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ABSTRACT The use of renewable energy sources is increasing day by day due to their economic and
environmental benefits. However, improper penetration of renewable energy into power grids can lead to
problems such as over-voltages and higher active power losses. Therefore, the voltage regulation problem
in distribution networks is critical due to the increasing integration of renewable energy sources. On the
other hand, an increase in renewable energy penetration leads to lower operational costs due to decreased
energy purchases from the overhead grid. Therefore, it can be challenging for distribution system operators
(DSOs) to decide the trade-off between more Photovoltaic (PV) integration for cost minimization or less
penetration to minimize voltage deviation from a rated value. In this study, we formulated this trade-off as
a novel multi-objective optimization framework, aiming to minimize operating costs and voltage deviations
from a rated value in an unbalanced distribution grid. The proposed formulation is applied to the modified
IEEE 34-bus unbalanced distribution network, where the ε-constraint method is utilized for solving the
resultingmulti-objective optimization problem along with the Exterior Penalty Functions (EPF) method. The
simulation results show that the proposed approach provides the DSO with a better view of decision-making
in the optimal operation of the distribution networks.

INDEX TERMS Unbalanced distribution networks, photovoltaics, Volt/Var control, cost minimization,
multi-criteria decision making, ε-constraint method.

NOMENCLATURE
INDEXES
gr Grid.
i, j Nodes/buses.
k Iteration count.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Gaggero .

l Line section.
m Set of adjacent lines to node i.
t Time (hour).

PARAMETERS
λ, µ Penalty multipliers.
L Total load of the system.
PmaxPV Upper limit of PV active power output.
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PC Cost of power purchased from the grid.
QmaxPV Upper limit of PV reactive power output.
QminPV Lower limit of PV reactive power output.
Si Total apparent power injection at node i.
T Total number of hours in the scheduling horizon.
TPmax Upper limit of tap position set points.
TPmin Lower limit of tap position set points.
Vmax Upper limit of node voltage magnitudes.
Vmin Lower limit of node voltage magnitudes.
Yi Total shunt admittance connected to node i.
Zl Series impedance matrix of branch l.

VARIABLES
f (x) Objective function.
g(x) Equality Constraints.
h(x) Inequality constraints.
Ii Total current injection at node i.
Jl Current flowing through line section l.
Jm sum of currents flowing on the adjacent branches of

node i.
Pgr Power purchased from grid.
Ploss Active power losses of the system.
PPV Active power output of PV.
QPV Reactive power output of PV.
SPV Apparent power.
TP Tap positions.
V Voltage magnitudes.

I. INTRODUCTION
A. MOTIVATION
Analysis of the operation problem of unbalanced distribution
networks, which can be considered as intermediaries between
the transmission system and consumers, can be considered
as a well-studied topic. However, in recent years, DSOs
are facing new challenges due to the penetration of new
technologies, including renewable energy sources (RESs),
energy storage devices, electric vehicles, etc. [1]. On the one
hand, integrating these resources provides more efficient and
flexible operation of the distribution networks. On the other
hand, the bidirectional power flow of these resources can
cause various problems, such as over-voltages due to surplus
active power generation in the distribution networks [2].
Recently, the penetration of renewable energy into dis-

tribution grids has experienced an upward trend due to
various economic and environmental benefits. Based on a
report by the International Energy Agency (IEA), renewable
energy capacity is expected to increase by 2400 GW between
2022 and 2027 [3]. Therefore, operational problems arising
from this increasing trend of renewable energy integration
into the distribution networks must be controlled effectively.

Moreover, it is known that in real distribution networks,
which generally have a radial structure, the voltagemagnitude
decreases from the source to the feeder end, causing
an under-voltage problem. A basic rule of circuit theory

states that a voltage deviation from the rated value is
undesirable since this phenomenon leads to higher power
losses. In addition, voltage deviation can also affect other
power system behaviors, such as transient stability [4], [5].
Therefore, minimizing the voltage deviation from the rated
value can be considered one of the most important issues in
distribution system operation. Based on a standard provided
by the IEEE [6], this margin is considered ±5 % from the
rated value. For this purpose, conventionally, tap changer
voltage regulators and switchable capacitor banks have been
used to control the voltage magnitudes along the feeder [7],
[8]. However, these methods may not be able to regulate
the voltage magnitudes efficiently in unbalanced distribution
networks in case of high renewable penetration into the grid.
Moreover, regulating performance deteriorates because of the
aging of those devices due to frequent switchings along their
operational life [9].

As mentioned earlier, the bidirectional power flow result-
ing from RESs integration causes some challenges to DSO.
However, the DSO can utilize this bi-directional flow to
control the voltage of distribution networks using the reactive
power capability of the Photovoltaic (PV) Units composed
of single or several solar panels connected through smart
inverters. The process can be described as the absorption and
injection of reactive power, resulting in a voltage drop or rise
in the event of over- or under-voltage cases, respectively [10].
In addition, energy supply from the upper-level trans-

mission networks comes at a cost to DSOs, which may
be more expensive than the supply provided by Distributed
Energy Resources (DERs) [11]. Another challenge for
operators is minimizing the distribution networks’ operating
costs. This challenge becomes even more complex when
dealing with integrated distribution systems with renewables.
In other words, the DSO tends to use more renewables
since their operating costs are close to zero and import
less energy from the upper stream grid. On the other hand,
integrating more renewables leads to over-voltage problems,
as mentioned earlier. This is the point where the DSO has
to make a trade-off between voltage deviation and operating
costs.

In this paper, we have explored this challenge. In general,
the voltage control problem of distribution networks can be
formulated as an optimization problem [12]. There are two
important issues in this regard: formulating the problem and
solving it with an appropriate method. Various optimization
approaches have been presented in the literature, including
the Exterior Penalty Function (EPF) method [13] as a
gradient-based approach. Furthermore, since there may be
more than one objective, such as minimizing operating
costs and improving voltage profiles, the problem can
be formulated as a multi-objective optimization process.
Several methods, including the weighted approach and
the ε-constraint method, were studied for solving the
multi-objective optimization problems, and it was shown that
they had their advantages and disadvantages [14].
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B. LITERATURE REVIEW
Several studies have been carried out on the problem
of voltage control in unbalanced distribution networks.
The presented models have studied the volt/var control
approaches from different aspects and with different control
methods.

In [15], the authors investigated the over-voltage prob-
lem caused by integrating DERs in secondary distribution
networks in residential areas. Since secondary distribution
networks had a high R/X ratio and required more reactive
power to minimize voltage deviations than primary networks,
the proposed model reduced the need for reactive power
absorption only by DERs. The authors in [16] presented a
real-time distributed control method for low-voltage grids
that considered the dynamic optimal power flow, a model-
predictive control scheme, and the optimal use of renewable
generation and energy storage. The results confirmed that
the approximated power flow had a lower error than the
backward-forward-sweep (BFS) power flow method. In [17],
the authors investigated the distributed voltage control based
on local measurements and neighborhood communication.
Simulation results showed that the proposed model leads to
the optimal voltage of the busses even with asynchronous
or delayed communication and a linear power flow scheme.
In [18], a comprehensive volt/var control framework was
presented considering load tap changers, capacitors, and PV
inverters. The authors used a robust optimization method to
address uncertainties and minimize power losses in the study.

On-line volt/var control of unbalanced distribution systems
by the projected Newton method was investigated in [19]
with the penetration of DERs. Voltage regulators and
their magnetizing reactance are used in [9] for voltage
regulation of unbalanced distribution systems using the
augmented Lagrangianmultipliers method as an optimization
approach. In [20], a two-stage voltage control method using
reactive power control and load tap changers was proposed,
considering voltage profile improvement and delivery losses
in the first stage and voltage stability in the next stage.
In [21], a volt/var control scheme using the EPF method as
an optimization approach was presented, which considered
the PV systems’ reactive power and the voltage regulators’
tap position. Compared to the IEEE standard voltage control
method, the method required low reactive power to solve
the voltage problem. However, minimizing the operation cost
during normal conditions was not considered. The use of
smart inverters and the required techniques were analyzed
in [22].

The authors in [23] have presented a dispatch model for a
renewable-integrated microgrid in both off-grid and on-grid
modes considering five different dispatch control schemes.
HOMER Pro platform was used to clarify the optimal
combination of the system from technical, economic and
environmental points of view. In addition, the DIgSILENT
PowerFactory was utilized to elaborate the reactive power,
frequency, and bus voltage responses. It is notable that the
HOMER Pro platform was also compared to the particle

swarm optimization (PSO), genetic algorithm (GA), ant
colony optimization (ACO), and flower pollination algorithm
(FPA) and the results validated the efficiency of the proposed
model. For evaluating the effect of weather, consumer
demand and industrial loads, an ancillary voltage control
framework was presented in [24] for a renewable-based
microgrid. Obtained results have shown that the introduced
intelligent adaptive controller results in maintaining stable
input voltage for secondary networks. The challenges of
integrating renewable sources including PV and wind power
in the conventional power systems and islanded microgrids
were assessed in [25]. The Hybrid Firefly Genetic Algorithm
was utilized as an effective optimization approach in [26]
in the energy management problem of a standalone hybrid
microgrid. Results validated the efficiency of the proposed
model in minimizing the annual cost of the system.

Some studies have presented machine learning techniques
as a novel method to solve the voltage control problem
in distribution networks. The authors in [27] presented a
model for real-time decision-making in case of sudden
voltage deviations due to PV system output power variations.
First, based on the surrogate model, the supervised training
algorithm was used to determine the relationship between the
voltage deviation of the busses and the power injection at
the nodes. In the following stage, the optimal approach for
voltage control was determined using the deep reinforcement
learning technique. To reduce the need for precise parameters
in distribution networks, a physical model-free voltage
control scheme was presented in [28]. In particular, the
presented model could handle both the fast time scale using
the PV inverters and the slow time scale using the tap
changers and capacitor banks.

To minimize the operating costs of the distribution net-
work, a multilevel optimization model was presented in [29].
In this study, the uncertainties of renewable generation and
load were modeled by Information Gap Decision Theory
(IGDT). In [30], a multi-objective optimization scheme was
presented tominimize the distribution system’s operating cost
and power loss considering various distributed generators,
including PV and wind power. Reference [31] evaluated
the technical and economic analysis of active distribution
networks fed by an external grid by a multi-objective
optimization model. A multi-criteria framework was pre-
sented in [32] to improve the voltage profile and minimize
operation, maintenance, and investment costs in an integrated
distribution system with renewable energy. In [33], a multi-
objective optimal Volt/VAR control scheme is presented
to optimize the power loss and the cost of adjusting the
grid’s voltage control assets. In the mentioned study, the
capacitor bank switches, tap position of on-load tap changer
transformers, voltage regulators’ taps, and active and reactive
power set-points of prosumer distributed energy resources
have been taken into account.

The ε-constraint method was used in [34] to solve the
multi-objective optimization problem considering costs and
greenhouse gas (GHG) emissions. The simulation results
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showed that the proposed model could effectively contribute
to minimizing the two objective functions. In [35], a multi-
objective optimal power flow program was presented and
solved using the ε-constraint method. The mentioned model
was tested on various systems, including the IEEE 30, 57,
and 118 bus test systems, and the results confirmed the
model’s superiority over other similar methods. To minimize
the frequency deviation in a battery storage system, the EPF
optimization method was used in [36] to solve the nonlinear
programming (NLP) problem. The EPF method was used
in [37] for the techno-economic analysis of a hybrid power
system of PV and fuel cells.

The authors in [38] have presented a multi-objective
optimization scheme for dispatching the PV inverters,
on-load tap changers, and capacitor banks. The advantage of
the proposed model over the previous studies is proposing
a distributed dispatch method that has a low computational
burden. However, in this study, the objective is to reduce the
voltage magnitude and losses. On the other side, the proposed
method for solving the multi-objective optimization problem
is the weighted sum approach. A comprehensive comparative
study for dealing with multi-objective optimization problems
was introduced in [39] in which the authors have considered
various optimization methods inclusive of the Genetic
Algorithm, Firefly Algorithm, Particle Swarm Optimization,
and a novel hybrid of the Firefly and PSO algorithms for
minimizing the annual cost of energy systems, greenhouse
gas emissions, and the total Dump energy. Distributed
leader-follower voltage control method is proposed in [40] by
using the smart inverters of PV units. The aim of the presented
model was to minimize the total power consumption of the
system, and the results validated that. A chance-constrained
voltage control method for unbalanced distribution networks
was presented in [41], in which the authors have considered a
data enrichment approach to deal with the uncertainty of load
and PV generation. The objective of the mentioned study was
to reduce the total power consumption of the grid. As can
be understood, multi-objective optimization for minimizing
the total operation cost and voltage deviation from the rated
value of the unbalanced distribution networks was not studied
extensively in the literature. Moreover, considering the
ε-constraint method as an efficient approach for dealing with
multi-objective optimization problemswas not in the scope of
the mentioned studies investigating the distribution systems’
voltage control problem.

Despite several methods presented in the existing lit-
erature, the improvement of the solution methods from
the aspects of accuracy, convergence, computation speed,
and efficiency in real applications can be considered an
open problem. Moreover, providing a comprehensive control
framework that considers more than one crucial operational
criterion has not been extensively studied.

C. CONTRIBUTIONS
Based on the above discussion, the techno-economic analysis
of renewable-integrated unbalanced distribution networks is

an important issue that can be considered an open problem,
requiring additional efforts. In this study, we have analyzed
the modified IEEE 34-bus unbalanced distribution system
from both technical and economic points of view. For
this purpose, a multi-objective optimization framework is
presented, considering the cost of energy provided by the
transmission grid on one side and the deviation of the voltage
magnitudes from the rated flat value on the other as the
objective functions. As we know, previous studies have not
extensively investigated the presented model. Specifically,
the presented study contributes to the existing body of
knowledge as follows:

1) A techno-economic analysis of a RES- integrated IEEE
34-bus unbalanced distribution network is studied,
providing the DSO with a comprehensive vision for
decision-making on the operational problem.

2) The reactive power of PV systems and voltage regulators
are considered arms for voltage control of the proposed
unbalanced distribution system.

3) A multi-objective optimization scheme is considered
to minimize the energy cost from the grid and the
voltage deviation from the nominal value simultane-
ously. The ε-constraint method deals with the presented
multi-objective optimization problem.

4) Exterior penalty function (EPF) optimization method is
the main approach to solving the optimization problem.

The rest of the paper is organized as follows. The
methodology and problem statement of the proposed model
is described in section II. Case studies and simulation results
are presented and discussed in section III. Finally, section IV
concludes the paper.

II. PROBLEM FORMULATION
The operation of a power system can be formulated as an
optimization problem with an appropriate method to solve
the power flow problem of the system. Considering the
type and topology of a power system, various classical and
novel methods for solving the power flow problem of the
system are presented by researchers [42], [43]. In this section,
a suitable power flow approach for the intended system is first
presented. Then, the optimization framework for the optimal
operation of the unbalanced distribution system is explained.
Finally, it is illustrated how the ε-constraint method can be
applied efficiently to solve a multi-objective optimization
problem.

A. BACKWARD-FORWARD SWEEP (BFS) METHOD
The radial nature of the distribution grids with high
R/X ratios makes the conventional Newton-Raphson (NR)
method for power flow a nearly infeasible approach to
converge to an accurate result. Therefore, another efficient
method is required for solving the power flow problem
of the unbalanced distribution networks, which has better
convergence performance and accuracy rate. The backward-
forward-sweep (BFS) power flowmethod is one of those ones
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FIGURE 1. Representation of branch-l in BFS method.

that can satisfy the above criteria. The procedure starts with
defining the series impedance matrix of a line segment as Zl
for phases 1, 2, and 3 and the admittance of all shunt elements
at node i as Yi as shown in (1) and (2) [44].

Zl =


Zl,11 Zl,12 Zl,13

Zl,21 Zl,22 Zl,23

Zl,31 Zl,32 Zl,33

 (1)

Yi =


Yi1 0 0

0 Yi2 0

0 0 Yi3

 (2)

To initialize the BFS, the root node is treated as a slack bus,
and the voltage of the other busses is considered equal to
the root node. The iterative BFS is developed in three steps.
The three steps of k th BFS iteration is explained using a
representative branch-l connected between node-i and node-j
as in Fig. 1.
1) Defining the nodal currents:

In the first step, the nodal currents are calculated by (3)
using the nodal voltages, which are initially 1.0 p.u.,
depending on the connected load type.

I (k)i1

I (k)i2

I (k)i3

 =

(Si1/V

(k−1)
i1 )∗

(Si2/V
(k−1)
i2 )∗

(Si3/V
(k−1)
i3 )∗

− Yi

V (k−1)
i1

V (k−1)
i2

V (k−1)
i3

 (3)

2) Calculating the branch currents- Backward sweep:
Branch current calculations start from the last bus in
each feeder (end nodes) towards the upstream direction
(root node). As illustrated in Fig. 1, Kirchhoff’s
current law (KCL) is used for finding the current
of the branch l using (4). Note that Jm is the
sum of currents flowing on the adjacent branches of
node j. 

J (k)l1

J (k)l2

J (k)l3

 = −

I (k)j1

I (k)j2

I (k)j3

+

J (k)m1

J (k)m2

J (k)m3

 (4)

3) Calculating the nodal voltages- Forward sweep:
Bus voltages are calculated starting from the root
node towards the downstream nodes (end nodes) using
Kirchhoff’s voltage law (KVL). (5) is written for any
downstream node voltage-j, using the upstream node
voltage-i and branch current-l, where l is the branch
index connected between nodes i and j.

V (k)
j1

V (k)
j2

V (k)
j3

 =

V (k)
i1

V (k)
i2

V (k)
i3

− Zl

J (k)l1

J (k)l2

J (k)l3

 (5)

All the branch currents and node voltages will be calculated at
the end of the third step. The sweeping process is terminated
if the difference between the node voltages of the last two
consecutive iterations is less than a pre-specified threshold
value. Otherwise, the next iteration starts at step 1 with the
updated node voltages of this iteration.

B. EXTERIOR PENALTY FUNCTION (EPF) OPTIMIZATION
APPROACH
The optimum operation of unbalanced distribution networks
can be formulated as an optimization problem aimed
at minimizing or maximizing desired objective functions.
Choosing appropriate methods in terms of convergence
speed and accuracy to solve the resulting optimization
model is a crucial issue in operation problems. For this
purpose, one of the suitable options is the EPF optimization
approach. EPF is effective for problems with both equal-
ity and inequality constraints. It allows the optimization
process to proceed even when the constraints are violated
initially, gradually penalizing such violations in the objective
function to drive the optimizer toward feasible solutions.
EPF is relatively straightforward to implement compared
to some other constraint-handling techniques like interior
penalty or barrier methods. This simplicity can make it
an attractive choice for certain problems. In many cases,
exterior penalty methods converge to a feasible solution.
As the penalty parameter increases, the optimization process
tends to produce solutions that satisfy the constraints more
closely. In addition, the penalty parameter can be adjusted
to control the trade-off between satisfying the constraints
and optimizing the objective function. This adjustability
allows for fine-tuning the optimization process based on
problem-specific requirements [45]. In general, a constrained
optimization problem can be described as follows:

maximize f (x)

subject to g(x) = 0

h(x) ≤ 0 (6)

In the EPF method, the constrained optimization problem
is transformed into a sequential unconstrainedmodel. In addi-
tion, a penalty multiplier is added to satisfy the constraints.
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Finally, the resulting problem is as follows:

maximize F = f (x)+ λg(x)+ µh(x) (7)

C. ε-CONSTRAINT METHOD
Based on the decision stage in which the decision
maker defines the preferences, multi-objective optimization
approaches can be classified into priori, interactive, and
posteriori schemes. In comparison to priori methods, includ-
ing the weighted approach, the interactive and posteriori
methods provide more information for the decision-maker.
One of the advantages of the ε-constraint method over
the weighted method is that it is possible to obtain an
efficient solution in each run. In the weighted method, it is
sometimes required to spend more runs since many weight
combinations may result in the same efficient solution.
Therefore, the ε-constraint method results in a rich solution
set. In addition, the ε-constraint approach can provide
unsupported efficient solutions in multi-objective integer and
mixed integer programming frameworks, while the weighted
method is not able to deal with this. The other advantage of
the ε-constraint method is that the scaling and the range of
objective functions do not affect the solutions. As a result, it is
not necessary to scale the objective functions to a common
range. Moreover, the number of efficient results is under
control in the ε-constraint method, however, this is not a
straightforward process in the weighted method. Finally,
ε-constraint has been considered as an effective method to
deal with the problems with non-convex Pareto fronts [46].
The basic structure of a multi-objective optimization

problem with α objective functions and β constraints can be
considered as follows:

maximize (f1(x), f2(x), . . . , fα(x))

subject to (g1(x), g2(x), . . . , gβ (x)) (8)

Here g includes either equality or inequality constraints.
Among several methods for solving multi-objective opti-
mization problems, including weighted sum, lexicographic,
etc., the ε-constraint method is considered one of the
most efficient approaches for defining a Pareto front
and determining the trade-off solution [47]. To apply the
ε-constraint formulation to the main multi-objective model,
one of the α objective functions is considered the main objec-
tive, and the other functions are held as constraints. Then,
various lower or upper bounds (based on the main problem
being a maximization or minimization problem) are aligned
to the objectives, which are transformed into constraints.
Finally, the resulting single-objective optimization problem
with β+α-1 constraints is solved by the EPF optimization
method. If we consider the overall problem as maximization,
the resulting model looks as follows:

maximize f1(x)

subject to (g1(x), g2(x), . . . , gβ (x))

(f2(x) ≥ ε1, f3(x) ≥ ε2, . . . , fα(x) ≥ εα−1) (9)

FIGURE 2. Solution algorithm of ε-constraint method.

It is worth noting that the factors of the ε-constraint
method (ε1,ε2,ε3,. . .) will get different values during the
solution process. To determine the values of these factors,
the min-max range of the other n-1 objective functions must
be calculated. The detailed algorithm for implementing the
ε-constraint method is shown in Fig. 2.

D. IMPLEMENTATION OF MULTI-OBJECTIVE
OPTIMIZATION FRAMEWORK FOR DISTRIBUTION
SYSTEM OPERATION
This study proposes a techno-economic analysis of unbal-
anced distribution networks that consider both the minimiza-
tion of voltage deviations from rated values and the cost
of energy from the network, which are considered as oper-
ating costs of the distribution system. The multi-objective
optimization model is constructed from the two objective
functions as follows:

minimize f1(x) =
I∑
i=1

(1− Vi)2 ∀ 1t (10)

minimize f2(x) = Pgr ∗1t ∗ PC ∀ 1t (11)

Note that the objective functions shown in (8) and (11)
represent the voltage deviations from 1 pu., and the operation
cost of the distribution network. With the first objective
function, we aim to obtain as flat as possible voltage profile,
by bringing the voltage magnitudes of all nodes closer to
1 p.u. The second objective function is used to minimize
the operation cost of the distribution network, by minimizing
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the amount of power being purchased from the upstream
grid [30], [31].

E. CONSTRAINTS
There are several technical constraints regarding the oper-
ation of distribution networks. The voltage magnitudes of
the network are desired not to exceed certain limits, which
is assumed to be ±5 % of the rated voltage levels in this
study. Therefore, the upper and lower limits are 1.05 p.u.
and 0.95 p.u., respectively. Equation (12) demonstrates the
voltage magnitude constraint.

Vmin
≤ Vi,t ≤ Vmax (12)

The voltage regulator’s tap positions must remain within
the specified boundaries, between −16 and +16, to ensure
stable and safe operation as shown in (13) [48], [49]. These
limits define the acceptable range for voltage adjustments,
preventing the system from experiencing over-voltage or
under-voltage conditions. Adhering to these boundaries
safeguards the equipment, maintains optimal performance
and prevents potential damage that could arise from voltage
deviations beyond the prescribed limits. Note that the tap
positions can only take integer values.

TPmin ≤ TPt ≤ TPmax (13)

The reactive power support from the inverter has a minimum
and a maximum limit that the operating strategy must respect.
In this study, we assume that this limit is given by (14)
and (15). The reactive power limits in (14) can be found by
leaving QPV ,t alone in (15) for each time step t . In this study,
we assume that reactive power consumption or production
can be provided through inverters when they are at least 5%
of their rated power as specified in IEEE-1547 [50].

QminPV ,t ≤ QPV ,t ≤ QmaxPV ,t (14)

S2PV ,t ≥ Q
2
PV ,t + P

2
PV ,t (15)

In addition, the DSO decides on the amount of integrated
PV active power, and this active power must not exceed the
maximum capacity of the installed PV system. Equation (16)
illustrates this constraint.

PPV ,t ≤ PmaxPV ,t (16)

Finally, the power balance constraint states the equilibrium
between the generation, including the support from the
upstream grid, and consumption in the distribution network.
It is formulated as follows:

Pgr + PPV + Ploss =
I∑
i=1

(L) ∀t (17)

The presented study comprises three main stages. At first,
load flow studies are implemented on the IEEE 34-bus
system to define the existing voltage problems in the system
and provide baseline data for comparing results. Afterward,
PV penetration is taken into account, and an optimization
framework is built up based on the objective function and

FIGURE 3. Overall procedure of the paper.

constraints introduced in the problem formulation section.
The proposed model is a single-objective optimization
problem aiming to minimize the voltage magnitude deviation
from the rated value considering the required operational
constraints. Finally, the optimization framework is updated
based on the requirements of the ε-constraint method to
reflect a multi-objective optimization scheme. The pseu-
docode defining the procedure for solving the multi-objective
optimization problem in this stage is depicted in Algorithm 1.
The aim of stage 3 is to simultaneously minimize the voltage
deviations from the rated flat value and the operation cost
of the grid with necessary constraints. At the end of this
stage, a trade-off table between the objective functions is
provided for decision-making strategy. Fig. 3 depicts the
overall procedure and flow of the paper.

III. SIMULATION RESULTS
We performed hourly simulations on a modified IEEE
34-bus test system [51]. The single-line diagram aswell as the
inputs and outputs of the problem are shown in Fig. 4. Two
voltage regulators are considered between the busses 814-850
and 832-852. In addition, an inverter-interfaced PV unit with
a rated power of 300 kW is considered at terminal node 890.
The scaled PV generation and load profiles (coefficients) are
shown in Fig. 5 with a resolution of 1 hour [52], [53].

As known, power electronics-based inverters are able
to inject/absorb reactive power to the system much faster
compared to the mechanical-based conventional devices such
as tap changer voltage regulators. In this study, the simulation
time resolution was set to one hour to show the efficiency of
the coordinated operation of both the mechanical and power
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Algorithm 1 Solution of the Multi-Objective Problem
1: Input:
2: Objective function upper/lower bounds flow, fup ∈ R
3: Increment of ε, δ ∈ R
4: Initial point for EPF, X1

5: Maximum number of iterations, Nmax

6: Convergence and stopping tolerance, τ
7: Initial penalty multipliers, µ0, λ0

8: Scaling factor for multipliers, Ch,Cg
9: Iteration counter, cnt = 1
10: Pareto optimal solutions space, p = φ

11: Initialize ε = fup
12: while ε ≥ flow do
13: X cnt = DFP F(µcnt , λcnt , ε − δ, ε)
14: if gb (b = 1, 2, . . . , β) is satisfied then
15: Converged
16: end if
17: 1F = Fcnt − Fcnt−1

18: 1X = X cnt
∗

− X (cnt−1)∗

19: if (1F)2 ≤ τ then
20: Stop
21: else if 1XT1X ≤ τ then
22: Stop
23: else if cnt = Nmax then
24: Stop
25: end if
26: Continue
27: cnt ← cnt + 1
28: µcnt

← µcnt∗Ch
29: λcnt ← λcnt

∗

Cg
30: X cnt ← X cnt

∗

31: if ∄X ′ ∈ P such that x ′ ≻ x then
32: P = P ∪ {x}
33: end if
34: ε = ε − δ

35: end while
36: Output: Set of Pareto optimal solutions P

electronics-based devices. Thus the proposed model assumes
that the control actions are taken at each hour for this study.
Simulations are performed, and the results are discussed for
the three case scenarios defined below. Note that the EPF
method is used as a solution tool for all cases.

• Case 1 (Base-case)- This operating condition has no
voltage control. The purpose of this case is to provide
baseline data for comparing results.

• Case 2- In this case, we only aim to minimize the total
voltage deviations along a day as the objective function.
We utilize the voltage regulator taps and reactive power
support of the PV unit to improve the voltage profile.

• Case 3- This case is formulated as a multi-objective
optimization to handle both the technical and economic
objectives. We aim to minimize the total voltage magni-
tude deviations from the rated values and energy supply

FIGURE 4. The studied system with inputs and outputs of the problem.

FIGURE 5. Coefficients of hourly load and PV generation.

cost by controlling the voltage regulator taps and PV
reactive power output. Note that the ε-constraint method
is used for this multi-objective optimization framework.
By solving the multi-objective model, we aim to provide
comprehensive insight for the DSO for decision-making
in the operating problem of unbalanced distribution
networks.

A. CASE 1
In this case, the normal power flow is performed using the
BFS method for the unbalanced IEEE 34-bus distribution
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FIGURE 6. Voltage profiles of the system- Case 1.

network. The voltage regulator tap positions are considered
to be zero on phases A, B and C. The voltage profiles are
depicted in Fig. 6. Moreover, Table 1 provides guidance
for the bus numbers on the single line diagram (SLD) and
illustrated voltage profiles for all case studies. From Fig. 6,
it can be seen that the system has an under-voltage problem
due to the radiality of the network. The problem is particularly
severe at the feeder end nodes and after 17:00 when the total
system load increases. The need for a comprehensive voltage
control procedure is evident here, and upcoming case studies
will analyze this problem in detail.

B. CASE 2
For this case, we set up a voltage regulation framework for
the mentioned unbalanced distribution network. Two voltage
regulators, as well as the reactive power support from the
PV systems, are considered to improve the voltage profiles.
The voltage profile of the system is shown in Fig. 7. From
this figure, it can be concluded that by implementing the
control method, the voltage profiles of the system have been
changed, and the under-voltage problems of the base-case
operating conditions have been resolved. Moreover, due to
the high PV generation, there are over-voltage problems in a
few system nodes. However, as desired, the overall voltage
profiles are close to the nominal value of 1 p.u.. It is worth
noting that at 19:00, there are some voltage violations on
all three phases of terminal node 890. The reason for this
phenomenon is that at this time, not only the PV generation is
low, but also the load on the system is high and the voltage of
the system is controlled only by the voltage regulators, which
are not sufficient to eliminate all the under-voltage problems.
In order to provide a detailed interpretation of results and
validate the efficiency of the proposed model, Table 2 is

TABLE 1. A guide for bus numbers on voltage profiles and the SLD.

provided in which the total number of voltage violations in
case 1 (base case) and case 2 are reported. Moreover, the
value of objective function in the two cases are provided.
The results show that 701 of 728 voltage violations are
eliminated by optimizing the tap-changer positions and PV
reactive power outputs. On the other hand, the total voltage
deviation decreased to 3.4480, from 6.1940 in case 1, with the
proposed optimization model. Note that some unavoidable
over- voltage violations occur due to high tap ratios at
evening hours and lack of PV reactive power consumption
support. Moreover, the hours with no voltage violations are
not mentioned in the table. TVV stands for the total number
of voltage violations and TVD is the total voltage deviation
given by Equation (8).

The injection/absorption of reactive power of the PV unit
(inverter) is shown in Fig. 8. Notably, the reactive power
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FIGURE 7. Voltage profiles of the system- Case 2.

FIGURE 8. Reactive power injection/absorption at bus-890- case 2.

transaction occurs only during the hours when PV generation
is present. There will be higher voltage drops along the
branches at higher load levels. The PV unit injects higher
reactive power during this period to avoid under-voltage
problems. Note that the active power injection of the PV unit
also contributes to solving the high voltage drop problem.
On the other hand, when the load is low and the PV active
power injection is high, an over-voltage tendency occurs in
the system, and the inverter absorbs the reactive power to
solve the problem.

Finally, the tap positions of the voltage regulator are shown
in Fig 9. As mentioned earlier, between 1:00 and 6:00 and
between 19:00 and 00:00, when there is no PV generation,
the voltage regulators are the only way to contribute to the

FIGURE 9. Tap positions of voltage regulators- Case 2.

distribution system voltage regulation problem. Therefore,
during these times, the changes in tap positions are relatively
high compared to the times when there is enough PV
generation to solve the voltage deviation problem.

1) SENSITIVITY ANALYSIS
In this part, a sensitivity analysis is developed to evaluate
the effect of PV penetration level, which is one of the most
important parameters in this study. PV penetration level refers
to the amount of PV active power dispatch in the system and
in a certain amount of load; any change in PV active power
dispatch will affect the crucial parameters of the system,
including voltage magnitudes. Therefore, two scaling factors
are considered for PV penetration as 0.8 and 1.2 as multiplier
coefficients of PV values in the base case. After solving the
optimization problem, the values of the objective function,
which is the sum of voltage deviations, are obtained. Table 3
provides the results of the sensitivity analysis. As can be
observed, the scaling factor 1, which is the base value of PV
in case 2, has the lowest value of the objective function. This
means that every change in the amount of PV penetration
should be analyzed carefully since it can worsen the system
voltage profile.

C. CASE 3
This case provides a comprehensive multi-objective study of
the operational problem of the aforementioned unbalanced
distribution network. Similar to the previous case, the voltage
regulator and the reactive power support from the PV systems
are considered. However, in this case, the objective is to
simultaneously minimize the voltage deviation from the
nominal value and the operating cost. To solve the problem,
the ε-constraint method has been applied and the results are
presented.
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TABLE 2. Improvement of voltage profiles for Case-2.

TABLE 3. Total sum of voltage deviations from the rated value for
different scaling factors of PV penetration.

Table 4 shows the values of each objective function for
the defined ε value for different hours after eliminating
the dominated results. Each step in this table refers to a
pre-defined value of ε. It is worth noting that since the higher
amounts of PV generation are the main cause of conflict
between the two objective functions, only the hours with high
PV generation rates are considered in the simulation. In other
words, the critical period for decision making supposed to
be between 09:00 and 15:00. As can be seen from the table,
the two objective functions are in conflict with each other at
each hour, and when one is increased, the other decreases.

Note that each step refers to an operation strategy in which
‘‘Vol. Dev.’’ refers to the sum of voltage deviations calculated
by equation (8) and ‘‘Cost ($)’’ refers to the operation
cost calculated by equation (11). For instance, in step 1 at
12:00 pm, the value of the first objective function, the sum of
voltage deviations from the rated flat value, is 0.1292. This
amount is greater than the related values in steps 2 and 3 at
the same hour. This is because as we move from step 1 to
step 3, the operation cost of the system is allowed to take
higher values, and thus the conflict between the objective
functions becomes smoother. Furthermore, the sum of voltage
deviations can take lower values. In order to present the
optimal Pareto set in more detail, Fig. 10 is provided. Each
subplot in this figure refers to the Pareto front for each hour
between 9-15 pm after eliminating the dominated answers.
As can be observed from this figure, the two objective
functions are conflicting. Note that OF1 refers to the sum of
voltage deviations, and OF2 refers to the total operation cost.
This table and figure provide the DSO with a comprehensive
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TABLE 4. Values of the objective functions by solving the multi-objective
problem for various ε.

FIGURE 10. Hourly Pareto profile.

overview of the decision-making process when operating the
unbalanced distribution network.

For a given hour, i.e., noon, the active and reactive power
transactions and the tap positions are illustrated in Fig. 11 and
Fig. 12, respectively. As shown in Fig. 11, the active power
injection of PV into the distribution grid decreases from the
first ε to the last (step 1 to step 3). This behavior is because,
given the conflict between the two objective functions,

FIGURE 11. Active and reactive power transactions of PV unit at
12 p.m.- Case 3.

FIGURE 12. Tap positions of voltage regulator at 12 p.m.- Case 3.

while the objective is to minimize the voltage deviation, the
operating cost tends to increase. Moving from the first ε

to the last, the operating cost can reach higher values, and
the main objective, minimizing the voltage deviation, has
enough space to decrease. Since the PV operating cost is
nearly zero, less PV active power is injected into the system.
In addition, reactive power is absorbed from the phases that
encounter over-voltage and is injected into the phases which
have under-voltage issues. In Fig. 12, since there are two
voltage regulators in the system, the indices are shown by
1 and 2 for three phases a,b and c. As can be understood
from the figure, the tap positions are set in positive values
for the phases that have under-voltage problems and negative
values for the phases that experience over-voltage. Note that
voltage regulators and PV units are connected in different
nodes. Finally, the total main grid energy supply cost is the
lowest in the operation condition provided by step 1. Total
cost for step 1 is $48016 which is lower than the related value
in case 2 with $76551.

The voltage profile of the system for 12pm is shown in
Fig. 13. Compared to the base case, where there was no
voltage regulation strategy, the voltage profile has improved
and is close to the nominal value of 1 p.u. However, there
are some voltage violations on bus 890. The reason for
these violations is that the mentioned bus is an end node of
the feeder, and in some cases, the DSO wants to minimize
the cost by sacrificing the voltage in critical situations.
Comparative results of the total number of voltage violations
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TABLE 5. Improvement of voltage profiles for Case-3.

FIGURE 13. Voltage profile of the system- Case 3.

and the objective functions for Case 1 and Case 3 are
reported in Table 5. The results show that 269, 271, and
268 of 271 under-voltage violations are eliminated for ε1, ε2,
and ε3 operation conditions, respectively, by optimizing the
tap-changer positions and PV reactive power outputs. Note
that there are a few unavoidable over-voltage violations due
to high solar irradiation during the noon time.While using the
ε-constraint method, the operation condition related to
step 3 is the case that there is the lowest voltage deviation.
Therefore, the sum of voltage deviation between hours 9:00
and 15:00 is 0.5395 which is less than 2.5277 in the base case.

IV. CONCLUSION
In this paper, a multi-criteria decision making framework
in the optimal operation problem of the modified IEEE
34-bus unbalanced distribution network was presented. In the
studied system, a PV unit as well as two tap changer voltage

regulators were taken into account. The presented framework
was amulti-objective optimization problem that considers the
voltage deviation from the rated value and the operation cost
as the objective functions. The reactive power support from
the PV system was considered along with the tap positions
of the voltage regulators as the arms of the proposed voltage
control scheme. The EPF method was taken into account for
solving the optimization problem and the ε-constraint method
was utilized as an efficient approach to deal with the resulting
multi-objective optimization scheme.

Three case studies were presented, including the base case,
i.e., the operation of the distribution system without any
voltage control method to provide a baseline for comparison
of the results. In the next case, a voltage control method
was implemented on the mentioned system by the reactive
power support from the PV with a constant active power
injection and adjusting the tap positions of the voltage
regulators. Simulation results, in this case, proved that the
proposed voltage control method can contribute efficiently
to improving the existing under-voltage problem of the
system. However, surplus PV active power resulted in
the over-voltage issue in the network. For solving all of
the above-mentioned problems at once, the final case study
was presented. In this case, a multi-objective optimization
scheme was presented to minimize the voltage deviation
from the rated flat value and the operation cost of the
distribution network, simultaneously. Similar to the previous
case, reactive power support of PV and voltage regulators
was controlling the voltage deviation; however, the PV
active power was not constant, providing the DSO with the
flexibility to decide about the amount of PV integration.
The simulation results on the IEEE 34-bus test system
confirmed the ability of the presented model to minimize
both of the objective functions and provide the DSO with a
comprehensive vision for decision-making in the operation of
the distribution networks.

In summary, the results of all the studied cases illustrated
the efficiency of the EPF method in solving the optimal
operation problem of the distribution network as well as
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the proper capability of the ε-constraint approach in dealing
with the multi-objective optimization scheme. Simulation
results revealed that by implementing the presented voltage
control method considering the objective as minimizing the
voltage deviations from the rated value, there will be a
44.3% decrease in the sum of voltage deviations compared
to the case with no voltage control scheme. Moreover,
implementing the multi-objective optimization framework,
considering the minimization of voltage deviations and
operation cost simultaneously, will result in a comprehensive
decision-making strategy for the DSO during the critical
operation period. In other words, between the hours 9:00
and 15:00, the DSO can consider a 69.4% decrease in the
sum of voltage deviations if it accepts a 37.2% decrement in
the operation cost or 73.9% decrease in the sum of voltage
deviations if it accepts 24.0% decrement in the operation
cost or 78.6% decrease in the sum of voltage deviations if
it accepts 7.5% decrement in the operation cost. In future
studies, the presented model can be expanded by considering
the uncertainty of PV power output and comparing the
presented solution method with the candidate competitors.
In addition, energy storage systems are considered effective
complementary equipment for the PV plants that can provide
efficient operation of these units. As another research
direction, integrating the energy storage system to the studied
network can be evaluated in the future.
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