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ABSTRACT Many published journals used hybrid deep learning methods to predict batteries’ remaining
useful life by adopting different rationales to select and combine deep learning methods aiming to propose
the most accurate prediction model possible. The main contribution of this article consists of proposing,
to the best of the authors’ knowledge, the most accurate hybrid deep learning prediction model, designed and
configured by considering the theoretical strength of each of the selected deep learning models, combined
with meticulous data preprocessing and feature engineering steps. A benchmark study is presented to
confirm the theoretical design by comparing the prediction results of the selected hybrid model with other
proposed hybrid deep learning algorithms. The selected predictionmodel is compared aswell with previously
published articles, specifically, the ones that have used hybrid deep learning methods, NASA datasets, and
batteries #6, #7, and #18 selectively. The hybrid model refers to the combination of different types of deep
learning architectures, such as Convolutional Neural Networks (CNNs), Deep Neural Networks (DNN),
Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (bLSTM), recurrent neural
network (RNN), Bidirectional recurrent neural network (bRNN), Gated recurrent units (GRU) and Bidirec-
tional Gated recurrent units (bGRU). This combination includes CNN-LSTM-DNN, CNN-bLSTM-DNN,
CNN-GRU-DNN, CNN-bGRU-DNN, CNN-RNN-DNN, and CNN-bRNN-DNN, and aims to leverage the
strengths of each architecture in capturing spatial, temporal, and sequential patterns present in the battery
dataset. The hybrid deep learning approaches are tested with multichannel inputs, encompassing parameters
such as voltage, current, and temperature, as well as their respective time series averages. The objective is to
predict the remaining useful life. Performance evaluation is conducted using error metrics, including Mean
Absolute Error (MAE) and Root Mean Square Error (RMSE). The results revealed a remarkable 90.5%
enhancement in RMSE, indicating substantial improvement.

INDEX TERMS Lithium-ion battery, remaining useful life, deep neural network, machine learning.

LIST OF ABBREVIATIONS

ANN Artificial neural network.
AUKF Adaptive unscented Kalman filter.
BSA Backtracking spiral algorithm.
CALCE Center for advanced life cycle engineering.
CNN Convolutional neural network.
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DAE Denoising autoencoders.
DBNN Deep belief neural network.
DL Deep learning.
DNN Deep neural network.
EEMD Ensemble empirical mode decomposition.
ELM Extreme learning machine.
FFNN Feed forward neural network.
FOS Forgetting online sequential.
FOSELM Forgetting online sequential extreme learning.
GPR Gaussian process regression.

70334

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-0266-8229
https://orcid.org/0000-0001-7637-3098
https://orcid.org/0000-0003-4190-1828
https://orcid.org/0000-0001-8728-3653
https://orcid.org/0000-0001-9027-298X


A. Tiane et al.: Comparing Hybrid Approaches of Deep Learning for Remaining Useful Life Prognostic

GRU Gated recurrent units.
HGWO Hybrid grey wolf optimizer.
HKA Heuristic Kalman algorithm.
IS Importance sampling.
LSTM Long short-term memory.
MAE Mean absolute error.
ML Machine learning.
MLP Multi-layer perceptron.
MLR Multiscale logistic regression.
NASA National aeronautics and space administration.
PF Particle filter.
PSO Particle swarm optimization.
PSR Phase space reconstruction.
RMSE Root mean square error.
RNN Recurrent neural network.
RVM Relevance vector machine.
SRU Simple recurrent units.
SVM Support vector machines.
SVR Support vector regression.

I. INTRODUCTION
The increasing environmental instability, encompassing fac-
tors like carbon emissions, climate change, and global
warming, along with heightened fuel consumption, prompted
the development of robust energy storage and manage-
ment systems. Among these systems, batteries—such as
lead-acid, lithium-ion, Ni-MH, and Ni-Cd batteries—stand
out as crucial and efficient forms of energy storage [1].
They serve as primary power sources across diverse
domains, including electric vehicles, space systems, con-
sumer electronics, aerospace electronics, and mobile com-
munications [2]. Nonetheless, the longevity of batteries
gradually diminishes due to internal electrochemical reac-
tions, physical and chemical alterations within the cells,
as well as external factors like temperature variations and
discharge rates [3], [4]. The repercussions of battery fail-
ure encompass compromised performance, disruptions in
device functionality, increased maintenance expenses, finan-
cial losses, and potential safety hazards [5]. Hence, accu-
rately forecasting the lifespan of Li-ion batteries becomes
imperative to ensure reliability, safety, and optimal battery
performance [6].

The Remaining Useful Life (RUL) of a battery refers to
the number of remaining charge-discharge cycles before it
reaches a critical failure point, typically around 70–80%
of its original capacity [7]. Estimating the RUL can be
achieved through four main methods: direct measurement,
model-based approaches, data-driven techniques, and hybrid
methods [8]. Direct measurement methods involve assess-
ing the battery’s capacity and impedance using parameters
like open-circuit voltage and Electrochemical Impedance
Spectroscopy. Model-based approaches utilize various mod-
els such as electrochemical, equivalent circuits, or empir-
ical models, often incorporating filtering algorithms like

Kalman filter, unscented Kalman filter, or particle filter.
Data-driven prediction methods, including Artificial Neu-
ral Networks (ANN), Support Vector Machines (SVM),
and Relevance Vector Machines (RVM), leverage histori-
cal battery data features such as capacity, current, voltage,
temperature, and impedance to forecast RUL without the
need for an in-depth understanding of the system. Among
these methods, neural networks have been extensively
employed for predicting the RUL of Li-ion batteries due to
their superior learning capabilities compared to traditional
algorithms [31].
Hybrid methods combine both data-driven and model-

based techniques or solely rely on data-driven approaches to
forecast the RUL of Li-ion batteries. Thanks to advancements
in Machine Learning (ML) and Deep Learning (DL), cou-
pled with improved computational hardware and accessible
datasets like those from NASA and CALCE, researchers
have been able to explore and implement such algorithms
effectively for accurate RUL prediction.

Numerous studies have leveraged hybrid neural network
approaches for estimating RUL in Li-ion batteries. For
instance, Xia et al. [9] introduced a method comprising
Feedforward Neural Network (FFNN) and Importance Sam-
pling (IS), demonstrating robust RUL prediction. Li et al.
and Yang et al. utilized two methods, MPSO-ELM [10] and
HKA-ELM [11], with the latter enhancing the stochas-
tic parameters of the Extreme Learning Machine (ELM)
algorithm to improve predictability. Ren et al. [12] proposed
an integrated deep learning approach combining an Autoen-
coder model with a Deep Neural Network for enhanced pre-
diction accuracy. Jia et al. [13] introduced a novel prognostic
method, the Multi-layer Perceptron Particle Filter (MLP-PF).
Zraibi et al. [14] combined the Particle Filter (PF) algorithm
with Artificial Neural Network (ANN) for RUL estimation.
Fan et al. [15] proposed a deep learning method integrating
the Forgetting Online Sequential Extreme Learning Machine
(FOS-ELM) with the Hybrid Grey Wolf Optimizer (HGWO)
algorithm. Zhu et al. [16] incorporated Differential Evolution
(DE) into their hybrid method named DGWO-ELM, improv-
ing prediction accuracy and performance. Dong et al. [17]
introduced a Neural Network (NN) method for modeling
battery degradation based on the bat-based particle filter.
Wang et al. [18] proposed a newRUL predictionmethod com-
bining Ensemble Empirical Mode Decomposition (EEMD)
and Nonlinear Autoregressive (NAR) neural network models,
achieving high prediction accuracy. Zhang et al. [19] com-
bined Partial Incremental Capacity and ANN for RUL battery
prediction.Wang et al. [20] presented a hybrid neural network
method named Elman-Long Short-Term Memory (LSTM)
for RUL estimation, merging the empirical model decom-
position algorithm with LSTM and Elman neural networks.
Ansari et al. [3] utilized a hybrid NN method named Con-
volutional Neural Network (CNN)-LSTM, which reduced
errors and increased accuracy. Chen et al. [21] introduced
the hybrid method ELM-BSASVM, which outperformed
individual methods.

VOLUME 12, 2024 70335



A. Tiane et al.: Comparing Hybrid Approaches of Deep Learning for Remaining Useful Life Prognostic

TABLE 1. Rul estimation results of some other papers. TABLE 1. (continued.) Rul estimation results of some other papers.

In contrast, non-deep learning hybrid algorithms may
rely on more conventional machine learning techniques like
regression or ensemble methods such as random forests.
They may also incorporate techniques like improved varia-
tional modal decomposition (VMD), particle filter (PF), and
Gaussian process regression (GPR). While these methods
have been widely employed and can yield satisfactory results
in specific contexts, they may require extensive feature engi-
neering and lack the ability to automatically learn intricate
patterns from raw data.

To conduct a rigorous benchmark study, this article con-
centrates on comparing its predictions with studies that have
utilized hybrid methods, specifically with NASA datasets,
and have targeted batteries #6, #7, and #18. Studies [5],
[15], [28], [29], [31] employed hybrid methods combining
two algorithms, aligning with the approach adopted in this
article. Additionally, studies [16] and [30] utilized hybrid
methods combining three algorithms, mirroring the number
of combined algorithms utilized in this article. This focus
ensures a comprehensive and relevant comparison of predic-
tion performance within the context of hybrid methods and
specific battery selections from the NASA dataset.

Table 1 presents a summary of RUL prediction results
arranged from the least favorable to the most favorable
outcomes. It is evident that [16] and [30] exhibit superior
performance compared to [5], [15], [28], [29], and [31].
However, it is noteworthy that the proposed hybrid algorithm
surpasses all others in terms of predictive accuracy and
effectiveness.

The primary contributions of this study can be outlined as
follows:

1- Conducting a comprehensive comparative analysis
between existing hybrid deep learning algorithms
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and novel hybrid learning algorithms, which integrate
various neural network (NN) architectures such as
CNN-LSTM-DNN, CNN-bLSTM-DNN, CNN-GRU-
DNN, CNN-bGRU-DNN, CNN-RNN-DNN, and
CNN-bRNN-DNN. These hybrid algorithms are metic-
ulously designed and sequenced based on the unique
strengths of each constituent learning algorithm. It is
noteworthy that these proposed hybrid algorithms
have not been previously explored. The comparison
is specifically tailored to articles focusing on predict-
ing batteries’ remaining useful life using hybrid deep
learning algorithms, leveraging selectively the NASA
datasets pertaining to batteries #6, #7, and #18.

2- Introducing a novel feature engineering methodology
that has proven to be highly effective for any feature
sequence represented in the format of time series data.
The study demonstrates the impact of employing this
feature engineering approach versus not incorporating
it, providing valuable insights into its efficacy.

3- Evaluating the performance of the proposed method by
comparing its results with state-of-the-art approaches,
particularly those utilizing three combined algorithms
akin to this study. The findings highlight substantial
performance enhancements achieved by the proposed
hybrid methods. These improvements are quantita-
tively assessed using performance indicators such as
Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) on NASA datasets. Notably, the pro-
posedmethod demonstrates a notable reduction in error
rates and a significant increase in accuracy.

In summary, the motivation behind the adoption of hybrid
models stems from their ability to leverage the complemen-
tary strengths inherent in diverse deep-learning architectures.
By amalgamating multiple deep learning models within a
hybrid framework, researchers can effectively capitalize on
the full spectrum of these techniques, thereby addressing the
intricate challenges posed by real-world datasets, including
the prediction of battery life. This approach enables improved
prediction accuracy and generalization compared to individ-
ual models, ultimately facilitating the resolution of complex
tasks such as battery life prediction.

The other sections of this paper are prepared as follows:
Section II explains the architecture of proposed hybrid meth-
ods. Section III explains the RUL estimation method used in
this article. Section IV explains the data preprocessing and
feature engineering methods. Section V lists the proposed
method results. Finally, a conclusion is given.

II. PROPOSED DEEP LEARNING HYBRID METHODS
Two learning methodologies are generally used in ML and
DL methods, namely supervised and unsupervised learning.
Supervised learning methods depend on target features to
train and learn over the feature datasets, whereas unsuper-
vised methods do not depend on it. Supervised learning
methods are used to resolve regression and classification
problems. Another advantage of DL, compared to ML meth-

ods, is that DL algorithms abstract the manual feature
extraction step by automatically selecting relevant features.
DL architecture is more complex than ML and has more
hidden layers than ANN [22].

Recently, various DL methods based on time series predic-
tion were shown in several works, e.g., DAE, DBNN, CNN,
RNN, LSTM, and GRU. This paper focuses its study on eight
variants of DL, i.e., CNN, DNN, RNN, LSTM, GRU, bRNN,
bLSTM, and bGRU.

CNN is competent in feature extraction and very fast
in training compared to standard sequence modeling. CNN
shows two important advantages, i.e., local dependency and
scale invariance. Its method of feature extraction takes a
hierarchical form. Its architecture contains convolutional,
pooling, fully connected layers, and output layers. The first
layer extracts different features of input through the convo-
lution process containing several feature planes and neurons.
The second layer is secondary feature extraction; it reduces
the feature surface dimension and its resolution for obtaining
constant spatial features. The convolution and pooling layers
are mapped one to one, each to another, where the outputs of
the convolution layer are the inputs of the pooling layer. The
third layer can combine the information from the previous
layers. The final layer receives full connection outputs [35].

FIGURE 1. The architecture of the CNN.

RNN is one of the most popular algorithms among DL
methods. It leverages the temporal correlations between neu-
rons, and RNN is used to treat tasks that include the sequence
of the features. It also has internal memory to remember
past results and to discover the best way to make the next
best estimation. However, RNN experiences problems with
long-distance dependencies that contribute to gradient van-
ishing symptoms where the gradient tends to 0 and, therefore,
does not contribute to forward learning. To overcome the
RNN gradient vanishing issue, two variants of RNN are used,
i.e. LSTM and GRU, to control the propagation of gradi-
ent information and remember the parameters as subsequent
inputs during the long-term sequence [19]. GRU uses two
gates: the first is called update gate (z), which controls the
hidden state update, and the second gate is called reset gate
(r), which decides if it should ignore the previous hidden
state or not [23]. LSTM architecture contains three gates, i.e.
the input (i), forget (f) and output (o), as well as a memory
unit [24]. It is obvious that GRU has a simpler architecture
and fewer gates compared to LSTM by combining the forget
and output gates of LSTM in one gate, namely the update

VOLUME 12, 2024 70337



A. Tiane et al.: Comparing Hybrid Approaches of Deep Learning for Remaining Useful Life Prognostic

gate. LSTM’s equations can be defined as follows:

ft = σ (Wf [ht−1, xt ] + bf )

it = σ (Wi [ht−1, xt ] + bi)

ot = σ (Wo [ht−1, xt ] + bo
qt = tanh (Wq [ht−1, xt ] + bq)

ct = ft ∗ ct−1 + it ∗ qt
ht = ot ∗ tanh(ct ) (1)

The previous and the current cell states are identified respec-
tively as q and c, the unit output as (h), the weight matrices,
the bias, and the sigmoid function represented as W, b, and
σ , [24]. GRU’s equations can be defined as follows:

zt = σ (Wz [ht−1, xt ])

rt = σ (Wr [ht−1, xt ])

h̃t = tanh (Wh
[
rt ∗ ht−1, xt

]
)

ht = ((1 − zt ) ∗ ht−1) + (zt ∗ h̃t ) (2)

where, h̃t is the candidate gate and ht is output activation [23].
The single algorithms described so far process the previous

data only, while the bidirectional algorithms as bRNN [25],
bLSTM [26], and bGRU [27] have the ability to process the
data inputs in both directions, i.e., the forward and backward
temporal sequences, allowing these bidirectional algorithms
to be more efficient is defining the relationship between the
sequences and its model.

To leverage the advantages of each algorithm and enhance
the RUL prediction accuracy, a hybrid formula is proposed in
this article, integrating CNN, RNN, LSTM, bLSTM, GRU,
bGRU/ and DNN. The DL technology uses multiple layers to
extract higher-level features from the raw input progressively.

FIGURE 2. The architecture of each the RNN, LSTM, and GRU.

In the presented work, CNN is applied to extract local fea-
tures, capture the spatial relationship, and use shared weights’
structure to reduce the amount of the weights and try to find
the shared information from the measurement of data. One
convolutional layer is used with 160 filters, including the ker-
nel of size 4. The configuration used one default stride, causal
padding, and Relu activation function. The RNN / LSTM/
bRNN / bLSTM/ GRU/ bGRU were applied to understand
the temporal relationships within the feature sequence by
using their internal state (memory) to learn features and time
dependencies from the sequential data and capture temporal
features. Each of these algorithms had two layers consisting
of 160 nodes followed by a flattened layer. Finally, DNN
has been used to map the features by choosing 4 dense

layers, each of them containing a Relu activation function
with 160 nodes. A dense layer with one node is used as a
regression layer to get the final RUL output.

FIGURE 3. The architecture of the proposed hybrid methods.

III. RUL ESTIMATION
The estimation method of accurate capacity is an essential
prerequisite in order to successfully predict the RUL since
the degradation process of the battery is affected by a series
of factors like temperature (T), current (I), voltage (V) and
capacity (C), the more parameters included in the process,
the higher model accuracy can be achieved.

This paper proposes six hybrid methods of deep learning
time series for RUL prediction of lithium-ion batteries with
multichannel inputs, where the inputs are Vn, In, Tn, and the
average sequence of the previous time steps of these features
(i.e. I2500avg, V2500avg, T2500avg), ranging from 0 to
2500 time steps. The proposed method’s output is the target
RUL. The final model is constructed by combining some
basic neural networks, namely CNN, LSTM, DNN, and
GRU, as follows: CNN-LSTM-DNN, CNN-bLSTM-DNN,
CNN-GRU-DNN, CNN-bGRU-DNN, CNN-RNN-DNN and
CNN-bRNN-DNN. Noted CLD, CbLD, CGD, CbGd, CRD,
and CbRD.

A. SYSTEM CONFIGURATION AND EVALUATION CRITERIA
OF PERFORMANCE
The proposed hybrid algorithms were tested using a Server
with Intel(R) Xeon(R) CPU ES-2687W 3.10GHz with two
processors and 256 GB of memory. Tensorflow 2.0 has been
used to implement these algorithms using the Anaconda
3.0 library. Adam optimizer and Huber loss function were
used as a rectified linear unit (ReLU) activation function.

The performance of RUL prediction of the algorithms was
assessed using the mean absolute error [2] and root mean
square error [28], denoted as MAE and RMSE, respectively.
Their mathematical equations are defined as follows:

MAE =

∑k

k=1
|yk − ŷk | (3)

RMSE =

√√√√ 1
N

N∑
i=1

(yk − ŷk )2 (4)

where, yk , ŷk , and indicates the true value and the estimated
value of actual battery capacity. The best prediction accuracy
is achieved when the error value is close to zero for MAE and
RMSE.

RUL is defined as the remaining number of cycles
(charge/discharge) to get to the failure threshold of the battery
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with a specific output capacity [36], (i.e., the length of time
from the current time to the end of life ‘‘EOL’’). The EOL is
considered as the time when the capacity gets to 70–80% of
the nominal capacity [36], [37]. It can be written as:

RUL = TEOL − Tcc (5)

Tcc is the cycle number of current capacity and TEOL
is the cycle number when the capacity reaches the EOL
threshold [3].

IV. DATA PREPROCESSING AND FEATURE ENGINEERING
A. NASA DATASETS
Data used in this paper has been acquired from NASA [32].
From all available data sets representing Li-ion battery read-
ings, three data sets were chosen representing three batteries
(model number 18650): B0006, B0007 and B0018 as shown
in Fig. 4.

FIGURE 4. Capacity degradation curve of NASA batteries.

The issue of limited data availability in NASA datasets
is indeed a challenge that must be carefully addressed when
employing deep learning techniques. In response to this con-
cern, several strategies are explored to mitigate the impact
of limited data on model performance, such as data aug-
mentation techniques to increase the size and diversity of
the dataset artificially and investigating the effectiveness of
transfer learning approaches, where pre-trained models on
larger datasets are fine-tuned on the specific NASA dataset
of interest.

Batteries are examined at room temperature, 24 degrees
Celsius, during three different operational processes (i.e.,
charge, discharge, and impedance). Table 2 lists some
technical characteristics of the selected batteries.

TABLE 2. The description of nasa batteries.

B. DATA PREPARATION
Three data modes were available in the NASA data set:

FIGURE 5. Data preparation.

The charging mode experiment is first charged with a
constant current (CC) of 1.5A until the voltage is 4.2V, then
in a constant voltage (CV) until the current drops to 20mA.
The discharge mode process was discharged with a constant
current (CC) of 2A until the voltage was decreased to 2.5V
of B0006. When the measured actual capacity mode of the
Li-ion battery became lower than 70% of the rated capacity
(2Ah), the experiment stopped.

As shown in Fig. 5, the first step was to extract the dis-
charge data, generate the average sequence as explained in
the feature engineering section, and then shuffle and split it
as follows: 70% as training data, 15% for validation and 15%
for testing.

C. FEATURE ENGINEERING
The feature engineering step consists of selecting features
that are fed to the algorithms. Two RUL prediction results
for battery #6 are compared in this section using two feature

engineering methods. The first method constructs for each
feature, i.e. V, I and T, a simple time-series sequence using
the last 13 values plus the capacity as follows:
Simple Time-Series Set:
• (v1, v2, v3, v4, v5, v6, v7, v8, v9, v10, v11, v12, v13)
• (t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13)
• (i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13)
The second sequence is represented with a floating average

time series using a window size of 200 starting from reading
2500. The sequence is represented as follows:
Average Time-Series Set:
• (vavr2500, vavrg2300, vavrg2100, vavrg1900, vavrg1700,
vavrg1500,vavrg1300, vavrg1100, vavrg900, vavrg700,
vavrg500, vavrg300, vavrg100)

• (tavrg2500, tavrg2300, tavrg2100, tavrg1900, tavrg1700,
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FIGURE 6. Results of RUL prediction comparison for B0006 using an average and simple sequence.

tavrg1500,tavrg1300, tavrg1100, tavrg900, tavrg700,
tavrg500, tavrg300, tavrg100

• (iavrg2500, iavrg2300, iavrg2100, iavrg1900, iavrg1700,
iavrg1500,iavrg1300, iavrg1100, iavrg900, iavrg700,
iavrg500, iavrg300, iavrg100

The following figures compare results for RUL pre-
dictions for battery #6 using the six hybrid algorithms
in two scenarios. The first scenario uses the simple
time-series sequence, and the second uses the average

time-series sequence. True values and test dataset curves
are represented by blue and red colors, respectively. Pre-
diction results, as shown in Fig. 6, show a prediction
improvement of at least 82.41% between the two featuring
methods.

V. VALIDATION AND DISCUSSION
This section presents, analyses and compares the RUL pre-
diction of Li-ion batteries using six different hybrid methods.
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FIGURE 7. Results of RUL prediction for B0007 using: (a) CLD., (b) CbLD, (c) CGD, (d) CbGD, (e) CRD, and (f) CbRD.

FIGURE 8. Results of RUL prediction for B0018 using: (a) CLD., (b) CbLD, (c) CGD, (d) CbGD, (e) CRD, and (f) CbRD.

In addition, it introduces a comparative analysis of the
RUL prediction between the proposed methods and the best
methods in other papers.

Fig. 7 and 8 show the results of the six proposed hybrid
methods to predict the RUL of the B7 and B18 Li-ion
batteries.

Table 3 and 4 list RUL prediction results of Li-ion batter-
ies using six different hybrid methods sorted in ascending

order (from best to worst prediction results) as shown in
Fig. 6, 7, and 8.
Overall, CbLD and CbGD are deemed to show the best

prediction results. To put these numbers in perspective, they
are compared to the best RUL prediction results available
in the literature. The comparison is limited to articles listed
in Table 1. The commonality between articles selected for
the benchmark is that they all use hybrid methods to predict
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TABLE 3. MAE RUL estimation results for NASA batteries, ascendant
order.

TABLE 4. RMSE RUL estimation results for NASA batteries, ascendant
order.

TABLE 5. RMSE improvement.

batteries’ RUL; they all use NASA datasets and specifi-
cally consider batteries #6, #7 and #18. More specifically,
the benchmark focus on two articles [16] and [30] for two
reasons:

1/ Table 1 is sorted in descending order, and RUL pre-
diction is listed from worst to best. Therefore, [16] and [30]
show the best battery RUL prediction so far in the available
literature.

2/ [16] and [30] combine three algorithms in their hybrid
configuration, just like this article.

Therefore, the benchmark is legitimate. RMSE is used to
compare the results. The best RUL prediction results for each
battery is selected amongst all algorithms.

Table 5 shows that the RMSE improvement is significant
and that the proposed algorithms overclass the ones used so
far in the literature. Overall, the performance of different
approaches depends on a combination of factors includ-
ing model complexity, feature representation, data quality,
hyperparameter tuning, assumptions, robustness, and com-
putational efficiency. Understanding these factors can help

practitioners select the most appropriate approach for their
specific task and dataset.

VI. CONCLUSION
This paper presents the RUL prediction of Li-ion batter-
ies aiming to improve the prediction accuracy using six
different hybrid deep learning methods CNN-LSTM-DNN,
CNN-BLSTM-DNN, CNN-GRU-DNN, CNN-BGRU-DNN,
CNN-RNN-DNN, and CNN-BRNN-DNN. The proposed
hybrid methods were experimentally validated on datasets
obtained from NASA and their performance, which demon-
strate a high RUL prediction accuracy assessed by the RMSE,
MAE. Finally, a benchmark study proved that the accu-
racy reached in this article outclass any other previously
published works of literature covering the same subject,
knowingly, RUL prediction of Li-ion batteries using NASA
datasets, specifically batteries #6, #7 and #18. Future itera-
tions of the research plan may consider expanding the scope
of deep learning methods to encompass a wider array of
architectures, including the Transformers method, to ensure
a more comprehensive evaluation of state-of-the-art tech-
niques. The findings of this study are constrained by specific
datasets, necessitating validation of hybrid models across
diverse datasets, while future research should streamline
model complexity without compromising accuracy, enhance
interpretability of deep learning-based RUL estimation mod-
els, and address data availability and quality challenges
through techniques like data augmentation and anomaly
detection.
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