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ABSTRACT Micro-expression (ME) is spontaneous, rapid, and subtle facial mechanism that can reveal
the concealed emotions. However, the short duration, low motion intensity, and small dataset of MEs make
the extraction and learning of features from ME samples more challenging for existing micro-expression
recognition (MER) methods. To address this issue, we propose a novel decomposition MER method,
called AST+SVMNet, and the primary architecture of our method integrates improved fusion attention
and spatio-temporal convolutional neural network, achieving efficient MER through feature transfer to
SVM. This method consists of four main components: feature extraction, fusion attention, spatio-temporal
feature extraction, and feature transfer modules. In the feature extraction part, we designed a novel ME
texture feature called the image sequence difference feature (ISDF). It mitigates the negative impact of
optical flow calculation noise on MER task when applying optical flow features simultaneously. In the
fusion attention part, we designed a fusion attention module (FAM) that reduces the extraction of redundant
information for ME samples, optimizing the extraction of finer-grained spatio-temporal information. In the
third part, we reduced the parameter count through 2D and 3D Inception Modules without compromising
the performance of spatio-temporal feature extraction. In the feature transfer part, we achieved rapid and
efficient MER by training the SVM classifier through feature transfer on high-dimensional spatio-temporal
features. Finally, the performance of our proposed method on four publicly available spontaneous ME
datasets surpasses that of existing baseline methods in MER. In addition, through effectiveness experiments
and ablation studies, we demonstrated the effectiveness of the proposed texture feature ISDF and the MER
method AST+SVMNet.

INDEX TERMS Micro-expression recognition, fusion attention, spatio-temporal feature, feature transfer,
differential feature.

I. INTRODUCTION
Facial expression (FE) is a universal, generalized, natural pat-
tern of human emotion transmission, which is closely related
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to the mental state and emotional state of human beings
in a specific environment [1]. FEs usually refer to macro-
expressions, but when macro-expressions are subjectively
suppressed, inner emotions can also be conveyed through
micro-expressions (MEs) [2]. Unlike the macro-expressions,
which are one of the components of FEs, and are directly
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produced by people in their daily life and has obviously
emotional orientation characteristics, MEs are spontaneous
(the producer does not have the sense to control it) [3], rapid
(the duration of MEs is usually only 1/25 second to 1/5
second) [4], and subtle (the facial area involved is small, and
the amplitude of facial muscle-groups movement is small)
[5]. These are the direct reasons why MEs do not reflect
the emotional characteristics they point to. However, because
of its own unique characteristics, MEs can more accurately
reveal the real emotions that people try to hide, and reflect
the actual feelings of people in the specific environment
[6]. Therefore, micro-expression recognition (MER) has been
applied and developed in many fields, including lie detec-
tion [7], clinical diagnosis [8], commercial negotiation [9],
national security [10] and others.
The phenomenon of MEs was proposed by Haggard and

Isaacs in 1966 when they explored the influence of FEs
in psychotherapy [11].Specifically for MER, because of its
unique properties, ME features have led to inaccurate identi-
fication even by trained psychology professionals toME [12].
Thus, requiring experts to accomplish MER well is ineffi-
cient, common and costly. In recent years, due to the advance
of computer science, researchers have also proved that the
effect and efficiency of using algorithms to realize MER is
better than that of expert recognition [13], [14]. Therefore,
how to improve the accuracy and effect of MER has become
a crucial issue that requires resolution.

At the initial phase of theMER research, academics mainly
based on hand-crafted feature-based descriptors to realize
automatic recognition of ME [15]. Serving as an illustra-
tion of the classic approach of image texture features, the
local binary pattern (LBP) from Three-Orthogonal Planes
(LBP-TOP) [16] algorithm achieve good recognition results;
As a representative of the geometric features of images,
Optical flow describes the motion information of image
sequences, and the representative work is TV-L1 [17]optical
flow. In order to promote the healthy and orderly devel-
opment of the field of MER, researchers have created a
certain number of spontaneous ME datasets, such as CASME
series datasets [18], [19], [20], [21], SMIC [22], SAMM [23],
etc. In addition, the organization of Facial Micro-Expression
Recognition Grand Challenges (MEGC) [24] has signifi-
cantly propelled the development and innovation of MER
technology.

As the successful expansion of deep learning applications
in the field of computer vision continues, researchers are also
attempting to apply deep learning to the domain ofMER [25],
[26], [27], [28]. Although the existing ME datasets have lim-
ited sample sizes, which pose certain challenges to network
architecture design, professors have nonetheless proposed
effective solutions tailored to these characteristics.

One of the representative examples is the proposal
lightweight Dual-Stream Shallow Network (DSSN) [29]
based AlexNet backbone which effectively mitigates the
issues of low intensity in ME samples and the overfitting
problems. In addition to that, there has been significant

development in MER based on Generative Adversarial Net-
works (GANs) [30]. On the level of features, unlike single
optical flow and image texture features, multi-input fea-
tures represent a promising research direction [31], [32].
Kim et al. [33] employed CNN to encode and LSTM to clas-
sify, achieving effective MER. Therefore, it can be seen that
multi-input features can effectively explore spatio-temporal
information and highlight the unique advantages of each
sub-feature to some extent [34]. In the current research land-
scape, deep learning-based MER is the preferred solution
for MER, offering state-of-the-art performance compared to
other implementations [25], [29].

In the current research landscape, due to the short duration
and limitedmuscle amplitude ofME samples, existing studies
tend to extract a significant amount of irrelevant noise when
capturing spatio-temporal correlations among frames in ME
sample sequences [34].To address these issues and improve
the current state of research, this paper proposes a novel
texture feature called Image Difference Sequence Feature
(IDSF), which mitigates noise introduced by uneven lighting
conditions during optical flow feature computation. Further-
more, existing feature extraction approaches exhibit limited
capabilities in extracting spatio-temporal features ofMEs and
often involve a high number of parameters and computational
complexity [25]. To enhance the feature extraction capabili-
ties, reduce parameter count, and prevent overfitting due to
the small size of ME datasets, we also propose an improved
Fusion Attention and Spatio-temporal Convolutional Neural
Network (AST+SVMNet) based on 3D and 2D Inception
Module, which also includes independently designed Fusion
Attention Module (FAM) that combines the spatial attention
and channel attention mechanisms.

In summary, our main contributions are as follows:
1) We propose a novel decomposition method for the

MER task: AST+SVMNet. The proposedmethod has a
simplified network structure that utilizes the specially
designed 2D or 3D Inception Module in combination
with an SVM classifier to improve classification speed
and efficiency.

2) We propose a novel texture feature for ME, called
Image Difference Sequence Feature (IDSF). This fea-
ture reduces the negative impact of optical flow com-
putational noise on the classification results through
a predefined difference operation, which ultimately
improves the classification accuracy.

3) We design a Fusion Attention Module (FAM), embed-
ded in our method. This module combines the channel
and spatial attention mechanisms and realizes the cou-
pling of them through a unique sampling mechanism to
reduce redundant information extraction and enhance
model performance.

The remaining organization of this paper is as follows.
Section II provides a brief overview of the current
hand-crafted features for MEs and classic deep-learning
based models applied to MER. Section III elaborates on the
technical details of our proposed Image Difference Sequence
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Feature (IDSF) and the AST+SVMNet model including its
module. Section IV presents a detailed description of the
used dataset, the experimental setup and experimental results.
Finally, in Section V, we summarize the experimental find-
ings and draw conclusions.

II. RELATED WORK
This section reviews existing MER methods. Based on the
differences in feature extraction methods and classifiers, the
MER approach can be primarily categorized into two types:
handcrafted-machine learning methods and deep learning
methods.

A. HANDCRAFTED-MACHINE LEARNING METHODS
In this type, the extracted features are primarily divided into
two categories: texture features and geometric features.

The most representative texture feature is LBP-TOP and
its variants. The LBP-TOP algorithm [16] involves three
directions, where X and Y represent spatial coordinates,
and T represents the time sequence. Based on these three
directions, the algorithm extracts pixels from XY, XT, and
YT planes using the LBP operator, generates histograms for
each plane, and concatenates them in the order of XY, XT,
YT to form the LBP-TOP feature. In addition to using the
LBP-TOP operator, its variants have also been proposed to
address various problems in MER. Based on Dual-Cross
Patterns from Three Orthogonal Planes (DCP-TOP) [35], it is
possible to enhance the directional information of features,
further improving the accuracy of MER. Wang et al. [36]
proposed LBP with six intersection points (LBP-SIP), it can
remove duplicated encoding of the six intersection points,
reducing redundancy and histogram length, which in turn
improves computational speed. STLBP-IP [37] combines
spatio-temporal LBP operator with integral projection (IP)
to simultaneously capture texture information and tempo-
ral information, thereby enhancing recognition performance.
Huang et al. [38] proposed Completed Local Quantized Pat-
terns (CLQP), segmented quantization makes the features
more robust to variations in lighting intensity and noise. Addi-
tionally, they extended this approach to three-dimensional
space, calling it STCLQP.

The most representative geometric feature is Optical Flow
and its variants. Optical flow descriptors capture relative
motion information for MER by calculating changes in
pixel intensity between the sequence of image frames [39].
Verburg and Menkovski [40] used the Histogram of Ori-
ented Optical Flow (HOOF) to encode subtle changes in
ME frame sequences. However, due to the susceptibility
of HOOF to lighting variations, Happy and Routray [41]
proposed Fuzzy HOOF (FHOOF) to overcome its short-
comings, making it less sensitive to computational noise
and uneven lighting. Liong et al. [42] introduced another
optical flow descriptor, Bi-Weighted Oriented Optical Flow,
called Bi-WOOF, which calculates horizontal and vertical
optical flow vectors between two frames and then constructs

histograms based on direction, magnitude, and optical flow
strain. Bi-WOOF achieves better MER performance com-
pared to HOOF. Liu et al. [43] proposed the Main Directional
Mean Optical-flow (MDMO) feature, which computes the
principal direction and average optical flow magnitude for
each region of interest within the facial region. This feature
vector extractionmethod takes into account both local motion
information and spatial location, resulting in improved MER
capabilities.

In this approach, various classifiers are applied, including
SVM, RF, K-NN, SVD, and others. Among them, SVM is the
most widely used [15]. Due to its robust classification perfor-
mance, generalization ability, SVM is extensively applied in
early MER research.

B. DEEP LEARNING METHODS
Deep learning methods can be primarily categorized into
two types: handcrafted-deep learning methods and other deep
learning methods.

In handcrafted-deep learning methods, the combination
of traditional handcrafted feature extraction techniques
with deep learning has achieved superior performance.
Liong et al. [44] proposed the Off-ApexNet, which calculates
optical flow information from the starting frame to the apex
frame of each ME frame sequence, and this optical flow
information is fed into a CNN model for feature enhance-
ment and classification. Jin et al. [45] incorporated genetic
algorithms (GA) into the Apex Frame Network to eliminate
irrelevant information that does not contribute to expression
prediction, enhancing features and improving recognition
performance. Khor et al. [46] proposed ELRCN, which takes
images, optical flow, and optical strain as input, feeds them
into a CNN to extract spatial and spectral features, and then
passes them into an LSTM for ME prediction. Choi and
Song [47] transformed the landmarks of ME sequences into
2-D image information (LFM) and fed them into a cascaded
network of CNN and LSTM to achieveMER. Liong et al. [48]
introduced STST-Net, which extracts optical flow features
and optical strain from Onset to Apex in each ME segment,
and then vertical optical flow, horizontal optical flow, and
optical strain are input into a shallow 3DCNN for classifi-
cation. In addition to CNN, Capsule Neural Networks have
also been applied to MER [49]. The CapsuleNet proposed by
Quang et al. [50] achieves good MER performance through
routing mechanisms and improved hierarchical relationships.
Song et al. [51] implemented an end-to-end ME amplifica-
tion model MEMM through the encoder-decoder network to
simplify the MER task. Lei et al. [52] designed AU-GCN
combining AU and graph convolutional network to realize
end-to-end MER. In this method, the most widely used clas-
sifiers are MLP and softmax function.

Other deep-learningmethods include attentionmechanism-
based methods and transfer learning-based methods. In the
MER approach, the use of attention modules can enhance
the encoding of spatial information for the Regions of
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FIGURE 1. Basic framework for AST+SVMNet.

Interest (RoIs) of ME samples and improve the extraction
of temporal information [53]. Wang et al. [54] proposed
the Global Spatial-Temporal Attention Module (GAM),
which simultaneously encodes both spatial and tempo-
ral information, enabling the extraction of more advanced
features. Chen et al. [55] introduced CBAMNet, which uti-
lizes a Convolutional Block Attention Module (CBAM) by
cascading spatial attention modules and channel attention
modules, achieving more accurate MER. Zhou et al. [56]
proposed Feature Refinement (FR) and combined the atten-
tion mechanism to achieveME feature refinement withMER.
Ruisheng et al. [57] enhanced the performance of MER
using crossVit as a backbone network combined with an
improved cross-attention mechanism. In transfer learning-
based methods, transfer learning from the FE dataset to the
ME dataset can be achieved through fine-tuning [58], [59],
knowledge distillation [60], and domain adaptation [61].
Such as Li et al. [62] proposed the domain adaptation-
based DS-3DCNN, which bridges the gap between ME and
macro-expressions through domain adaptation and achieves
excellent results.

In summary, combining the advantages of handcrafted
machine learning methods and deep-learning methods,
we propose a novel decomposition method AST+SVMNet
for MER task, resulting in promising experimental perfor-
mance. The AST+SVMNet possesses the ability to extract
multi-scale spatio-temporal features, enhanced local informa-
tion attention capability, and feature fusion capability. And

through the feature transfer operation, AST+SVMNet has a
better classification ability for ME. We also propose a new
ME texture feature called image sequence difference feature
(ISDF). IDSF employs a constrained difference algorithm to
reduce the introduction of computational noise caused by
uneven lighting in optical flow, which is a common issue in
handcrafted features and can lead to poor recognition perfor-
mance. In addition, we introduce the attention mechanism
and design a fusion attention module (FAM) embedded in
AST+SVMNet to enhance its feature extraction capability.
We describe them in detail in the next section.

III. AST+SVMNET
This section provides a detailed description of the architecture
of AST+SVMNet for MER, and Fig.1 illustrates the general
framework of the proposed method.

As shown in Fig.1, our method is divided into four
main parts: feature extraction module, fusion attention mod-
ule, multiplexed spatio-temporal feature extraction module
and feature transfer module. Among them, within the first
part, we extracted dual-path features after preprocessing
the input ME sequence: optical flow features and ISDF.
Then, the dual-path features are respectively fed into the
fusion attention module to realize the enhancement of the
face motion information to enhance the ME representation.
In the third part, we feed the enhanced dual-path features
into the spatio-temporal feature extraction module respec-
tively to realize spatio-temporal feature extraction and feature
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FIGURE 2. Example of ME features. Group (a) is the original frame after
preprocessing; group (b) is an example of results for optical flow feature
of group (a); group (c) is an example of ISDF of group (a.

fusion of the ME information. Finally, we feed the obtained
high-dimensional features into SVM classifier for efficient
classification.

A. EXTRACT FEATURES
1) DATA PRE-PROCESSING
In the preprocessing stage, the process for the ME samples
mainly includes cropping, alignment and motion amplifica-
tion, and finally the temporal interpolation model is used to
normalize the number of video frames of the ME samples
to a uniform value. We crop the ME samples from different
ME datasets from the onset frame to the offset frame using
the face detection method of the dlib library [63] based on
their corresponding face sizes, retaining only the face infor-
mation, with an image size of 192∗192. We use Active Shape
Models (AAM) [15] to achieve face registration and eliminate
the influence of head posture on MER. We use Eulerian
Video Magnification method (EVM) for motion amplifica-
tion between consecutive frames. Finally, we interpolated all
ME sequences to 10 frames using Temporal Interpolation
Model (TIM) [25] for temporal normalization. As a result, the
size of the preprocessed single ME sample is 10∗192∗192.
Fig.2 group (a) shows a ME sample example of Happiness
from the CASME II dataset, which is the result after prepro-
cessing.

2) OPTICAL FLOW
In this part, we used the classical Lucas-Kanade algorithm [34]
to implement the estimation of optical flow between
sequences of ME sample frames. The algorithm reflects the
features of ME by calculating the pixel position shift between
two adjacent frames of ME samples. Specifically, the core
step is to use the gradient information between pixels and

neighboring pixels within a local window to estimate the dis-
placement vector using the least squares method. As a result,
the subject’s small facial movement changes are mapped to a
pixel-level matching problem.

Fig.2 group (b) shows a simple example of LK optical flow
extraction after preprocessing of a ME sample of Happiness
from the CASME II dataset. Red area represents the horizon-
tal component of the optical flow and green color represents
the vertical component. We can find that the facial motion in
this ME sample is mainly concentrated between the eyebrows
and near the nose.

However, the calculation of LK optical flow is based on
three assumptions: (1) constant brightness: the gray value of
pixels between adjacent frames does not change; (2) small
motion: the pixel positions between adjacent frames do not
produce sharp changes; (3) spatial consistency: neighboring
pixel points in the previous frame are also neighboring in the
following frame. In practice, affected by the position of the
light source, light intensity and other factors, it is difficult to
ensure that the brightness of the surface of the target remains
constant when it is in motion, so assumption (1) is difficult to
be satisfied, and when the target moves faster, assumption (2)
and assumption (3) are also difficult to be satisfied.

In order to extract the motion features of ME sample
sequences more efficiently, and to supplement the fea-
ture information lost due to computational noise caused by
unfounded assumptions in extracting optical flow features,
we propose the image difference sequence feature (IDSF).

3) IMAGE DIFFERENCE SEQUENCE FEATURE (IDSF)
The expression of the image difference algorithm used in
this paper is as follows when the effect of changing lighting
conditions is not considered:

Di(x, y) = Ii(x, y) − Ionset (x, y) (1)

where, Ii(x, y) is the gray value of a pixel of the i-th frame
of the ME sequence at the point (x, y), Ionset (x, y) means the
gray value of a pixel of the onset frame of the ME sequence
at the point (x, y). Di(x, y) is the feature matrix obtained of
the ME sequence by the image difference operation. Di(x, y)
means the difference value at point (x, y) after the image
difference operation.

When using image difference algorithms to extract differ-
ential image sequence features for MEs, the feature values
are affected by changes in lighting conditions. To solve this
problem, an image difference operation is performed for each
frame in the ME sequence with the onset frame, so that a
differential image sequence with the same number of frames
as the ME sequence can be obtained. Since the difference
operation between the corresponding frame and the onset
frame of the ME sequence, each frame in the differential
image sequence takes into account the effects produced by
changes in illumination. When the time interval between
the i-th frame and the previous frame in the ME sequence
is sufficiently small, the variation of lighting conditions is
negligible for the extraction of ME motion features.
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FIGURE 3. The actual architecture of the fusion attention module (FAM). Block (a) is the spatial attention
module (SAM). Block (b) is the channel attention module (CAM).

In order to represent the noise introduced between the
i-th frame and the onset frame due to changes in lighting
conditions, we introduce a time dimension variable with the
following expression:

Fi(x, y, ti) = Fi(x, y, ti) + δ(ti) (2)

F = F{F1,F2, · · · ,Fn}

= {D1 + δ(t1),

= D2 + δ(t2),

· · ·

= Dn + δ(tn)} (3)

where, δ(ti) means the noise introduced due to the change
of illumination at the moment t0 to ti during the computa-
tion of the i-th frame of the differential image. Fi means
the i-th differential image taking into account the noise.
F = {F1,F2, · · · ,Fn} means the obtained differential image
sequence features.

In this paper, when normalizing the ME frames, we use
the equal interval sampling method, and 10 frames are taken
at equal time intervals for each ME sequence. Thus, there is
n = 10, and the expression for the interval time 1t is shown
as:

1t = t1 − t0 = t2 − t1 = · · · = tn − tn−1 (4)

Therefore, equation (3) can be written as:

F = {F1,F2, · · · ,Fn}

= {D1 + δ(t1),

D2 + δ(t1 + 1t),

· · · ,

Dn + δ(t1 + (n− 1)1t)} (5)

Since the change in luminance with time is smooth and con-
tinuous and n is a finite value, the noise due to illumination

during the time interval 1t is negligible when the 1t is small
enough, there is:

δ(t + 1t) = δ(t), 1t → 0 (6)

So, equation (5) can be written as:

F′
=

{
F ′

1,F
′

2, · · · ,F ′
n
}

= {D1 + δ(t1) ,

D2 + δ(t1),

· · · ,

Dn + δ(t1)} (7)

Thus, we obtain the image difference sequence feature
(IDSF)F′

=
{
F ′

1,F
′

2, · · · ,F ′
n
}
. Each frame in the IDSF takes

into account the noise with respect to the onset frame, and the
noise of each frame is δ(t1), which means the noise between
the first frame of theME sequence and the onset frame.When
IDSF is used as the input feature of the neural network, since
the noise introduced in each frame is δ(t1), which is equivalent
to adding a constant to the original feature, it does not affect
the training results during training, which avoids the effect
of changes in lighting conditions on the classification results.
Fig.2 group (c) shows a simple example of IDSF extraction
after preprocessing of a ME sample labeled Happiness in the
CASME II dataset, which can visualize the motion informa-
tion of ME samples.

B. FUSION ATTENTION MODULE
Cause both the KL optical flow features and the IDSF used
in our method have multiple dimensions, we not only have
to localize spatially significant regions, but also learn the
significance of different channel. We introduced both the
spatial attention mechanism and the channel attention mech-
anism [55] to design a fusion attention module, which ensure
that all the important regions of the input features with high
contribution to the final classification and recognition results
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FIGURE 4. The specific architecture of the 3D and 2D inception module.

are localized in order to extract higher dimensional features
with finer granularity through the spatio-temporal feature
extraction module. Fig. 3 shows the design idea and details
of this fusion attention module.

For the classical spatial attention model, after extracting
the coarse model and fine model using average pooling and
max pooling respectively, we concatenate these two mod-
els and process them with the same convolutional kernel.
In order to more precisely locate regions and identify fea-
ture information that contributes significantly to the final
result, we separated the average pooling and max pooling.
We processed the coarse model and fine model separately
using two channels, allowing distinct treatment of the coarse
and fine information. Fig. 3 (a) illustrates the details of the
separable SAM, where X represents the input features of the
model with dimensions 10∗192∗192. Simultaneously, we per-
form batch normalization on the input features to prevent
gradient vanishing during training. After the one path of
max pooling and one path of average pooling operations, the
output dimensions become 1∗192∗192. Finally, we perform
a convolutional operation on the features from the two paths
and add them together, using activation function to obtain the
output of the SAM.

The processing flow of the CAM also consists of two
branches. Similarly, after performing batch normalization on
the input features, we apply average pooling and max pooling
operations, resulting in an output with dimensions 10∗1∗1.
However, what differs is that the output needs to go through
a multi-layer perceptron (MLP) for transformation to obtain
two-channel excitation signals. Subsequent operations are
similar to the SAM. Fig. 3 (b) illustrates the details of the
CAM.

In the design of FAM, we use the Softmax activation
function. For the internal connections of the two sub-blocks,
inspired by the residual connection [64], we multiply the

channel values of the feature map with the corresponding
channel values of the CAM output. The result is then fed
into the SAM. We refer to the former operation as sampling.
For the subsequent processing, similarly, we perform mul-
tiplication between the channel values of the output from
the SAM and the corresponding channel values of the sam-
pling input features of that sub-block. This forms the design
framework of FAM. Therefore, we achieve enhanced feature
representation for ME features through FAM to facilitate
subsequent modules in extracting more fine-grained spatio-
temporal features.

C. EXTRACTION OF SPATIO-TEMPORAL FEATURES
Considering the challenge that rapid and subtle movements
in ME can make it difficult to extract effective features in
ME samples. Inspired by the parallel processing of Incep-
tionNet [53] and TSNN [65], we designed a neural network
architecture for MER called the 3D/2D Inception Module,
which utilizes both 3D or 2D convolutional kernels to simul-
taneously extract spatio-temporal information. This module
is capable of capturing information about ME features along
the temporal axis and the motion information in spatial axis.
Fig. 1 (c) illustrates the simplified process of spatio-temporal
feature extraction.

Fig. 4 shows the specific architecture of the 3D/2D incep-
tionmodule. The input to eachmodule is theME featureswith
enhanced feature representation output from the previous
module, and its dimensions are down-sampled to 10∗32∗32.
We use the 2D inception module to extract motion informa-
tion in spatio axis for ME, and the 3D inception module is
employed to extract the temporal sequence information of the
input features. After extracting spatio-temporal information
from both branches of ME features, we use the concatenate
operation to achieve the fusion of the two streams. In terms
of activation function selection, we employed the ReLU
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TABLE 1. The detailed parameters and architectures of the 3D and 2D inception module.

function in all convolutional layers and only used the Softmax
function in the final concatenate layer.

With the increase in the number of network layers, effective
features in ME samples are prone to loss. The 3D/2D incep-
tion module increases network width while reducing network
depth. Without sacrificing performance, it reduces the origi-
nal trainable parameters, thereby improving the efficiency of
model training. Table 1 shows the detailed parameters for this
section.

D. FEATURE TRANSFER
In this part, we use SVM as the classifier to achieve
lightweight and high-quality MER. The high-dimensional
features extracted by the 3D/2D inception module are trans-
ferred to the SVM classifier for training to generate the
decision boundary. In our method, we employ the radial
basis function kernel for the SVM and use the One Versus
Rest (OVR) decision function. This configuration requires
training three binary classifiers to achieve three-class clas-
sification. When determining the category, the test data is
input into the three classifiers separately, and the one with
the highest evaluation score is chosen as the final determined
category.

IV. EXPERIMENT
This section provides a detailed description of the dataset
used, experimental configuration details, and specifies the
evaluation metrics and strategies for the experimental results.
Finally, based on the above information, we evaluate and
analyze the experimental results.

A. DATASET
In order to evaluate the performance of the proposed method,
we conducted experiments on the following four existing
public spontaneous ME datasets.

1) CASME II
The CASME II dataset [19] was introduced and has been
made publicly available by the Institute of Psychology of the
Chinese Academy of Sciences in 2014. In comparison to its
predecessor, CASME, this dataset includes more ME sam-
ples, totaling 247 samples collected from 26 subjects with an
average age of 22.59 years. The ME samples were collected
in a completely controlled laboratory environment. Addi-
tionally, high-speed cameras were used during ME sample
collection, achieving a frame rate of 200Hz and a resolution
of 640∗480. The face size in the video samples is approx-
imately 250∗340. The dataset labels include five emotional
types: Happiness (33), Surprise (60), Disgust (25), Repres-
sion (27), Others (102).

2) SMIC
The SMIC dataset [22] was introduced by the University
of Oulu in 2013. It consists of three subsets: HS, VIS, and
NIR, which differ in the type of camera used during sample
collection. For this experiment, we primarily utilized the
SMIC (HS) subset. This dataset comprises 164 ME samples
collected from 16 subjects, with an average age of 26.7 years.
The resolution of the samples is 1280∗720, and due to the use
of a high frame rate camera, the frame rate is 100Hz, higher
than the frame rates of the other two subsets. The face size
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TABLE 2. The specific distribution of the MEGC2019 dataset.

is approximately 190∗230. The dataset labels include three
emotional types: Positive (51), Negative (70), Surprise (43).

3) SAMM
The SAMM dataset [23] was introduced and has been made
publicly available by Manchester Metropolitan University in
2016, comprises a total of 159 ME samples collected from
32 subjects with an average age of 33.34 years. The subjects
come from 13 different ethnicities. The ME samples were
collected in a completely controlled laboratory environment.
The samples have a resolution of 2040∗1088, a frame rate
of 200Hz, and the face size in the video samples is approx-
imately 400∗400. The dataset labels include eight emotional
types: Happiness (24), Anger (20), Surprise (13), Disgust (8),
Fear (7), Sadness (3), Others (84).

4) MEGC2019
The challenge integrated the SMIC(HS), CASME II, and
SAMM datasets, standardized the ME emotion label criteria,
and mapped the sample label types to a set of three com-
mon emotion categories: Negative, Positive, Surprise. The
MEGC2019 dataset [24] includes a total of 442 samples,
with 145, 164, and 133 samples extracted from SMIC(HS),
CASME II, and SAMM, respectively. Table 2 illustrates the
specific distribution of the MEGC2019 dataset.

In order to evaluate the performance of the model on
different datasets, we designed the experiments based on the
three-categoryME emotion label standard of the MEGC2019
dataset, including the three-category experiments, effective-
ness experiments and ablation experiments.

B. EXPERIMENTAL SETUP
To accurately and independently evaluate each ME sample in
the dataset, we adopted the Leave-One-Subject-Out (LOSO)
cross-validation protocol to assess the performance of the
proposed method. In each round of training, the ME samples
of an individual subject were used as the validation set, while
the samples of the remaining subjects constituted the training
set for model training. This process was repeated for each
subject’s ME samples until all of them had been used as the

TABLE 3. Environment configurations for experiments.

training set. The results obtained using this method represent
the overall model performance.

Due to the uneven sample sizes in the ME datasets,
we employed Unweighted Average Recall (UAR) and
Unweighted F1-Score (UF1) as experimental evaluation met-
rics. The definitions of UAR and UF1 are as follows:

• UAR: An unweighted average of all recalls. After cal-
culating the Recall for each class, the average is taken,
without considering the class imbalance. The formula is
as follows:

UAR =

Nc∑
i=1

Recalli

Nc
(8)

where, Recalli represents the recall of a category, Nc means
the total number of labels.

Recallc =
TPc

TPc + FNc
(9)

In this formula, TPc represents the final number of the
samples correctly predicted as positive in the class c, FNc rep-
resents the final number of the samples incorrectly predicted
as negative in the class c.

• UF1-Score: An unweighted average of precision and
recalls. The UF1-Score measures the model’s perfor-
mance by balancing precision and recall. The formula
is as follows:

UF1 =

Nc∑
i=1

UF1i

Nc
(10)

UF1c =
2 × TPc

2 × TPc + FPc + FNc
(11)

where, UF1c represents the UF1-score of a category, Nc, TPc
and FNc is same as above. FPc represents the final number of
the samples incorrectly predicted as positive in class c.
In the training cycle during experiments, the optimizer is

Adam (Adaptive Moment Estimation) with a learning rate of
1e-3. The batch size is set to 32. Table 3 shows additional
configurations of the experimental platform in hardware and
software environment.
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FIGURE 5. Confusion matrices on four spontaneous ME datasets.

C. RESULT AND DISCUSSION
The experimental results consist of three components. Firstly,
we horizontally compared the performance of the proposed
AST+SVMNet with other state-of-the-art models in the ME
three-classification task across four different datasets. Fig. 5
shows the primary confusion matrices on four spontaneous
ME datasets. Secondly, we evaluated the performance of
the proposed IDSF in comparison with other ME features,
validating the efficacy of the IDSF feature. Finally, to prove
the effectiveness of the proposed method, we conducted a
comprehensive ablation analysis on AST+SVMNet, encom-
passing input features, structural aspects, network layers and
classification simultaneously.

1) THREE-CATEGORY EXPERIMENT ON CASME II
We conduct a three-category experiment on the CASME II
dataset. We compare our proposed method with representa-
tive approaches in recent years in the field of MER. In this
three-category experiment, we employ UAR and UF1-score
as evaluation metrics to assess the effectiveness of our pro-
posedmethod compared to advancedmethods in recent years,
evaluating its performance. We compared the performance
of our model with traditional handcrafted features such as
LBP-TOP [16] and deep learning-based methods like STST-
Net [48], AU-GCN [52], and DACrossViT [57], etc. Table 4
shows the specific results of this experiment.

Our proposed AST+SVMNet achieved a UAR of
0.892 and an F1-score of 0.913 on the CASME II dataset,
demonstrating a slight performance improvement compared
to the MER-baseline method and recent advanced methods.
In comparison to AU-GCN [52], our method exhibited a
UAR improvement of 0.021, while compared to FR [56], our
proposedmethod showed aUF1-score improvement of 0.029.
The experimental results confirm the strong competitiveness

TABLE 4. CASME II dataset three-category experiments.

TABLE 5. SMIC(HS) dataset three-category experiments.

of our proposed AST+SVMNet in the ME three-category
experiment on the CASME II dataset.

2) THREE-CATEGORY EXPERIMENT ON SMIC(HS)
We conduct a three-category experiment on the SMIC(HS)
dataset. We compare our proposed method with represen-
tative approaches in recent years in the field of MER.
In this three-category experiment, we employ UAR and
UF1-score as evaluation metrics to assess the effectiveness
of our proposed method compared to advanced methods
in recent years, evaluating its performance. We compared
the performance of our model with traditional handcrafted
features such as LBP-TOP [16] and deep learning-based
methods like SLSTT-LSTM [28], RES-CapsNet [49] and
TSNN-LF [65], etc. Table 5 shows the specific results of this
experiment.

In the SMIC(HS) dataset, our proposed AST+SVMNet
achieved the UAR of 0.758 and an F1-score of 0.712.
Compared to TSNN-LF [65], our method demonstrated an
improvement of 0.075 in UAR and an increase of 0.020 in
UF1-score. In comparison to SLSTT-LSTM [28], our method
exhibit a UAR improvement of 0.018, although it slightly
lagged in UF1-score.The experimental results affirm that our
proposed AST+SVMNet maintains a leading position in the
three-category performance on the SMIC(HS) dataset.
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TABLE 6. SAMM dataset three-category experiments.

3) THREE-CATEGORY EXPERIMENT ON SAMM
Similarly, we conduct a three-category experiment on the
SAMM dataset, utilizing UAR and UF1-score as evaluation
metrics and LOSO protocol.

In this three-category experiment, we compared the
performance of our model with traditional handcrafted
features such as LBP-TOP [16], Bi-WOOF [42], and
deep learning-based methods like GEME [26], MERSi-
amC3D [27], and TFT [32], etc. Table 6 shows the specific
results of this experiment.

As shown in Table 6, our proposed AST+SVMNet
achieved the UAR of 0.778 and an F1-score of 0.741 on the
SAMM dataset. Compared to GEME [26] and TFT [32], our
method demonstrated improvements of 0.233 and 0.122 in
UAR, respectively. In terms of UF1-score, our method
outperformed GEME by 0.167 and outperformed TFT by
0.042. The experimental results confirm that our proposed
AST+SVMNet excels in UAR in the three-category exper-
iment on the SAMM dataset compared to current advanced
MER methods.

4) THREE-CATEGORY EXPERIMENT ON MEGC2019
As shown in Table 7, our proposed AST+SVMNet achieved
the UAR of 0.832 and a UF1-score of 0.807 on the
MEGC2019 fusion ME dataset. Compared to the existing
MER-baseline method LBP-TOP [27], Bi-WOOF [42], and
state-of-the-art methods such as MEMM4+Resnet50 [51]
and Inceptr [53], our UAR in this experiment improved
by 0.253, 0.209, 0.008, and 0.079. Our UF1-score also
increased by 0.219, 0.177, 0.001, and 0.061, respectively. The
experimental results affirm that our proposed AST+SVMNet
exhibits strong competitiveness in the three-category experi-
ment on the MEGC2019 mixed ME dataset.

5) IDSF VALIDITY EXPERIMENT
In this section, we validated the effectiveness of our pro-
posed ME feature IDSF, across four datasets. The network
framework utilized our proposed AST+SVMNet, with vari-
ations limited to the input features, specifically focusing on

TABLE 7. MEGC2019 dataset three-category experiments.

single-route handcrafted features. We compared the perfor-
mance of existing classical handcrafted features, and the
specific results are shown in Table 8. Compared to the
best-performing method, our proposed ISDF demonstrated
significant improvements. In the CASME II dataset, UAR
improved by 0.098 and UF1-score increased by 0.067. In the
SMIC(HS) dataset, UAR increased by 0.148 and UF1-
score by 0.126. For the SAMM dataset, UAR showed a
notable improvement of 0.248, with UF1-score increase of
0.228. In the MEGC2019 mixed ME dataset, UAR improved
by 0.181, and UF1-score increased by 0.157. Substantial
improvements in both UAR and UF1-score were observed
across all four datasets, confirming the effectiveness of our
proposed ISDF.

6) ABLATION EXPERIMENTS
To validate the effectiveness of our proposed AST+SVMNet,
we conduct ablation experiments on four datasets, examining
four aspects: input features, structural aspects, network layers
and classification. We compare the proposed method with its
corresponding variants.

At the part of input features, we compare the original
framework using only single optical flow features and single
IDSF with the dual-path feature framework on four datasets.
The specific results are shown in Table 9. In addition, we also
compare the performance of a single feature input under the
influence of different classifiers at four ME datasets. On the
CASME II, SAMM, and MEGC2019 datasets, the com-
plete framework shows significant improvements compared
to using only single-path features, with the UAR improving
by a maximum of 0.159, 0.065, and 0.109, and the UF1-score
improving by a maximum of 0.192, 0.049, and 0.073, respec-
tively. Apart from this, the experimental results also show
that the SVM classifier outperforms the FC+softmax clas-
sifier for classification with a single input feature. Because
the small-parameter shallow parallel network designed by us
to handle the ME samples does not have a high degree of
dimensionality in the ME samples, it leads to a much smaller
computational effort in generating the decision boundaries
for the SVM, enabling it to generate more robust bound-
aries and improve the classification results. However, on the
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TABLE 8. Experimental validation of the effectiveness of IDSF.

TABLE 9. Ablation experiment in different input features on four datasets.

TABLE 10. Ablation experiment in structural aspects on four datasets.

TABLE 11. Ablation experiment in network layers on four datasets.

SMIC(HS) dataset, the complete framework only improved
in UAR compared to single-path features, but in terms of
UF1-score, the frameworkwith single IDSF performed better.
We consider that this difference is due to the lower frame
rate in the SMIC(HS) dataset compared to the other datasets.
In the limited duration ofME, the changes inME per unit time
are more significant in SMIC(HS), leading to better feature
extraction performance for IDSF and 3D-Inception Module.
Overall, based on the experimental results, the dual-path
feature input for MER is superior to single-path input in our
proposed method and SVM classifier has optimal results in
the framework where only the classifiers are different.

At the structural aspects, we compare the complete frame-
work without using the FAM, using only the CAM, using
only the SAM, and the complete framework on four datasets.
On this basis, it is further divided into two categories accord-

ing to the different classifiers. The specific experimental
results are shown in Table 10. On the CASME II, SMIC(HS),
SAMM, and MEGC2019 datasets, the complete framework
demonstrates the bestMER performance. TheUAR improved
by a maximum of 0.169, 0.135, 0.141, and 0.165, and the
UF1-score improved by a maximum of 0.199, 0.118, 0.146,
and 0.161, respectively. Based on the experimental results,
we observe that using either the CAM or the SAM signifi-
cantly improvedMERperformance. That is because the chan-
nel attention mechanism in CAMweights and recalibrates the
different channel’s to enhance the representation of temporal
information in ME samples, and the spatial attention mecha-
nism in SAM focuses on the changing part of ME sample sin-
gle frames to enhance the representation of spatial features.
The introduced FAM further improved theMER performance
on top of the already effective results achieved by individual
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TABLE 12. Ablation experiment in classification on four datasets.

attention modules, because this module has the advantages of
both and completes the missing information in both.

As shown in Table 11, at the network layers part, we com-
pare the complete framework using only 2D Inception
Module to extract spatial information, using only the 3D
Inception Module to extract temporal information, and the
complete framework using both of them. On this basis, it is
further divided into two categories according to the differ-
ent classifiers. On the CASME II, SMIC(HS), SAMM, and
MEGC2019 datasets, the complete framework demonstrates
the best MER performance. The UAR improved by a max-
imum of 0.078, 0.111, 0.089, and 0.112, and the UF1-score
improved by a maximum of 0.092, 0.086, 0.073, and 0.069,
respectively. Comparing the feature extraction methods, spa-
tial information contributes more to MER performance than
temporal information. Based on the experimental result, the
complete framework simultaneously extracting both spatial
and temporal information outperform the framework focus-
ing on a single type of information. That is because 3D
convolution captures categorical information about contin-
uous temporal correlations in the semantics of ME samples
for filling in facial movement information at the spatial level.
We also compare theMER performance of the original frame-
work using FC+Softmax classifier and SVM classifier in
different feature extraction methods. The complete frame-
work using SVM classifier achieves the best classification
results on all four datasets.

At the classification aspects, we compare the classification
performance of the complete framework with different classi-
fiers on four datasets. On the CASME II, SMIC(HS), SAMM,
andMEGC2019 datasets, the complete framework with SVM
demonstrates the bestMER performance. TheUAR improved
by 0.025, 0.03, 0.027, and 0.069, and the UF1-score improved
by 0.045, 0.019, 0.035, and 0.006, respectively. Therefore,
it is proved that the validity of our proposed method is
established.

V. CONCLUSION
In this paper, we propose a novel decomposition method
for MER task: AST+SVMNet. This method utilizes
low-parameter parallel network modules to achieve efficient
MER by extracting fine-grained spatial-temporal informa-
tion from two streams of ME features and transferring the
features for SVM retraining. Additionally, we introduce a
new texture feature ISDF for MER, which mitigates the
negative impact of optical flow calculation noise in MER
methods that simultaneously introduce ME optical flow
features. We apply the ISDF to AST+SVMNet, achieving
excellent MER performance. Furthermore, we designed the

FAM for AST+SVMNet, which reduces redundant ME
information through nested channel and spatial attention,
optimizing the extraction of temporal and spatial repre-
sentations. Experimental results on four publicly available
spontaneous ME datasets demonstrate that the performance
of AST+SVMNet is particularly outstanding in the task of
fine-grained, lightweight MER when compared with existing
representative methods of ME.

It is noteworthy that due to the different sample frame
rates of the spontaneous ME datasets, the MER performance
of our proposed method varies conspicuously. Therefore,
we plan to improve our proposedmethod by devising an adap-
tive video frame normalization module with multi-scale low
information loss, enabling it to accommodate more diverse
and challenging ME datasets. In addition, due to the good
generalization ability of SVM in small samples, we employed
the SVM classifier to simplify the classification boundary.
However, we have only made preliminary applications on this
basis and have not identified a kernel function that adapts to
the data from different ME datasets. In the future, we plan
to discuss in detail the classification effects of different ker-
nel functions in our proposed method on various datasets,
to make targeted improvements. Building on the existing
method, we aim to determine or design a robust kernel func-
tion that adapts to different ME datasets.
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