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ABSTRACT Forecasting crowd congestion is a critical aspect of crowd management, particularly in
dynamic and densely populated areas, such as urban centers, events, or pilgrimage sites. In this paper,
we proposed the first crowd congestion forecasting framework for the pilgrimage of Umrah. We addressed
the crowd congestion forecasting problem by clustering the crowd flow trajectory in Masjid Al-Haram
(Great Mosque) in the city of Makkah into six zones. The framework consists of two main components:
1) Ensemble forecasting model that aims at forecasting the crowd density of Masjid Al-Haram and its six
zones, and 2) decision making algorithm that aims at keeping the crowd density at an acceptable level,
and recommends updating the crowd flows when the forecasted crowd density exceeds the crowd density
threshold. We built the ensemble learning model in three phases. In the first phase, we selected and evaluated
different learning base models, including ARIMA, Sequence to Sequence (Seq2Seq) learning, M-1D-CNN-
LSTM, andDeepSTN. In the second phase, the best threemodels, which performedwell in the first phase, are
selected to build the stacked ensemble model. The latter is validated using the walk-forward technique in the
third phase. To evaluate the framework, we built a crowd dataset based on two temporal properties: 1) hourly
context and 2) daily context. We evaluated the three phases of the ensemble forecasting model. In the first
phase, DeepSTN performs the best by achieving a Mean Absolute Error (MAE) of 0.281. The results also
indicate that DeepSTN is the best fit for five zones, and one variant of Seq2Seq, named Seq2Seq2b is the
best fit for one zone under Mean Square Error (MSE) and Root Mean Squared Error (RMSE). Under MAE,
DeepSTN and Seq2Seq2b, each of which is the best choice for three zones. In the second phase, the stacked
ensemble achieves a MAE of 0.257. In the third phase, the stacked ensemble model is validated using the
walk forward technique, which allows to reduce the MAE to 0.253. Although this framework focuses on
Umrah, it can be customized for other use cases that involve crowd congestion forecasting.

INDEX TERMS Crowd congestion, crowd density, decision making, forecasting, learning model, Umrah.

I. INTRODUCTION
Umrah is one of the largest and the most crowded gatherings
of people in the world, where pilgrims travel from across the
world to the holiest site in Islam, i.e., the Masjid Al-Haram in
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the city of Makkah in Saudi Arabia to perform a set of rituals,
which involves: (a) performing Tawaf, i.e., circumambulating
the Kaaba (sacred cubic-shaped building structure located
at the center of Masjid Al-Haram in a counterclockwise
direction seven times), and (b) completing Sa’i, which is the
act of walking seven times between the Hills of Safa and
Marwah. The pilgrimage of Umrah often involves dealing

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 67453

https://orcid.org/0000-0002-6498-1528
https://orcid.org/0000-0001-8316-8439
https://orcid.org/0000-0002-7964-3898
https://orcid.org/0000-0003-0246-2148
https://orcid.org/0000-0001-8696-6516


A. Derhab et al.: Crowd Congestion Forecasting Framework

with significant crowdedness. The crowd congestion occurs
particularly during peak seasons, such as Ramadan month,
which is the ninth month of the Islamic lunar calendar, when
a higher number of Muslims perform Umrah [12]. Therefore,
crowd management strategies are required to ensure the
safety and well-being of the pilgrims. Crowd management
is a multidisciplinary field that involves the planning,
organization, and controlling of large gatherings of people.
Crowd management could integrate technologies such as
surveillance systems, crowd monitoring tools, and data
analytics to respond to potential issues such as overcrowding,
bottlenecks, or emergency situations.

Crowd congestion is the overcrowding of people in a
particular area, often resulting in restricted movement and
discomfort. It can result in safety concerns, such as the risk
of accidents and stampedes. To effectively manage this issue,
some measures like crowd control, real-time monitoring, and
infrastructure redesign could be implemented, in order to
improve safety, and ensure a smoother flow of people in
crowded environments [48]. To effectively deal with crowd
congestion, it is important to forecast the crowd movement
and crowd density, in order to anticipate any overcrowding
situation beforehand, which can help in preventing accidents
and emergencies [22].

The authorities of Saudi Arabia have deployed many
technological solutions to manage the crowds in Masjid
Al-Haram, including surveillance cameras, crowd density
sensors, and other monitoring tools to provide real-time data
on crowd movements. This information allows authorities
to identify potential congestion areas, and make informed
decisions to optimize crowd flow. However, these solutions
are designed to detect crowd congestion when it occurs. So,
there is a need for a forecasting solution to predict congestion
before its occurrence. In order to deal with crowd congestion,
the Saudi authorities have developed mobile applications
like the Nusuk app [4], which allows pilgrims to schedule
their visits to Masjid Al-Haram at a specific booked time.
As it is not possible sometimes to arrive at the exact booked
time, the authorities allows the pilgrims who arrive within
a time frame of some hours before and after the booked
time to enterMasjid Al-Haram. However, a crowd congestion
could happen in a scenario where a huge number of pilgrims
coincidentally come during the same time frame. Therefore,
it is important to monitor the crowd density inside Masjid
Al-Haram and forecast future crowd density in order to decide
how many pilgrims can be allowed to enter Masjid Al-Haram
in order to avoid congestion.

To deal with the above issues, we proposed a crowd
congestion forecasting framework for the pilgrimage of
Umrah. Although many forecasting models have been
proposed in the literature [20], [39], but to the best of
our knowledge, our work is the first that focuses on the
forecasting of crowd congestion in the context of Umrah.
More specifically, the main contributions of our paper are the
following:

• We provided a crowd congestion forecasting framework,
which is based on clustering the crowd flow trajectory
in Masjid Al-Haram into six zones, as in each zone the
pilgrims follow specific movement and perform certain
activities.

• We proposed an ensemble learning model for the crowd
congestion forecasting consisting of three phases. In the
first phase, we selected learning base models and we
evaluated them separately for the total area of Masjid
Al-Haram, and for each of the six zones. In the second
phase, we select the best three models that performed
well in the first phase to build a stacked ensemble
learning model (or meta model). In the third phase,
the meta model is validated using the Walk Forward
technique [19].

• We proposed a decision making algorithm that is
triggered when the forecasted crowd density exceeds
the crowd density threshold. The algorithm recommends
two types of decisions: (a) decreasing the crowd flow
coming to the zone, and (b) increasing the crowd flow
leaving the zone.

• We built a crowd dataset by considering two temporal
properties: (a) hourly context and (b) daily context.
We used this dataset to evaluate the three phases of
the ensemble forecasting model by selecting different
learning base models, including ARIMA, Sequence to
Sequence (Seq2Seq) learning, M-1D-CNN-LSTM, and
DeepSTN.

The rest of the paper is organized as follows: Section II
presents related work. In Section III, we formally describe
the crowd congestion forecasting problem. The methodology
of the proposed crowd congestion framework is described in
Section IV. In Section V, we describe the implementation of
the approach and dataset generation. Section VI presents the
evaluation results. Finally, Section VII concludes the paper.

II. RELATED WORK
In this section, we give an overview of the most relevant
literature on (a) crowd management in Hajj (annual Islamic
pilgrimage) and Umrah, and (b) crowd forecasting.

A. CROWD MANAGEMENT IN HAJJ AND UMRAH
Different crowd management solutions for Hajj and Umrah
have been proposed [24]. They leverage different technolo-
gies, including computer vision, spatial computing, artificial
intelligence, and crowd modelling and simulation.

Crowd modelling and simulation aims at simulating the
movement of crowds to understand their behaviors. For
instance, Abdelghany et al. [9] presented a microsimulation
model designed for the multidirectional flow of crowds.
The model employs a cellular automata discrete system,
which is used to depict walkways and movement areas
within Mataf (area immediately surrounding the Kaaba).
Zainuddin et al. [53] studied the issue of entrance to
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Mataf zone, especially when it is congested. They used
SimWalk simulator, which is based on the Social Force
Model, to simulate the movement of pilgrims within Mataf.
Sarmady et al. [47] simulated the circular movement of
pilgrims during Tawaf using a cellular automata model in
order to analyze the throughput of Mataf zone.

Computer vision has been an active research in Hajj and
Umrah, which aims at counting the number of pilgrims in
different spatio-temporal zones, and processing the videos
to detect and avoid potential congestion scenarios [14],
[46], [52]. Hussain et al. [28], proposed a crowd density
estimation for Masjid Al-Haram by leveraging computer
vision and backpropagation neural network. Khan [33]
employed computer vision for the identification of congestion
in Masjid Al-Haram by partitioning the crowd video clips
into several overlapping temporal segments of equal duration,
and trajectories are derived from these segments. The con-
gestion points are identified by computing oscillation maps
from these trajectories. Khan et al. [34] used IP cameras,
which are deployed in Masjid Al-Haram to estimate crowd
density, detect crowd congestion, and dominant crowd flows.
Khozium [35] proposed a decision support system to analyze
the crowd flow and density. The data are obtained through
thermal cameras, and are processed to determine crowd
density. The decision support system assesses decisions such
as road closures, road priorities, and the organization of
pilgrims.

Spatial computing focuses on scheduling and rescheduling
the crowdmovement during Hajj [21], [32], [36], [49], as well
as on evacuation strategies that are capable of managing
emergency situations [8], [23], [40], [43], [45], [50], [51].
Artificial intelligence techniques have been leveraged

to manage the crowds in Hajj and Umrah [16]. Almu-
tairi et al. [13] proposed a crowd management framework
to deal with crowd issues in the context of Hajj. The
framework uses advanced technologies like Wireless Sen-
sor Networks, Cloud and Fog Computing, IoT, Machine
Learning, Digital Cities, and RFID, aiming to ensure real-
time monitoring, efficient data processing, and intelligent
analysis. Halboob et al. [26] proposed a crowd intelligence
framework that uses anomaly rules to detect crowd acci-
dents. Abalkhail et al. [7] investigated the application of
artificial intelligence in crowd management during the Hajj,
specifically examining the experience of the Kingdom of
Saudi Arabia (KSA) for handling large crowds in other
contexts and locations. Alaff et al. [10] presented a framework
that extracts the dynamic features based on the optical
flows, and uses Generative Adversarial Network (GAN)
and transfer learning strategy to detect abnormal behaviors
in massive crowds. Bhuiyan et al. [15] utilized a fully
convolutional neural network (FCNN) for crowd analysis,
specifically focusing on the classification of crowd density.
By employing FCNN, the method can effectively monitor
and analyze the crowds, and hence providing insights into
the density levels of different areas. In [29], machine learning

techniques are used to identify crowd congestion incidents
during Hajj through collecting data and feeding them to
decision tree algorithms and K-Nearest Neighbors to predict
the possibility of stampedes. Albattah et al. [11] applied CNN
on mapped picture data to classify the crowds into five levels
of crowdedness ranging from heavily-crowded to normal.
Based on these levels, alarms are sent to avoid reaching the
crowd limit.

B. CROWD FORECASTING
Zhang et al. [56] constructed a hybrid pedestrian flow detec-
tion model by analyzing real data from major mobile phone
operators in China, utilizing information from smartphones
and base stations. By employing the Log Distance Path Loss
(LDPL) model and Gaussian Progress (GP) techniques, they
estimated pedestrian density and retrieved information from
raw network data through supervised learning.

Li et al. [41] presented a deep spatio-temporal learning-
forecasting approach for predicting pedestrian walking paths
in crowds. The approach extracts displacement information
from walking history and embeds it into a Long-Short Term
Memory-based architecture.

Zhang et al. [55] proposed an approach, called ResNet,
to forecast the inflow and outflow of the crowds in different
regions of a city. ResNet uses a residual neural network
framework to capture the temporal closeness, period, and
trend characteristics of crowd traffic. Each property is mod-
eled by a branch of residual convolutional units that capture
the spatial properties of crowd flow. The model dynamically
aggregates the outputs of these branches, assigning weights
based on data, and combines them with external factors like
weather and day of the week to predict the crowd traffic in
each region.

Jin et al. [30] proposed a deep-learning approach, named
STRCNs, to deal with the same issue, forecasting the inflow
and outflow of the crowds in the regions of a city. STRCNs
uses Convolutional Neural Networks (CNN) and Long
Short-Term Memory (LSTM) to capture spatio-temporal
dependencies in the crowd flows. The model consists of four
components: Closeness, Daily Influence, Weekly Influence,
and External Influence. Each component is modeled by a
branch of recurrent convolutional networks, and the outputs
of the branches are merged together. STRCNs was tested on
two datasets: MobileBJ and TaxiBJ.

He et al. [27] developed two deep crowd flow prediction
architectures, named P-GRU and P-DBT, which use a Gated
Recurrent Unit (GRU) model and Deep Bi-LSTM model
respectively. The architectures integrate the precipitation
records, to forecast the crowd flow. The architectures are
evaluated under taxi trajectory data and bike trajectory data
in Chongqing city in southwest-central China.

Zhao et al. [58] applied Convolution Neural Network
(CNN) based method to forecast the crowd flows. They
extracted crowd flows frommobile flow records (MFRs). The
method is shown to reduce the forecasting error by 28% to
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77% when compared with traditional time series regression
models.

Kothari et al. [38] focused on human trajectory forecasting
in crowds by dividing human motions into discrete intents
and scene-specific refinements. They used interpretable
knowledge-based functions and neural network predictions
to select discretized intents based on human motion rules
and complex interactions. The proposed approach was tested
under TrajNet++ dataset [37].
Zhang et al. [57] proposed an urban crowd flow predic-

tion model, named FPM-geo, which integrates geographic
characteristics to improve the accuracy of spatial distri-
bution predictions. By incorporating proximity, functional
similarity, and road network connectivity using a residual
multigraph convolution network, they effectively capture
spatial dependency relationships between regions.

C. GAP ANALYSIS
By studying the literature, we identified the following gaps:

• To the best of our knowledge, there is no work that
considers crowd forecasting, and specifically crowd
congesting forecasting in the context of Umrah.

• In the literature, the crowd forecasting models are
applied on the total studied area, and do not consider its
zones, especially when the zones are characterized by
specific crowd movement patterns, as in the context of
Umrah.

• In the literature, there is no decision making algorithm
that considers the output of the forecasting models to
decide on the inflow and outflow rates of the crowds
within the zones during Umrah.

III. CROWD CONGESTION FORECASTING PROBLEM
In this section, we describe how the crowd flow trajectory
is clustered, and the formulation of the crowd congestion
forecasting problem.

A. CROWD FLOW TRAJECTORY CLUSTERING
The movement of pilgrims in Masjid Al-Haram follows
a predefined trajectory, consisting of a set of zones.
In each zone, the pilgrims follow specific movements
and perform activities. Figure 1 shows the geofencing of
Masjid Al-Haram, and we identify the following six zones
the pilgrim goes through during Umrah.

• Mataf Zone (Zone 1): It is the area where the pilgrims
perform Tawaf, which is accessed by pilgrims from
different doors. It involves circumambulating the Kaaba
in Masjid Al-Haram seven times. Pilgrims walk coun-
terclockwise around the Kaaba. In Figure 1, this zone is
illustrated in green color.

• Transit Zone (Zone 2): This is the area where the
pilgrims go after finishing their Tawaf. They proceed
to the area behind ‘‘Muqam Ibrhaim’’ (‘‘Station of
Ibrahim’’ in English. According to Islamic tradition, the
site marks the spot where the Prophet Ibrahim stood

while he and his son Isma’il (Ishmael) built the Kaaba),
as shown in the figure, to pray, and drink ‘‘Zam Zam’’
water (sacred well) before heading to the next zone, i.e.,
the Safa Hill to perform the ritual of Sa’i, which involves
walking seven times back and forth between the hills of
Safa and Marwah.

• Safa Hill Zone (Zone 3): Pilgrims climb up to the Safa
Hill, stop to recite supplications and verses from the
Quran.

• Safa to Marwah Zone (Zone 4): The pilgrims descend
from Safa Hill and walk towards Marwah Hill. It is
recommended for men to jog during Sa’i between two
markers known as ‘‘the two green posts’’.

• Marwah Hill Zone (Zone 5): Upon reaching Marwah
Hill, the pilgrims stop again to recite supplications.

• Marwah to Safa Zone (Zone 6): The pilgrims descend
from Marah Hill and return to Safa Hill.

B. PROBLEM FORMULATION
Each zone at the t th time interval, denoted by Z ti , is charac-
terized by the following four features:

• Number of pilgrims: It is denoted by N t
i , and represents

the number of pilgrims in Zone i at time interval t .
• Crowd density: It is denoted by δti , and represents the
crowd density of zone i at time interval t , which is
obtained by dividing N t

i by the size of the zone.
• Crowd inflow : It is denoted by Inti , and represents the
number of crowds entering zone i in the t th time interval.

• Crowd outflow: It is denoted byOut ti , and represents the
number of crowds leaving zone i in the t th time interval.

Formally, Z ti = (N t
i , δ

t
i , In

t
i ,Out

t
i ). For each time interval t ,

we define the following:

• Z t = (Z t1|Z
t
2|Z

t
3|Z

t
4|Z

t
5|Z

t
6) is the crowd map that is cap-

tured at time interval t , where ‘‘|′′ is the concatenation
operator.

• δt = (δt1|δ
t
2|δ

t
3|δ

t
4|δ

t
5|δ

t
6) is the crowd density observation

that is captured at time interval t , where ‘‘|′′ is the
concatenation operator.

We also define the following:

• Z = {Z1
|Z2

| · · · |Zn−1
} as the historical crowd maps of

Z ti from t = 1 to t = n− 1.
• δ = {δ1|δ2| · · · |δn−1

} as the historical crowd density
observations of δti from t = 1 to t = n− 1.

For any historical observation Z = {Z1
|Z2

| · · · |Zn−1
}, the

objective it predict the following:

• Zn, which is the predicted vector of Zn =

(Zn1 |Zn2 |Zn3 |Zn4 |Zn5 |Zn6 ), i.e., crowd map at time n
• δn, which is the predicted vector of δn = (δn1 |δ

n
2 |δ

n
3 |δ

n
4 |δ

n
5 |

δn6), i.e., crowd density vector at time n.

IV. METHODOLOGY
In this section, we present an overview of the crowd conges-
tion forecasting framework, and its two main components:
Ensemble learning model, and Decision making algorithm.
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FIGURE 1. Geofencing of masjid al-haram in makkah.

FIGURE 2. The proposed approach overview.

A. APPROACH OVERVIEW
Figure 2 shows the architecture of the forecasting framework.
It consists of four main components:

• Crowd counting: The CCTV cameras that are deployed
in Masjid Al-Haram capture frames. Object detection
algorithms are used to detect human shapes and track
their movements. After that, a counting algorithm is
applied to keep track of the number of people detected
in the frames. This algorithm should increment the count
when a person enters the monitored zone and decrement
it when someone exits.

• Feature computation: Based on the number of people per
zone per time interval, which is obtained by the Crowd
counting, the rest of features, i.e., crowd density, crowd
inflow, and crowd outflow, are computed.

• Ensemble learning model for crowd congestion fore-
casting: It aims to forecast the crowd density of
Masjid Al-Haram area and its zones for the next time
interval. To do so, we follow an approach of three
phases:

– Phase 1 (Base models): We apply different crowd
forecasting models on Masjid Al-Haram area and
its zones. In this phase, we identify the model
that best fits each zone, i.e. the model that gives
the lowest forecasting error of crowd map or
crowd density. We also identify the models that
incur the lowest forecasted crowd density for
Masjid Al-Haram area.

– Phase 2 (Stacked ensemble model for crowd
congestion forecasting): The best three models that
are identified in Phase 1 are stacked, as explained in
Section IV-C, to generate the meta model, as shown
in Figure 3.

– Phase 3 (Walk Forward Validation): We apply the
Walk Forward validation technique on the meta
model of Phase 2, as explained in Section IV-D
to iteratively update the meta model, and make the
final forecast, as shown in Figure 4.

• Decision making algorithm: It notifies the decision
makers when a forecasted crowd density of a given zone
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FIGURE 3. Stacked ensemble model for crowd congestion forecasting.

exceeds the crowd density threshold. It also suggests the
updated crowd inflow and outflow rate to apply in order
to keep the crowd density at an acceptable level.

B. BASE MODELS FOR CROWD CONGESTION
FORECASTING
In this section, we describe the different base models
for crowd congestion forecasting, which include ARIMA,
Sequence to Sequence (Seq2Seq) learning, M-1D-CNN
LSTM (Multiple one dimensional CNN-LSTM), and Deep-
STN algorithm [25], [42], as shown in Figure 3. The selected
base models are known for their usage in different time
series forecasting problems [17], [18], [31], [54]. In addition,
DeepSTN [25], [42] has been proven to perform well in the
crowd density forecasting problem. The approach trains all
the earlier-mentioned learning algorithms on all the six zones,
and generates their corresponding testing models. For each
zone, we select the model that incurs the lowest forecasting
error.

1) ARIMA
We implement AutoRegressive Integrated Moving Average
(ARIMA) model for each zone Zi separately. ARIMA model
is a time series forecasting method used to predict future
values based on past observations and consists of two main
components: AutoRegressive (AR), and Moving Average
(MA). ARIMAmodel is denoted by ARIMA(p, d, q), where p
is the order of the AutoRegressive (AR) model, d is the order
of differencing, i.e., the number of differences needed tomake
the time series stationary and required by the time series to get
stationary, and q is the order of the Moving-Average (MA)
model.

AutoRegressive (AR) The AR component represents the
autoregressive part of the model, which is based on the idea
that the future value of a time series can be predicted from its
past values. For each zone Zi, AR is expressed as follows:

AR(p) : δti = c+ φ1δ
t−1
i + φ2δ

t−2
i + · · · + φpδ

t−p
i + εt

where δti is the crowd density of zone i at time t , c is an
intercept term, and εt the white noise at time t .

φ1, φ2,· · · ,φp are the autoregressive coefficients for lag
terms from 1 to p.

Moving Average (MA)
The MA component models the relationship between the

current value and the past forecast errors (residuals). It is
represented as follows:

MA(q) : δti = c+ εt− θ1εt−1− θ2εt−2 − · · · − · · · − θqεt−q

where δti is the crowd density of zone i at time t , c is an
intercept term, and εt the white noise at time t .

θ1, θ2, · · · θq are the moving average coefficients for lag
terms from 1 to q.

2) M-1D-CNN-LSTM
1D Convolutional Neural Network (1D-CNN) connected to
a Long Short-Term Memory (LSTM) network is a deep
learning architecture commonly used for sequence data
analysis.We consider a neural network architecture, as shown
in Figure 5, that combines multiple 1D-CNNs, connected to
LSTM, as follows:

1) Multiple 1D-CNNs: We employ six 1D CNNs that are
executed in parallel and each one takes as input the
vector feature of a specific zone, Zi. Each 1D-CNN
outputs a feature map specific to the patterns it is
designed to forecast.

2) Concatenation of CNN outputs: The output feature
maps from the individual CNNs are concatenated into
a single feature vector.

3) LSTM: The concatenated feature vector is then passed
to an LSTM network.

4) Fully Connected Layers and Output: Following the
LSTM network, we can find fully connected layers
for higher-level feature representation and prediction.
The final layer typically consists of ReLu activation
function to produce the output of the model, which is
the forecasted vector δn.

3) SEQUENCE TO SEQUENCE LEARNING MODEL
Sequence-to-sequence (Seq2Seq) learning is a deep learning
architecture used for tasks that involve transforming an input
sequence into an output sequence. The Seq2Seq architecture,
as shown in Figure 6, consists of the following components:

• Encoder: It is an LSTM encoder that takes the input
sequence and processes it sequentially, typically one
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FIGURE 4. Stacked ensemble model for crowd congestion forecasting with walk forward validation.

FIGURE 5. The utilized M-1D-CNN-LSTM architecture.

token at a time. The encoder’s recurrent or convolutional
layers transform these input vectors into a fixed-size
context or a hidden state vector, which captures the
information from the entire input sequence. This con-
text vector serves as the summarization of the input
information.

• Context vector: It is the intermediate representation of
the input sequence that contains relevant information
about the sequence. It captures the semantic and
contextual information of the input sequence, which is
necessary for generating the output sequence.

• Decoder: It is an LSTM decoder that takes the context
vector produced by the encoder, and generates the output
sequence token by token, with each token’s probability
distribution being conditioned on the previous tokens
and the context vector.

Table 1 describes the different variants of Seq2Seq
architecture that are used in this work.

4) DEEPSTN
DeepSTN is a deep learning architecture that is proposed
in [25] and [42] to predict crowd flows in the metropolis. The

FIGURE 6. The utilized Seq2Seq architecture.

crowd flow is modeled using three temporal features, named
(a) Closeness, (b) Period, and (c) Trend, corresponding
to the recent time intervals, daily periodicity, and weekly
trend respectively. In our case, we apply DeepSTN on the
crowd of Masjid Al-Haram with more focus on predicting
crowd density instead of crowd flow as in DeepSTN.
Figure 7 depicts DeepSTN architecture, which is structured as
follows:

• 2D convolution: The input feature, i.e., vector Z is fed
to three 2D convolutions, representing the Closeness,
Period, and Trend properties.

• Concatenation: The outputs of the three 2D convolutions
are concatenated to form a feature vector.

• 2D convolution: The concatenated vector is fed to 2D
convolution to predict vector Zn.

C. STACKED ENSEMBLE LEARNING
OR ENSEMBLE STACKING
Stacking, also referred to as stacked ensemble, is a pow-
erful ensemble learning technique. The main advantage
of the stacked ensemble learning is that it leverages the
predictions of multiple base models to produce potentially
more accurate final model that typically exhibits improved
accuracy compared to individual base models. In addition,
the stacked ensemble learning employs heterogeneous base
models whereas bagging and boosting ensemble learning
employ homogeneous base models [44]. The primary idea in
our case study is to feed the predictions from base models to
a higher level model known as Meta Model in order to obtain
the final forecast of crowd congestion.

The process of stacked ensemble learning is as follows:

1) Dataset splitting: The dataset is partitioning into time
series datasets: training, validation, and testing.
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TABLE 1. Variants of Seq2Seq architecture.

FIGURE 7. The utilized DeepSTN architecture.

2) Base model selection: We select a variety of forecasting
base models suitable for time series prediction.

3) Training the base models: Each base model is trained
on the training dataset.

4) Forecasting on the validation set: After training the
base models, they are applied on the validation
set separately to generate their forecasts of crowd
congestion.

5) Training the meta model: a meta model, often referred
to as a meta learner, is constructed. This meta model
utilizes the forecasts generated by the base models on
the validation set to train the meta model. These fore-
casts serve as input features (or new training dataset)
for training themetamodel. Various algorithms, such as
linear regression, logistic regression, can be employed
to construct this model. The meta model learns to
combine the forecasts from the base models to make
a final forecast for each future time step.

6) Final forecasts: The meta model is used to make
forecasts for future time steps in the time series, which
is the testing dataset. The forecasts made by the base
models on the testing dataset are fed to the meta model,

which then produces the final forecast for each time
step.

7) Model evaluation: The performance of the stacked
ensemble model is evaluated. This involves comparing
the final forecasts made by the meta model with the
actual values in the testing dataset, using appropriate
forecastingmetrics, such as mean squared error (MSE),
or other metrics suitable for time series forecasting
tasks.

D. WALK FORWARD VALIDATION
Walk Forward validation [19] is a time-series cross-validation
technique, which is specifically designed to evaluate the
performance of models used in time series forecasting.
It involves iteratively training the model on training dataset,
making forecasting for a subsequent test window of W time
steps, and then updating the training dataset to include the
W test data observations. The Walk Forward validation is
integrated with the stacked ensemble learning model, and
consists of the following steps:

1) Initial selection: We set W to a predefined value,
and we define a test window to include the first W
observations in the testing dataset.

2) Model training: We employ the training dataset to train
the meta model, using the methodology explained in
Section IV-C.

3) Model testing: We use the trained model to generate
forecasts for the test window.

4) Window sliding: The training dataset is expanded to
include the actual values of the test window, and the
test window is shifted forward in time to the next W
test observations.

5) Iterative process: We return to step (2) and repeat the
process until we move through all the observations in
the testing dataset.

6) Performance evaluation: The forecasts are evaluated
against the actual values of all testing data, and the
forecasting error metrics are aggregated from all testing
data to evaluate the overall performance of the model.

E. DECISION MAKING
The decision making algorithm is triggered when the
forecasted crowd density for the next time interval of any
zone exceeds the crowd density threshold. The objective of
the decision-making algorithm is to determine updated values
for crowd inflow or crowd outflow in order to make the crowd
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density of the zone reaches the crowd density threshold, and
does not exceed that threshold for the next time interval. To
achieve this objective, we consider two types of decisions:
(1) decreasing the crowd inflow entering the zone, or
(2) increasing the crowd outflow leaving the zone. The
question is: which decision to take for which zone? To answer
this question, we need to examine the crowd patterns of the
six zones. We can identify two types of crowd patterns:

• Zones with continuous mobility pattern: In
Masjid Al-Haram, the pilgrims circumambulate Kaaba
seven times. They also perform Sa’i, which involves
walking seven times back and forth between the hills
of Safa and Marwah. Thus, the zones: 1, 4, and
6 represent the areas where the pilgrims perform the
Umrah rituals, and characterized by continuous mobility
pattern. To have a smooth Umrah experience and avoid
congestion in these zones, it important to reduce the flow
rate of pilgrims entering these zones.

• Zones with no or low mobility pattern: In the transition
zone (Zone 2), the pilgrims pray, drink ‘‘Zam Zam’’
water, and might stay to recite supplications and verses
from the Quran before going to Safa Hill. So, this zone
is characterized by low mobility models. In the Safa
Hill and Marwah Hill zones (Zone 3 and Zone 5), the
pilgrims stay standing to recite supplications. To avoid
crowd congestion, it is important to make pilgrims who
stay a long time in these regions to leave them and go to
the next zone.

Based on the above-mentioned mobility patterns,
Algorithm 1 describes their corresponding two decision
making cases:

• CaseA: It is triggeredwhen the forecasted crowd density
of Mataf (Zone 1), Safa to Marwah (Zone 4), or Safa to
Marwah (Zone 6) exceeds the crowd density threshold
(Algorithm 1: line 1), i.e, the flow of pilgrims that
are entering these zones could cause congestion. Thus,
we need to decrease the crowd inflow coming to these
zones. The algorithm computes a new crowd inflow
for the next time interval, which keeps the number of
pilgrims inside the zones and its crowd density less
than the capacity of the zones and the crowd density
threshold, respectively (Algorithm 1: line 5). If the
computed crowd inflow is less than the current one
(Algorithm 1: line 6), an alert is sent to the crowd
management personnel to manage the crowd flow,
to decrease the flow of pilgrims coming from the doors
ofMasjid Al-Haram, Zone 3, or Zone 5 to the new crowd
inflow value.

• Case B: It is triggeredwhen the forecasted crowd density
of Transition (Zone 2), Safa Hill (Zone 3) or Marwah
Hill (Zone 5) exceeds the crowd density threshold
(Algorithm 1: line 1o), i.e., the pilgrims are staying in
these zones for a longer time and are not moving, which
could cause crowd congestion. Thus, we need to increase
the crowd ouflow leaving these zones. The algorithm

Algorithm 1 Decision Making Algorithm
INPUT:
N_In : Number of people entering a zone;
N_Out : Number of people leaving a zone;
1 : Time interval of each observation;
δth : Crowd density threshold;
Nth(i) :Maximum amount of people that can be in Zone i;
New_Inflow : Updated crowd inflow;
New_Outflow : Updated crowd outflow;
CASE A: Forecasted crowd density of Mataf, Safa or
Marwa exceeds the the crowd density threshold

1: if δni > δth then ▷ i ∈ {1, 4, 6}
2: N_In = Inn−1

i × 1;
3: N_Out = Outn−1

i × 1;
4: Nth(i) = δth×Size(Zonei) = N n−1

i +N_In−N_Out;

5: New_Inflow =
Nth(i)−N

n−1
i −N_Out
1

;
6: if New_Inflow < Inn−1

i then
7: Inni = New_Inflow;
8: end if
9: end if

CASE B: Forecasted crowd density of Transition/
Safa Hill/ Marwah Hill exceeds the the crowd density
threshold

10: if δni > δth then ▷ i ∈ {2, 3, 5}
11: N_In = Inn−1

i × 1;
12: N_Out = Outn−1

i × 1;
13: Nth(i) = δth×Size(Zonei) = N n−1

i +N_In−N_Out;

14: New_Outflow =
N n−1
i +N_In−Nth(i)

1
;

15: if New_Outflow > Outn−1
i then

16: Outni = New_Outflow;
17: end if
18: end if

computes a new crowd outflow for the next time interval,
which keeps the number of pilgrims inside these zones
and their crowd density less than their capacity and
the crowd density threshold, respectively (Algorithm 1:
line 14). If the computed crowd outflow is higher than
the current one (Algorithm 1: line 15), an alert is sent
to the crowd management personnel to manage the
crowd flow, to increase the flow of pilgrims leaving
Zone 2, Zone 3, or Zone 5 to the new crowd outflow
value.

V. IMPLEMENTATION
We use Python programming language, and TensorFlow to
build the forecasting deep learning models of M-1D-CNN-
LSTM and Seq2Seq. Moreover, different libraries are used
including Scikit-learn, and numpy. To implement ARIMA,
we use pmdarima statistical library [5] with Auto-Arima
function to determine the optimal values of p, d , and q for
ARIMA model that best fits the dataset, and we use the code
in [1] to implement DeepSTN.

VOLUME 12, 2024 67461



A. Derhab et al.: Crowd Congestion Forecasting Framework

TABLE 2. Hourly context of the dataset.

A. DATASET GENERATION
We create a dataset of 1 year, i.e., the year 2023, where we
generate a sample Z t for each hour, which leads to a dataset
consisting of 8760 samples. For each sample, the number
of pilgrims per hour is generated based on two temporal
contexts: hourly context and daily context.

In the hourly context, we define four levels of hourly crowd
density: Very high, High, Medium, and Low. As the city
of Makkah is known for its hot temperature, many pilgrims
prefer to perform Umrah under low temperatures, and move
to Masjid Al-harama especially during the prayer times. The
crowd density is high between Maghrib prayer time and
Isha prayer time, and becomes higher between Isha prayer
time and Fajr prayer time. After that, the density becomes
medium until Dhuhr prayer time. Between Dhuhr prayer time
and Asr prayer time, the temperature is high, and the crowd
density becomes low, and returns to be medium between
Asr prayer time and Maghrib prayer time. The prayer times
change throughout the year due to variations in daylight
hours. In Table 2, we present the range of prayer times in
2023 [3].

For each crowd density level, we define a crowd range,
which is a parameter of the Random.randint function [6],
as defined in Table 2. We define a function, named
context_per_day(h) that returns the result of executing the
Random.randint function.
The crowd density of pilgrims also depends on the

characteristics of the day. We define the qualitative scale for
the daily crowd density level, denoted by DCi, 1 ≤ i ≤ 6,
and we define a function for each level, as shown in Table 3.
These functions are used to define the context of the sample
as in Equation 1, shown at the bottom of the page.

The daily crowd density level is defined as: DCi < DCi+1,
1 ≤ i ≤ 5. It is known that the number of pilgrims during a
week-end is higher than in a normal day. In Ramadan month
(the ninth month of the Islamic lunar Hijri Calendar), this
number largely increases, and particularly in the week-ends,
in the last 10 days, and the odd days of the last 10 days of
the month, and it reaches its maximum on the 26th day of
the month. To identify Ramadan days, we use hijri-converter
python library [2] to convert Gregorian dates to Hijri ones.

After that, we compute the number of pilgrims in each
zone, as presented in Table 4. The values of range parameter
in random.randint function are chosen according to the size
of the zones. For larger zones, we assign larger values to the
range parameter and vice versa.

From Table 4, we derive the corresponding crowd density
using the size of the zones in Table 5. The crowd inflow and
crowd outflow of the zones are randomly set between 500 and
2000 persons per hour, as in Equation 2.

random.randint(500, 2000) × (1 + context(h, d)) (2)

The crowd density threshold is set to 4.5 persons/ square
meter. The crowd count threshold per zone is obtained by
multiplying the crowd density threshold by the size of the
zone. The last 14 days from the generated dataset are chosen
as testing data, and the rest as training data. Table 5 defines
the following parameters for each zone:

• Size: It represents the size of the zone in square meters.
• Crowd count threshold: It represents the maximum
allowable number of pilgrims in the zone.

VI. EVALUATION RESULTS
A. EVALUATION METRICS
To evaluate the performance of the forecasting models,
we use the Mean Squared Error (MSE), Root Mean Squared
Error (RMSE), and Mean Absolute Error (MAE) metrics:

MSE =
1
T

T∑
i=1

(Yi − Yi)T (3)

RMSE =

√√√√ 1
T

T∑
i=1

(Yi − Yi)2 (4)

MAE =
1
T

T∑
i=1

|(Yi − Yi)| (5)

where Yi is the actual observation at the ith time interval, Yi is
the predicted value of Yi, and T is the size of the testing set.

The above performance metrics are evaluated under two
cases:

context(h, d) =
context_per_day(h) + is_weekend(d) + is_ramadan(d) + is_weekend_ramadan(d)+

100
is_last_10_day_ramadan(d) + is_odd_day_ramadan(d) + is_26_ramadan(d)

100
(1)
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TABLE 3. Daily context of the dataset.

TABLE 4. Number of pilgrims per zone.

TABLE 5. Parameters of the zones.

• Global metrics: In MSE, RMSE, and MAE metrics, Yi
and Yi are set to δi and δi respectively.

• Per-zone metrics: We compute the MSE, RMSE, and
MAE metrics for each zone j by setting Yi and Yi to δij

and δij respectively.

B. CROWD FORECASTING RESULTS OF BASE MODELS
Table 6 shows the performance of the forecasting models
under the Global metrics. The first observation we can draw
from the table is that ARIMA incurs the highest forecasting
errors compared to the deep learning algorithms. This can be
explained by the fact that ARIMA is a statistical algorithm,
which means it assumes a linear relationship between past
and future values in a time series. Deep learning algorithms,
on the other hand, are capable of capturing complex, non-
linear patterns in the data. In addition, ARIMA relies on a
fixed number of past observations, i.e., the order of autore-
gression and moving average terms, to make predictions.
Deep learning algorithms, such as Long Short-TermMemory
(LSTM), have the ability to capture longer-term dependencies
in the data due to their recurrent nature.

We can also observe that DeepSTN incurs the lowest
forecasting errors as it is designed to capture a more complex
long-range spatial dependency between the crowd flows in
the zones. It is based on the temporal dependency, which
means that the crowd flows in a zone is affected by recent

time intervals, and it defines three temporal properties:
closeness, period, and trend. For each temporal feature, 2D
convolution network is employed, and the outputs of the
three convolutions are aggregated to be fed to another 2D
convolution network.

Seq2Seq2b comes second after DeepSTN and both of
them use the same input sequence and output sequence,
which allows Seq2Seq2b to capture more dependencies in
the data. Additionally, Seq2Seq2b employs two encoders
and two decoders, which slightly offers better results than
Seq2Seq2a that only employs one encoder and one decoder.
The forecasting errors of Seq2Seq1a and Seq2Seq1b slightly
increase compared to Seq2Seq2a and Seq2Seq2b, as their
input sequence is δ, which is smaller than Z , and hence
less dependencies in the data are captured. In Seq2Seq3a,
Seq2Seq3b, and M-1D-CNN-LSTM, the size of the input
sequence and output sequence are different, and they incurs
the highest forecasting errors among the deep learning
models.

In Table 7 and Table 8, we show the performance of the
forecasting models under the Per-zone metrics. Under MSE
and RMSE metrics, we can observe that DeepSTN is the
best fit for all zones except for Marwah Hill. In case of
Marwah Hill, Seq2Seq2b comes first withMSE = 0.207 and
RMSE = 0.455 then Seq2Seq2a comes second with MSE =

0.214 and RMSE = 0.462, followed by DeepSTN with
MSE = 0.217 and RMSE = 0.466. Under MAE, DeepSTN
performs the best for three zones: Transit, Safa to Marwah,
and Marwah to Safa. On the other hand, Seq2Seq2b provides
the best results for Mataf, Safa Hill, and Marwah Hill zones.

C. CROWD FORECASTING RESULTS OF THE STACKED
ENSEMBLE LEARNING MODEL
To evaluate the performance of the stacked ensemble learning
model, we select the best three forecastng models that
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TABLE 6. Forecasting results under global metrics.

TABLE 7. Forecasting results under per-zone metrics (Part 1).

TABLE 8. Forecasting results under per-zone metrics (Part 2).

performed well in Section VI-B, which are: Seq2Seq2a,
Seq2Seq2b, and DeepSTN. To create the meta mode, we use
the following algorithms:

• Linear regression algorithm: It is a statistical technique
for modeling the relationship between a dependent
variable and one or more independent variables. The aim
of linear regression is to find the best-fitting line that
minimizes the sum of squared differences between the
observed and predicted values.

• Random Forest regression algorithm: It is an ensemble
learning method that builds multiple decision trees
during training and outputs the average prediction of
the individual trees. Each decision tree is trained on a
random subset of the training data and features.

• Decision Tree regression algorithm: It builds a tree
structure where each internal node represents a decision
based on a feature, and each leaf node represents the pre-
dicted output. The algorithm recursively splits the data
based on features to minimize the variance of the target

variable within each subset. It continues splitting until a
stopping criterion is met, such as reaching a maximum
tree depth. We consider different maximum tree depths,
which range from 2 to 6.

Table 9 shows the performance of the different variants
of the stacked ensemble learning model compared to the
base models. We can observe that the meta model, which
is developed using linear regression algorithm, incurs the
worst result with MSE=0.271. This result is even lower
than that of base models. This can be explained by the fact
that linear regression algorithm may not capture complex
non-linear relationships in the dataset. On the other hand,
the decision tree regression algorithm performs better than
the linear regression one as it can capture complex nonlinear
relationships in the dataset, and the MSE of its different
variants ranges between 0.159 and 0.141. The Random
Forest regression algorithm incurs the best result with
MSE=0.126, as it is an ensemble learning method that builds
multiple decision trees, and each decision tree is trained
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TABLE 9. Forecasting results of Stacked ensemble learning models vs. Base Models.

TABLE 10. Forecasting results of Stacked ensemble learning models with Walk Forward validation under global metrics.

TABLE 11. Forecasting results of Stacked ensemble learning models with Walk Forward validation under per-zone metrics (Part 1).

TABLE 12. Forecasting results of Stacked ensemble learning models with Walk Forward validation under per-zone metrics (Part 2).

on a random subset of the training dataset and features,
which produces less overfitting. It can also handle effectively
nonlinear relationships and interactions between variables of
the dataset. On the other hand, the decision tree regression
algorithm tends to overfit the training data, leading to poor
generalization performance.

D. CROWD FORECASTING RESULTS OF THE STACKED
ENSEMBLE LEARNING MODEL WITH WALK
FORWARD VALIDATION
Table 10 shows the performance of the following models:

• Stacked ensemble learning model, specifically the
Random Forest regression meta model, denoted by
Meta-RFR.

• Random Forest regression meta model, validated using
Walk Forward technique of test window size=10 obser-
vations, denoted by Meta-RFR-WF-10.

• Random Forest regression meta model, validated using
Walk Forward technique of test window size=1 observa-
tion, denoted by Meta-RFR-WF-1.

We can observe that integrating the Walk Forward
to Meta-RFR slightly decreases the forecasting errors.

TABLE 13. Summary of results.

Specifically, Meta-RFR-WF-10 and Meta-RFR-WF-1
records an MSE of 0.124 and 0.123 respectively.

Table 11 and Table 12 show the performance of
Meta-RFR, Meta-RFR-WF-10, and Meta-RFR-WF-1 under
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TABLE 14. Scenario 1.

TABLE 15. Decision making of scenario 1.

TABLE 16. Scenario 2.

TABLE 17. Decision making of scenario 2.

the per-zone metrics. The three models show improvement
compared to the base models. We can conclude that Meta-
RFR-WF-10 is the best choice for Mataf and Safa Hill zones.
Meta-RFR-WF-1 is the best choice for Transit, Safa and
Marwah zones. In case of Marwah hill zone, Meta-RFR is
the best with respect to MAE, whereas Meta-RFR-WF-1 is
the best with respect to RMSE. In addition, Meta-RFR and
Meta-RFR-WF-1 are the best choices with respect to MSE.
In case of Marwah to Safa zone, DeepSTN is the best choice
with respect to MSE and RMSE, and Meta-RFR and Meta-
RFR-WF-1 are the best choices with respect to MAE.

E. SUMMARY OF RESULTS
Table 13 summarizes the above results by focusing on
the best results under base models and stacked ensemble
learning models with respect to MAE. From the table, we can

conclude that DeepSTN is the best fit for the total area of
Masjid Al-Haram and for three out of six zones. On the
other hand, Seq2Seq2b is the best fit for three zones. The
different variants of stacked ensemble learning models help
reducing MAE of the total area from 0.281 to 0.257 when
applying Meta-RFR, and is reduced further to 0.253 when
applying Meta-RFR-WF-W1. In addition, Meta-RFR, Meta-
RFR-WF-W1, and Meta-RFR-WF-W10 models improve the
forecasting errors of the zones compared to the base models.

F. DECISION MAKING RESULTS
Tables 14 and 16 present some scenarios related to the
decision making algorithm, which is triggered at time interval
t when the forecasted crowd density for time interval= (t+1)
of a zone exceeds the crowd density threshold 4.5. Tables 15
and 17 show two cases of crowd status:
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• Real crowd status without decision-making in time
interval= (t + 1): it means the crowd outflow, crowd
inflow, number of pilgrims, and crowd density of the
zone in time interval= (t + 1) when no decision is made
by Algorithm 1 at time t to update the crowd outflow or
inflow.

• Targeted crowd status by decision-making for time
interval (t+1): it represents the updated values of crowd
outflow or inflow, and number of pilgrims in order to
make the crowd density of the zone reaches the crowd
density threshold, i.e., 4.5 for time interval= (t + 1).

In scenario 1 (Table 14), the forecasted crowd density of
three zones, i.e., Mataf, Transition, and Safa Hill exceeds the
crowd density threshold. In Algorithm 1, CASEA is executed
for Mataf zone, and CASE B is executed for Transition,
and Safa Hill zones. In case of Mataf zone, the condition at
Algorithm 1: line 6 does not hold true, and thus we do not
need to take decision to update the crowd inflow. Also, the
condition at Algorithm 1: line 15 does not hold true in case
of Safa Hill but it holds true for Transition zone. As shown
in Table 15, in case a decision is taken, the crowd outflow of
the transition zone is updated to 8347.48 in order to reach the
crowd density threshold 4.5 for the next time interval.
In scenario 2 (Table 16), the forecasted crowd density

of three zones, i.e., Mataf, Transition, and Safa to Marwah
exceed the crowd density threshold. The condition at
Algorithm 1: line 6 holds true for Mataf and Safa to Marwah
zones. Similarly, the condition at Algorithm 1: line 15 holds
true for Transition zone. As shown in Table 17, in case
a decision is taken, the crowd inflows of Mataf and Safa
to Marwah zones are updated. Also, the crowd outflow of
Transition zone is updated in order to reach the crowd density
threshold 4.5 for the next time interval.

VII. CONCLUSION
In this paper, we have proposed a crowd congestion
forecasting framework for the pilgrimage of Umrah. To the
best of our knowledge, this work is the first that considers
the crowd congestion forecasting problem in the context of
Umrah. The framework is based on clustering the crowd flow
trajectory in Masjid Al-Haram into six zones. It consists of
two main components: (a) Ensemble forecasting model that
forecasts the crowd density of Masjid Al-Haram and its six
zones, and (b) decision making algorithm that is executed
when the forecasted crowd density exceeds the crowd density
threshold. The algorithm recommends two types of decisions:
increasing the crowd outflow in case of zones with limited
mobility patterns, and decreasing the crowd inflow in case
of continuous mobility pattern. We have built the ensemble
learning model in three phases. In the first phase, we have
selected and evaluated 9 learning base models, including
ARIMA, 6 variants of Sequence to Sequence (Seq2Seq)
learning, M-1D-CNN-LSTM, and DeepSTN. In the second
phase, the best three models, which performed well in
the first phase, which are: Seq2Seq2a, Seq2Seq2b, and

DeepSTN, have been selected to build the stacked ensemble
model. In the third phase, the stacked ensemble model is
validated using the walk-forward technique. To evaluate the
framework, we have built a crowd dataset based on two
temporal contexts: (a) hourly context and (b) daily context.
We have evaluated the different forecasting models under
two types of metrics: Global metrics and Per-zone metrics.
As for the base models, DeepSTN provides the best results
under Global metrics. As for Per-zone metrics, DeepSTN
outperforms all the base models in case of five zones, and
Seq2Seq2b is the best fit for Marwah Hill zone with respect
to MSE and RMSE. Under MAE, DeepSTN and Seq2Seq2b,
each of which performs the best for three zones. DeepSTN
achieves a Mean Absolute Error (MAE) of 0.281 for Masjid
Al-Haram area. The stacked ensemble model achieves lower
MAE of 0.257. By validating the stacked ensemble model
using the walk forward technique, the MAE is further
reduced to 0.253. In addition, Meta-RFR, Meta-RFR-WF-
W1, and Meta-RFR-WF-W10 models have succeeded to
reduce further the forecasting errors of the zones compared to
the base models. Although this framework focuses on Umrah,
it can consider other use cases related to crowd congestion
forecasting.
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