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ABSTRACT Al-powered image analysis is a transformative technology with immense potential to enhance
diagnostics and patient care. Accurate medical image assessment plays a crucial role in disease detection
and treatment planning, yet challenges arise due to noise and visual variations in medical imaging. Image
pre-processing is a key solution to address these challenges, and while widely used, there is a lack of
studies on its effectiveness. Recognizing this gap, our research aims to contribute insights to this scientific
scope. This research specifically delves into the impact of pre-processing on the binary classification
model performance, rather than model and hyperparameter optimization. We deliberately selected a limited
yet comprehensive subset of methods and datasets; H&E-stained tissue, chest X-ray, and retina OCT
images were chosen to ensure the generalizability of our findings. Analysis revealed that implementing a
pre-processing significantly improved mean sensitivity in the binary classification models: from 0.87 to
0.97 for H&E-stained tissue, 0.92 to 0.96 for chest X-rays, and 0.96 to 0.99 for Retina OCT images. Two
different sequences for applying pre-processing steps were explored, with minimal effect observed in the
altered sequences, indicating consistent improvement regardless of the chosen sequence. We investigated the
pre-processing steps employed in the 40 of the best-performing and worst-performing models, determined
by the higher and lower mean sensitivities. We have uncovered that the pre-processing steps of the
best-performing models displayed only minimal similarities, except for the pooling mode. This observation
also applied to the worst-performing models with lower sensitivity.

INDEX TERMS Image pre-processing, image classification, machine learning (ML) method, transfer
learning (TL).

I. INTRODUCTION hand, Artificial Intelligence (AI) has emerged as a promi-

Medical science generates a wide range of data, rapidly
growing in volume and diversity. Advances in medical image
scanning and digital storage capabilities have led to the
development of automated analysis systems. On the other
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nent tool in medicine and healthcare with continuous growth
driven by researchers, businesses, and individuals striving
to harness the Al technologies for an automated analysis.
The primary objectives of Al in medicine are to expedite
diagnostic process, support therapeutic decision-making, and
facilitate clinical research. The data required for the diag-
nosis and treatment can be derived from various sources,
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including clinical notes, laboratory tests, pharmacy records,
and medical imaging. Medical images hold a critical role
in clinical practice, as they enable visualization of internal
tissues within organisms. Different imaging protocols yield
diverse modalities of medical images, each characterized by
unique visualization attributes. Consequently, the integration
of Al-based technologies into medical practices is expected
to bring significant transformations across various aspects of
the medicine and healthcare [1], [2].

Medical images are susceptible to different issues that can
compromise their visual interpretation. Inherent noises can
emerge during the image acquisition process, while factors
such as uneven illumination, image blurriness, inadequate
contrast, and improper exposure further contribute to these
challenges. These factors as such, significantly affect the
quality of medical images, emphasizing the importance of
employing image pre-processing techniques to mitigate these
issues. Data pre-processing transforms raw data into a clean
and refined format, eliminating unwanted variations such
as instrumental and experimental artifacts while enhanc-
ing the overall quality of the images. In a comprehensive
data analysis procedure, multiple pre-processing methods are
typically utilized. It is important to note that an improper
choice of pre-processing approach can significantly under-
mine the predictive capabilities of AI models. Thus, making
the appropriate pre-processing choices is crucial to ensure
more reliable, accurate, and optimal outcomes in Al-driven
analysis [3].

Data pre-processing generally involves multiple steps,
each targeting specific artifacts within the data. A sequential
application of individual pre-processing methods is required
to address all the artifacts. The choice of the most optimal
pre-processing method, or a combination of methods, relies
on several factors: such as data properties and the specific
objectives of the data analysis. Careful consideration of these
factors enables researchers to enhance the quality and relia-
bility of their data analysis, establishing a solid foundation
for subsequent analysis and generating valuable insights.
By effectively conducting data pre-processing, not only can
the accuracy of results be improved, but also potential biases
and errors that could impact the validity of conclusions
can be minimized. This preparatory step enables researchers
to derive meaningful and robust insights from their data
analysis [4].

The Rachana et al., suggested that the adaptive histogram
equalization can produce better results for image analysis
tasks [5]. In contrast, the Pradhan et al., and Ali et al.,
took a different approach by combining the median smooth-
ing and the contrast adjusting techniques to improve the
quality of image data and increase the performance of analy-
sis [6], [7]. The Gielczyk et al. asserted that the utilization
of adaptive masking, histogram equalization, and Gaus-
sian blur as the chosen pre-processing techniques yielded
a notable improvement in the Fl-score, elevating it from
93% to well beyond 97% [8]. To set up the classification
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task, the Pradhan et al. improved the quality of their image
datasets by employing methods such as resizing, cropping,
Global Pixel Normalization (GPN) and Gaussian filtering
(GF) the single pre-processing steps. This ensures that the
predictive models utilized in this study are supplied with
high-quality, meaningful data, contributing to more accu-
rate and reliable classification results [9]. The Farhan et al.
employed a combination of optimal filtering and contrast
adjustment not only to enhance the quality of chest X-ray
images but also to boost the feature extraction and, accord-
ingly, improve the classification performance [10]. The
Ahmad Hameed et al. introduced a stacked CNN model to
improve skin lesion diagnosis, tackling challenges in distin-
guishing skin injuries from cancer due to visual similarities.
They ensured model robustness with image augmentation
for dataset balance and a comprehensive pre-processing
phase involving resizing, edge detection, color space con-
version (BGR to YUV), and histogram equalization. This
pre-processing procedure enhanced image quality, leading
to improved stacked CNN performance and achieving an
accuracy of 95.2% [11]. The Hewan Shrestha et al. conducted
research on segmentation and classification algorithms for
early skin cancer detection. They employed image resizing
and normalization as essential steps to enhance the qual-
ity of the image data, ultimately contributing to the overall
accuracy improvement of the implemented models [12]. The
Shumoos Al-Fahdawi et al. focused on identifying multiple
ocular diseases in fundus images through the development
of an automated deep-learning classification system. They
implemented five critical image pre-processing steps, encom-
passing circular border cropping, image resizing, contrast
enhancement, noise reduction, and data augmentation, to not
only enhance the quality of the image data but also ensure
notable improvements in the overall performance of the
model [13]. Despite numerous studies on the pre-processing
techniques, finding the best method or the combination of
methods to eliminate all the artifacts in a dataset remains
challenging. It is essential to search for the most effective
pre-processing method actively, considering its influence on
subsequent data analysis and results.

Depending on the nature of the problem, researchers may
choose to apply a single pre-processing method or a combina-
tion of techniques to address measurement errors and artifacts
in the data [14]. Here we conduct the systematic study,
focusing on the image data, with the primary objective of
better understanding the effect of the different pre-processing
strategies on the overall quality of images and the subsequent
analysis results.

To the best of our knowledge, a systematic study of
the impact of image pre-processing on model performance
has never been conducted before. Our study represents a
pioneering effort, addressing numerous questions related to
the impact of pre-processing on the final analysis results.
We have undertaken an extensive exploration, incorporating
a diverse range of techniques, exploring all the possible
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combinations, and considering various medical image modal-
ities. This systematic approach aims to fill the existing gap in
understanding the role of pre-processing in image analysis
while ensuring the generalizability of the experiments.

The workflow of this study is as follows: the first step
is involved in organizing all the suitable and most common
pre-processing combinations and determining their respec-
tive order of application. Two distinct order sequences,
sequence 1 and sequence 2, along with the pre-processing
combinations, are chosen and thoroughly examined to
assess the influence of each sequence. Following the pre-
processing phase, key features have to be extracted from the
pre-processed images using the VGG16 [15], a well-known
pre-trained network widely recognized for extracting high-
level features. Implementing the pre-trained network as a
feature extractor ensures that the extracted features contain
meaningful information. In the final phase, the classification
task has to be performed. Therefore, a series of models
must be designed and trained using the extracted features.
The models have to be evaluated and compared to assess
their performance when fed with different pre-processing
combinations as the input. The ultimate goal is to identify
the pre-processing combination that yields the most effective
results, ensuring accurate classification and optimal analysis
outcomes. By conducting this comprehensive analysis, we are
aiming to determine the optimal approach that maximizes
image classification accuracy.

The analysis has been established by investigating three
datasets. The initial dataset comprised image patches that
have been extracted from the histological images of human
colorectal cancer (CRC) and the normal tissues, stained with
the hematoxylin & eosin (H&E) [16]. The second dataset
consists of chest X-ray images of humans categorized as
normal and pneumonia. Lastly, the study has incorporated the
retinal Optical Coherence Tomography (OCT) scans as the
third set of data that have been obtained from adult patients,
containing two distinct classes: the choroidal neovasculariza-
tion (CNV) and the normal retina [17]. H&E-stained, OCT,
and chest X-ray images are examples of the most used data
in pathology, ophthalmology, and radiology domains and
were chosen for their clinical relevance. H&E staining is the
preferred choice for routine diagnostics among pathologists,
providing exceptional clarity in visualizing cellular and tis-
sue structures. OCT, widely adopted in healthcare, is crucial
for diagnosing ocular conditions like glaucoma and mac-
ular degeneration. X-ray imaging, including chest X-rays,
is instrumental in identifying fractures, abnormalities, and
respiratory conditions such as pneumonia, tuberculosis, and
lung cancer, offering essential insights for pulmonologists.
The decision to focus on these modalities was driven by
the need for a detailed analysis. The selected modalities
provided a rich subset of cases, allowing us to explore the
generalizability of our findings.

The study significantly advances image analysis by offer-
ing valuable insights into the optimizing pre-processing
techniques for the image -classification. Through this
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systematic analysis of various pre-processing combina-
tions across the different image modalities, effective
approaches for the binary classification models are dis-
tinguished. These findings serve as a practical guide for
practitioners, aiding in an informed pre-processing technique
selection.

In the following sections, we will conduct a thorough
exploration of the datasets utilized in the “MATERIALS”
section, providing comprehensive insights into their prop-
erties. Subsequently, the employed models will be care-
fully explained in the “METHODS” section, offering a
detailed understanding of their functionalities. Our focus
will then shift to the presentation of results, wherein we
attempt to address various questions covering the influence
of pre-processing on the analysis outcomes. In conclusion,
we will present our findings in a concrete summary, includ-
ing the key takeaways from our research. This structured
approach ensures a systematic and insightful exploration of
the materials, methods, results, and conclusions, enhancing
the clarity and coherence of our study.

Il. MATERIALS

To enhance the overall applicability of our analysis, three
different types of image modalities are thoroughly exam-
ined. By considering the multiple modalities, the goal is to
derive more comprehensive and reliable conclusions from our
research. In the following sections, a detailed overview of the
specifications for the three datasets is provided.

A. HEMATOXYLIN AND EOSIN STAIN (H&E STAIN)
DATASET

The first data set consists of the image patches derived from
the human colorectal cancer (CRC) and the normal tissues
stained with the hematoxylin & eosin (H&E) technique [16],
[18], [19]. All the patches are of the size of 224 x 224 pixels
and into the two classes, the normal and colorectal adeno-
carcinoma epithelium tumor (TUM) tissues. The histological
analysis of the stained human tissue samples stands as the
gold standard for evaluating many diseases, forming the fun-
damental basis for the pathologic assessments. This analysis
involves the careful examination of the histologically stained
tissue samples affixed on the glass slides, utilizing either
traditional microscopes or digitized versions of the histologic
images obtained through advanced Whole Slide Image (WSI)
scanners. Within the pathology workflow, the histological
staining step is critical as it plays a pivotal role in providing
contrast and color to a tissue, enabling a clear differentiation
among various tissue components. The most employed stain,
known as the routine stain, is the hematoxylin and eosin
(H&E) stain, which finds application in nearly all clinical
cases, encompassing approximately 80% of global histologic
staining [20], [21].

B. X-RAY DATASET

C. As another dataset, the chest X-ray images are used to
extend the analysis beyond the H&E images [17], [22]. The
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dataset contains the normal chest X-ray images depicting
clear lungs and the images with the sign of pneumonia (PNE)
in lungs all of the size of 224 x 224 pixels.

X-Ray is an electromagnetic radiation similar to visible
light and infrared. However, it has higher energy levels and
can effectively penetrate most objects, including the human
body.

In medicine, X-ray technology is utilized to capture
detailed images of tissues and structures within the body.
As X-rays travel through the body, the absorption is different
depending on the tissue and the density. Simultaneously, they
pass through an X-ray detector positioned on the other side of
the patient, forming an image that represents the ‘“shadows”
created by the organs within the body. Medical X-ray images
can be considered as an essential diagnostic tool, enabling
healthcare professionals to visualize and assess the structure
within the body. For further information on this topic, readers
are encouraged to refer to the [23].

C. OPTICAL COHERENCE TOMOGRAPHY (OCT) DATASET
The final image modality that is incorporated within the
study is the optical coherence tomography (OCT) images [24]
of the adult patients including two classes, the normal
OCT images showing normal retina in absence of any
retinal fluid/edema and the images with sign of choroidal
neovascularization (CNV) all with the same pixel size of
224 x 224. The optical coherence tomography (OCT) is
an advanced optical imaging modality that enables a high-
resolution, cross-sectional tomographic imaging of the inter-
nal microstructures in both materials and biological systems.
This technique utilizes the measurement of back-scattered or
back-reflected light to generate detailed visualizations of the
examined samples. By harnessing the power of light, OCT
offers remarkable insights into the internal structures, facili-
tating precise analysis and evaluation in diverse scientific and
medical applications [23], [24]. Fig. 1 and Table 1, present
details about the datasets used in this study. All the images
are standardized to the size of 224 x 224 pixels. Subfigure
(a) exhibits the examples of H&E-stained images belonging
to the two distinct classes: the normal tissues labeled as NOR-
MAL, and the tumorous tissues labeled as TUM. Subfigure
(b) displays the examples of chest X-ray images representing
two classes: the normal lung images labeled as NORMAL and
the lung images with pneumonia labeled as PNE. Subfigure
(c) presents the examples of OCT images depicting two dif-
ferent classes: the normal retina images without any retinal
fluid/edema labeled as NORMAL and the images exhibiting
signs of choroidal neovascularization labeled as CNV. Addi-
tionally, subfigures (a), (b), and (c) provide a comprehensive
overview of the datasets under investigation, across the train-
ing and test sets and highlighting the distribution strategy for
the model development and evaluation.

lll. METHODS
In the initial phase of the study, various adjustments and
filtering techniques are applied to enhance the quality of the
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raw images. Additionally, different normalization ranges are
chosen to standardize the pixel values across the dataset,
allowing fair comparison and reliable analysis. The extraction
of key features from the pre-processed images is essen-
tial for capturing the distinctive characteristics of the data.
Here the VGG16, a pre-trained network along with its pre-
trained parameters, is used to extract meaningful features
from the pre-processed images. The output of VGG16 for
a given image comprises high-level feature maps or repre-
sentations with spatial dimensions (7, 7, 512). In this tensor,
each channel corresponds to a specific feature. The resulting
tensor maintains a spatial resolution of 7 x 7 and consists
of 512 channels. Consequently, every image is transformed
into an array of features with 25088 elements. Both the
average and max pooling modes are employed for feature
extraction in this step. Extracting features for each dataset
across all the 248, and 296 pre-processing combinations for
the sequence 1 and sequence 2 took approximately seven
days.

Next, the focus shifted toward designing robust binary
classification models. The PCA-LDA model, a widely used
technique for dimensionality reduction and classification,
is chosen as the classifier. We conducted a comprehensive
examination of PCA components, ranging from 1 to 100.
By iteratively training and testing with each PCA compo-
nent, we identified the optimal number that resulted in the
highest mean sensitivity for the test set. This maximal mean
sensitivity value is subsequently used to compare the prepro-
cessing techniques. Combining the power of the Principal
Component Analysis (PCA) for the feature dimensionality
reduction and the Linear Discriminant Analysis (LDA) for
the classification, the model aimed to distinguish between
the defined classes accurately. The estimated time for model
training was approximately two hours per dataset, accounting
for all the incorporated pre-processing combinations. Fol-
lowing this training phase, generating predictions for the
test set with each model was accomplished in less than one
minute.

The main The main concern of this study is to examine
the impact of various pre-processing combinations on the
performance of classification models rather than focusing
on model optimization. As a result, instead of implementing
deep learning models and controlling different parameters
during training, which can significantly influence the model
performance, we opted for the PCA-LDA as a basic Machine
Learning (ML) approach. This choice allowed us to place
greater emphasis on the effect of pre-processing combina-
tions in our study while minimizing any interference from
other influential factors originating from the classification
models themselves.

To provide a deeper insight into the overall process,
the subsequent sections cover the adopted processing tech-
niques, the feature extraction methodology and the design and
implementation of the binary classification models using the
PCA-LDA approach. We are not just investigating the effects
of various pre-processing techniques and their respective
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FIGURE 1. Characteristics of the studied images within each dataset. We provide an overview of the key features of the analyzed images within each
dataset. All the images have been uniformly resized to the dimensions of 224 x 224 pixels for consistency. Subfigure (a) illustrates the examples of
H&E-stained images belonging to two distinct classes: normal tissues labeled as NORMAL and tumorous tissues labeled as TUM. Subfigure (b) displays
the examples of chest X-ray images representing two classes: normal lung images labeled as NORMAL and lung images with pneumonia labeled as PNE.
Subfigure (c) presents the examples of OCT images showing two different classes: normal retina images without any retinal fluid/edema labeled as
NORMAL and images exhibiting signs of choroidal neovascularization labeled as CNV. Additionally, subfigures (a), (b), and (c) provide the overview of the
datasets under investigation, visually displaying the classes and the respective number of images in each class, as well as the division between the

training and test sets for all the three datasets.

TABLE 1. Overview of the studied datasets.

Dataset H&E-stained images Chest X-ray images Retina OCT images
Classes TUM NORMAL PNE NORMAL CNV NORMAL
Train set 5000 5000 5000 5000 5000 5000
Test set 1000 1000 1000 1000 1000 1000
combinations; we are also studying the influence of the " — o
Sequence 1 Adjustment . Filtering .Nomlallzanon

sequencing of pre-processing steps. To analyze this aspect,
two experiments have been designed to explore the effect
of applying pre-processing steps in different sequences.
The experimental design and the specific sequences of the
pre-processing steps are outlined below (See Fig. 2):
e Sequence 1:Adjustment + Filtering + Normalization
+ Feature extraction + Classification
e Sequence 2:Filtering + Adjustment + Normalization
+ Feature extraction 4 Classification

A. PRE-PROCESSING

To generate pre-processed images, well-established and
widely used methods in the image pre-processing have been
considered to modify and enhance the image quality. They
enable users to manipulate image features while emphasiz-
ing specific and important aspects or eliminating undesired
elements. Various operations, such as smoothing, sharpen-
ing, and edge enhancement, can be achieved through image
pre-processing. These methods can be categorized into two
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. Adjustment

Sequence 2 Filtering B Normalization

Pre-processed images

|:> Classification

FIGURE 2. Illustration of the different pre-processing sequences. This
figure illustrates the two distinct pre-processing sequences, denoted as
“Sequence 1” and “Sequence 2,” demonstrating the application of
pre-processing steps.

Feature extraction

subgroups: frequency domain methods (FDMs) and spatial
domain methods (SDMs). In this study we mainly focus on
the second group, SDMs. In SDMs, the transformations are
applied directly to the pixel values of the images, manipulat-
ing them to achieve the desired enhancement. On the other
hand, FDMs involve multiple steps. It starts with computing
the image’s Fourier Transform (FT), followed by applying
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the enhancement operations to the FT, and finally, using the
inverse Fourier transform to obtain the enhanced image [25].
Our study focuses on enhancing medical image quality using
the most common and well-established spatial domain filter-
ing techniques to address noise reduction and visual quality
enhancement.

1) ADJUSTMENT

For the adjustment step, we perform brightness adjustment,
contrast adjustment, and histogram equalization. Brightness
adjustment is a commonly employed and straightforward
method for image manipulation. It involves modifying the
image’s brightness by adding or subtracting a constant value
to each pixel, resulting in a brighter or darker image. This
technique alters the overall luminance or brightness uni-
formly across all the channels. It serves various purposes,
such as enhancing visibility, addressing exposure issues, and
preparing images for analysis. Contrast adjustment is another
technique that falls within the SDMs group. Contrast refers
to the difference in brightness between the light and dark
regions of an image. Contrast adjustment aims to manipulate
and redistribute the pixel values of an image to improve the
separation of obscured structural variations in the pixel inten-
sity into a more visually differentiable structural distribution.
The goal is to achieve a more visually noticeable distribution
of these structural differences [26]. Additionally, histogram
equalization enhances image quality by evenly distributing
the most common intensity values.

Essentially, histograms serve as the statistical depictions of
an image, where intensity values typically occupy a narrow
range. By employing histogram equalization, the image is
modified to achieve an equal distribution of intensity values
throughout the enhanced image [23].

2) FILTERING

For the filtering phase, widely recognized filters used in
image processing, namely median, Gaussian, and mean filter-
ing, have been employed. Median filtering effectively reduces
noise in an image or signal by replacing each pixel value
with the median value of its neighboring pixels. By sliding
a window (kernel) across the image, the median value is
calculated from the pixel values within the window (ker-
nel) [27]. In mean filtering, the same approach as in the
median filtering is generally followed, with one key differ-
ence: instead of replacing the pixel value with the median
value of the surrounding pixels, it is replaced by the mean
(average) value of the surrounding pixels [28]. The Gaussian
filter convolves the image with a Gaussian kernel, a matrix
of values derived from the Gaussian function. Each pixel in
the image is replaced with a weighted average of its neigh-
boring pixels, with the weights determined by the Gaussian
kernel [29], [30]. All these applied filtering techniques are
associated with several advantages and disadvantages. For
example, median filtering stands out for its reliability in pre-
serving sharp edges and handling outliers, while effectively
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eliminating noise. However, it is essential to consider that
median filtering may lead to a potential loss of fine details,
particularly in high-frequency regions, due to its smoothing
effect. Moreover, the computational complexity of median
filtering increases with larger neighborhood sizes, making
it less suitable for real-time applications or processing large
images.

Considering mean filtering, it offers simplicity and effi-
ciency in noise reduction, making it well-suited for real-time
scenarios and fast processing. Nevertheless, a notable draw-
back is the potential blurring or loss of fine details, as the
uniform averaging process smooths sharp edges, textures,
and significant image details, especially noticeable in high-
frequency areas. It may also introduce unrealistic values
near sharp transitions, affecting important image features.
Gaussian filtering applies a weighted average based on neigh-
boring pixels using a Gaussian kernel, effectively reducing
noise while preserving essential image details. It is worth
mentioning that Gaussian filtering can introduce blurring
on sharp edges and fine details as neighboring pixels con-
tribute to the smoothing process, reducing overall image
sharpness. These pros and cons encouraged us to study
these filtering techniques in a very systematic procedure
along with different kernel sizes to monitor the power of
each method for suppressing noise and check their poten-
tial effect on the outcomes of the classification models.
Fig.3 presents the visual representation of the pre-processed
images for the three sets of studied data. Each transforma-
tion depicted in Fig. 3, is applied to the raw images as a
part of the pre-processing pipeline. The set of the adjust-
ments featured in Fig.3 are brightness adjustment, contrast
adjustment, and histogram equalization. By manipulating
the brightness, contrast levels, and histograms, the images
become more visually enhanced while the important features
for image analysis are highlighted. Mean, median and Gaus-
sian filtering techniques have been applied with different
kernel and sigma sizes. Fig.3 clearly shows that as the ker-
nel/sigma sizes increase, the images become smoother and
more blurred. However, it is important to note that exces-
sively large sizes may remove the key features necessary for
the image classification tasks. Therefore, finding the right
balance between noise reduction and feature preservation is
critical.

3) NORMALIZATION

Normalization, scaling, and mapping techniques can be help-
ful to improve the accuracy and efficiency of data analysis
tasks and model training [31], [32]. Normalizing the pixel
values transforms the image data so that they have similar
statistical properties, regardless of differences in lighting con-
ditions, exposure levels, or color distributions. This helps to
make the image data more suitable for various machine learn-
ing algorithms, as it reduces the influence of variations in
pixel values unrelated to the underlying structure or content of
the image. In this study, three different normalization ranges
have been considered. The first range that has been explored
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FIGURE 3. Illustration of the image transformation with various adjustments and filtering techniques. This figure presents the transformation of
the raw image using various adjustment methods and filtering techniques, employing different kernel and sigma sizes for (a) the H&E images,

(b) the X-ray images, (c) the OCT images.

is the commonly used (min, max) range, which scales the
pixel values to the minimum and maximum values within the
image.

The second range that has been examined is (—1, 1). Addi-
tionally, we have also investigated the effect of normalizing
the pixel values by dividing them by their maximum value
(norm to max). These normalization techniques have been
applied to standardize the pixel values across all the images,
enabling fair comparisons.

Subsequently we can also assess the influence of these nor-
malization ranges on the classification outcomes and explore
whether any patterns emerge between the selected normal-
ization ranges and the range initially employed to train the
model used as the feature extractor in this study. In the
following section, we explore our model and feature extrac-
tion approach. In Table 2, an overview of the adjustment
methods, filtering techniques, and normalization ranges is
shown.
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4) FEATURE EXTRACTION

Transfer learning is a powerful approach that involves taking
a model initially trained on one task and customizing it for
a different, often related task. For instance, the Luo et al.
demonstrated the effectiveness of the transfer learning as
their primary classification method when establishing their
analysis [33]. In the context of our present study, we have
employed transfer learning as the central technique for feature
extraction. This process transforms the raw data into the
numerical features that include key information from the
dataset. This approach allows us to benefit from the prior
knowledge learned by the pre-trained model and adapt it to
the specific requirements of the current task. These extracted
features capture the most informative aspects of the data,
enabling machine learning models to achieve higher accuracy
and efficiency. To extract features from the pre-processed
images, a pre-trained network called VGG16 [15] with two
pooling modes, the average and max pooling have been
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TABLE 2. Overview of the pre-processing methods applied on the raw images of three datasets.

Filtering technique Adjustment Normalization
Kernel/Sigma size method range
1. Median filtering (3x3) 1. Brightness adjustment 1. (min, max)
2. Mean filtering (5%5)
(Three kernel (7x7) )
. 2. Contrast adjustment 2. (-1,
sizes were
employed)
3. Histogram equalization 3. max
3. Gaussian filtering 0.5
(Three sigma 1
values were 2 4. No adjustment 4. No normalization
employed)
4. No filtering

utilized. Developed by the Visual Geometry Group at the
University of Oxford, VGG16 has been trained on the large
dataset, ImageNet [34], without scaling for large-scale image
classification tasks. As mentioned before, pre-trained models
like VGG16 can be used as they are or with customized
layers, making them adaptable to new tasks. With this critical
information for the image analysis is driven while, saving
time and resources. This approach allows for efficient feature
extraction and making predictions.

B. PCA-LDA AS THE CLASSIFIER

There are many possible techniques for data classification.
The Principal Component Analysis (PCA) and the Linear
Discriminant Analysis (LDA) are the two commonly used
techniques for dimensionality reduction and data classifica-
tion respectively. In this study combination of PCA with LDA
has been implemented to develop the binary classification
models.

1) PRINCIPAL COMPONENT ANALYSIS (PCA)

The Principal Component Analysis (PCA) [35] is a pow-
erful technique that aids in simplifying the complexity of
high-dimensional data while preserving essential trends and
patterns. Its primary function is to transform the data into a
reduced the number of dimensions, which serve as informa-
tive summaries of the original features. This is particularly
valuable in the field of biology, where high-dimensional
data is commonly encountered. As an unsupervised learning
method, the operation of PCA is not dependent on any pre-
existing knowledge regarding the relationships or differences
between samples. It seeks to identify underlying patterns only
based on the data itself. By geometrically projecting the data
onto lower-dimensional spaces called principal components
(PCs), PCA effectively reduces the data dimension while
aiming to capture the most significant information using a
limited number of PCs. This process enables the creation of a
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condensed representation that retains the core essence of the
original data [36].

2) LINEAR DISCRIMINANT ANALYSIS (LDA)

The Linear Discriminant Analysis (LDA) [37] is one of the
most popular dimensionality reduction techniques used for
supervised classification problems in the machine learning.
While LDA shares similarities with PCA, one crucial dis-
tinction exists between them. Unlike PCA, which seeks to
identify new axes or dimensions that maximize the data’s
overall variation, LDA specifically aims to maximize the dis-
tinguishability or separability among predefined categories or
classes.

This is the reason that we can use LDA not only for the
dimension reduction but most importantly for our study as
the classifier. In this study, the LDA models were trained
using the images with unique pre-processing combinations
as the input and subsequently tested on the independent test
sets. By adopting this approach, we were able to compare
the results obtained from the different models and determine
the best-performing pre-processing combination based on the
highest achieved mean sensitivity

3) SOFTWARE AND COMPUTATIONAL ANALYSIS

The computations were conducted on a commercially avail-
able PC system featuring an AMD Ryzen Threadripper
3960X 24-Core Processor (48 CPUs, 3.79 GHz, 128 GB
RAM). Additionally, an NVIDIA GeForce RTX 3090 GPU
with 10496 CUDA cores, a base clock speed of 1440 MHz,
and a boost clock speed of 1710 MHz was utilized. The GPU
is equipped with 24576 MB of GDDR6 memory, boasting a
936.10 GB/s memory bandwidth, 384-bit memory interface,
and a memory data rate of 19.50 Gbps. All the analyses
were carried out based on in-house written functions in the
programming language Python version 3.10.9. In the sup-
plementary materials a simplified version of the Pseudocode
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for our implemented workflow within this study has been
provided.

IV. RESULTS

This study undertakes a comprehensive analysis to thor-
oughly investigate the effects of different combinations of
the pre-processing techniques on the outcomes of classi-
fication models. By examining the influence of various
pre-processing procedures, this research addresses critical
questions, such as ‘“Which filtering techniques and nor-
malization ranges contribute to the most effective models,
resulting in the highest mean sensitivities?”” or “Does the
order of pre-processing application significantly impact the
final results?”’. To address these questions, two distinct
sequences, namely sequence 1 and sequence 2 as outlined in
the methods section, are carefully explored. These sequences
are employed to train the classifiers using specific pre-
processing combinations. Subsequently, the trained models
are then evaluated on the independent test sets allowing
for comparison and analysis of the results. With the aim
of determining the pre-processing combination that exhibits
the highest performance, this approach enables informa-
tive decision-making regarding the optimal pre-processing
techniques that enhance the predictive capabilities of the
classification models.

1) EFFECT OF THE FILTERING AND NORMALIZATION

In this section, the performance of binary classification mod-
els has been compared, considering the filtering techniques
and normalization ranges. The objective is to identify the best
performing filtering method and normalization range based
on the highest mean sensitivity. To distinguish the key factors
that drive the best performance of the classification models,
firstly our emphasis lies in exploring the impact of filtering
techniques and normalization ranges when utilizing the H&E
images as the training and test sets, while following the
sequence 2pipeline for generating the pre-processed images.
Fig. 4 illustrates the mean sensitivity of the classification
task versus the ordered pre-processing combination index.
The analysis presented in Fig. 4a clearly indicates that Gaus-
sian filtering significantly improves the performance of the
classification, leading to the higher mean sensitivities. Con-
versely, mean filtering yields the lowest mean sensitivities
among the examined filtering techniques. In Fig. 4b, it can
be observed that selecting an appropriate normalization range
can indeed enhance the performance of the classification
task. However, the absence of a dominant color indicates
that there is no definitive “best” or the “worst” choice for
the normalization. Furthermore, it’s important to note that
VGG16 was originally trained using non-normalized data.
As a result, establishing any potential correlations between
the normalization ranges we have chosen and the original
training data which VGG16 was initially trained on is not fea-
sible. To expand our investigation, we established the mean
sensitivity threshold of 0.95. The models surpassing this
standard were recognized as the well-suited for diagnostic
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FIGURE 4. Optimizing the classification models for the H&E images with
different pre-processing combinations. (a) Analysis of the filtering
techniques on the classification outcomes. Each filtering technique is
represented by a distinct color, while no pre-processing is indicated by
vertical solid and dashed line. (b) Investigation of the normalization
range impact on the classification model performance. Each
normalization is shown with a specific color, while no pre-processing is
presented with two solid and dashed vertical lines. Among the various
filtering techniques, the Gaussian filtering stands out as a prominent
enhancer of the classification model performance, while we could not
see such a prominent color for the normalization ranges. The dashed blue
lines in (a) and (b) represent the established threshold (around 0.95) and
the 100 classification models exceeding that threshold.

tasks. Remarkably, over a hundred of the classification mod-
els demonstrated mean sensitivities exceeding 0.95, revealing
their precise class identification capabilities and underlin-
ing the model’s enhanced reliability through carefully tuned
pre- processing combinations.

Investigation of the filtering techniques and the normaliza-
tion for the X-ray and OCT images is presented in Fig. S1
and Fig.S2, respectively. Fig.S1 highlights the findings for
the X-ray images, revealing that Gaussian filtering emerged
as one of the most effective techniques, resulting in higher
mean sensitivities. On the other hand, mean and median
filtering exhibited lower mean sensitivities. Similar to the
observations made for the H&E images, no noticeable color
code was observed for the normalization effect in the X-ray
image analysis. Turning to Fig. S2, the results for the OCT
dataset indicate that there is no clear trend for identifying
the best performing filtering technique. Figure S3 illustrates
two instances of confusion tables related to the H&E-stained
dataset within the test set. However, a notable trend emerges
when examining the impact of normalization. It becomes
evident that images without any form of normalization were
associated with the lower mean sensitivities.

2) EFFECT OF THE PRE_PROCESSING ORDER

Another, often neglected, parameter is the order in which
pre-processing techniques are applied. Hence, a thorough
investigation has been conducted to address this aspect as
well. Two distinct sequences in the study were employed to
comprehensively assess the impact of pre-processing order:
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FIGURE 5. Exploring the mean sensitivity for the classification models
(The H&E dataset) by comparing the two pre-processing orders with
different sequences. (a) Pre-processing sequence 1, and

(b) Pre-processing sequence 2. It can be clearly seen that the sequence
does not have a significant effect on the results. The highlighted areas in
red and green represent two distinct sets of the models, each
comprising 40 These models are classified into the two groups: the best
models, indicated by the green area, and the worst models, represented
by the red area. The dashed blue lines indicate the established threshold
at round 0.95, and the models exceeding that threshold.

o Sequence 1: Adjustment + Filtering + Normalization
+ Feature extraction + Classification

o Sequence 2: Filtering + Adjustment + Normalization
+ Feature extraction + Classification

Fig. 5, displays the mean sensitivity versus the ordered
pre-processing index for the H&E images by applying the
pre-processing methods while sequence 1 (Fig. 5a), and
sequence 1 (Fig. 5b) are followed. Interestingly, the analysis
reveals that the order in which the pre-processing techniques
are applied does not significantly affect the results.

To further support our findings, we conducted a test
aimed at comparing the classification outcomes derived from
employing the two distinct sequences during the applica-
tion of the pre-processing steps. The Kolmogorov-Smirnov
test [38] was chosen as our analytical tool, which relies on
the use of Cumulative Distribution Functions (CDFs) in its
methodology. This non-parametric method evaluates whether
a significant difference exists between the outcomes originat-
ing from the sequence 1 and sequence 2.

Fig. 6a, displays the distribution of the results obtained
through the application of both sequence 1 and sequence
2 for generating the pre-processed images. This visual pre-
sentation reveals two significant insights. First, the way the
data is spread out doesn’t match a normal pattern, which
highlights why we are using the Kolmogorov-Smirnov test
for the comparison. Furthermore, it becomes clear that both
distributions exhibit the same shapes, indicating their sim-
ilarity. In Fig.6b, we designed a thorough examination of
the probability distributions within outcomes derived from
the two distinct pre-processing sequences, utilizing CDFs.
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FIGURE 6. Comparison of the classification outcomes and the probability
distributions for the two pre-processing sequences: sequence 1 and
sequence 2 and the H&E dataset. (a) Visualizes the sample distributions
of the binary classification results coming from two different
pre-processing orders. Not only the sample distributions are not
following a normal pattern, but also the shape of the distributions
illustrates a high level of similarity. (b) Shows Cumulative Distribution
Functions (CDFs) for two distinct orders of pre-processing. Through the
comparison of their CDFs, it becomes apparent that there is no significant
distinction in terms of their probability distribution and spread.

The CDF, as a fundamental statistical concept, offers essential
insights into the probability distribution of a specific variable.

Running the Kolmogorov-Smirnov test, the maximum ver-
tical distance between two CDFs, which is known as the KS
statistic was 0.06 with the p-value = 0.5 (larger than the
significance level, « = 0.05). Considering the obtained KS
statistic, and the p-value we can strongly claim that the data
distributions in the sequence 1 and sequence 2 are similar
and there is no significant evidence to suggest a difference
between these two distributions.

This observation suggests that the performance and effec-
tiveness of the classification models are independent of the
specific sequence in which the pre-processing procedures are
applied.

Fig. S4 and Fig. S5, showing the classification results
obtained for the X-ray and OCT datasets, respectively. Sim-
ilar to the findings for the H&E images, no significant
differences are observed when comparing the outcomes
obtained using the pre-processing sequence 1 and sequence
2 for both the X-ray and OCT images. Generally, considering
all the three sets of data, it can be concluded that, regardless
of the sequence in which the pre-processing techniques were
applied, the performance and effectiveness of the classifica-
tion models remained consistent and reliable. To provide a
clear understanding of the findings, Fig. 7 offers an infor-
mative overview of the results obtained for the three studied
datasets. The box plot highlights the similarity in the perfor-
mance, reinforcing that the specific order of pre-processing
steps did not significantly influence the classification models’
overall outcomes.

3) THE BEST-PERFORMING AND WORST-PERFORMING
COMBINATIONS

Next, the similarities between the best-performing and
worst-performing pre-processing combinations have been
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FIGURE 7. Comparative analysis of the results across the H&E, X-ray, and
OCT datasets with the two different pre-processing sequences. This figure
provides an overview of the results obtained from the H&E, X-ray, and
OCT images using two distinct pre-processing sequences, denoted as

Seq e 1 and Seq e 2. This comparison reveals that the choice of
pre-processing sequence has a negligible impact on the overall
performance of the classification models.

investigated. To explore this aspect, two distinct sets compris-
ing 40 models each (see the highlighted areas in Fig. 5a) were
analyzed. The first set consists of the best-performing models
that have been selected based on their higher mean sensitivi-
ties, and the other set contains the worst-performing models
that have been chosen for their lower mean sensitivities. Ana-
lyzing the pre-processing combinations in these sets allows
us to uncover the patterns influencing their performances.
In Fig. 8, the best and worst pre-processing combinations
for the H&E images are presented. In this false color plot,
each step (Adjustment, Filtering, Normalization), along with
pooling mode, is displayed using its own distinct color,
enabling a clear and visually informative representation. This
visualization offers valuable insights into the pre-processing
pipeline and makes it easier to distinguish the order in which
each process occurred. In Fig. 8a, 40 of the best-performing
combinations are shown, while Fig.8b illustrates the worst-
performing pre-processing combinations. In Fig. 8a, it is
evident that, except for the pooling mode, a uniform color
pattern is not observed. However, when considering the
remaining steps, the wide variety of color combinations indi-
cate the absence of any specific trend or pattern. The same
observation is apparent in Fig. 8b, where the pre-processing
combinations for the worst-performing models are shown.
Except for the pooling mode, this finding highlights the
absence of a one-size-fits-all approach, emphasizing the need
for a case-oriented pre-processing strategy.

Fig. S6 and Fig. S7 focus on the exploration of common
features and patterns between the 40 of the best-performing
and worst-performing models, determined by their higher and
lower mean sensitivities, for the X-ray and OCT datasets.
Consistent with the observations made for the H&E images,
the results demonstrate minimal shared features among the
models, except for the pooling mode, where partial similar-
ities can be observed due to the uniform color code. Based
on our findings, the selection of appropriate pooling mode
for the feature extraction appears as the most influential
factor affecting the overall performance of the classification
models. One possible explanation for the observed behav-
ior is the implementation of highly standardized protocols
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FIGURE 8. Exploring the best-performing and the worst-performing
solutions using the H&E dataset. This figure provides an overview of the
best-performing (a) and the worst-performing (b) classification models,
along with the pre-processing combinations they utilize. These
combinations contain various pre-processing steps including
adjustments, filtering techniques with different kernel and sigma sizes,
normalization ranges, and pooling modes, all clearly color-coded for
better interpretation. It can be seen that in the both shown cases, except
for the pooling mode, the rest (Adjustment, Filtering, Normalization) do
not exhibit any similarities.

during the generation of the H&E [39], X-ray [40], and
OCT [41] images. These standardized protocols ensure con-
sistent image acquisition and processing, which may reduce
the sensitivity of these imaging modalities to the additional
image pre-processing steps.

Figs S8, S9, and S10 present detailed representations of
false color plots depicting the performance of both the best
and worst-performing models. Annotations are included to
provide insights into the underlying factors represented by the
colors in the plots.

V. PRINCIPLE FINDINGS
Our findings within this comprehensive study can be shortly
outlined as:

e Our study pioneered a systematic examination of image
pre-processing’s impact on the model performance,
addressing key questions to enhance understanding of
its influence on the analysis results.

e The wise selection of the pre-processing methods con-
cerning the data and the objective of the analysis can
improve the analysis outcomes.

e The impact of pre-processing on the performance of
binary classification models, in terms of sensitivity
scores, observed within the ranges of 0.87-0.97 for
H&E, 0.96-0.99 for Retina OCT, and 0.92-0.96 for the
chest X-ray dataset.

e Across all the incorporated image modalities, a sig-
nificant number of models surpassed the threshold of
0.95 for the mean sensitivity.
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e Almost half of the worst-performing pre-processing
combinations led to lower mean sensitivities com-
pared to cases without pre-processing, highlighting the
substantial negative influence on the overall model
outcomes.

e Exploration of the pre-processing sequence impact on
the model performance using two distinct sequences
(sequence 1 and sequence 2), revealing consis-
tent model performance irrespective of the specific
order of pre-processing steps, as indicated by the
Kolmogorov-Smirnov test.

e Minimal similarities in pre-processing steps for the
best-performing and worst-performing models were
observed, except for the pooling mode.

e No relationship was found between the original nor-
malization range for VGG16 and the chosen ranges in
the current study.

VI. CONCLUSION

In this systematic investigation, our goal was to under-
take a comprehensive and thorough examination of how
pre-processing influences the outcomes of binary clas-
sification models. Our focus was to determine whether
pre-processing consistently enhances model performance or
if this assumption doesn’t universally hold true. Further-
more, we aimed to uncover any potential best-performing
or worst-performing pre-processing combinations that might
exist and also to explore whether the sequence of applying
pre-processing steps can significantly impact the results of
the developed models.

To establish the analysis, three different datasets: the
H&E, the X-ray, and the OCT images within two distinct
approaches for combining the pre-processing methods were
explored. The first approach involved the application of
pre-processing steps in the following sequence: First, the
adjustment procedure was applied, followed by filtering and
the normalization. In the second approach, the sequence was
altered, starting with the filtering, followed by the adjustment
and finally the normalization. All the possible combinations
of these three methods were systematically explored in our
analysis.

The findings of this study highlighted the significant
impact of pre-processing procedures on the performance of
classification models. By appropriately selecting and opti-
mizing the pre-processing steps, it was possible to enhance
the models’ performance. Specifically, for the H&E dataset,
careful selection and optimization of the pre-processing strat-
egy led to a remarkable increase in the mean sensitivity from
0.86 to0 0.97. Similarly, for the X-ray dataset, the mean sensi-
tivity improved from 0.91 to 0.96, and for the OCT images,
it increased from 0.96 to 0.99. These results demonstrated the
effectiveness of correctly applying the pre-processing tech-
niques in improving the accuracy of classification models.

In particular, considering the established threshold of
0.95 for the mean sensitivity, our investigation has revealed
that across all the incorporated image modalities (the H&E,
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Chest X-ray, and OCT retinal images), significant number of
the pre-processing combinations have surpassed this thresh-
old when employed as the inputs for the classification models.

An even more interesting finding emerged when con-
sidering the impact of utilizing the worst-performing
pre-processing combinations on the model’s performance.
By analyzing classification models that incorporated all the
three image modalities, it was uncovered that almost half
of these combinations resulted in lower mean sensitivities
compared to the cases when no pre-processing applied to the
images. This finding served as a reminder of the substantial
negative influence that the worst-performing pre-processing
techniques can have on the overall outcome of the developed
models.

The impact of the pre-processing sequence on the
model’s performance, by applying two distinct sequences
(sequence 1 and sequence 2), was also explored. Utilizing
the Kolmogorov-Smirnov test as an analytical instrument
allowed for assessing the similarity of the results arising from
two distinct pre-processing sequences. The results of the test
highlighted insignificant differences in the data distribution
for both sequence 1 and sequence 2. This finding suggested
that the performance of the models remained consistent
regardless of the specific order in which pre-processing steps
were applied.

Lastly, when considering the best-performing and worst-
performing models, minimal similarities were observed in
the pre-processing steps across almost all the three image
modalities, except for the pooling mode. We extended our
investigation to unveil any potential correlation between the
original normalization range employed for training VGG16
initially and the chosen normalization ranges in our current
study. Considering that VGG16 underwent its initial training
without data scaling, no noticeable relationship or pattern can
be identified in this scenario.

We integrated a diverse range of methods and datasets,
allowing us to draw conclusions from a rich subset of data
and techniques. Using open repositories, our study utilized
image data from three major medical domains: Radiology,
Pathology, and Ophthalmology. This systematic examination
was conducted by exploring all the possible combinations of
the 15 pre-processing methods, comprising three adjustment
techniques, three normalization ranges, and nine filtering
techniques with VGG16 as the feature extractor. We believe
that while the numerical outcomes may vary for a given task
and modality, they are generalizable and consistently fall
within a comparable and similar range. Testing all poten-
tial combinations with hyperparameter optimization is not
feasible. For differing tasks, other modalities and data combi-
nations, the results have to be re-verified using the approach
outlined in this research. Continuous improvement is a fun-
damental aspect of any work, and further studies will include
the interplay between the DL network, pre-processing, and
modality.

The study holds critical significance in advancing diag-
nostics and patient care. With the implemented approach
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and accomplished extensive study, the improvement of opti-
mizing the pre-processing steps can be judged. Through the
optimization of the pre-processing strategies, the robustness
and reliability of Al-based decisions, particularly when deal-
ing with the challenges posed by inherent noise and visual
variations in medical images, will be enhanced. In indus-
trial applications, the improved performance of classification
models not only ensures more accurate disease detection
but also positively influences treatment planning, ultimately
impacting patients with improved outcomes.
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