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ABSTRACT With reliable performance, and linear time complexity, Vision Transformers like the Swin
Transformer are gaining popularity in the field of Medical Image Computing (MIC). Examples of effective
volumetric segmentation models for brain tumours include VT-UNet, which combines conventional UNets
with Swin Transformers using a unique encoder-decoder Cross-Attention (CA) paradigm. Self-Supervised
Learning (SSL) has also experienced an increase in adoption in computer vision domains such as MIC,
in situations where labelled training data is scarce. The Querying Transformer UNet (QT-UNet) model
we introduce in this paper brings these advancements together. It is an all-Swin Transformer UNet with
an encoder-decoder CA mechanism strengthened by SSL. For the purpose of evaluating the potential of
QT-UNet as a generic volumetric segmentation model, it is subjected to extensive testing on several MIC
datasets. Our best model achieves a Dice score of 88.61 on average and a Hausdorff Distance of 4.85mm
making it competitive with State of the Art in Brain Tumour Segmentation (BraTS) 2021, using 40% fewer
FLOPs than the baseline VT-UNet. We found poor results with Beyond The Cranial Vault (BTCV) and
Medical Segmentation Decathlon (MSD), but validate the effectiveness of our new CA mechanism and find
that the SSL pipeline is most effective when pre-trained with our CT-SSL dataset. The code be can found at
https://github.com/AndreasHaaversen/QT-UNet.

INDEX TERMS Deep learning, encoder-decoder cross-attention, UNet, medical image segmentation, self-
supervised learning, Swin Transformer, vision transformer.

I. INTRODUCTION
Transformers, introduced by Vaswani et al. [1], revolu-
tionised the Natural Language Processing (NLP) field by
introducing a model that can effectively model long-range
dependencies while maintaining amanageable computational
cost. Transformers are now the dominant model in that
field, with notable examples being BERT [2] and GPT-3
[3]. The computational efficiency of the Transformer has
enabled NLP models of unprecedented size, with the largest
variant of GPT-3 having approximately 175 billion trainable
parameters.

The associate editor coordinating the review of this manuscript and

approving it for publication was Amin Zehtabian .

The attention mechanisms that power Transformers have
also inspired the adoption of similar mechanisms in models
for Computer Vision (CV), with some models incorporating
self-attention mechanisms instead of convolution or using a
Transformer in conjunction with a convolutional backbone.

In 2020, Dosovitskiy et al. [4]. introduced theVision Trans-
former (ViT), a near-end-to-end image classification model.
The results demonstrated that Transformers can handle vision
tasks without extensive backbones or Convolutional Neural
Network (CNN)’s inductive bias. Thesemodels outperformed
State-of-the-Art CV models in image classification while
using fewer computing resources and parameters.

Nevertheless, traditional Transformer models suffer a
quadratic rise in memory and time complexity based on
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input length. This makes Transformers difficult to employ on
high-resolution images and volumes, such as those required
for Medical Image Computing (MIC). Several methods [5],
[6], [7] have been suggested to reduce the time complexity of
traditional Transformers.

The Swin Transformer was proposed by Liu et al. [8] which
achieved linear-time complexity by utilising windowed
self-attention and a shifting mechanism. This has allowed
its use in tasks involving both high-resolution images and
volumetric data, such as CT and MRI scans. Due to its
effectiveness, the Swin Transformer has been used in a variety
of dense prediction applications, including segmentation and
depth estimation. Two such examples are Swin-UNet [9] and
VT-UNet [10].
Swin-UNet [9] uses Swin Transformer blocks in a

UNet architecture. It is mainly used with CT scans and
outperformed convolution-based UNets in these MIC tasks.
However, this method is limited to 2D slices, and there is
a significant loss of 3D context during the segmentation
process.

VT-UNet [10] is a method for volumetric segmentation
of MRI images inspired by Swin-UNet, which employs
video Swin Transformer blocks inside a UNet architec-
ture. Moreover, a new Cross-Attention (CA) mechanism
is introduced between the encoder and the decoder, with
the encoder providing the decoder with keys and values at
each stage. This method performs well on Brain Tumour
Segmentation (BraTS) 2021 data while being much smaller
in terms of parameters and using fewer computing resources
than comparable models like UNETR [11], nnUNet [12], and
nnFormer [13]. However, the keys and values that the encoder
sends to the decoder are fixed, irrespective of the needs of
the decoder. The decoder block also uses a parallel branch
scheme that is computationally intensive, but contributes
negligibly to model performance.

UNETR [11] is another 3D UNet architecture for segment-
ing CT images that combines a ViT-based encoder with a
traditional CNN decoder. It is now one of the top-performing
methods on the Beyond The Cranial Vault (BTCV) dataset.
However, the encoder uses the same feature resolution
throughout, indicating that the method lacks a correct feature
hierarchy.

When dealing with a machine learning problem, one of
the key challenges is collecting enough data to train the
model without overfitting and poor generalisation. This is
especially difficult in the field of MIC, since labelling the
data is a time-consuming process that requires the expertise
of qualified professionals. By automatically generating
pseudo-labels for easily accessible unlabelled data, Self-
Supervised Learning (SSL) enables ML practitioners to get
more out of their data without labelling. To great success,
this has been used in CV and, more specifically, MIC.
Swin-UNETR [14] is a remarkable work that integrates
SSL with a UNet using a 3D Swin Transformer as its
encoder.

Swin-UNETR [14] builds upon UNETR and combines
a Swin Transformer-based encoder with a CNN decoder.
Notably, for this encoder, authors provide a revolutionary
SSL approach that incorporates contrastive learning, masked
volume in-painting, and 3D rotation prediction SSL heads.
SSL training is carried out utilising augmented sub-volumes
of CT scans, which are enhanced by rotating the samples
in the z-axis and applying random sub-volume masking.
In addition, the authors collected a large dataset for use with
the SSL system.

This study builds upon recent works on Vision Trans-
formers, focusing on MIC. As VT-UNet and Swin-UNETR
are strong models for a number of MIC datasets, we draw
inspiration from them and attempt to combine and improve
upon their respective approaches. Thus, we present QT-UNet,
which accomplishes this goal through an all-Swin Trans-
former UNet specially designed with Encoder-Decoder CA
and SSL.

A. RESEARCH PROBLEMS
In this study, we examine the impact of implementing a
generic cross-modality model on 3D data from a wide range
of sources, using CA as realised in VT-UNet and SSL as
proposed in Swin-UNETR. In order to achieve better model
performance, we are also looking for ways to enhance their
original methods. The overall purpose of our study is to:

Test the performance of a cross-domain all-
Transformer UNet segmentation model trained
using the Swin Transformer, self-supervised pre-
training, and Encoder-Decoder CA on datasets in
the MIC field.

To achieve this goal, we investigate the following research
questions (RQs):

• RQ1: What is the effect of using self-supervised
pretraining of the encoder in an all-Transformer UNet on
the performance of the overall network in segmentation
tasks?

• RQ2: What is the effect of using encoder-decoder CA
on the overall performance of an all-Transformer UNet?

II. CONTRIBUTIONS
We introduce the Querying Transformer UNet (QT-UNet),
leveraging SSL and and CA to create a Swin-based all-
Transformer U-Net for semantic segmentation of 3D data.
In order to evaluate its performance, we subject it to a series
of experiments usingMIC datasets, and comparing it with the
latest state-of-the-art models for each dataset.

We introduce a novel CAmechanism inspired by VT-UNet
[10], coupled with a new decoder block design that allows
the decoder blocks in the model to query the output of
the same-stage encoder for information at each stage of the
decoding process. We also employ SSL for the encoder,
based on the procedure developed for Swin-UNETR [14].
We collect a large dataset consisting of 3,597 CT scans,
dubbed CT-SSL, to pre-train the encoder for CT-based tasks.
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When trained on the BraTS2021, we see a significant
improvement, and when trained with pre-learned weights on
this dataset, we observe even better performance in terms of
Hausdorff Distance. Bothmodels are competitive and achieve
a 40% reduction in FLOPs when compared to the baseline
VT-UNet. Experiments with BTCV and MSD yield weaker
results, though they validate the effectiveness of the new
CA technique, and our SSL pipeline when pretraining with
CT-SSL.

The structure of the remaining paper is as follows:
The Methods section presents an in-depth explanation of
QT-UNet. Experiments and Results are described in the
succeeding section. Finally, concluding remarks and future
research directions are discussed in the last section.

III. METHODS
The proposed QT-UNet is shown in Figure 1. The overall
model architecture and training procedure is inspired by
VT-UNet [10] and Swin-UNETR [14]. It takes a 3D volume
D × H × W × C and produces a volume of size D × H ×

W × K , where K is the number of target classes. A detailed
explanation of each component of the proposed method is
presented as follows:

A. QT-UNET ENCODER
The QT-UNet encoder consists of a 3D patch partitioning
layer and a linear embedding layer, followed by successive
QT encoder blocks and patch merging layers. Each stage in
the encoder consists of two QT encoder blocks, followed by
a patch merging layer.

1) PATCH PARTITIONING AND LINEAR EMBEDDING LAYER
The first layer of QT-UNet, like other ViTs, takes the input
volume and generates a sequence of tokens by splitting the
input into non-overlapping patches using a convolutional
layer. Each kernel in the layer has size M × M × M ,
producing a sequence of ⌊ DM ⌋×⌊

H
M ⌋×⌊

W
M ⌋ tokens describing

the volume. These tokens are then flattened by a linear
embedding of each token with dimensionality M × M × M
to a C dimensional vector.

2) QT ENCODER BLOCK
The QT encoder block draws upon the design of the Video
Swin encoder block [15] and VT encoder block [10]. Each
block has two sub-blocks utilising a 3D windowed Multi-
Head Self-Attention (W-MHSA) module followed by a two-
layer MLP with GELU activation. Layer normalisation is
performed before and after the W-MHSA module, with skip
connections across both the W-MHSA and MLP modules.
For the second sub-block, a two voxel shift is applied in
each direction before windowing to introduce cross-window
connections between the blocks. This shifted operation
is known as Shifted Window Multi-Head Self-Attention
(SW-MHSA). Finally, in each self-attention head, a relative
bias of B ∈ RM2

×M2
×M2

is applied.

(1) describes self-attention as applied in each window,
where Q,K,V ∈ RM3

×d are the query, key, and value
matrices, and d is the dimension of the key and value features.

Attention(Q,K,V ) = Softmax

(
QK⊺√
dq

+ B

)
V (1)

Since the relative position along each axis lies in the range
of [−M + 1, M − 1], we parameterise a smaller bias matrix
B̂ ∈ R(2M−1)×(2M−1)×(2M−1), taking values for B from B̂,
as in [8].

The windowing operation can be understood as injecting
an inductive bias for locality into the model. The shifting
operation allows successive applications of the blocks to
receive information across windows, while the position bias
informs the relative positioning of those windows.

3) PATCH MERGING
Strong feature hierarchies are essential to most segmentation
models [8], [9], [10], [14], [16], [17]. To achieve this in the
QT encoder, adjacent 2×2×2 tokens are concatenated along
their feature dimension after each stage, giving dimensions
D/2 × H/2 × W/2 × 8C . A linear layer is used to shrink
the concatenated features to one-fourth of their expanded
dimension (8C → 2C), resulting in a final volume of
D/2 × H/2 ×W/2 × 2C .
Our application of patch merging differs slightly from the

equivalent mechanism in the Video Swin Transformer [15]
and VT-UNet [10], since QT-UNet merges adjacent tokens in
all three spatial axes, not just height and width.

B. BOTTLENECK
The bottleneck layer is the deepest layer of the model and
consists of a single QT encoder block, followed by a patch
expansion layer.

C. QT-UNET DECODER
The QT-UNet decoder consists of successive pairs of patch
expansion layers and QT decoder blocks and ends with a
classifier.

1) PATCH EXPANSION
The patch expansion layers do the opposite of the patch
merging layers. They increase the spatial resolution of tokens
while decreasing the size of their features.

This is a two-stage process: First, a linear layer expands
the feature dimensions fourfold ( 2C → 8C). Then,
2 × 2 × 2 tokens with feature dimension C are extracted
from the expanded token, producing a sequence of tokens
corresponding to a volume of size D× H ×W × C .

2) QT DECODER BLOCK
Iterating upon the VT decoder block from VT-UNet [10], the
QT decoder block introduces two significant changes.

First, instead of using keys and values generated in the
encoder, the QT decoder block generates them from the
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FIGURE 1. The proposed model, QT-UNet.

output of the same-stage encoder block. This allows each
decoder block to query the spatially dense output of the same
stage encoder block more flexibly while saving compute at
the cost of more parameters.

Second, the QT decoder block replaces the Fusion Module
from VT-UNet with a more conventional decoder design
reminiscent of the original Transformer decoders due to
Vaswani et al. [1]. First, standard W-MSA is applied with
keys, queries, and values derived from the block input. Then,
windowed CA is applied, generating keys and values from
the output of the same-stage encoder and generating queries
from the previous self-attention block.

The QT decoder block and its interaction with the encoder
block is illustrated in Figure 2. Similar to the encoder blocks,
there are several skip connections across the modules in each
sub-block, with each sub-block being topped with a two-layer
MLP with GELU activation. Windows are shifted 2 voxels
in each axis for each pair of sub-blocks to produce shifted
window self-attention. A relative spatial bias is also applied
in the same manner as in the encoder.

D. CLASSIFIER
Following a final patch expansion layer in the decoder, the
model is topped with a convolutional classification head,
mapping the C dimensional features to K segmentation
classes.

FIGURE 2. Overview of the interaction between encoder and decoder
stages.

E. VARIANTS
Three variants of QT-UNet are proposed by adjusting C , the
number of embedding dimensions in the patch embedding
layer. Using the same naming convention as VT-UNet [10],
the three variants are as follows:
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1) Tiny: QT-UNet-T, C = 48
2) Small: QT-UNet-S, C = 72
3) Base: QT-UNet-B, C = 96

All models employ three stages of encoding and decoding,
plus the bottleneck.

F. COMMON PARAMETERS
All model variants use a patch embedding size of M = 4.
A window size of 7 × 7 × 7 is used for window partitioning.
Additionally, the number of heads in each module follows
the pattern given in (2), increasing as the input descends into
the encoder, reaching maximum of 24 in the bottleneck, and
decreasing as it ascends through the decoder.

The -S and -T QT-UNet variants have their weights
randomly initialised according to [18], though the encoder
modules in QT-UNet-B are preloaded with Swin Transformer
weights pretrained on ImageNet following [10].
The model is trained by minimising Dice Loss.

3 → 6 → 12 → 24 → 12 → 6 → 3 (2)

G. INFERENCE WITH QT-UNET
QT-UNet uses sliding window inference in constant mode
with an overlap of 0.5 to process full size input volumes
during validation and testing.

H. SSL IN QT-UNET
SSL is employed on the encoder before fine-tuning using an
approach built upon the one used by [14] for Swin-UNETR.
Similar to it, QT-UNet is pre-trained using an augmented
multi-view multi-head approach. First, a sub-volume x ∈

Rd×h×w×C 1 is extracted from the larger input volume X ∈

RD×H×W×C . Two augmented views of the data are generated
from this sub-volume x, with two independent applications of
an augmentation pipeline consisting of random sub-volume
masking and random 90◦ rotation along the z-axis. These
augmented views are then passed to the encoder, whose
output is passed to each of the heads described in the
following three subsections, optimising the encoder by the
joint loss of the heads.

1) RECONSTRUCTION HEAD
Consisting of a single transposed convolution layer, this
head takes the view representation as input and attempts
to reconstruct the un-augmented sub-volume x. Loss is
calculated using L1 loss between the reconstruction x̂ and x.

2) IMAGE ROTATION HEAD
Consisting of a standard one layer MLP with Batch Norm
and a ReLU activation function, this head predicts how
much the augmented volume was rotated: Either 0◦, 90◦,
180◦, or 270◦. Loss is calculated using the soft-maxed cross-
entropy between the true rotation k and the prediction k̂ .

1Where d , h, and w are the spatial dimensions of the volume.

3) BOOTSTRAP YOUR OWN LATENT (BYOL) HEAD
Swin-UNETR uses a SimCLR-based approach that requires
large batch sizes to be effective [19]. Noting that the batch
sizes are severely limited by memory usage, we instead use
BYOL [20] in this head due to its superior performance with
smaller batch sizes.

The head is based on the BYOL implementation provided
by PyTorch Lightning Bolts [21], with modifications to
fit the augmentation scheme. Loss is calculated using the
cosine similarity between the outputs of the online and target
branches.

4) MODES OF OPERATION FOR QT-UNET SSL
The SSL setup is used in two different modes, depending
on how much data is available for pretraining in the specific
task and modality. In tasks with sufficient data, we perform
pretraining with a large out-of-task dataset, referring to
it as ‘‘out-of-task pretraining’’. Otherwise, pretraining is
performed using the task data directly, referring to it as
‘‘in-task pretraining’’. For more details and in-depth expla-
nation of the proposed QT-UNet method, please refer to our
work [22].

IV. EXPERIMENTS AND RESULTS
This section presents the software and hardware that were
used to develop the methodology and run the experiments.
It also details the experiments that were run and the
various datasets that were utilised for the study. Finally, the
experimental results are thoroughly investigated.

A. SOFTWARE AND HARDWARE
Our experimental setup was configured using Anaconda [23]
with Python 3.9.11, PyTorch 1.11.0 [24], PyTorch Lightning
1.6.0 [21], PyTorch Lightning Bolts 0.5.0 [25], and MONAI
0.8.1 [26]. IDUN, an HPC cluster at NTNU, was used for
training [27]. A NVIDIA A100 40GB GPU was used for
training runs, with two A100 80GB cards being used for SSL
runs.

B. QUANTITATIVE METRICS
Two standard segmentation metrics Dice Score [28] and
Hausdorff Distance (HD) [29] are used for quantitative
analysis.

C. DATASETS
A detailed explanation of various datasets used and SSL
pretraining experiments are presented in the following
subsections.

1) CT-SSL DATASET
We compiled ‘‘CT-SSL’’, a large CT dataset of abdomen,
pelvis, and chest scans, using publicly available datasets from
The Cancer Imaging Archive (TCIA) [30]. Using the TCIA
API, we downloaded 3597 CT scans and converted them
to Nifti format, with 100 scans serving as a validation set
during training. Table 1 summarises the datasets contained in
CT-SSL.

62668 VOLUME 12, 2024



A. H. Håversen et al.: QT-UNet: A Self-Supervised Self-Querying All-Transformer U-Net

TABLE 1. Overview of datasets in CT-SSL.

TABLE 2. SSL training parameters.

TABLE 3. SSL epochs.

2) PREPARATORY SSL
QT-UNet was pretrained using our SSL setup with CT-SSL,
BraTS2021 and tasks 2, 4, and 5 from MSD, with
hyper-parameters listed in Table 2.

The number of epochs is determined bywhether the dataset
is utilised for in-task or out-of-task pretraining. Because the
out-of-task dataset CT-SSL is quite large, we chose fewer
epochs due to its size and time constraints whereas we used
a larger number of epochs with smaller in-task datasets to
extract as much learning as possible from the data. Table 3
shows the epochs chosen.

In order for BYOL to perform well, GPU batch sizes with
gradient accumulation were tuned to fit as many samples as
possible. Table 4 displays the effective batch size for each
dataset.

a: CT-SSL
CT-SSL is used to pretrain all variants of QT-UNet for
downstream CT-based tasks. Each scan is interpolated to
an isotropic voxel spacing of [1.0 × 1.0 × 1.0]mm, before
cropping out zero-valued foreground and normalising the
values. Random 96 × 96 × 96 subvolumes are then passed
to the SSL pipeline.

b: BRATS 2021
Pretraining for BraTS is performed in-task for all QT-UNet
variants due to the scarcity of relevant data. The data
augmentation process is the same as in subexperiment 1.

c: MSD
In-task pre-training for MSD MRI tasks with all variants
of QT-UNet was limited by the availability of relevant

out-of-task data for Tasks 2, 4, and 5. The augmentation
pipeline is the same as for the regular training runs,
but includes only spacing, foreground cropping, clipping,
normalisation, and sample extraction augmentations.

D. EXPERIMENTS
Our main experiment has three subexperiments, as detailed
below. All variants of QT-UNet and VT-UNet employ the
same hyperparameters listed in Table 5. QT-UNet variants
are also trained with pretrained weights relevant for the
given experiment. The number of FLOPs needed for a
forward pass and model size (parameters) are reported in all
experiments. FLOPs for VT-UNet and QT-UNet are recorded
using fvcore [39] with a forward pass in training mode.

a: SUBEXPERIMENT 1: BRATS 2021
The dataset contains 1251 MRI scans of dimensions 240 ×

240×150 from several institutions using different equipment
and protocols. Following [10], we split the dataset into
834, 208, and 209 scans for training, validation, and testing
respectively.

Each scan is interpolated to [1.0 × 1.0 × 1.0]mm
isotropic voxels. The zero-valued foreground is cropped,
and non-zero intensities are normalised channel-wise. For
training, randomly selected sub-volumes of size 128×128×

128 voxels are employed.
Following standard preprocessing for the BraTS dataset,

we use the original labels to produce three classes: Enhancing
Tumour (ET), Tumour Core (TC) (Non-Enhancing Tumour+
Necrotic Tumour + ET), and Whole Tumour (WT) (Peritu-
moral edema + TC).
Pretrained variants of QT-UNet utilise weights pretrained

directly on BraTS 2021.
We report Dice score and 95th percentile Hausdorff

Distance for each class as average values on our local test
split and against the BraTS Continuous Evaluation server.

b: SUBEXPERIMENT 2: BTCV
This dataset contains 50 CT scans, 40 of which are labelled
with 13 organ segmentation targets. Each CT scan has 85 to
198 slices with 512 × 512 pixels. Of the 40 labelled scans,
35 are used for training, with the remainder being used for
validation and testing.

Due to commonalities in our training scenario, our
pre-processing pipeline follows the Swin-UNETR [14].
Before clipping and normalising intensities between -175
and 250, we interpolate each image to [1.5 × 1.5 × 2.0]mm
voxels. Zero-valued foreground is cropped, and the labels
are one-hot encoded. For training, we extract 96 × 96 ×

96 voxel subvolumes and perform stochastic augmentations:
random flips in each dimension with probability 0.1, random
90 degree rotation with probability 0.1, and finally random
intensity shift with offset 0.1 and probability 0.5.

Pretrained variants of QT-UNet utilise weights pretrained
on CT-SSL.
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TABLE 4. SSL batch sizes.

TABLE 5. Training parameters.

TABLE 6. Mapping between MSD tasks and datasets used for pretraining.

We present results against our local test split, with
leaderboard results provided in a separate table for context.
We were unable to make our own submission, as the BTCV
leaderboard is currently not processing new submissions.

c: SUBEXPERIMENT 3: MSD
Similar to BCTV, the pre-processing pipelines used for Swin-
UNETR [14] are also applied here due to similarities in the
training setup. We use the default data splits for each task
provided by MONAI [26].

Pretrained variants of QT-UNet are initialised with weights
relevant for each task, as given in Table 6.

We report Dice score on the validation set for each task
whilst ignoring the background label. As the submissions for
the Medical Segmentation Decathlon are closed, we were
unable to make our own submission to the leaderboard.
We nevertheless include the top leaderboard results in this
paper for context.

E. RESULTS
The results of the subexperiments along with the ablation
study are presented below.

1) SUBEXPERIMENT 1: BRATS2021
Results of BraTS2021 are reported in Table 8, with qualitative
results in Figure 3. It can be noted that QT-UNet uses
the fewest FLOPs whilst attaining comparable Dice results.
QT-UNet-B also attains the 2nd best average Dice score, with
pretrained variants of QT-UNet attaining a lower Hausdorff
Distance than those trained from scratch. As show in Figure 3,

FIGURE 3. Qualitative analysis of various models on one sample from
BraTS2021. (a) Raw image. (b) Ground truth. (c) VT-UNet-B. (d) QT-UNet-B/
scratch (e) QT-UNet-B. Green = Tumour Core, Red = Enhancing Tumour,
Turquoise = Whole Tumour.

along the edges, QT-UNet also qualitatively provides a
significantly finer segmentation mask than VT-UNet, with
pre-trained QT-UNet providing an even tighter mask.

2) SUBEXPERIMENT 2: BTCV
The results of BTCV per organ in Table 9 and the average in
Table 11 show that QT-UNet /scratch performs significantly
better than VT-UNet, especially for the smaller organs such
as the oesophagus, the aorta, the inferior vena cava, portal
and spleinc veins, the pancreas, and adrenal glands with
23.5 Dice point margins on average. QT-UNet /scratch is
also significantly better than VT-UNet at distinguishing the
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TABLE 7. BraTS2021 results on our data split.

TABLE 8. BraTS2021 validation results as reported by online evaluation server (BraTS continuous evaluation).

left kidney from the right, with a 20.39 Dice point margin
between the two models on average compared to 3 points
difference for the right kidney.

Pretraining gives QT-UNet-T a significant 13 point perfor-
mance boost, and a 3 point boost for QT-UNet-B. QT-UNet-S
sees little to no change. Qualitative results in Figure 4 show
that VT-UNet struggles significantly, misclassifying the liver
and spleen as parts of the stomach. Neither model is able to
correctly segment the fluid-filled stomach, whereas QT-UNet
is able to correctly segment several organs. The pretrained
variant of QT-UNet produces even slightly finer masks.

3) SUBEXPERIMENT 3: MSD
Observing per task results of MSD in Table 13, we see that
QT-UNet and VT-UNet performs well in Task 1, but falters
in others. The in-task pretrained variants of QT-UNet see
no change or a slight degradation in performance – though
variants pretrained onCT-SSL see an increase in certain tasks.
All variants of QT-UNet produce nil-results in Task 7. While
the gap between VT-UNet and QT-UNet is not huge, Table 15
shows that VT-UNet performs better overall with the tiny
model performing the best.

Qualitatively, the segmentation masks in Figure 17 are
decent across all models in the selected tasks, with QT-UNet
variant performing slightly better in tasks 6, 9, and 10. The
results are good even in the other tasks. The pretrained variant
of QT-UNet produces a slightly better mask in tasks 6, 9, and
10. More qualitative results can be seen in Figure 20.

4) ABLATION STUDY
A short ablation study was performed to disentangle the
effects of the patch expansion and merging in the depth

dimension and our new CA mechanism has on QT-UNet
compared to VT-UNet. Variants of VT-UNet and QT-UNet
are created for the purpose of this ablation study: VT-UNet-A
gains the depth-wise patch merge and expansion, whilst
QT-UNet-A drops these operations. An overview of the
various models with enabled features can be seen in
Table 18. All models in the ablation study are trained from
scratch on BraTS, using the same experimental setup as
subexperiment 1.

Observing the results in Table 19, we find similar results
across all variants, but with a handful of significant differ-
ences. The models with depth wise reduction and expansion
(VT-UNet-A andQT-UNet) are 33% faster in terms of FLOPs
than their counterparts (VT-UNet and QT-UNet-A). Adding
depth-wise reduction and expansion to VT-UNet increases
model size in terms of parameters by 15%, whereas QT-UNet
Tiny, Small, and Base versions increase by 9%, 13%, and
14%, respectively.

Models with the new CA technique (QT-UNet-A and QT-
UNet) are 9% faster than models using the old mechanism
(VT-UNet and VT-UNet-A). In terms of parameter count,
models using the new CA mechanism have a 8% gain.
Adding depth reduction and expansion decreases the gain
to 3%, 7%, and 6% for the Tiny, Small, and Base variants,
respectively.

Overall, QT-UNet has up to 40% fewer FLOPs than
VT-UNet at the cost of 23% more parameters. In terms
of Dice score, QT-UNet-A-B is tied for first place with
VT-UNet-B. However, the Dice scores are pretty comparable
overall. All other variants perform worse than VT-UNet-T in
terms of average HD.
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TABLE 9. BTCV local test split Dice scores (↑) per organ.

TABLE 10. BTCV leaderboard Dice scores (↑) per organ.

TABLE 11. BTCV local test results summary.

TABLE 12. BTCV leaderboard results summary.

DISCUSSION
The experiments and results of the preceding sections will
be extensively investigated in order to evaluate our proposed
method, and the influence of SSL upon it.

5) RQ1: THE EFFECT OF SSL
The application of SSL to our model gives mixed results
depending on the experiment and model variant.This section
is divided into two subsections based on the types of SSL
used: out-of-task and in-task.

a: EFFECT OF OUT-OF-TASK PRETRAINING
Most tasks see a considerable improvement in performance
for QT-UNet models trained out-of-task using the CT-SSL
dataset. The model trained on BTCV detects smaller organs
better than the baseline. Taking both the BTCV and CTMSD
tasks together, we notice that the tiny version benefits the
most from pretraining, whereas the small and base variants
only show minor improvements.

FIGURE 4. Qualitative analysis of various models on one sample from
BTCV. (a) Raw image. (b) Ground truth. (c) VT-UNet-B. (d) QT-UNet-B/
scratch (e) QT-UNet-B. Light Blue = Stomach, Turquoise = Liver, Orange =

Spleen, Light green = Right Kidney, Blue = Aorta, Pink = Pancreas, Dark
blue = Inferior Vena Cava, Indigo = Portal and splenic vein, Purple =

Adrenal Gland.

We believe this outcome could be attributed to the training
procedure and the losses incurred, as illustrated in Figure 5.
The graphs reveal that the losses for the base variant never
settle in the same manner as the other models, experiencing a
sudden increase after 60 epochs. Note that while BYOL loss
recovers, rotation and reconstruction loss do not. This leads
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TABLE 13. MSD local test split results per task Dice scores (↑).

TABLE 14. MSD leaderboard results per task Dice scores (↑).

TABLE 15. MSD local test results summary.

TABLE 16. MSD leaderboard results summary.

us to theorise that the base model somehow collapsed during
pre-training. This is a risk that the authors of BYOL [20] warn
of, claiming that a collapse of BYOLwhere themodel outputs
only zero-vectors as projections since that also would provide
a minima of loss.

It is also possible that the interaction between the SSL
heads causes the collapse. We couldn’t discover any study on
the usage of BYOL in this sort of multi-head strategy, thus its
interaction with the other approaches is unknown.

b: EFFECT OF IN-TASK PRETRAINING
The in-task trainedMRI tasks also provide interesting results.
In BraTS2021, pretraining improved QT-UNet accuracy,
loweringHDwhilemaintaining theDice score. This improve-
ment can also be observed in the qualitative results.

Pre-trained and standard models differ only slightly in
in-task trained MSD tasks 1, 4, 5, and 6. Most tasks show
negligible Dice score changes, with some models increasing
and others decreasing. A larger out-of-task dataset might have

TABLE 17. Qualitative results of selected MSD tasks.

TABLE 18. Overview of ablation model features.

helped the SSL technique to extract stronger representations
from the limited data.
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TABLE 19. Ablation study of various models on BraTS2021 data.

FIGURE 5. Loss curves for CT-SSL pretraining. (a) Loss curves for
QT-UNet-B (b) Loss curves for QT-UNet-S (c) Loss curves for QT-UNet-T.

6) RQ2: ENCODER-DECODER CROSS-ATTENTION
The ablation study in Table 19 shows that the new CA
module decreases computational burden by 8.27%, 9.51%,
and 10.42% for the tiny, small, and base variants, respectively,
while increasing parameters by 9.26%, 8.47%, and 7.69%.

TheDice scores aremixed, with somemodels experiencing
a slight improvement while others see a minor reduction

in performance. The HD, on the other hand, is adversely
impacted across all versions. There might be various
explanations for this. One of them is that the new CA decoder
module is simply smaller than its counterpart due to its single
stream architecture.

QT-UNet consistently outperforms VT-UNet on BTCV
dataset by an average of 18 Dice points across all vari-
ants. QT-UNet segmented the smallest organs better than
VT-UNet, suggesting that the new CA architecture was better
at querying the encoder for the spatial location of these
organs. It can be clearly observed that QT-UNet effectively
differentiates the right kidney from the left.

However, inMSD tasks 5, 8, and 10, QT-UNet outperforms
VT-UNet, whereas VT-UNet outperforms QT-UNet in all
other tasks. QT-UNet’s depth-wise merge and expansion and
the new CA mechanism could be responsible for this. These
tasks have few target classes, typically one or two. Task 9 is
essentially the same task as segmenting the spleen organ in
BTCV at which QT-UNet outperforms VT-UNet in BTCV.
This indicates that the new CA mechanism is affected by the
number of target classes, performing better in a ‘‘target rich
environment.’’

QT-UNet failed in MSD task 7, where all variants scored
zero. These runs collapse midway through training, with
training loss decreasing and validation loss increasing. The
very small targets could be collapsing the model, predicting
background everywhere.

Overall, the new CA module has a superior speed-to-
parameter trade-off, lowering computational burden. Dice
score impacts tasks with many target classes positively but
negatively with few target classes. It can also be observed that
HD also decreases with BraTS data.

V. CONCLUSION
We found that the overall effect of self-supervised pre-
training varies significantly depending on whether in-task
or out-of-task data is used. SSL utilising out-of-task data
improved model performance significantly in terms of Dice
score. Training with in-task data improved the Hausdorff
Distance on BraTS dataset, but had negligible impact when
tested with the Dice scores overall.
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TABLE 20. Additional MSD qualitative results.

Furthermore, we found that the updated CA mechanism
in QT-UNet achieved a better speed-to-performance trade-
off compared to VT-UNet-B on BraTS, trading a 7.69% gain
in parameters for a 10.42% drop in FLOPs with negligible
impact on Dice score. The new mechanism boosted the
average Dice score 18 points higher on BTCV data. It is also
better at detecting small organs. However, the new technique
is less accurate in terms of HD than the VT-UNet approach.
The new mechanism is also observed to perform better in
tasks with many target classes.

While some of our experiments yielded mixed results, our
overall method showed great promise, being 40% faster than
the baseline VT-UNet and having validated the effects of both
our new CA mechanism and the SSL setup. We believe that
the performance gaps discovered could be mitigated with the
further development.

APPENDIX
ADDITIONAL MSD QUALITATIVE SAMPLES
Additional qualitative results from MSD task omitted from
the results section due to space constraints can be seen in
Table 20.
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