-
tion analysis (CCA) and its improvements maximize the
correlation of the multi-feature sets and enhance the classi-
fication accuracy through the correlation of different feature
sets [16]. However, it does not process the interrelation-
ships in the same feature sets. Autoencoder (AE) is a class
of neural network models used for dimensionality reduc-
tion, feature extraction and reconstruction of data. However,
AE is easily overfitted with small amounts of data [17].
Multiview spectral embedding (MSE) can encode various
features using different approaches to achieve a physically
meaningful embedding. Ren et al. [18] proposed a tensor-
based multi-view embedding algorithm to fuse features from
different spaces. Their method can obtain unique features
for subsequent classification. However, MSE does not mine
the intrinsic structure of multiple features. Qin et al. [19]
proposed the Semi-supervised Structured Subspace Learning
algorithm for clustering data points from multiple sources

(SSSL-M). Their method regularizes multiple view-specific
affinity matrices into a shared affinity matrix based on recon-
struction through a unified framework consisting of backward
encoding networks and self-expressive mapping. The shared
affinity matrix is comprehensive and can flexibly encode
complementary information from multiple view-specific
affinity matrices. Pairwise constraint-based multi-view sub-
space learning (PC-MSL) [20] considers both outer and inter-
geometric structures, thus it maintains the discriminatory
properties effectively. Manifold learning is used to reduce the
number of features in high-dimensional data while preserving
its topological structure [21]. However, it does not involve dif-
ferent metrics and structure fusion. If feature structure fusion
is performed directly, a single metric cannot be adapted for
the structuremeasurement of various features [22]. The above
discussed methods could achieve multi-feature fusion clas-
sification by determining the optimal feature set. However,
in the majority of defect classification tasks, the similarity
between some types of defects is high. In these situations,
the optimal feature set by single extraction often ignores
some weak details which leads to its insensitivity to these
high similarity defects, rendering the classification results
unsatisfactory.

Compared to traditional defect detection methods, deep
learning-based defect detection methods overcome the draw-
backs of low accuracy and manual features that require
extensive expert knowledge, providing an end-to-end solu-
tion for industrial vision inspection. As a representative
of the two-stage detection approach, Faster RCNN intro-
duces a region proposal network (RPN), which makes region
proposal almost costless [23]. However, Faster RCNN per-
forming downstream tasks on the last layer of features
often leads to feature underutilization and decay of texture
information [24]. In terms of feature enhancement, the fea-
ture pyramid network (FPN) realizes multi-scale information
fusion by simple but effective lateral addition. On this basis,
Liu et al. [25] proposed the balanced feature pyramidmodule,
which makes full use of the information flow between mul-
tiple layers and improves the accuracy of steel plate defect
detection. To further enhance the ability to recognize the
appearance of defects between different classes. Although
the feature pyramid network is capable of fusing multi-scale
feature information, it can only be trained for a particu-
lar resolution. The attention mechanism can be regarded
as a module for refining feature information. It enhances
meaningful features and suppresses unnecessary features.
Yeung and Lam [26]. propose a fused-attention network
(FANet) for detecting various steel surface defects. It applies
an attention mechanism to a single balanced feature map,
rather than multiple feature maps. This can improve the
accuracy and preserve the detection speed of the detection
network. Qilong et al. [27] designed an efficient channel
attention (ECA) module to perform channel attention with
low model complexity. Sanghyun et al. [28]constructed a
convolutional block attention module (CBAM) to perform
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channel attention and spatial attention. However, the atten-
tion mechanism can only process the features transmitted
from the backbone network, so it is especially important
to choose what kind of features to give to the attention
enhancement module. In Transformer, the traditional CNN
and RNN are abandon, and the whole network structure
is entirely composed of Attention mechanism, which was
firstly applied in the field of natural language processing.
Transformer’s morphing networks Vision Transformer and
Swin-Transformer have a wide range of applications in
visual detection tasks Wang et al. [29] propose a novel ViT
(BuildFormer), with a dual-path structure. In this method,
they designed a spatial-detailed context path to encode rich
spatial details and a global context path to capture global
dependencies. Besides, they designed a window-based lin-
ear multihead self-attention whose complexity is linear with
the window size. Cheng et al. [30] proposed an end-to-
end detection network based on Swin-Transformer, called
SwinCrack, to solve the problem of limited receptive field
in pure CNN-based crack detection networks. Compared
to CNN-based detection models, SwinCrack can produce
more accurate and continuous descriptions of pavement
cracks by modeling long-range interactions and adaptive
spatial aggregation. The above research provides very use-
ful guidance for improving our deep learning network
models.

In order to solve the problem of acquiring images of
the outer surface of complex workpieces, we researched the
transmission characteristics of light particles in non-uniform
media, and developed an automated optical inspection equip-
ment that can acquire images of the outer surface of
workpieces in 360◦. For the defect detection classification
problem, a feature fusion classification method based on
defect similarity measurement (FFCM-DSM) is proposed.
It can calculate the Euclidean distance between the class
centers of each type of defects, so the similarity between
each type of defects can then be measured. Subsequently,
those types of defects which over the set threshold are
classified into one category. In the end, a two-state feature
extraction and classification strategy is adopted. The surface
defect dataset of camshafts was collected using our developed
vision inspection equipment, and defect classification exper-
iments were conducted using FFCM-DSM. Experimental
results indicate that the proposed method performs with high
accuracy.

The contributions and innovations of this paper mainly
include the following two points: (1): the refraction and
reflection characteristics of light on the camshaft surface
were theoretically researched, and based on this, a set of
automated optical inspection equipment was designed and
developed, which can satisfy the inspection of camshaft
surface defects under the actual status working condi-
tions. (2): the classification of camshaft surface defects
was researched, and the FFCM-DSM method was proposed,
which improves the accuracy of the classification of the
defects.

The rest of the paper is organized as follows, in Section II,
the principle of optical reflection and refraction on the
camshaft surface and the optical inspection equipment are
introduced. In Section III, the proposed defect classification
method FFSM-DSM is explained in detail. In Section IV, the
experimental results and discussion are given. In Section V,
conclusions are drawn.

II. OPTICAL REFLECTION AND REFRACTION PRINCIPLES
AND INSPECTION EQUIPMENT
A. A NON-UNIFORM MEDIUM SUB-TRANSFER FUNCTION
CONSTRUCTION
The radiative transfer factor describes the proportion of the
total radiant energy in an optical system that is emitted from
a surface Si or a body Vi that is ultimately absorbed by a
statistical unit j after being reflected and refracted by a single
unit within the system or multiple times, and is defined as
shown in (1) [31]. Refraction and reflection occur when a
light beam reaches the interface of a non-uniform medium,
and an interface model is constructed using Monte Carlo
method to describe the redistribution ratio of the radiant
energy of the light field at the boundary. The reflectivity of
unpolarized light at the boundary is calculated according to
Snell’s law of refraction for angles of incidence, reflection
and refraction of α, β and γ , respectively, as shown in (2)
[31]. According to the classical electromagnetic field theory,
to solve the incident light field through the refractive index n1
and n2, respectively, after the redistribution of the surface of
the medium after the redistribution of energy, the energy den-
sity of its incident and refracted light, respectively, as shown
in (3), (4) [32].

RDij =
Ni,j
Ni

(1)

ρ(α) =
ρp(α) + ρs(α)

2
=

1
2

[
tan2(α − γ )
tan2(α + γ )

+
sin2(α − γ )
sin2(α + γ )

]
(2)

ωf =

 2cosα

cosα +

√
n221 − sin2α

2

n221ωs

+

 2n221cosα

n221cosα +

√
n221 − sin2α

2

n221ωp (3)

ωt =

 2cosα

cosα +

√
n221 − sin2α

2

ωs

+

n221cosα −

√
n221 − sin2α

n221cosα +

√
n221 − sin2α

2

ωp (4)

B. B 360◦ OPTICAL INSPECTION EQUIPMENT
The experimental equipment is a four-workstation rotary
detection equipment. The overall setup is shown in Fig 1.
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FIGURE 1. A snapshot of the equipment used in the experiments.

FIGURE 2. 3D model diagram of the optical inspection platform.

Servo-driven motors are equipped in the middle of the
machine to drive the workstation in a male rotation. Worksta-
tion 1 is the loading and unloading station. Workstation 3 is
the turning station.Workstation 2 and 4 are the camshaft front
and reverse detecting stations, their bottom is equipped with
a high-precision servo motor to drive the camshaft complet-
ing 360◦ rotation motion. 3D model diagram of the optical
inspection platform is shown as Fig 2. Workstation 2’ and
Workstation 4’ 3D model diagram is shown in Fig 3, cameras
and light sources model are shown in Tab 1.

There are two main innovations in the above research.
(1) Through the construction of non-uniform medium sub-
transfer functions, the reflection and refraction characteristics
of light of different wavelengths on surfaces with different
properties of camshafts can be investigated, which provides
theoretical guidance for the selection of adapting different
types of light sources aswell as the angle of incidence. (2) The
designed 4-station inspection equipment is able to acquire all-
round high-definition images of the camshaft outer surface.

III. A FEATURE FUSION CLASSIFICATION METHOD
BASED ON DEFECT SIMILARITY MEASUREMENT
(FFCM-DSM)
As shown in Fig 4, there are 4 steps involved in the proposed
FFCM-DSM.

Step 1: Extraction of multi-type features to construct a
feature pool;

TABLE 1. The model for cameras and light sources on workstation 2 and
workstation 4.

Step 2: Calculation of the class centers of defective samples
based on the normal distribution property;

Step 3: Similarity Calculation and Reclassification;
Step 4: Using the two-stage classification strategy for clas-

sification operations
Step 2, step 3 and step 4 (Method 1: Multilayer classifi-

cation networks based on attention mechanisms and Method
2: PCA feature dimensionality reduction and SVM classifi-
cation) will be explained in the following.

A. STEP 2: CALCULATION OF THE CLASS CENTERS OF
DEFECTIVE SAMPLES BASED ON THE NORMAL
DISTRIBUTION PROPERTY
The long tail effect generally exists in industrial defect sample
data sets, especially when the amount of data is small. The
sample data distributed in the tail ends up influencing the
statistical characteristics. Therefore, we propose an approach
for calculating the cluster centers of defect samples based on
the properties of a normal distribution. The steps involved in
the implementation are as follows:

1: First, we normalize all feature data, then a point u′
=

(u′

1, u
′

2, . . . u
′
p, . . . , u

′
k ) among all sample points of each type

of defect is identified, which can minimize the sum of dis-
tances between it and all sample points, as shown in the
following:

E =

k∑
p=1

n∑
q=1

|xqp − u′
p| (5)

where E is the minimum sum of the distance between each
data point obtained and the corresponding category center. p
represents the value of the p-th feature, and k is the number
of features. q represents the q-th sample, and n is the number
of defective samples in this category, so xqp represents the
value of the p-th feature of the q-th sample, µ′

p is computed
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FIGURE 3. Cameras and light sources settings for Workstation 2 and Workstation 4.

FIGURE 4. FFCM-DSM flow diagram.

as follows.

u
′

p =
1
n

n∑
p=1

xqp (6)

generally, the smaller the value of E, the higher the similarity
of the samples in the class.

2: The distance dq between the q-th sample point and the
pseudo-class center u′ is calculated as follows:

dq =

√√√√√ k∑
q=1

(
xqp − µ′

i

)2 (7)

constructing a normal distribution of dq is defined in the
following.

dq ∼ f (x) =
1

√
2πσ

exp

(
−
(x − µ)2

2σ 2

)
(8)

3: According to the normal distribution characteris-
tics, the area enclosed by curves and coordinate axes
accounts for 99.73% of the total area in the interval of
x ∈ (µ− 3σ,µ+ 3σ), and the event that x falls out-
side (µ− 3σ,µ+ 3σ) can be considered as an ‘‘impossible
event’’. For the industrial defect data sets, it can be considered
as an anomaly [33], so the sample can be intercepted by
dq ∈ (µ− 3σ,µ+ 3σ).

4: The above explained intercepted sample is reused to
calculate the class center ui after the removal of the anomaly.

B. B STEP 3: SIMILARITY CALCULATION AND
RECLASSIFICATION
For each type of defect, the class center can be expressed
as µ = (µ1, µ2, . . . . . . , µk), which can be considered as a
vector. The Euclidean distance between the class centers of
the two types of defects can be measured as follows:

Dij =

√√√√√ k∑
p=1

(
µip − µ

j
p

)2
(9)

where i and j represent two different defective types.
The next step is to determine whether a reclassification is

necessary. If Dmim is too small, then reclassification is not
needed. When Dmax/Dmin ≥ 2, reclassification is needed.
For those situations that need to be reclassified, a new set dij
is obtained by normalizing the Euclidean distance Dij. The
similarity SM (i, j) between any two defects is computed as
shown in (10). Subsequently, a reasonable threshold TP is
set, which can be determined by the actual scenario. When
SM (i, j) is greater than the threshold, then the defects need to
be classified into a category as shown in (11).

SM (i, j) = 1 − dij (10){
if SM (i, j) ≥ TP take i, j into one category,
if SM (i, j) < TP no operation;

(11)

C. THE TWO-STAGE CLASSIFICATION METHOD
1) METHOD 1: MULTILAYER CLASSIFICATION NETWORKS
BASED ON ATTENTION MECHANISMS
In the case where the data sample is adequate and the sam-
ple types are balanced, after the reclassification operation,
to fully demonstrate the effectiveness of this strategy, in the
classification stage, we propose a multilayer classification
network that fuses the attention mechanism. This network
is based on the backbone network of YOLO v5, and the
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FIGURE 5. Structure of the improved YOLO v5s. The blue line is the
original structure in the YOLO v5 model, the red and orange lines are the
processes we added, the green module is the feature enhancement
module based on attention mechanism, and Head_2, Head_3 are the
added detection heads.

feature connection module based on the attention mechanism
is introduced in the feature fusion stage. Its structure is shown
in the following Fig 5.
As shown in the Fig 5, this layered network, we add

Head_2 and Head_3 to the original three Head_1. First,
we analyze the effects of Head_1 on our detection task.
Head_1 fuses the deep information extracted from the back-
bone network, which contains more semantic information
(global features), so that it facilitates the detection of defects
and the labeling of their locations. However, for holes and
sand holes, rust spots and dirt, which are several defects with
high similarity, discriminating them requires more detailed
information (local features), and deep semantic information
will result in overfitting. So here we are just using Head_1
to detect the location of defects and will judge polishing,
cracking, C1 and C2 type defects. It is proposed that Head_2
and Head_3 only fuse local features at a shallower level,
so we will use Head_2 to discriminate rust spots and hair chip
defects from C1 and Head_3 to discriminate holes and sand
eye defects from C2. Other details of the network remain the
same as the traditional Yolo v5s model [28].
In the network, there exists an FCM-AMmodule which is a

feature connection module based on the attention mechanism
that we have introduced in the network, it has been proved to
be beneficial in improving the performance of the network.
The structure of the FCM-AM module is shown in Fig 6.

The introduction of an attention mechanism to weigh
the features in the target region makes the feature extrac-
tion network selectively focus on the target region that
contains important information while suppressing other irrel-
evant information. The significance of introducing a separate
FCM-AM module before Head_2 and Head_3 is that it can
enhance the discriminative features of rust spots and dander,
holes and sand holes.

2) METHOD 2: PCA FEATURE DIMENSIONALITY REDUCTION
AND SVM CLASSIFICATION
PCA is a statistical analysis method that transforms multi-
ple original variables into several new composite variables

FIGURE 6. Structure of the FCM-AM module. The gray part in the middle
is the structure of the whole FCM-AM, with the channel attention module
on the top and the spatial attention module on the bottom.

through a linear transformation, and it is widely used for
dimensionality reduction of feature space. It maximizes the
retention of information within the data after dimensionality
reduction, and determines the direction by measuring the
variance of the data in the projection direction [34].
SVM algorithm is widely used to solve image recog-

nition problems, signal processing problems, risk identifi-
cation problems, etc. [35]. It maps the training set to a
high-dimensional feature space and applies a linear regres-
sion through a non-linear mapping function, the basic math-
ematical equations of SVM are shown in (12) and (13) [36].

ωTi ×8
(
Xijt
)
+ bi, ∀i (12)

Xijt =
{̃
ui1t , ũi2t , . . . , ũijt

}
, ∀i, t (13)

where ωTi is the weight vector of the hyperplane and 8
(
Xijt
)

is the bias term. According to the structured minimum princi-
ple, (12) is equivalent to minimizing the cost function, which
is shown below:

min

(
1
2
||ωi||

2
+

1
2
Ci

Tt∑
t=1

ξ2i

)
s.t.yit − ωTi · ψ

(
Xijt
)
− bi = ξi

,∀i (14)

where ξi is the relaxation variable, Ci is the penalty factor and
ψ
(
Xijt
)

= K
(
Xijt ,X ′

ijt

)
is the kernel function. Commonly

used kernel functions include linear kernel, polynomial ker-
nel, Gaussian kernel, exponential kernel, Laplace kernel,
sigmoid kernel, etc [37]. The application of PCA and SVM
algorithms in a two-step classification strategy is shown in
Fig 7.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. PREPARATION FOR EXPERIMENTS
1) DATA SETS AND LOSS WEIGHTS
As shown in Tab 2, according to the classification method
proposed in this paper, 205 defect samples were acquired
from the casting surface of the camshaft, including 42 sam-
ples of hole defect, 42 samples of polishing defect, 28 sam-
ples of rust spot defect s, 34 samples of sand hole defect,
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FIGURE 7. Application of PCA and SVM algorithms in a two-step
classification strategy.

38 samples of dander defect. 21 samples of crack defects.
Among these, cracks, holes and sand holes are irreparable
defects, rust spots and polishing are repairable defects, and
dander are pseudo defects. Their images are shown in Fig 8,
the yellow box shows the defects.

For irreparable defects, the weight Wij of the cost of mis-
classifying as the repairable defects is 1.5, as pseudo defects
is 2. For reparable defect, the weight Wij of the cost of
misclassifying as pseudo-defect is 1.5, and the weight Wij of
the cost of the remaining misclassifications is 1.

2) EXTRACTION METHOD OF THE DEFECT AREA
The surface defects of the camshaft collected in this exper-
iment can be divided into line defects, block defects and
texture defects.

The Laplace Gaussian, also known as the second deriva-
tive of the Gaussian detects the boundary by finding the
zero point of the second derivative in the gray value of an
image [38]. It has a strong response value to the crack on
the camshaft surface and the boundary characteristics of the
matted area. Therefore, the linear defects on the camshaft
surface can be detected by the Laplace operator based on scale
normalization. The basic idea of the local dynamic threshold
segmentation algorithm is to divide an image into several
sub-images, and select each sub-image to determine the
upper and lower bound thresholds according to the histogram
peak segmentation point to achieve local region segmenta-
tion [39]. Therefore, the block defects can be extracted by
the local dynamic threshold segmentation algorithm. A two-
dimensional Garbor filter can extract local frequency features
of spatial images for texture feature extraction [40]. Hence,
we use a two-dimensional Garbor filter to extract the texture
of the defect area. The result of the defective area extraction
is shown in Fig 9.

B. EXPERIMENTAL PROCESS
In the field of visual detection, geometric features, texture
features and global features are widely used for the descrip-
tion of defective areas [41], [42]. Therefore, the feature pool
for this experiment contains geometric features, texture fea-
tures and global features. Details are shown in Tab 3. The
texture features of the defective region are extracted using a
grey-scale co-occurrence matrix [43]. The features contained
in the feature pool are shown in Tab 3
As shown in Tab 4, the class centers of 6 defect types

using 11 different features are calculated. Then the Euclidean

distance Dij between the center of each type of defect is cal-
culated as shown in Tab 5. The similarities SM (i, j) between
the various types of defects are calculated as shown in
Tab 6. In Tab 6, the highest similarity to the polishing defect
is obtained for rust spot defect, with a value of 0.3704.
Additionally, the highest similarity with cracking defects is
obtained for dander defects, with a value of 0.5390. It indi-
cates that the similarity between these two types of defects
and other types of defects is relatively low. On the other hand,
the similarity index between dander and rust spot defects
is recorded as 1. This indicates a high degree of similarity
between these two types of defects. Additionally, the sim-
ilarity index between sand hole defects and hole defects is
calculated as 0.8890. This indicates that there is also a strong
similarity between sand hole defects and hole defects. Using
the threshold calculation method discussed in Section II,
we set the value of TP to 0.8. As such, the dander and rust
spot defects are placed one category, noted asC1, and the hole
and sand hole defect are divided into another category, noted
as C2.

C. COMPARISON AND ANALYSIS
In the assessment of multiclassification tasks, the four key
performance metrics are accuracy, precision, recall rate, and
F1 score, which are defined is shown below:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(15)

Precision =
TP

TP+ FP
(16)

Recall =
TP

TP+ FN
(17)

F1 =
2 × Precision× Recall
Precision+ Recall

(18)

where true positive (TP) means a positive sample was cor-
rectly predicted as positive, true negative (TN) means a
negative sample was correctly predicted as negative, false
positive (FP) means a negative sample was incorrectly pre-
dicted as positive and false negative. (FN) means a positive
sample was incorrectly predicted as negative.

1) COMPARISON OF DEEP LEARNING METHODS
To verify the superiority of our proposed improved YOLO
v5 model in camshaft surface defect detection experiments,
we compared the method with several other advanced defect
detection methods, they are Faster RCNN Res2Net-101
[44], Vision Transformer (ViT) [45], Swin-Transformer [46],
DDN [47], and YOLO v5s [48].

To meet the data amount requirements of deep learning
methods, we expanded our dataset by using Cycle GAN,
expanding the number of each of the 6 classes of defects
to 300, dividing the training set and test set according to
a ratio of 2:1, and using a 5-Fold method in the train-
ing phase. All comparison models are implemented using a
PyTorch-based framework, trained and tested on NVIDIA
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FIGURE 8. 6 Images of various defects (a: hole; b:polishing; c:danger; d:rust spot; e:sand hole;
f:crack).

FIGURE 9. Example of defective area extraction. (a) by the Laplace operator; (b) by the local dynamic threshold segmentation; (c) by the
Two-dimensional Garbor filter.

TABLE 2. Table of sample statistics for camshaft surface defects data sets.

TABLE 3. Table of features contained in the feature pool.

RTX4060. We initialized the parameters of the backbone
network using pre-trained weights from ImageNet, and all
experiments used uniform parameters. In order to ensure the
consistency of the experiment, uniform parameters are used
in all comparison experiment. The image size of the input
network is fixed to 640 × 640, and 300 epochs are trained.
batch size is 8, kernel k = (3, 3), step stride= 2, padding = 0,
object confidence threshold is 0.001, momentum is 0.9, and
IoU threshold for NMS is 0.6. Learning rate: 0.001, Weight

decay: random weighting, Optimizer: Adam. The activation
function is relu. All comparison models are trained and tested
on NVIDIA RTX4060. PyTorch library version is 2.0.1.

Fig 10(a) - Fig 10(f) shows the confusion matrices
for FFCM-DSM, Faster RCNN Res2Net-101, ViT, Swin-
Transformer, DDN, andYOLOv5s. Tab 7 shows the accuracy
comparison. In terms of over accuracy metric, FFCM-DSM
reaches 0.945, which is higher than Faster RCNN Res2Net-
101 (0.867), ViT (0.884), Swin-Transformer (0.890), DDN

74640 VOLUME 12, 2024



J. Cao et al.: Visual Inspection and Classification Method for Camshaft Surface Defects

TABLE 4. Table of the class centers coordinates of the 6 types of defects.

TABLE 5. Table of Euclidean distances Dij between the centers of 6 types of defects.

TABLE 6. Table of SM (i, j ) between the 6 types of defects.

(0.874), and conventional YOLO v5s (0.884). Tab 8 and
Fig 11 show the precision of these six deep-Learning meth-
ods for various types of defects. It can be seen that for
the four types of defects with high similarity, the precision
values are significantly improved after using the FFCM-
DSM method. For Hole, Dander, Rust spot, and Sand hole
defects, the highest precision of the other five deep learning
models reaches 0.846, 0.859, 0.882, and 0.840, respectively,
while FFCM-DSM reaches 0.894, 0.918, 0.932 and 0.929,
respectively, which are improved by 0.048, 0.059, 0.102, and
0.089. It can be obviously evident that there is a significant
improvement in the classification accuracy of FFCM-DSM
for these four types of defects with a high degree of similarity.
For a more thorough analysis, the three types of real and
irreparable defects i.e., hole, crack, and sand hole are ana-
lyzed using recall rate. Tab 9 and Fig 12 shows the recall
rate of three types of irreparable defects, the results show

that FFCM-DSM acquires the maximum recall rate over
the hole, crack and sand hole defects compared to the
other five methods, with an improvement of 0.044, 0.01,
and 0.043 respectively. By comparing the improved YOLO
v5s model by using FFCM-DSM with the base YOLO v5s
model, it can be observed that after adopting the FFCM-DSM
method, there is an improvement of 0.061 in the overall clas-
sification accuracy metrics. For the four types of defects with
a high degree of similarity, i.e., Hole, Dander, Rust spot, and
Sand hole, the classification precision, 0.093, 0.059, 0.102,
and 0.116 were improved respectively, which is a significant
improvement.

2) COMPARISON OF TRADITIONAL MACHINE LEARNING
METHODS
Considering the case of inadequate and unbalanced samples,
we compare the following five traditional machine learning
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FIGURE 10. Confusion matrix of 6 deep learning classification methods. (a) FFCM-DSM; (b) Faster RCNN Res2Net-101; (c) ViT; (d) Swin-Transformer;
(e) DDN; (f) YOLO v5s.

FIGURE 11. Comparison graph of precision value for 6 deep learning classification methods. (a) FFCM-DSM; (b) Faster RCNN Res2Net-101; (c) ViT;
(d) Swin-Transformer; (e) DDN; (f) YOLO v5s.

algorithms with FFCM-DSM Canonical correlation anal-
ysis (CCA) [49]; Concatenate various features to a single
feature (CFS) [50]; Autoencoder (AE) [51]; Isometric fea-
ture mapping (ISOMAP) [52]; Fisher linear discriminant

analysis (FLDA) [53]. For FFCM-DSM, CCA, ISOMAP
and FLDA, the number of retained components is 2. For
AE, the number of neurons in input and output layers are
both 256.
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FIGURE 12. Comparison graph of recall rate for 6 deep learning classification methods. (a) FFCM-DSM; (b) Faster RCNN Res2Net-101; (c) ViT;
(d) Swin-Transformer; (f) YOLO v5s.

TABLE 7. The overall accuracy values for 6 deep learning classification methods.

TABLE 8. The precision values of 6 deep learning classification methods for various types of defects.

TABLE 9. The recall rates of the six classification methods for the three non-repairable defects.

The corresponding confusion matrices are illustrated in
Fig 13 (a)-Fig 13 (f). As shown in Tab 10, similar to the
results obtained with deep learning methods, in terms of

overall accuracy, FFCM-DSM achieves the highest accuracy
index of 0.946 and outperforms the other five classification
methods. The remaining fusion methods exhibit decreasing
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FIGURE 13. Confusion matrix of 6 traditional machine learning methods. (a) FFCM-DSM; (b) CCA; (c) CFS; (d) AE; (e) ISOMAP; (f) FLDA.

FIGURE 14. Comparison graph of precision value for 6 traditional machine learning methods. (a) FFCM-DSM; (b) CCA; (c) CFS; (d) AE; (e) ISOMAP;
(f) FLDA.

accuracy indices in the following order: CCA (0.897),
ISOMAP (0.888), AE (0.844), CFS (0.839), and FLDA
(0.820).

As can be seen in Tab 11 and Fig 14, in terms of precision
value, FFCM-DSM performs better than the other 5 classi-
fication methods for the five types of defects. Only on the
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FIGURE 15. Comparison graph of recall rate for 6 traditional machine learning methods. (a) FFCM-DSM; (b) CCA; (c) CFS; (d) AE; (e) ISOMAP; (f) FLDA.

TABLE 10. The overall accuracy for 6 traditional machine learning methods.

TABLE 11. The precision value of each type of defects for 6 traditional machine learning methods.

TABLE 12. The recall rate of irreparable defects for 6 traditional machine learning methods.

TABLE 13. The AUC value for 6 traditional machine learning methods.

Dander defect, only 0.854 was achieved, lower than CCA
(0.921) and CFS (0.912). In terms of the recall rate, as shown
in Tab 12 and Fig 15, for Hole and Sand hole, FFCM-DSM
achieved 0.976 and 0.912, respectively, performing better
than the other 5 classification methods. Based on the preci-
sion and recall rate, the AUC value are calculated. As can be

observed from Tab 13, the AUC value of FFCM-DSM, FLDA
and ISOMAP is 0.99, which is better than AE (0.95), CFS
(0.95) and CCA (0.97).

Table 14 shows the PCA-SVM classification method with-
out FFCM-DSM in terms of is overall classification accuracy
as well as classification precision metrics for each type of
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TABLE 14. The overall accuracy and precision value for PCA-SVM methods.

defect. It can be seen that the overall classification accuracy
of the method is 0.790, which is much lower than 0.946 using
the FFCM-DSM. It can be seen that the overall classification
accuracy of the method is 0.790, which is much lower than
that of 0.946 with the FFCM-DSM. For the six types of
defects counted, the precision value for polishing defects
reaches 1.000, which is the equal to the method with the
FFCM-DSM, while for the other five types of defects, the
values are 0.706, 0.895, 0.778, 0.586 and 0.714, all lower
than the method using FFCM-DSM. The results of the above
ablation experiments show that after the application of the
FFCM-DSM method, the PCA-SVM classification method
shows a large improvement in several classification metrics.

By comparing the above with several other types of
advanced deep learning methods and traditional machine
learning methods, we can observe that FFCM-DSM has
significant improvements in several metrics such as overall
accuracy, precision, and recall rate etc.

V. CONCLUSION
In this paper, our contributions are mainly the following
two points: (1) We explore the propagation characteristics
of light in a non-uniform medium on the surface of a
camshaft, based on it, we design a high efficiency opti-
cal inspection equipment. (2) We propose FFCM-DSM for
the task of defect classification. FFCM-DSM can quan-
tify the similarity between various types of defects and
classify the defects with high similarity into one category.
After separating the low similarity defects, for different cat-
egories, feature extraction and classification operations are
implemented respectively to separate high similarity defects.
FFCM-DSM achieves high-precision classification of highly
similar defects. To verify the effectiveness of the FFCM-
DSM, a camshaft surface image acquisition device is built
and comparative experiments are carried out. The results
show that both for deep learning methods and traditional
machine learning methods, FFCM-DSM has gained signif-
icant improvements, it improves the overall classification
accuracy by approximately 5% and also has the best perfor-
mance in terms of precision, recall etc. Compared to several
other advanced classification methods, especially for defects
with high similarity. The proposed method provides a new
way for the application of multi-feature fusion classification
methods to surface defects detection of industrial parts.

However, there are a few limitations of the proposed
FFCM-DSM method. When calculating similarity, feature
values need to be extracted manually, which requires vast
experience to select useful features for classification.
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