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ABSTRACT Self-Driving Vehicles (SDVs) are increasingly popular, with companies like Google, Uber, and
Tesla investing significantly in self-driving technology. These vehicles could transform commuting, offering
safer, and efficient transport. A key SDV aspect is motion planning, generating secure, and efficient routes.
This ensures safe navigation and prevents collisions with obstacles, pedestrians, and other vehicles. Deep
Learning (DL) could aid SDV motion planning. AI tools and algorithms, like Artificial Neural Networks
(ANNs),Machine Learning (ML) andDL can learn from data to create effective driving strategies, enhancing
SDV adaptability to changing conditions for improved safety and efficiency. This survey gives a DL-based
motion planning overview for SDVs, covering behaviour planning, trajectory planning, and End to End
Learning (E2EL). It assesses various DL-based behaviour and trajectory planning methods, comparing
and summarizing them. It also reviews diverse E2EL techniques including Imitation Learning (IL) and
Reinforcement Learning (RL) gaining traction lately. Additionally, this review emphasizes the significance
of two crucial enablers: datasets and simulation deployment frameworks for SDVs. The survey compares
strategies using multiple metrics and highlights DL-based SDV implementation challenges, including
simulation and real-world use cases. This article also suggests future research directions to address E2EL and
DL-basedmotion planning limitations. The presented article is an excellent reference for scholars, engineers,
and decision-makers who have an interest in DL-based SDV motion planning.

INDEX TERMS Behaviour planning, deep learning, end to end learning, motion planning, self-driving
vehicles (SDV), trajectory planning.

I. INTRODUCTION
In over the last thirty years, there has been a significant
increase in worldwide research on Self-Driving Vehicles
(SDVs). Recent sensor and processing technology advances,
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the potential to alter vehicular mobility, and the expected
societal benefit have encouraged these advancements. Road
accidents killed almost 1.3 million people annually, accord-
ing to the WHO. Many of the 20–50 million non-fatal
injuries cause impairments [1]. Reasons include human
mistake, uneven speed, drunk driving, and distracted driving.
SDVs greatly reduce driver mistake and irresponsibility
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FIGURE 1. Functional blocks of SDV.

in vehicle collisions. Physically or visually handicapped
people who cannot drive will also have personal mobility.
SDVs could help minimize driving stress by optimizing
transportation time. Further, Interest in SDVs has grown
rapidly in government, industry, academia, and the public.
Due to advances in Artificial Intelligence (AI) and com-
puting hardware [2], SDVs can modernize transportation.
In particular, broad SDV adoption offers great potential to
reduce traffic accidents and congestion, especially in densely
populated urban areas [3]. Reliability and safety difficulties
limit SDVs to experimental programmers, notwithstanding
experts’ advances. Installing various sensors on small
and medium-sized vehicles improves performance, safety,
efficiency, and situational awareness. However, even with
many sensors, SDVs struggle to recognize and respond
to complex circumstances. To successfully implement self-
driving technology, planning approaches must be safe,
resilient, and adaptable [4].

A. BACKGROUND
The well-established planner uses the modular technique,
often known as rule-based planning. SDV requires this
method and other methods including perception [5], localiza-
tion, and control [6], as shown in figure 1. This suggested
strategy is streamlined and modified from papers [7] and [8].
This method is crucial to modular approach. Interpretability
makes the modular approach framework beneficial for
finding faulty modules if the system acts unexpectedly or has
defects. Section II discusses just modular approach planning.
The modular approach to planning involves two main
components: global route planning, which establishes a road-
level path from the initial point to the desired destination,
and local behavioral and trajectory planning, which develops
a short-range trajectory. Despite its widespread use in the
business, modular approach planning demands a lot of
processing resources and manual heuristic functions. This
research focuses on deep learning-based behaviour and
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FIGURE 2. Modular and End to End Approach for motion planning.

trajectory planning algorithms inside the modular approach
planning method and E2EL methods as shown in figure 2.
The numerous DL and E2EL motion planning algorithms
utilized in SDVs have been thoroughly reviewed

The implementation of motion planning is of utmost
importance for SDVs to function within a secure setting.
It permits the ego-vehicle to move from its starting point
to the end point., taking into account factors such as road
boundaries, dynamics of vehicle, road obstacles, and traffic
regulations [9]. In the disciplines of SDV, motion planning
algorithms including Graph search-based planners [10],
Sampling Based Planners, Interpolating Curve Planners [11]
and Numerical Optimization [12] have had considerable
success.

TABLE 1. Key differences between traditional motion planning and DL
based motion planning.

However, Traditional SDVs use pre-programmed regu-
lations, which is like building a vehicle with a rulebook
for every driving circumstance. This technique works well

for simple conditions, but it struggles with unpredictable
drivers, complex environments like construction zones, and
real-time decision-making. Learning is more dynamic with
DL. Because they learn from massive amounts of driving
data, these models can ‘‘understand’’ complex traffic patterns
and predict driver behaviour better than pre-programmed
restrictions. They can also adjust their plans in real time
based on sensor data to avoid unexpected obstacles and
driver behaviour. DL empowers SDVs with human-like
adaptability, making them safer and more capable in real-
world scenarios. Table 1 further clarifies the key differences
between traditional motion planning and DL based motion
planning.

B. RELATED STUDIES
In the expansive realm of academic literature, a multitude
of studies have been dedicated to exploring the diverse
dimensions of SDV technology. Among these investiga-
tions, A significant portion has concentrated on using DL
algorithms for SDV motion planning [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22]. However, while existing
surveys have provided comprehensive overviews of this area,
they often fall short in their treatment of behavior planning
and trajectory planning as distinct entities. Comparison of
existing survey shown in table 2. This lack of separate in-
depth analysis undermines our ability to grasp the nuances
and challenges unique to each component.

Moreover, a striking gap in the literature lies in the
absence of thorough implementation analysis and metrics
evaluation. While theoretical frameworks and algorithmic
advancements are crucial, their practical implementation and
performance metrics are equally vital for the successful
deployment of SDV systems. Without a detailed examination
of implementation strategies and rigorous evaluation of
performance metrics, our understanding remains incomplete,
hindering progress in the field.

It is essential to address these shortcomings in order
to advance SDV technology. By conducting separate,

VOLUME 12, 2024 66033



M. Ganesan et al.: Comprehensive Review on DL-Based Motion Planning and E2EL

TABLE 2. Comparison of Existing survey related to DL based motion planning techniques for SDVs.

comprehensive surveys on behavior planning, trajectory
planning, implementation analysis, and metrics evaluation,
researchers can offer nuanced insights into each aspect of
SDV systems. Such holistic examinations will not only
deepen our understanding but also pave the way for more
effective and reliable SDV capable of navigating real-world
scenarios with confidence and precision. Hence, this survey
mainly focuses on the DL based Motion planning (Behaviour
planning and Trajectory planning) and End-to-End Learning
(E2EL) methods (IL and RL).

C. ARTICLE STRUCTURE AND CONTRIBUTION
In this comprehensive survey, we delve into the intricacies
of motion planning and E2EL techniques tailored for
SDVs. The survey is meticulously structured into several
sections to provide a thorough examination of the topic.
In Section I, we offer a succinct introduction to the pertinent
literature, laying the groundwork for an in-depth exploration
of motion planning and E2EL for SDVs. Section II.A is

dedicated to elucidating the diverse DL methodologies
employed for behavioral planning within the context of
SDVs. This section meticulously dissects various DL tech-
niques utilized to enhance the decision-making capabilities
of SDVs.

Furthermore, Section II-B offers a detailed analysis of
the DL methodologies employed specifically for trajectory
planning, a crucial aspect of SDV operation. Our discussion
of E2EL for SDVs begins in Section III. This section delves
into the intricacies of leveraging E2EL methodologies (IL
and RL) to give SDVs the capacity to efficiently perform
driving duties by enabling them to learn straight through
data gathered from sensors. In the IV section of our
review paper, we addressed SDVs practical enablers such as
datasets and simulation deployment frameworks. In particu-
lar, we examined datasets for model training and validation
and simulation deployment platforms due to their ability
to simulate real-world settings. We found that high-quality
datasets and strong simulation deployment frameworks

66034 VOLUME 12, 2024



M. Ganesan et al.: Comprehensive Review on DL-Based Motion Planning and E2EL

FIGURE 3. Survey organization.

improve SDVs dependability and efficacy. Performance
evaluation and comparative analysis of the reviewed models
are meticulously discussed in Section V. This section offers
insights into the effectiveness and efficiency of different
approaches, aiding in identifying promising avenues for
further research and development. Moreover, In Section VI,
we examined different types of implementations of motion
planning algorithms for Self-Driving Vehicles (SDVs) and
compared these various implementation types across the
reviewed articles. Additionally, we provided explanations for

why the major focus of research is primarily on simulation
rather than real-world demonstration. Further, Section VII
elucidates current challenges encountered in the domain of
SDV motion planning and E2EL, while also providing future
recommendations to overcome these hurdles and advance the
field. Finally, Section VI serves as the conclusive segment of
this survey, encapsulating key findings, summarizing crucial
insights, and offering concluding remarks on the surveyed
topics. The organization chart provided in Figure 3 visually
represents the structured flow of the survey, facilitating a
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clear understanding of its contents and relationships between
different sections.

The following is the significant contribution of this paper:

• A concise and comprehensive introduction, along with
an existing literature review in the area of motion
planning for SDVs, is presented.

• The article also provides a thorough literature review
on DL-based SDV behaviour planning and trajectory
planning, along with an extensive survey of E2EL for
SDVs.

• This article also provides a deep understanding of
various datasets and simulation deployment frameworks
utilized for SDV development.

• The discussion includes implementation percentages
among the reviewed papers for DL-based motion plan-
ning (pointing out the behavior and trajectory planning)
and E2EL.

• The comparison and analysis of percentages related to
various implementation types found within the reviewed
papers are meticulously presented.

• Various algorithms in DL-based motion planning
(including behaviour planning and trajectory planning)
and E2EL are compared and discussed in terms of
performance metrics.

• Different challenges and their corresponding recom-
mendations for DL-based motion planning (including
behaviour and trajectory planning) and E2EL for SDVs
are discussed.

II. OVERVIEW OF MOTION PLANNING PIPELINE IN SDV
The modular approach pipeline for SDV motion planning is
provided here. Behaviour and trajectory planning make up
the sophisticated local motion planning modular approach
pipeline. The vehicle makes high-level judgements based on
its environment and purpose during behaviour planning. This
component determines the vehicle’s dynamic road behaviour
using numerous decision-making techniques. Overtaking,
lane changes, pedestrian yielding, and intersection manoeu-
vres are examples. This site collects sensor data, predicts
vehicle and object movements, and creates driving tactics
using complex algorithms. Trajectory planning refines high-
level judgements into a vehicle trajectory after behaviour
planning. Considering vehicle dynamics, road constraints,
and safety, this component generates a smooth and practical
SDV path. Trajectory planning algorithms optimize routes
for safety and efficiency by considering vehicle speed,
acceleration, road curvature, and impediments. Probabilistic
sampling, optimization, and spline fitting generate safe, com-
fortable passenger pathways. Splitting the motion planning
pipeline into behaviour and trajectory planning lets SDV
systems handle complex scenarios safely and efficiently.
Modular design lets complicated algorithms and models for
each task be integrated, providing resilient and adaptive SDV
systems.

A. DETAILED SURVEY ON DL-BASED BEHAVIOUR
PLANNING FOR SDV
This chapter embarks on a comprehensive exploration of
DL-based behavior planning techniques tailored specifically
for SDVs. It delves into the intricacies of how DL algo-
rithms are utilized to interpret sensor data, understand the
surrounding environment, and formulate high-level decisions
for SDV behavior. By leveraging DL’s capabilities in
processing vast amounts of data and learning complex
patterns, behavior planning systems can adapt to diverse
driving scenarios and exhibit human-like decision-making
capabilities.

By providing an in-depth survey of DL-based behavior
planning for SDVs, this chapter seeks to clarify the state-of-
the-art, highlight new developments, and suggest directions
for further study and advancement In this crucial field of
SDV technology. Shi et al. [23] proposed a Deep Neural
Network (DNN) algorithm which is used to predict the
combined car following and lane-changing behaviour of
SDV. Authors Developed a Switch Neural Network (SNN) by
utilizing Temporal Convolution Neural Network (TCN), Bi-
directional Long-Short Term Memory (BiLSTM) and Atten-
tion Mechanism. A mathematical model for predicting vehi-
cle trajectory in two dimensions was created. X, Y-denoted
Cartesian Coordinate, which indicates the target vehicle’s
position, is used to describe a vehicle’s trajectory.Meanwhile,
A FIS_LSTM model was created by Wang et al. [24] to track
the behaviour of SDVs when changing lanes. The FIS_LSTM
model integrates LSTM network with Fuzzy Inference
System (FIS). The primary determinants of lane-changing
are drivers and surrounding traffic conditions. FIS is used
to integrate driver behaviour and surrounding traffic condi-
tions. Based on drivers’ cognitive abilities, fuzzy rules are
developed.

Additionally, Gonzalez-Miranda and Ibarra-Zannatha [25]
implemented a behaviour selector for SDV using Feed
Forward Neural Network (FFN) with Autonomy hardware.
The purpose of this model is used to select the proper
behaviour (such as Lane keeping, passing parked cars,
Emergency breaks, and parking based on passenger request)
based on the surrounding traffic environment. For the
environment perception, CNN based yolov3 DL algorithm
was implemented. Further, using an Attention Enhanced
Residual-MBi-LSTM neural network, Wu et al. [26] devel-
oped a prediction model for lane change intentions. The
purpose of this model is to predict the driver’s anticipated
behaviour when changing lanes. The initiative makes use of
the HighD dataset to extract the ego-vehicle and surrounding
vehicle’s trajectories.

Furthermore, to forecast a driver’s intention to change
lanes, Tang et al. [27] employed the Multi_LSTM tech-
nique. HIL (Hardware in Loop) simulation and NGSIM
(Next Generation Simulation) dataset were utilized, The
SDV driving conditions and the effects of the surrounding
cars are taken into consideration when building the test
set and training set. The suggested model was designed
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TABLE 3. Summary of commonly used DL methods for behaviour planning in SDVs.

to discover the characteristics of vehicle behaviour and
the relationship between time series of different states
during a lane change. Authors strongly proposed that
once prediction time increases rule-based model accuracy
decreases but the proposed model accuracy increases.
Besides this, Wang et.al [28] developed an autonomous
lane-changing system using LSTM-based DL technology.
The system aims to mimic human decision-making by
using a combination of visual and sensory data, as well
as an ANN that learns from real-world driving scenarios.
The author notes that traditional rule-based systems used
in current SDVs cannot handle complex real-world situ-
ations like merging onto highways. The proposed system
can be improved on these limitations by learning from
experience and using a probabilistic approach to decision-
making. The article concludes that the system shows
promises for enhancing the safety and efficiency of SDV
technologies.

Meanwhile, Lin Li et al. [29] deployed Recurrent Neural
Networks (RNNs) to forecast lane changes in vehicles. For
SDV, the technology can help the SDV perform better lane
changes and minimize collisions. The RNN uses sensor data
including vehicle relative location, speed, and acceleration to
predict lane changes in a short time. The system also filters
false alerts and ensures inference correctness using rules.
Additionally, A prediction making decisions method for lane

changes was presented by Yonghwan Jeong [30] to increase
the effectiveness of SDVs on highways. The suggested model
analyses and forecasts lane shifts using Bidirectional-LSTM,
resulting in safer and faster self-driving on highways. The
Bi-LSTM network is an RNN capable of learning prolonged
dependencies in consecutive data. By utilizing Bi-LSTM,
the algorithm is capable of making forecasting in real time
because it is able to learn as well as adjust to adjustments in
driving conditions.

Furthermore, for on-road SDV, Xiao Wang et al. [31] cre-
ated a technique called LSTM_CRF, which enables the
decision-making process of an SDV to become more human-
like. The model enhances the precision and effectiveness
of self-driving systems by combining the advantages of the
LSTM network and Conditional Random Field (CRF). The
LSTM_CRF technique aims to predict the next maneuver of
an SDV by analyzing various sensory inputs such as camera
and lidar data, as well as the current driving state such as
speed and acceleration. The suggested method could increase
the safety and reliability of SDVs by enabling them to
make human-like decisions in complex and dynamic driving
situations.

In addition, a Deep Bidirectional RNNNetwork (DBRNN)
was deployed by Oluwatobi Olabiyi et. al [32] that takes input
as the past states of the SDV, such as position, steering angle,
and speed, and anticipates the SDV future behaviours, such
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TABLE 4. Technical comparison of different deep learning algorithms in behaviour planning for SDVs.

as turning left or right, accelerating or braking. The DBRNN
design enables the model to capture the context of the driver’s

conduct in both the past and the future and makes it suitable
for predicting driver reactions in complex driving scenarios.

66038 VOLUME 12, 2024



M. Ganesan et al.: Comprehensive Review on DL-Based Motion Planning and E2EL

FIGURE 4. AT-BiLSTM architecture proposed by [33].

Meanwhile, Yingshi Guo et al. suggested a networked tech-
nique for identifying drivers’ lane-changing intentions [33].
The proposed method predicts driving behaviour using
camera and sensor data. (AT-BiLSTM) is an attention
mechanism based BiLSTM network shown in figure 4.
This work influences intelligent transportation technologies
that improve driver safety and traffic efficiency. Further,
An AT based Gated Recurrent Unit (GRU) model by HAO
Zixu et al. [34] recognized driver intention and predicted
vehicle trajectory. The model predicts vehicle direction
and behaviour using steering angle, acceleration, speed,
driver gaze behaviour, and road context data from the car’s
sensors. The proposed paradigm is ideal for complex route
geometry and unexpected events. Furthermore, using a Deep
Residual Neural Network (DRNN), Zhensong Wei et al. [35]
detect lane-changing behaviour using vision. The authors
design and test the method using the Naturalistic Driving
Study (NDS), a publicly available dataset of real-world
driving footage from diverse viewpoints. This work aims
to develop a reliable and scalable system to detect lane-
changing behaviour in fully autonomous and ADAS cars.
The method uses a Region-based Convolutional Neural
Networks (RCNN) model, which has performed well in
image and video object detection. The author trains the
RCNN model to detect stable, changing right, shifting
left, and ambiguous behaviour using the NDS dataset.
Summary of the commonly used DL algorithms are presented
in table 3.
However, all the aforementioned DL-based behaviour

planning algorithms were trained and evaluated in their
corresponding dataset and experimented with their respective
implementation method, the outcomes demonstrated that
the aforementioned algorithms were better performed when
compared with their corresponding state of art algorithms.
Table 4 compares technical details of recently available
various DL algorithms in behaviour planning for SDV based
on the following parameters such as type of DL algorithm

utilized, type of input, type of output, Type of Dataset,
Software and Hardware Utilized, Response Time (RT)/ Time
Before Action (TBA) and way of Implementation, which are
more important for the researcher to get deep knowledge in
this field of behaviour planning for SDVs.

B. DETAILED SURVEY ON DL-BASED TRAJECTORY
PLANNING FOR SDV
SDVs are becoming increasingly popular, and one of the
fundamental challenges in their development is trajectory
planning. The process of trajectory planning entails figuring
out the best route for SDV to travel to get to its destination
quickly and safely. It is a complex task that considers several
elements, including the state of the roads, traffic, environ-
mental variables, etc. DL approaches have demonstrated
promising achievements in overcoming this issue in recent
years. DL techniques are applicable to a variety of domains,
notably SDVs, and are capable of learning patterns as well
as structures from massive volumes of data [36]. They can
aid in enhancing the reliability and accuracy of trajectory
planning for SDV, making them safer and more reliable in
real-world scenarios. An overview of trajectory planning for
SDV using DL has been discussed in this section. It will cover
the different DL techniques used in trajectory planning for
SDV using the DL framework.

Stefano Pini et. al [37] described a new approach to SDV
that aims to increase safety by enabling vehicles to absorb
knowledge from the past and adjust to a variety of driving
situations. The strategy is predicated on the idea of combining
experts, which involves combining multiple models or
algorithms to achieve better performance. To implement this
approach, the author suggests training different models to
focus on specific aspects of driving, such as predicting the
behaviour of other vehicles, identifying obstacles, or planning
safe and efficient routes. These models can then be combined
into a single system that can dynamically adapt to changing
road conditions andmakemore accurate predictions. The arti-
cle presents a compelling vision of how a mixture of expert
approaches could potentially increase the dependability and
safety of SDT in real-world conditions.

Additionally, Dan Wang et. al [38] have deployed a
new approach to SDVs that relies on DNNs for trajectory
learning. To extract pertinent characteristics from the input
data and simulate temporal dependencies, the authors suggest
a hybrid architecture that blend CNN and RNN. In simulator
tests, the strategy produced encouraging results by correctly
anticipating the SDV prospective trajectory and preventing
collisions with surrounding vehicles and obstacles. The
system’s adaptability to different driving scenarios is one
of its strengths. However, good performance necessitates
a lot of training data. Further testing and refinement are
necessary before the approach can be deployed in real-world
situations.

Besides this, Ting Chen et. al [39] have developed an
innovative approach for predicting the trajectory of human
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FIGURE 5. CNN _ Raw-RNN architecture proposed by [38].

FIGURE 6. LaneGCN architecture proposed by [45].

motion in complex environments. The proposed method uses
both visual and auditory cues to predict movements. The
authors demonstrate the proposed method’s effectiveness in
predicting complex human motion trajectories in dynamic
and cluttered environments. In addition, to detect traffic
conflicts at unsignalized crossings, Qianxia Cao et. al [40]
have developed a real-time vehicle trajectory estimation
technique. To forecast each vehicle’s upcoming motion as it
approaches an intersection, the system employs a DL-based
method. The CNN and LSTM networks are the foundation of
the strategy, which can process the vehicle trajectory data’s
spatial and temporal characteristics. The system’s ability

to detect traffic conflicts in real-time has the potential to
improve traffic safety at unsignalized intersections, where
conflicts are more likely to occur.

Similarly, a DL-based technique for vehicle trajectory
forecasting in top-view picture sequences has been pro-
posed by Zahra Salahshoori Nejad et. al [41]. To extract
characteristics from the input image sequences and to
forecast the prospective motion of the vehicle, the system
employs a CNN and LSTM network respectively. The
method is created to consider the spatial and temporal
characteristics of the SDV movements, Along with the
roadway profile and several environmental elements that
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could influence the motion of the vehicle. Additionally,
a multi-modal vehicle trajectory forecasting system was
created by Wei Tian et al. [42] using cooperative learning of
lane direction, vehicle communication, and intended action.
Based on a vehicle’s orientation and position concerning
the lanes on the road, the lane direction model forecasts
the possibility that it will be in a particular lane. The
suggested approach trains the three algorithms simultane-
ously using a multiple-tasking learning framework, enabling
them to exchange knowledge and enhance one another’s
performance.

Meanwhile, for scenarios involving highway driving,
Ruben Izquierdo et al. [43] have suggested a system for
predicting vehicle trajectory that makes use of a Bird’s Eye
View (BEV) depiction. Using a top-down, high-angle image
of the road, the method predicts the subsequent trajectory
of the SDV on the highway using a BEV rendering of
the driving scenario. Based on the SDV state, velocity,
and acceleration as well as the spatial information that the
CNN has retrieved, the LSTM network forecasts its future
course. Besides this, a trajectory prediction model with a
corrective mechanism has been brought forward by Pin Lv
et. al [44] for connected and SDVs. To learn the temporal
changes in traffic conditions and forecast the prospective
trajectories of surrounding vehicles, the proposed model
makes use of an LSTM neural network. To account for
potential errors in the predictions, the model also has a
correction mechanism that modifies the projected trajectories
based on the CAV’s present condition and the predicted
trajectories. The authors claim the proposed method is
particularly suitable in scenarios where the traffic is complex,
and the CAV is surrounded by multiple nearby vehicles. The
suggested model, which includes a corrective mechanism,
could be used to improve the trajectory prediction skills of
real-world SDVs.

Further, Bing Zhou et. al [45] have innovated an improved
version of the LaneGCN trajectory forecasting technique for
SDV shown in figure 6. The original LaneGCN technique
models the spatial relationships between several lanes and
predicts the paths of other actors in the environment
using a Graph Convolutional neural Network (GCN). The
suggested improvement to the technique includes the use
of a Dynamic Graph Convolutional Network (DGCN) that
can adaptively adjust the weights of the graph convolution
according to the current traffic condition. The suggested
enhancement to the LaneGCN algorithm can increase real-
world SDV performance and contribute to the further
development of SDV.Additionally, a DL-based methodology
for trajectory prediction using regionally clustered data has
been developed by Aditya Shrivastava et. al [46]. To estimate
a moving object’s trajectory based on its prior locations
and timestamps, the suggested method used LSTM neural
networks. A series of location-time pairs of a moving
object are used as the network’s input and are clustered
according to their proximity to one another. The trajectory

estimation problem is simplified using clustering, which
also captures the basic temporal and spatial trends in the
data. The research emphasizes the importance of cluster-
ing techniques in decreasing the complexity of trajectory
estimation.

Furthermore, A spatiotemporal LSTM network has been
proposed by Zhengwei Bai et al. [47] as part of a DL-based
method for motion planning in SDVs. The suggested method
utilizes a sequence of input pictures from a front-facing
camera to forecast the future mobility of the vehicle while
taking into consideration the spatiotemporal properties of the
traffic environment. There are two sub-networks in the spatial
temporal LSTM network, one is used for the processing
of spatial data and the other is used for the processing of
temporal data.

Meanwhile, an innovative DL-based method for motion
planning in SDV has been developed by Sheng Song et al.
[48]. In the suggested method, camera pictures and motion
commands are input sensor data, and a CNN is used to learn
an attribute description of those data. Then, to forecast the
future trajectory of the SDV, an attribute description is sent to
an LSTM network. To produce precise trajectory predictions,
the LSTM network considers both the spatial and temporal
relations in the sensor input. The research also emphasizes
the dataset’s usefulness in creating and assessing DL-
based motion planning models for SDV. Further, to forecast
multimodal trajectory in self-driving scenarios, Henggang
Cui et. al [49] have presented a DL-based technique. The
suggested method employs deep convolutional networks to
multimodally model the spatiotemporal interdependence of
vehicle trajectories. The authors provide a brand-new dataset
made up of more than 300 hours’ worth of in-depth sensor
data gathered from various cities using a fleet of SDVs
equipped with cameras, RADAR, and LIDAR sensors. The
effectiveness of the suggested strategy is proved on a sizable
and varied real-world dataset, highlighting its potential for
usage in SDV.

In addition, to learn local state motions for SDV, Sorin
Mihai Grigorescu et. al [50] suggest a neuroevolutionary
technique. The suggested method employs a neuroevolution-
ary algorithm to develop neural networks that can forecast the
upcoming motion of the vehicle by its present condition and
sensor inputs. The technique employs a function of fitness
to evaluate the trajectory’s correctness and smoothness. The
neuroevolutionary algorithm uses a population of neural
networks that are randomly initialized and evaluated in a
simulated driving environment. The fitness function is used
to determine which individual’s trajectory is the most fit for
the following generation by evaluating the smoothness and
accuracy of the anticipated trajectory.

Similarly, Yonghwan Jeong et. al [51] suggest employing
an LSTM-RNN to forecast the motions of nearby vehicles
as a solution for motion planning in SDV at multi-lane turn
road crossings. In an uncertain environment, the suggested
method anticipates the velocity of the nearby vehicles while
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TABLE 5. Technical comparison of different deep learning algorithms in trajectory planning for SDVs.

accounting for the unpredictability and variability of the
motion. The LSTM-RNN model is equipped with the ability
to forecast the future movements of nearby vehicles up to
two seconds in advance and iwas developed using real-life

vehicle trajectory information. The generated trajectory is
reliable and optimal for the SDV to travel via the intersection,
using anticipated trajectories as input. Furthermore, Marius
Leordeanu and Iulia Paraicu [52] combine ocular localization

66042 VOLUME 12, 2024



M. Ganesan et al.: Comprehensive Review on DL-Based Motion Planning and E2EL

with trajectory prediction to provide an approach for SDV
navigation. The suggested approach employs a DNN to
forecast the vehicle trajectory from visual input, and visual
localization to determine the SDVs location in the driving
environment. The authors created their dataset called as
Urban European Driving (UED) Dataset and the Map, which
contains 35km of driving data with a duration of 21 hours
with LIDAR and camera sensors. The neural network can
anticipate the vehicle’s future course up to one second
in advance after being trained using a UED dataset of
images and matching LIDAR data. Even in enormous-scale
situations, the approach can determine the exact location of
the vehicle with great precision.

However, all the aforementioned DL-based trajectory
planning algorithms were trained and evaluated in their
corresponding dataset and experimented with their respective
implementation method, the outcomes demonstrated that
the aforementioned algorithms were better performed when
compared with their corresponding state of art algorithms.
Table 5 compares technical details of recently available
various DL algorithms in Trajectory planning for SDVs based
on the following parameters such as type of DL algorithm
utilized, type of input, type of output, Type of Dataset,
Software and Hardware Utilized, Response Time (RT) and
way of Implementation, which are more important for the
researcher to get deep knowledge in the field of trajectory
planning for SDVs.

III. DETAILED SURVEY ON END-TO-END LEARNING
FOR SDVs
In machine learning one of the important approaches is E2EL
in which a system learns to perform a task directly from raw
input data to output predictions without relying on manual
feature engineering or intermediate steps [53]. E2EL can be
used in the context of SDV to train a neural network to
operate a vehicle using sensory input like camera images or
LIDAR data. The conventional method for developing SDV
entails segmenting the issue into various modules, such as
perception, localization, planning, and control [54]. Every
component is designed to perform a certain function, with the
output of a particular component serving as the input for the
next.

However, this modular approach requires many human
expertise in designing and tuning each module, and it can
be difficult to integrate the modules into a cohesive system.
In contrast, E2EL can simplify the development process by
allowing the system to learn the entire driving task in a unified
framework. Training the system involves using a sizable
dataset of input-output pairings, in which the intended driving
behaviours, such as steering angle, acceleration, and braking,
are produced from the incoming sensory data. Without taking
any intermediary stages, the neural network learns to directly
map input to output. In the early years some survey papers
are detailed discussed different architecture and training
methods for E2EL [55] also some other researchers discussed
driving datasets that are publicly available and simulated

testing platforms [56]. In this section we discussed different
E2EL techniques for SDV in the aspect of various important
parameters such as hardware stack, software stack, type of
simulator utilized and way of implementation. E2E self-
driving is now conceivable because of the popularity of
DL techniques. E2EL has shown optimistic outcomes in
the creation of SDV. Everything started with an NVIDIA
experiment [53], in which researchers used a CNN to steer
a business vehicle utilizing just the frontal road’s monocular
picture as input.

Zhengyuan Yang et. al [57] present a unique method
for SDV that combines multi-modal multi-task control with
picture perception. The suggested technique makes use of a
DNN to process multiple sources of sensory data, including
visual, LIDAR, and RADAR inputs, to predict the optimal
control actions for the vehicle. A trained model E2EL
to manage multiple driving tasks, such as lane keeping,
obstacle avoidance and intersection crossing. To identify
control actions by extracting features from the provided input
data, the authors combine CNNs and RNNs. The suggested
strategy combines multiple modalities of sensory data, which
improves the robustness of the system and allows for more
accurate control decisions. Besides this, Junekyo Jhung et. al
[58] developed a new approach for steering control in SDVs.
The proposed approach maps raw sensor information to
directional commands directly using a CNN, eliminating the
need for intermediate feature extraction steps. Additionally,
themodel includes a closed-loop feedback system that adjusts
the steering commands in real-time based on feedback from
a front-facing camera.

Meanwhile, in vehicle-centric driving videos, Li Du et al.
[59] devised a new technique for anticipating future frames
(FFPRE). Without the need for explicit motion estimate
or scene comprehension, the suggested solution is an E2E
method that directly transfers previous video frames to
subsequent ones. To determine the links between time and
space in the entered data, the authors employ a DNN with
both convolutional and recurrent layers. The capacity of the
suggested method to learn intricate spatiotemporal patterns
straight from unprocessed video data is one of its key advan-
tages. This allows the model to make accurate predictions
even in challenging scenarios, such as occlusions or sudden
changes in the scene. Similarly, an innovative method for
steering control in SDV is presented by Tianhao Wu et. al.
in [60]. The suggested technique forecasts the appropriate
steering angle for the vehicle using a complex neural
network that considers both present and future spatiotemporal
variables. The authors combine convolutional and recurrent
layers to extract spatial and temporal characteristics from
the input data, which includes pictures from a camera
that faces forward and LiDAR data. The capacity of the
suggested strategy to include future spatiotemporal aspects
in the control choice is one of its main advantages. This
allows the model to anticipate changes in the scene and
adjust the steering angle, accordingly, enhancing the vehicle’s
performance and safety.
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Further, A system for autonomous navigation employing
DL and a multi-camera configuration with RGB and depth
pictures was proposed by José A. Diaz Amado et al. [61]. The
CNN employed in the neural network produces the vehicle’s
steering and throttle commands by using RGB and depth
pictures as inputs. The four cameras that together make up
the multi-camera framework employed in the paper have a
full 360 degrees of perception. The RGB and depth images
are captured simultaneously by each camera, resulting in a
total of eight input streams for the neural network. With
the help of a depth sensor and a stereo camera system,
depth pictures are produced. This study offers a potential
method for autonomous navigation based on DL and a multi-
camera system, which may find use in the development of
SDT. Furthermore, using DL techniques, Chanyoung Jung
et. al. [62] suggested a novel method for SDVs. The goal of
this approach is to make SDVs more reliable and accurate
by estimating the time-to-line crossing (TLC) and using
this information to change the SDV’s speed and trajectory.
One crucial part of SDV is the TLC, which calculates
how long it takes the vehicle to reach the lane barrier.
Based on data from the vehicle’s sensors, including its
cameras and LIDAR, the proposed system uses a DNN to
forecast the TLC. Then, based on the anticipated TLC, the
vehicle’s speed and trajectory are modified to keep it in
its lane.

Additionally, a novel method for SDT is presented by
Myoung-jae Lee et. al. [63] employing an E2E DL algorithm.
The suggested method makes use of a CNN that receives
input from the vehicle’s raw sensors data, such as front-
facing camera pictures and steering angle data. Without
explicitly extracting and selecting features, the CNN is
trained to output the appropriate steering angle for the
vehicle depending on the input data. Further, incorporating
E2EL, Tanmay Vilas Samak et al. [64] provide a novel
method for SDV. The recommended approach makes use
of a DNN to discover an association between sensor data
and vehicle control outputs. The neural network is trained
using a technique called behavioural cloning, where the
network has been trained to replicate the actions of a
human driver. The authors give a thorough explanation of
the approach’s neural network architecture, this has multiple
dense and convolutional layers. The approach was able to
successfully navigate the vehicle through various scenarios,
such as Simplistic driving, rigorous driving, and obstacle
avoidance.

Meanwhile , Simone Mentasti et. al [65] propose a novel
approach to lateral control of SDVs using a multi-state E2EL
framework. The author argues that traditional lateral control
methods for SDVs, such as model-based approaches or rule-
based approaches, have limitations in terms of robustness and
adaptability to different driving conditions. E2EL techniques,
in contrast, have demonstrated promising outcomes in several
applications. These methods learn directly from unprocessed
sensor inputs to regulate outputs. The multi-state framework
consists of two sets of state-specific neural networks,

where each network is responsible for a specific lateral
control task, such as anticipating situations and preserving
the vehicle lane position by adjusting the steering angle.
Furthermore, for forecasting steering angles in SDV, D
V Prasad Mygapula et al. [66] developed a method to
understand the relationship between sensor input data and
appropriate steering angles, the suggested technique employs
a CNN. The CNN is trained using the SullyChen dataset,
which consists of pictures taken with a front-mounted camera
and the accompanying steering angles. Test results on amodel
vehicle powered by batteries show that the recommended
approach can accurately predict steering angles, with an R2

score of 0.819 and a test loss of 0.0354.
In addition, a machine learning method for E2E motion

planning in SDV with an optical flow distillation method
was deployed by Hengli Wang et al. [67]. Based on input
data from a camera positioned on the vehicle, the suggested
technique employs a CNN to forecast steering angles and
speeds. The CNN is trained using a NuScenes dataset that
includes both image frames and ground truth steering and
speed values. The suggested technique also uses optical
flow distillation, which is a method for distilling optical
flow information into a compact representation that can be
applied to increase the precision of the direction and speed
estimations. A closed loop CARLA simulated environment
was used to assess the suggested methodology, and the results
demonstrate its accuracy, which has a Success Rate of 88.67%
and a Right Lane rate of 93.16%.

Furthermore, using multi-modal sensor fusion and DNN
to classify scenes, Zhiyu Huang et al. [68] created a DL
technique for E2E based SDVs. The proposed approach com-
bines data frommultiple sensors, including cameras, lidar and
odometer, to provide the vehicle ability to sense its surround-
ings and make decisions to drive. The DNN used in the per-
ception module is a CNN that is experimented on a CARLA
simulator dataset of labelled sensor data. The network’s goal
is to discover the connections between the incoming sensor
information and the related scene representation. A distinct
DNN, used by the decision-making module, receives the
scene representation as input and provides steering and speed
directives

Besides this, the use of LIDAR point cloud data was sug-
gested by Xianyong Yi et. al [69] in their unique self-driving
approach. The author presents a DL framework that processes
LIDAR data in an E2E way, enabling steering decisions to be
made by the vehicle without the use of extra sensors or human
input. Furthermore, Tinghan Wang et. al [70] introduced a
novel approach for SDVs that is independent of irrelevant
roadside objects, using an auto-encoder architecture. The
author offers a DL method that processes camera images
in an E2E way, allowing the vehicle to make direction-
finding decisions without the need for additional sensors or
human intervention. The study also includes an extensive
analysis of the network’s performance, showing that it is
robust to variations in lighting conditions and different road
environments.
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Additionally, Jie Hu et. al [71] proposed a Bilateral Guide
Network (BGNet) for enhancing scene understanding in self-
driving using DL. The Driving Affordances Path (DAP) and
Visual Guide Path (VGP) are part of BGNet. The author aims
to develop a framework that can process sensor data from
front camera images to generate an in-depth awareness of
the surroundings, which can be used for safe and reliable
self-driving. For semantic segmentation, the author uses a
fully convolutional network (FCN)-based DNN. The FCN
is trained on a CARLA simulator with an autopilot mode
dataset of annotated images utilizing both supervised and
unsupervised learning strategies. Meanwhile, A DL model
for anticipating the steering behavior of SDVs utilizing a
temporal and spatial attention mechanism is put forth by Lei
Han et al. [72]. The suggested model is an E2E framework
that receives a series of pictures from the SDV’s front-
view camera and outputs the associated steering angle. The
objective of the algorithm is to accurately forecast the steering
angle by learning temporal as well as spatial data from the
input images. The developed model employs CNN architec-
ture to learn spatial characteristics. The task of removing
important elements from the source images belongs to CNN.
The collected attributes are then supplied into an LSTM
network, which is at the forefront of capturing the temporal
relationships among the input images. At each time step, the
suggested model employs a selective attention mechanism to
concentrate on specific parts of the input image. By applying
the attention mechanism in both spatial and temporal
dimensions, the model is able to focus on essential areas of
the image and time steps that are crucial for steering angle
prediction.

Besides this, Satya R. Jaladi et. al [73] developed a
gamification framework to train and evaluate E2E models for
learning human highway driving. The developed framework
consists of a game-like environment where the player (i.e., the
model is trained) drives a car on a highway and earns rewards
for completing tasks such as staying within lanes, avoiding
collisions, and keeping a secure distance from other vehicles.
The suggested framework demonstrates how gamification
can enhance E2E systems for human roadway driving in
terms of accuracy and efficacy. Meanwhile, an incremental
E2EL strategy for lateral control in SDV was proposed by
Jaerock Kwon et al. [74]. The suggested method makes
use of a DNN architecture to extract the correct steering
angle from pictures captured by a vehicle’s frontal camera.
The information is gathered from the CARSIM simulation
tool employing HIL, this includes an actual motorsport
wheel with shifting gears and pedals. The suggested model
was simulated using the Gazebo/ROS back-end OSCAR
(Open-Source Robotic Car Architecture for Research and
Education) simulator.

Further, by combining data from several sensors to create
a 3D representation of the environment, Nguyen Thi Hoai
Thu et al. [75] created a technique for motion planning
in SDV. The suggested method generates the appropriate
lateral control angle and velocity for the vehicle using

an E2E RegNet Y 16GF DL model. The sensor fusion
is achieved by implementing a transformer encoder. This
technique fuses LiDAR and camera data to accurately detect
and track obstacles in the vehicle’s path. The vehicle’s safe
and effective trajectory is then planned to use the 3D map
produced from the sensor data Furthermore, a novel E2E
approach to SDV is put out by Oskar Natan et al. [76] that
makes use of systems with multiple agents and semantic
depth cloud mapping. The goal of the project is to create a
system that is resilient to variations in weather and lighting
and can function in intricate and dynamic surroundings.
The suggested system relies on a DNN framework that
accepts a collection of RGB images, LiDAR point clouds,
GPS, and Speedometer data as input. The authors use a
semantic depth cloud mapping approach to generate a 3D
representation of the environment that incorporates both
geometric and semantic information. The system is able to
operate in intricate and dynamic surroundings thanks to the
recommended network, which is also resistant to variations in
weather and lighting. However, all the aforementioned DL-
based E2EL algorithms were trained and evaluated in their
corresponding dataset and experimented with their respec-
tive implementation method, the outcomes demonstrated
that the aforementioned algorithms were better performed
when compared with their corresponding state of art
algorithms.

Table 6 compares technical details of recently available
various E2EL techniques for SDV depending on the follow-
ing parameters such as type of DL algorithm utilized, type
of input, pre-processed image size, type of output, Type of
Dataset, simulator, Software frameworks, Hardware Utilized
and way of Implementation, which are more essential for the
researcher to learn in-depth information about the topic of
E2EL for SDVs.

Further, the E2EL approach are divided into two primary
types based on the learning approaches employed: Imitation
Learning (IL) through supervised learning and Reinforce-
ment Learning (RL), which integrates unsupervised learning
techniques.

A. IMITATION LEARNING
IL is a machine learning technique used in the development
of SDV to help them learn from expert demonstrations. In this
context, expert demonstrations are often supplied by human
drivers or simulated scenarios in which human-like driving
behaviour is used as examples for the SDVs to replicate.
IL enables SDVs to learn how to navigate complicated
environments, follow traffic rules, and manage a range of
driving situations. IL further classified into three categories
as Behaviour Cloning (BC), Direct Policy Learning (DPL)
and Inverse Reinforcement Learning (IRL).

1) BEHAVIOUR CLONING
The most common method of IL in the field of SDV
is known as BC, which has emerged as the dominating
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TABLE 6. Technical comparison of different deep learning algorithms in end-to-end learning for SDVs.
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TABLE 6. (Continued.) Technical comparison of different deep learning algorithms in end-to-end learning for SDVs.

strategy [53], [77]. Within the framework of this approach,
after using expert trajectories to train the model, the
agent uses a classifier/regressor to replicate the policy.
In order to learn the intended policy, the BC technique is a
passive approach that does not involve active participation.
Rather, it simply observes the entire command execution
process. This presupposes that the state-action pairs that
comprise each and every trajectory are independent of
one another.

Bojarski et al. [53] pioneered BC, training a CNN to
predict steering commands from monocular camera images
for lateral control. However, it lacks longitudinal control.
In contrast, Codevilla et al. [78] introduced conditional
imitation learning (CIL), which includes both lateral and
longitudinal control. Using inputs like images and high-
level commands, CIL produces longitude and latitude control
commands, marking a milestone in self-driving imitation
learning with CNNs.

Adding to the CIL framework [78], researchers com-
bine geographical information, preplanned path, or point
clouds [79], [80], and [81] to improve robustness and
generalisation. These approaches are not interpretable, even

with advantages like faster feedback and less uncertainty.
In order to lessen this, layers of intermediate representation
are added. The direct perception method is proposed by
Chen et al. [82] and predicts affordances in urban self-driving
scenarios. Low-level controller operations are informed by
these affordances, which are displayed in Bird’s Eye View
(BEV). This is furthered by Sauer et al. approach [83]
Conditional Affordance Learning (CAL) shown in figure 7.
which excels in complex urban traffic and uses video data
and high-level commands for intermediate representations.
Additionally, utilising LiDAR data and HD Maps, Urtasun’s
team presents interpretable end-to-end planners [84], [85]
that enable safer trajectory predictions in comparison to using
monocular pictures alone.

The key characteristic of the BC method is its reliance
on expert-generated training examples, as a result, a portion
of the states experienced during policy execution make up
the training dataset. Consequently, if the dataset suffers
from bias or overfitting, the method’s ability to generalize
is constrained. Additionally, when the agent encounters
unfamiliar states, learning the appropriate recovery behaviour
becomes challenging.
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FIGURE 7. CAL model proposed by [83], The camera picture and
instructions are sent to the CAL agent by CARLA. The last N maps are
stored while the image is transformed into a feature map. These aid in
affordance prediction along with instructions. The way that temporal
features are used varies among tasks. CARLA’s updates and observations
are computed by the controller.

2) DIRECT POLICY LEARNING
Direct Policy Learning (DPL) is a training methodology that
originates from BC. DPL operates by evaluating the existing
policy and obtaining training data that is more suitable for
promoting self-optimization. In contrast to BC, DPL makes
use of professional driving trajectories to help the agent
fix present mistakes. This attribute of DPL mitigates the
constraints of BC that arise from insufficient data. We give an
outline of some DPL approaches in the section that follows.

Ross et al. [86] introduced Dataset Aggregation (DAgger),
an online imitation learning technique based on the Follow-
the-Leader algorithm [87]. DAgger uses every state-action
combination it encounters to actively modify the principal
classification tool or regression tool, viewing each validation
repetition as an e-learning example. Which is shown in
figure 8(a). Nonetheless, the discrepancy between the policy
space and the learning space can impair its learning
efficacy. In response, He et al. [88] proposed DAgger by
Coaching shown in figure 8(b), which employs a coach to
demonstrate easily learnable policies. These demonstrated
policies gradually converge to the true label. The coach
produces a balanced policy that is noticeably superior than the
novice’s anticipated actions but not appreciably worse than
the real controlling signal.

Other researchers have highlighted drawbacks in DAgger
methods [86], [88], such as inadequate generalisation,
imprecise gathering of data, and ineffective query procedures.
To address these issues, Zhang et al. [89] introduced the
SafeDAgger procedure, focusing on enhancing query effi-
ciency and reducing reliance on label accuracy. Additionally,
Hoque et al. [90] proposed the ThriftyDAgger framework,
incorporating human interaction in unusual circumstances,
while Yan et al. [91] presented a new DPL training initiatives
for mapless scenarios’ navigation tasks, both aimed at
improving model generalization and robustness.

DPL is a web-based learning policy that is iterative and
reduces the amount and distribution of datasets needed. It also

FIGURE 8. Dagger methods for SDVs proposed by [86] and [88].

makes it easier to update policies over time by efficiently
removing negative data.

3) INVERSE REINFORCEMENT LEARNING
In order to overcome the shortcomings of the aforementioned
techniques, IRL explores for the fundamental causes of the
association between inputs and outputs. IRL takes a new
approach to training model for different tasks. Instead of
needing pre-programmed rewards or perfect demonstrations,
IRL observes how an expert performs a task (their ‘‘trajecto-
ries’’) and tries to figure out what motivates them (the reward
function). It then uses this inferred reward function to train a
policy (its decision-making system) to achieve similar goals.
IRL has three main approaches: max-margin, Bayesian, and
maximum entropy methods.

The max-margin method optimises reward functions by
increasing the difference between optimal and suboptimal
policies using expert trajectories. Several methods linearly
aggregate data to show reward functions as independent.
AndrewWu [92] developed three reward function refinement
techniques and the first max-margin IRL approach. Pieter et
al. [93] optimised Wu’s method to uncover latent weight-
feature links by treating expert reward functions as explicitly
created linear combinations of known features.

Quality and distribution of expert trajectories limit these
techniques. Umar et al. [94] propose game-theoretic IRL
multiplicative weights for apprenticeship learning. The agent
receives feature weight policy knowledge and updates
the reward function using linear programming to reach a
stationary policy. An interpretable planning system proposed
by Phan-Minh et al. [95] shown in figure 9. It generates
trajectory, filters safety, and scores trajectory. Perceptual
data predicts future trajectories, an interpretable safety
filter assures basic safety, and DeepIRL assesses predicted
trajectories. [96] and [97] introduce preference and inference
formulations to allow users choose actions based on prefer-
ences, enhancing model performance.

Bayesian approaches, the second element of IRL, max-
imise reward posterior distributions by using the optimised
trajectory or prior distribution. Ramachandran et al. [98]
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FIGURE 9. Deep IRL trajectory scoring methods for SDVs proposed by [62].

proposed the Bayesian IRL model, using previous distribu-
tions to infer a posterior distribution of the predicted reward
variable. Levine et al. [99] added a kernel function to the
Bayesian IRL model [98] to advance reward prediction and
unseen driving performance. Moreover, Brown et al. [100]
use sampling to construct a Bayesian IRL model, estimating
upper bounds on return differences without the need for a
reward function by utilising expert trajectories. In a different
study, Palan et al. [101] provide the DemPref model, which
addresses efficiency concerns in conventional approaches and
improves query quality by using trajectory data for a simple
reward function and active query development. Notably,
DemPref does not depend exclusively on expert trajectories
at the highest level. IRL’s third component is the maximum
entropy approach, which estimates the reward function during
optimisation.

Maximum entropy methods are better for continuous
spaces than prior IRL methods and may reduce expert
trajectories’ negative effects. Ziebart [102] presented the
Maximum Entropy IRL model, which mitigates noise and
poor behaviour in the expert trajectory, comparable to [92].
The agent linearly maps features to rewards to optimise the
reward function under supervision.

Many studies [103], [104], [105] have used maximum
entropy IRL in real world SDV application. The algorithm
Generative Adversarial Imitation Learning (GAIL) [104]
is crucial to this subject. Using a generative adversarial
network (GAN), GAILmodel’s expert trajectory distributions
to reduce state drift from limited datasets. Expert trajectory
reconstruction and policy development allow GAIL to
function like human drivers in particular circumstances. Co-
GAIL [106], InfoGAIL [107] and Directed-InfoGAIL [108],
build upon the groundwork laid by [104] and provide
competitive outcomes in numerous application fields.

IRL offers numerous valuable contributions to SDV tech-
nology. Nevertheless, similar to the approaches mentioned
earlier, it faces challenges in addressing rare cases. Enhancing
the robustness and interpretability of IRL effectively repre-
sents a forthcoming area of research.

IL experts leads to action. Summary of above discussed
IL methods shown in Table 7. It may be less possible to
generalise a dataset with overfitting or an uneven distribution.
The agent acts erratically when led to an uncertain state.
A lot of academics use virtual and real data along with data

enrichment to improve dataset dispersion. These initiatives
guarantee generalizability and competitiveness of the meth-
ods.

B. REINFORCEMENT LEARNING
IL techniques necessitate a large amount of personally
labelled data, and drivers may make different decisions in
identical situations, causing training uncertainty. Researchers
avoid labelled data with RL algorithms for E2EL. RL trial-
and-error agents maximize environmental numerical rewards.
In constant interaction with the environment, the agent learns
the best goal-achieving policy. According to this framework,
two primary methods in RL are utilized to attain optimal
policies: value-based RL and policy-based RL. Moreover,
hierarchical reinforcement learning (HRL) and multi-agent
reinforcement learning (MARL) are considered effective
strategies derived from these approaches, showing promise
in resolving intricate problems and aligning well with real-
world driving situations. Utilizing RL techniques for training
SDVs has emerged as a burgeoning trend in E2EL for SDV
research.

1) VALUE BASED RL
Value-based RL seeks to evaluate various activities in a
state and provide a value to every action according to the
anticipated reward it provides. The agent gains the ability
to associate actions and states with rewards, and it uses this
knowledge to make the best choices.

Among value-based techniques, Q-learning [109] is well-
known. Mnih et al. [110] introduced the first DL technique
based on Q-learning, which learned control signals straight
from screenshots.

In order to address stability difficulties with high-
dimensional perception data, Wolf et al. [111] also integrate
Q-learning into SDV systems, defining driving manoeuvres
and selecting them based on picture information.

The suggested conditional DQN [112] technique shown
in figure 10. It improves predictive stability and, in cer-
tain cases, achieves performance close to human driving.
Alizadeh et al. [113] use a DNN and a DQN agent to make
high-level decisions while dynamically striking a balance
between safety and agility. By merging DQN from control
model, Ronecker et al. [114] suggest a harmless navigation
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TABLE 7. Summary of imitation learning techniques.

FIGURE 10. Architecture of conditional DQN [112].

technique for cars on highways, exhibiting effective and SDV
behaviour in road traffic circumstances.

Constrained Policy Optimisation (CPO) [115] is a all-
purpose algorithm that guarantees near-constraint satisfaction
in each iteration, responding to security concerns in E2EL
for SDV. Li et al. [116] incorporate a risk awareness
algorithm for safer lane changes into DRL frameworks.
Chow et al. [117] present safe policy optimisation tech-
niques that tackle issues in constrained Markov decision
processes (CMDP) by employing a Lyapunov-based method-
ology [118]. By combining policy and neural barrier
certificate learning, Yang et al. [119] create a model-free
safe reinforcement learning algorithm. Mo et al. [120] use
Monte Carlo Tree Search to lessen risky actions when doing
overtakes on roads.

2) POLICY - BASED RL
The value-based technique only allows for discrete com-
mands, but SDV necessitates continuous control for fine-
grained modifications. Policy-based approaches, on the other
hand, performwell inmultidimensional actions environments
with continuous instructions, providing stronger convergence
and investigation capabilities compared to value-based
methods.

Implementing RL in real-world SDVs presents con-
siderable hurdles. Kendall et al. [121] proposed actor-
critic algorithms shown in figure 11. It is used the Deep
Deterministic Policy Gradient (DDPG) algorithm [122] to
achieve human-level effectiveness for lane-following with
only monochromatic photos. Wang et al. [123] proposed a
solution based on human expertise lane-change policy that is
suitable to single or numerous vehicles and doesn’t depend
on V2X interaction.

FIGURE 11. Actor – Critic algorithm proposed by [121].
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To address crowded traffic conditions, Saxena et al. [124]
used the proximal policy optimisation (PPO) approach [125]
to train an enforcement policy by simulating relationships
with other vehicles with the aim to minimise crashes and
improve the comfort of travellers. Ye et al. [126] enhanced
their work by using PPO to automate switching lanes on
real highways, assuring avoidance of crashes and seamless
driving. Other research has demonstrated [127], [128] the
effectiveness of PPO-based RL technique in E2EL for SDV,
with enhanced policy learning efficiency and trajectory
exploration diversity.

Learning RL guidelines from scratch can be tedious.
Mixing RL with techniques such as IL and curriculum
learning offers a viable approach. Liang et al. [129] used
IL and DDPG to improve exploration effectiveness in
continuous space, offering a configurable gating system
for centralised management. Tian et al. [130] employed
RL to learn from expert knowledge in following trajectory
tasks, adjusting them with both IL and continual RL
algorithms.

Huang et al. [131] improved the training effectiveness
of RL algorithms by incorporating human prior experi-
ences, solving the long-tail problem of SDVs through
professional human expertise. Wu et al. [132] suggested
a human guidance-based RL technique that prioritises
knowledge replay, which improves effectiveness and efficacy
in challenging circumstances. Hence, enhancing driving task
effectiveness may necessitate combining several strategies
and creating training techniques tailored to particular tasks.

3) HIERARCHICAL RL
While RL techniques demonstrate promise in many areas,
they are criticised for their difficult training procedure, which
is especially problematic in SDVs because of dynamic cir-
cumstances and multidimensional input information, which
result in lengthy period of training and utilisation of
resources [133]. To tackle this, HRL divides the main job into
a hierarchy of smaller responsibilities, each with a distinct
objective and set of rules. The agent can handle lesser-
sized subproblems due to this hierarchical organisational
structure, which lowers learning difficulty and improves
manageability.

For lane-changing tasks, Chen et al. [134] recommend a
two-level approach in which the low-level system carries
out the process of selected instructions, while the high-
level system decides whether to carry out a lane shift.
Furthermore, [135] and [136] extended the research based
on methodology [134] by integrating additional data, such
as vehicle heading angle, speed, and position, to improve
the effectiveness of the low-level control system. These
approaches present viable ways to create reliable and secure
SDVs capabilities.

The body of research on HRL’s ability to generalise is
growing. Using a high-level layer and a kernel-based lowest-
squares policy repetition technique, Lu et al. [137] present an

HRL technique for self-deciding andmobilitymanagement in
unpredictable traffic situations shown in figure Z. To improve
model generalizability, Duan et al. [138] split mobility
responsibilities into three different models using a centralised
policy network. Building on earlier research, Cola-HRL [139]
combines a continuous-lattice state space representation,
low-level controller, and high-level planner to provide higher
making decisions efficiency across a range of scenarios as in
comparison with state-of-the-art techniques.

4) MULTI-AGENT RL
MARL addresses situations in which heterogeneous traffic
players engage in mutual influence, thereby substantially
impacting one other’s policies [140]. Others’ actions in
single-agent systems frequently conform to predetermined
guidelines, which results in overfitting and determinism regu-
lations [141]. MARL commonly uses Decentralised Partially
Observable Markov Decision Processes (DEC-POMDPs)
with the goal of learning decision-making strategies for
multiple agents. However, the rapid growth of the state space
with agent numbers is a barrier for Multi-Agent System
(MAS) [142] training.

Designing efficient learning algorithms is one way of deal-
ing with dimensionality problems. In order to empower both
collaborative and adversarial endeavours, Kaushik et al. [143]
use parameter-sharing Deep Deterministic Policy Gradient
(DDPG) for twin assignments, injecting assignments into
the observation space. Wang et al. [144] combine the
exchange of graph data across agents in a variety of
circumstances, utilising Proximal Policy Optimisation (PPO)
to generate actions continuously and permitting interaction
among vehicles within a predetermined range.

MARL provides a global viewpoint for multi-vehicle
management, whereas Reinforcement Learning (RL) for
lane-changing decisions is mostly single-agent oriented.
In mixed-traffic highway circumstances, Zhou et al.

Reference [145] discuss SDV lane shifts in conjunction
with human-driven vehicle judgements. MARL approaches
seem promising for handling complicated planning and
decision-making challenges, even beyond lesser assignments.
Chen et al. [146], for example, train agents to avoid crashes
in scenarios with time-critical converging highways.

Giving credit is important in collaborative systems with
multiple agents. Using a collaborative policy learning
technique, Han et al. [147] offer a reward shifting mech-
anism to promote permanent cooperation between SDVs.
Peng et al. [148] achieve higher performance across several
measures by incorporating psychological socialisation prin-
ciples into Coordinated Policy Optimisation (CoPO) shown
in figure X for Self-Driven Particles (SDP) structures.

Although RL is popular for self-directed learning, insuffi-
cient sample effectiveness persists as a problem. While deep
neural networks help with approximation of functions and
learning representations, yet interpretability remains tough.
Summary of Different RL methods shown in Table 8.
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FIGURE 12. Hierarchical RL architecture proposed by [138].

TABLE 8. Summary of reinforcement learning techniques.

IV. PRACTICAL ENABLERS IN SDV DEVELOPMENTS
Practical enablers like datasets and simulators play cru-
cial roles in the development and advancement of SDV
technologies. These tools provide essential resources and
environments for training, testing, and validating SDV,
ultimately contributing to the safe and efficient deployment
of SDVs on public roads.

A. DATASET
Datasets are collections of labelled sensor data captured
from real-world driving scenarios. These datasets contain
various types of information, including images, lidar scans,
radar readings, and GPS coordinates, annotated with labels
such as object classifications, lane markings, traffic signs
and vehicle trajectories. Datasets serve as training inputs for

Machine learning algorithms, allowing SDV systems to learn
to recognize and interpret different objects, obstacles, and
environmental cues. High-quality and diverse datasets are
essential for training robust and reliable self-driving models
capable of handling a wide range of driving conditions and
scenarios. Even though creating and putting up own datasets
for SDVs takes time, there are many common and significant
datasets already available that may be used for study, in this
section we detailed discussed about various open-source
dataset for SDVs.

A2D2 [149] With almost 41,000 labelled cases and
38 characteristics, the Audi Autonomous Driving Dataset
(A2D2) has a total size of roughly 2.3 TB. Sorted according
to the type of annotation, it includes 3D bounding boxes and
semantic segmentation.
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ApolloScape [150] is a dynamic project that aims to
advance multiple areas of SDV. It provides 1000km trajec-
tories for urban traffic, 80,000 lidar point clouds, and over
100,000 street view frames.

Another notable dataset for 3D object tracking and motion
predictions is Argoverse 1 [151]. It provides extensive sensor
data, such as LiDAR point clouds, forward-facing stereo-
scopic pictures, and 360-degree pictures from seven cameras.
Thanks to its diversified sensor data and semantic maps,
Argoverse, which covers over 300,000 vehicle trajectories
collected from 290 km of mapped lanes, offers rich knowl-
edge necessary for furthering research and development in
prediction systems.

Berkeley DeepDrive [152] This dataset, also referred to
as BDD 100K, offers 100,000 annotated films and ten
tasks for assessing image recognition software. It includes
information on geographic and meteorological diversity, over
100 million frames, and more than 1000 hours of driving
experience.

Cityscapes [153] provides a large dataset that has been
collected in complicated urban environments. It carefully
annotates pictures offering pixel-by-pixel segmentation for
thirty distinct classes, such as cars, people, streets, and traffic
signals. Cityscapes is a well-known example of a difficult
baseline for urbanised semantic segmentation tasks. The
Comma.ai Driving Dataset [154] captures real-world driving
scenarios from a Tesla Model S using cameras, LiDAR, GPS,
and IMU sensors. This diverse data (112,000 video frames)
is valuable for training SDV algorithms in tasks like object
detection and lane following. While full access might be
limited, it offers a glimpse into real-world driving data for
researchers in this field.

Benchmarking the KITTI Vision Suite [155] The
2012 release of the KITTI dataset, which includes real-world
computer vision benchmarks, made it a pioneer in the field
of SDV research. It has received more than 4000 scholarly
citations.

Lyft Level 5 [156] provides more than 1,000 hours of
data, making it a noteworthy dataset for motion prediction
in SDVs. In addition to 17,000 sceneries, it has an 8,500-lane
segment high-resolution aerial image and a high-definition
semantic mapping with over 15,000 human annotations.
It is an essential standard for SDVs, assisting activities like
mobility planning and forecasting with its rich annotations
and broadened data.

A vital tool for SDVs, nuScenes [157] provides a
variety of datasets suited to the requirements of perception
systems. Using LiDAR, radars, and cameras, it gathers
data from metropolitan areas in Boston and Singapore. Six
cameras provide detailed environmental views. This dataset
is extensively used for multi-view object identification tasks
and, by enabling a wide range of activities and establishing
new industry standards.

The Waymo Open Dataset [158] introduced in 2019, sig-
nificantly contributes to the advancement of SDV research.
It has a major impact on the field by providing a substantial

amount of multimodal sensory information with thorough
annotations. Especially, the dataset’s extensive coverage of
a wide range of driving situations and geographical areas
improves the practicality and resilience of several tasks like
as tracking, segmentation, and detection.

The highD dataset [159] provides a comprehensive collec-
tion of realistic vehicle trajectories on German roads. Among
them are 110,000 vehicles and trucks’ refined trajectories.
This dataset tackles the limitations of existing scenario-based
safety validation measurement approaches, which frequently
lack enough high-quality data and realistic road behaviour
among users.

The INTERACTION dataset [160] comprises an extensive
semantic map and covers a broad spectrum of complex
navigation scenarios. For diverse tasks like mobility fore-
casting, imitation learning, and judgement validation, this
featuremakes it versatile. The integration of data from several
nations improves the analysis of driving behaviours across
cultural differences, which is important for the advancement
of SDVs worldwide.

Argoverse 2 [161], an expansion of Argoverse 1 [148],
offers the largest dataset for SDVs. It features complex
driving scenarios and vital functions like 3D object tracking.
Covering six cities and various situations, this dataset pro-
vides multimodal data supporting algorithmic advancements
in SDV development.

Talk2BEV [162] is a pioneering dataset that combines
vision-language models with BEV maps for SDV appli-
cations. With over 20,000 human-annotated inquiry types,
it enhances understanding of maneuver scenarios using
state-of-the-art techniques. The Talk2BEV-Bench standard
supports activities such as intent prediction and decision-
making, offering a versatile framework for research and
progress.

The IDD-3D [163] dataset includes 12k labelled driving
LiDAR frames from several traffic circumstances, as well as
multimodal data from several cameras and LiDAR sensors.
It makes a substantial addition to the creation of SDV for
India. Its focus on capturing the complexities of Indian
roads provides valuable data for researchers and developers
working on this technology.

Summary of different dataset utilized for the development
of SDV presented in Table 9. At the moment, datasets play
a critical part in the process of exercise and validating tech-
niques for SDVs, thereby creating the important groundwork
that is required for the application of these methods and the
evolution of technology with regard to SDVs.

B. SIMULATION AND DEPLOYMENT FRAMEWORKS
A Simulation and Deployment Framework for SDVs motion
planning provides a comprehensive platform for developing,
testing, and deploying motion planning algorithms in both
simulated and real-world scenarios. It enables researchers and
developers to create and validate motion planning algorithms
in simulated environments before deploying them onto actual
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TABLE 9. Summary of different dataset related to SDVs.

SDVs, thereby accelerating the development process and
ensuring robust performance in real-world conditions. In this
section we are discussed about different simulator and their
features related to motion planning for SDVs

As a result of the development of open-source SDV
simulation platforms, algorithm testing in this field has
become much easier. For example, the German Aerospace
Centre is responsible for developing the SUMO [164]
platform, which is a platform for simulating traffic at a
tiny scale. In addition to providing comprehensive evaluation
capability for huge-scale mobility methods, SUMO also
includes an intuitive user interface that is compatible with

a variety of data forms. There is widespread recognition
for the extensive features that SUMO possesses, and it has
become an essential component in simulation initiatives.
In addition, LGSVL Simulator [165] is an open-source gem
for SDV developers. This high-fidelity simulator creates
realistic environments to test SDV algorithms. It integrates
with popular frameworks like Autoware [166] and Apollo
[167], saving you time on code setup. LGSVL doesn’t stop
there - you can customize sensors, design new objects,
and even build digital replicas of real-world roads. With
its focus on realism and ease of use, LGSVL Simulator
integrated with [166] or [167] is a high powerful tool for
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TABLE 10. Summary of various sumulation and deployment frameworks.

working on the future of SDV development in real-world
environment.

Additionally, CARLA [168] is a crucial tool for ego-
vehicle Self-driving. It’s an open-source simulator focused
on urban scenarios, facilitating development, training, and
validation of core SDV components. With its realistic
virtual environment, developers can test algorithms under
various conditions. Its open-source nature fosters col-
laboration and innovation, accelerating progress in SDV
technologies.

Further, TORCS [169] and rFpro [170] are leading
simulators for multi-vehicle interaction studies. With 50+
vehicle models and 20+ tracks, they offer rich environments
for research. Their ability to simulate races with up to
50 vehicles simultaneously provides invaluable insights
into scalability and behaviour. Specially [169] Open-source
nature fosters collaboration and customization, advancing
research in SDVs.

Furthermore, AirSim [171] is a high-fidelity simulator
developed by Microsoft for aerial and ground vehicles.
It offers realistic environments, sensor simulation, physics-
based dynamics, and open-source customization. AirSim
[171], [164] enables developers to test and validate SDVs,
accelerating research in robotics and artificial intelligence.

The summary of various simulation and deployment frame-
work for SDV shown in table 10.

V. PERFORMANCE EVALUATION ANALYSIS OF
DL- BASED MOTION PLANNING AND E2EL
TECHNIQUE FOR SDVs
This section compares the effectiveness of several DL
techniques for tasks that are related to the motion planning of
SDVs. This section is separated into four parts that deal with
various DL-based behaviour planning, DL-based trajectory
planning, DL-based E2EL and types of implementation
strategies. Performance assessments in behaviour planning
are evaluated based on commonly employed measures
such as prediction accuracy, Recall, Precision and F1-
Score. Performance assessments in trajectory planning are
compared using commonly employed metrics, such as the
Average Distance Error (ADE), Final Distance Error (FDE),
Root Mean Square Error (RMSE) and Mean Absolute
Error (MAE) concerning the common horizon forecast time.
Additionally, performance assessments in the DL-based
E2EL are compared using commonly employed metrics
Success Rate (SR) and RMSE. Further compared and
analysed different types of implementation techniques. In this
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section, we utilized many equations which are adopted from
[20], [34], [43], and [53].

A. PEFORMANCE EVALUATION ANALYSIS OF BEHAVIOUR
PLANNING METHODS
A key step in assessing the success of machine learning
models is to evaluate their performance according to
behaviour prediction accuracy, Precision, Recall and F1-
Score. These metrics are employed to assess how well a
model predicts a system’s behaviour. Firstly, a model’s ability
to accurately anticipate a system’s behaviour is measured
by its behaviour prediction accuracy. It is defined as the
proportion of accurately predicted outcomes to all forecasts.
The formula for behaviour prediction accuracy is referred
in (1).

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(1)

where TP stands for ‘‘True Positive’’ (the number of correctly
predicted positive outcomes), TN for ‘‘True Negative’’(the
number of correctly predicted negative outcomes), FP for
‘‘False Positive’’(the number of incorrectly predicted positive
outcomes) and FN for ‘‘False Negative’’ (the number
of incorrectly predicted negative outcomes). For instance,
overall prediction accuracy is used to evaluate most behavior
prediction strategies. Different proposed models to predict
various behaviour of SDVs discussed in Section II-A. Based
on the various aforementioned model results we compared
various DL-based Techniques for behaviour prediction and
their corresponding performance accuracy is shown in
Figure 13.

FIGURE 13. Comparison of various behaviour planning algorithm’s
accuracy.

The various discussed model accuracies are in the range of
80 % to 100 %. We considered the range of accuracy from
95% to 100%, 85% to 95% and 80% to 85% as excellent,
moderate and least performance respectively. Excellently
performed algorithms for a SDV in behavior prediction are
AT_Mbi_LSTM [26], LSTM_CRF [31], LSTM [28] and
LSTM_GRU [29] achieved higher accuracy of 98.01%, 98%,

97.22% and 96% respectively. Further AT_BiLSTM [33],
FIS_LSTM [24], DBRNN [32], SNN [23] and DRNN [35]
models achieved a moderate behaviour prediction accuracy
of 93.33%, 92.4%, 88%, 87.89% and 87% respectively. Then,
the least performing algorithms for a SDV for behaviour
prediction are AT_GRU [34] and Multi_LSTM [27] achieved
lower accuracy of 84.5% and 83.75% respectively. Hence,
we observed the top most and least most performance
accuracy among the early discussed algorithms for behaviour
prediction of SDVs are achieved by AT_Mbi_LSTM [26] and
Multi_LSTM [27] respectively. Overall, the selection of a DL
algorithm for SDV behaviour prediction should be based on
its accuracy and suitability for handling the specific driving
scenarios encountered.

To provide a more accurate assessment of a model’s
performance, the F1-Score statistic combines precision and
recall. It refers to the harmonic average of recall and
precision. Refer (2) to calculate F1- Score.

F1 − Score = 2
PrecisionRecall
Precision+ Recall

(2)

F1- Scores of various discussed models are in the range
of 80% to 100%. The different discussed models such as
LSTM_CRF [31], AT_Mbi_LSTM [26], LSTM_GRU [29],
AT_BiLSTM [33], Bi_LSTM [30] and AT_GRU [34] has
Achieved F1- scores are 98.9%, 96.18%, 96%, 93%, 91.76%
and 84.33% respectively. Hence, we observed top most
and least most F1- scores among the early discussed
algorithms for behaviour prediction of SDVs are achieved by
LSTM_CRF [31] and AT_GRU [34] respectively. Hence, this
comparison provides valuable insights into the performance
of these algorithms and helps optimize the performance of
SDVs for safety and reliability.

Next, the percentage of genuine positives among all
correctly predicted positive outcomes is known as precision.
In other words, it is the proportion of genuine positives to the
total of both true and false positives. Equation 3 represents
the precision formula.

Precision =
TP

TP+ FP
(3)

The different discussed models such as LSTM_CRF [31]
[32], LSTM_GRU [29], [30], AT_Mbi_LSTM [26],
[27], AT_BiLSTM [33], [34], Bi_LSTM [30], [31]
and AT_GRU [34], [35] achieved precision are 99.5%,
96%, 94.47%, 94.17%, 86.67% and 85.07% respectively.
We observed top most and least most precision among the
early discussed algorithms for behaviour prediction of SDVs
are achieved by LSTM_CRF [31], [32] and AT_GRU [34],
[35] respectively.

Finally, the percentage of true positives that are actual
genuine positives is known as recall. In other words, it is the
proportion of genuine positives to the total of true positives
and false negatives. Refer (4) to calculate the recall.

Recall =
TP

TP + FN
(4)
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FIGURE 14. Comparison of various behaviour planning algorithms F1-
Score, precision and recall.

The different discussed models such as LSTM_CRF [31],
AT_Mbi_LSTM [26], Bi_LSTM [30], LSTM_GRU [29],
AT_BiLSTM [33] and AT_GRU [34] has achieved recall
percentages are 99.5%, 96%, 94.47%, 94.17%, 86.67% and
85.07% respectively. we observed top most and least most
recall among the early discussed algorithms for behaviour
prediction of SDVs are achieved by LSTM_CRF [31]
and AT_GRU [34] respectively. These metrics provide a
comprehensive evaluation of a model’s performance in
predicting the behaviour of a system. A comparison of
various behaviour planning algorithms metrics Precision,
Recall and F1- Score is shown in Figure 14.

B. PERFORMANCE EVALUATION ANALYSIS OF
TRAJECTORY PLANNING METHODS
Measuring the efficiency of DL approaches for forecasting
the trajectory of SDV requires performance evaluation
criteria. These measures evaluate how well the model
forecasts the vehicle’s position in the future based on its
previous positions and movements. This section compares
and analyses the four most often used performance evaluation
metrics: MAE, FDE, ADE and RMSE. These metrics are
represented in the unit of meter. Lower values for these
metrics indicate better performance, and the criteria for each
application will determine the appropriate metric.

To calculate the average deviation for each time step in
the projected trajectory, the ADE compares the expected
positions to the actual positions. The expression for ADE is
referred in (5)

ADE =
1
N

∑N

i=0
||Pi− Pi∗|| (5)

where N stands for the anticipated trajectory’s number of time
steps, Pi represents the vehicle’s predicted position at time
step i, and Pi∗ denotes the equivalent ground truth position.

Previously discussedDL algorithms for trajectory planning
metrics ADE and FDE are compared in Figure 15. We con-
sidered prediction horizon 3s and 5s as a common factor to

compare ADE and FDE among different DL-based trajectory
planning for SDVs respectively. Previously discussed algo-
rithms SafePathNet [37], P-LSTM-M-map [42], improved
LaneGCN [45], Improved CNN [39] and U net (6 layers) [43]
have achieved ADE values are 0.22, 0.51, 0.51, 0.565 and
0.6 in meter respectively.

The FDE calculates the separation between the vehicle’s
anticipated final location and its actual final position using
ground truth data. The formula for FDE is referred in (6)

FDE = ||PN − PN ∗
|| (6)

where PN∗ denotes the relevant ground truth final position
and PN represents the vehicle’s anticipated ultimate position.
Previously discussed algorithms SafePathNet [37], U net (6
layers) [43], improved LaneGCN [45], P-LSTM-M-map [42]
and Improved CNN [39] have achieved FDE values are
0.31, 0.795, 0.804, 0.996 and 1.03 in meter respectively.
We observed that SafePathNet [37] ADE and FDE values are
very less and better performance when compared with other
models.

FIGURE 15. Comparison of various trajectory planning algorithms ADE
and FDE values.

The average absolute difference between the anticipated
positions and the ground truth positions for each time step in
the expected trajectory is measured by theMAE. The formula
for MAE is referred to in (7).

MAE =
1
N

∑N

i=0
||Yi−Yi∗|| (7)

where Yi is the anticipated position of the vehicle at time
step i, Yi∗ is the equivalent ground truth position, and N
is the number of time steps in the predicted trajectory.
Previously discussed models CNN_Raw-RNN [38], Four
layer LSTM [40] and U net (6 layer) [43] have achieved
MAE values are 0.113, 0.29 and 0.38 in meters respectively.
We observed that CNN_Raw-RNN [38] has a lessMAE value
when compared with other models which indicate that it
better performed. Comparison of various trajectory planning
algorithms MAE values are shown in Figure 16.

For each time step in the expected trajectory, the RMSE
calculates the difference between the predicted positions and
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FIGURE 16. Comparison of various trajectory planning algorithms MAE
values.

the actual positions. The formula for RMSE is expressed in
Equation 8

RMSE =

√
1
N

∑N

i=0
(Pi− Pi∗)∧2 (8)

Some of the previously discussed models U net (6
layer) [43], AT_CNN_LSTM [41], NeuroTrajectory [50] and
PF_CNN_LSTM [44] have achieved RMSE values are 1.23,
1.91, 2.09, and 4.26 in meter respectively. We observed that
U net (6 layer) [43] has a less RMSE value when compared
with other models. Comparison of various trajectory planning
algorithms RMSE values are shown in Figure 17.

FIGURE 17. Comparison of various trajectory planning algorithms RMSE
values.

Hence, the effectiveness of DL models for trajectory
prediction of SDV is thoroughly compared and analyzed
using ADE, FDE, MAE, and RMSE. These measurements
support evaluating how well the model forecasts the vehicle’s
future assignments and how well it works in various traffic
situations, such as in congested areas or inclement weather.
Lower values for these metrics indicate better performance

and the particular requirements of the application will
determine which metric is best.

C. PERFORMANCE EVALUATION ANALYSIS OF
END-TO-END LEARNING METHODS
Metrics for performance evaluation are necessary to assess
the efficacy of E2EL approaches for SDV. These measures
evaluate how well the model predicts several aspects of
driving, including steering angle, acceleration, and braking.
In this context, this section compares and analyses Success
Rate (SR) and RMSE, two widely used performance
measurement metrics. The success Rate (SR)of an E2EL
model for SDV is by evaluating its performance on a set of
predefined tasks, including lane detection, object detection,
and path planning. The success rate can be computed as the
percentage of tasks completed correctly by the model.

Various discussed model Success Rate (SR) of E2EL
for SDVs are Compared in Figure 18. It clearly shows
that Modified Pointnet++ [69], MSF_SU [68], IVMP [67],
Intention net [80] and Conditional Imitation Learning (CIL)
[81] scored success rate is 93.6%, 91%, 88.67%, 75.28% and
60.72% respectively.We observed that Modified Pointnet++

[69] has achieved a high SR and CIL [81] achieved the
least SR.

FIGURE 18. Comparison of different E2EL success rate.

In machine learning, the RMSE is a popular evaluation
statistic for regression problems. RMSE can be used in the
context of SDVs to assess how well the model predicts
steering angles or other continuous variables. E2EL for SDV
entails teaching a DNN to directly output a control signal,
such as the steering angle, throttle, and brake, after receiving
input from sensors like cameras and lidar.

By contrasting its outputs with the ground truth data,
RMSE can be used to assess the network’s predictions’
accuracy. This statistic calculates how closely the actual
values match the projected values, with a lower RMSE
indicating better accuracy. By minimizing the RMSE loss
during training, the network can be optimized to make more
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FIGURE 19. Comparison of E2EL technique RMSE value.

accurate predictions, which is essential for safe and reliable
SDV.

Some of the previously discussedmodels of E2EL for SDV
Two CNN [65], MSINet t+4 [60], Time to Line Cross (TLC)
model [62], Deep Steering [82], HCA [83] and Cg23 [84] has
achieved RMSE values are 0.038, 0.0491, 0.06849, 0.07153,
0.11145 and 0.24679 in radian respectively. We observed that
Two CNN [65] has a less RMSE value when compared with
other models. A comparison of various E2EL algorithm’s
RMSE values is shown in Figure 19.

VI. IMPLEMENTATION ANALYSIS OF DL- BASED
MOTION PLANNING AND E2EL TECHNIQUE FOR SDVs
The advent of SDVs represents a transformative shift in trans-
portation, promising safer, more efficient, and convenient
mobility solutions. However, realizing the full potential of
self-driving requires effective implementation of sophisti-
cated motion planning algorithms. Implementation analysis
in this context involves assessing the practical deployment
of these algorithms to ensure safe and efficient navigation in
real-world environments. The outcomes of implementation
analysis in this domain provide critical insights for refining
motion planning algorithms, optimizing system performance,
and enhancing the safety and reliability of SDVs. By sys-
tematically evaluating the practical deployment of motion
planning algorithms, stakeholders can address challenges,
identify opportunities for improvement, and accelerate the
adoption of SDV technology.

Hence, we compared the way of implementation per-
centage between different categories of implementation.
We grouped implementations based on their type. Groping of
different reviewed papers depends on the above-mentioned
category shown in Figure 20. In behaviour planning there
are three types of implementations are identified, they are
Hardware in Loop Simulation (HIL Simulation), Simulation
with Numerical data Analysis (Simulation + NA) and
Simulation with Real World Implementation (Simulation
+ RWI). In trajectory planning there are three types of

implementations are identified, they are Simulation with
Numerical data Analysis (Simulation + NA), Simulation
with Numerical data Analysis with Real Time Implemen-
tation (Simulation + NA + RTI) and Simulation with
Numerical data Analysis with Real-world Implementation
(Simulation + NA + RWI). In E2EL there are three types
of implementations are identified, they are Simulation,
Simulation with Numerical data Analysis (Simulation+NA)
and Simulation with Real World Implementation
(Simulation + RWI).

A. COMPARISON ANALYSIS OF DIFFERENT TYPES OF
IMPLEMENTATIONS
In this section, we are comparing the several types
of implementations for behaviour planning, trajectory
planning, end to end planning and overall comparison
between simulation and real-world implementation shown
in Figure 4. From this survey, in behaviour planning three
types of implementation groups were categorised, they
are Simulation+NA, HIL Simulation and Simulation+RWI
calculated percentages are 46.16, 38.46 and 15.38 respec-
tively as shown in Figure 21(a). Besides this in trajectory
planning another three types of implementation groups are
categorised, they are Simulation+NA, Simulation+NA+RTI
and Simulation+NA+RWI calculated percentages are 40,
26.66 and 33.34 respectively as shown in Figure 21(b).
Besides this in E2EL, another three types of implementation
groups are categorised, they are Simulation, Simulation+NA
and Simulation+RWI calculated percentages are 38.89,
33.34 and 27.77 respectively as shown in Figure 21(c).
Hence, the overall implementation percentage shown in
Figure 21(d) which is compared between simulation and
real-world implementation has calculated percentages are
71.74 and 28.26 respectively. We observed that most of the
researcher implemented their work by software simulation
and a smaller number of researchers implemented their work
in the real world. Themain reason behind this implementation
in the real world needs more funds and a hardware approach
which is a big challenge for the researcher.

Further, there are some other reasons why the implemen-
tation of various research is high in simulation but low in
real-world implementation:

• Cost: It can be costly to conduct research in real-
world settings, particularly when it involves massive
experiments or intensive data collection. Simulations
are often less costly because they can be running on
computers and require fewer resources.

• Safety: Simulations can be used to evaluate hypotheses
and conduct experiments without putting people or the
environment at risk. This is crucial in the field of self-
driving since mistakes might have severe consequences.

• Control: In simulations, researchers have a high degree
of control over variables and conditions, which is often
not possible in real-world settings. This allows for
more precise and targeted experiments, leading to more
reliable results.
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FIGURE 20. Type of implementation.

• Time: Conducting research in real-world environments
can be time-consuming, especially when data collection
requires long-term observation or follow-up. Simula-
tions can be run faster, allowing researchers to evaluate
and refine their hypotheses more quickly.

• Accessibility: Simulations can be accessed by
researchers and scientists all over the world, making
collaboration and sharing of results easier. This can lead
to more diverse and robust research findings.

However, it is essential to remember that simulations don’t
always accurately reflect actual circumstances, and results
obtained in simulations may not necessarily translate to the
real world. Therefore, it is essential to validate simulation
results with real-world experiments whenever possible.

Hence, the proficiency and effectiveness of the aforemen-
tioned motion planning and E2EL strategies indicate numer-
ous difficulties. Although these approaches are relatively
expensive to compute, they demonstrate promising outcomes
for their intended task. Additionally, because they ignore
crucial factors like energy consumption or forecast delay,
mainstream approaches are only practical with cloud servers
and high-end GPUs, which is an unrealistic situation for real
application contexts. Further, we discuss several unresolved
problems and their corresponding recommendations in the
following section.

VII. CHALLENGES AND FUTURE RECOMMENDATIONS
SDVs have advanced significantly, with validation on
partially open roads in several cities. But there are
challenges to full commercial implementation. Challenges
include ensuring safety in diverse environments, navigating

regulatory frameworks, building public trust, and upgrading
infrastructure.

A. CHALLENGES
Here are some of the important challenges in SDV
development:

1) HANDLING THE LONG TAIL OF RARE EVENTS
SDVs have shown remarkable proficiency in handling routine
driving scenarios and well-maintained roads. However, the
real world presents a myriad of unpredictable challenges.
From sudden downpours to blowing debris, and even animals
darting into traffic, rare and unexpected events continue
to pose significant hurdles. While advancements in object
recognition have enhanced the capabilities of SDVs AI,
these uncommon occurrences can still befuddle the system.
Additionally, navigating edge cases and ambiguous situations
remains a formidable task. Traffic laws open to interpretation
and human drivers relying on intuition to handle scenarios
like unclear hand signals or merging lanes add layers of
complexity. Teaching SDVs to emulate human judgment in
such ambiguous circumstances remains an ongoing endeav-
our, underscoring the necessity for continued refinement and
adaptation in SDV technology.

2) DEPENDENCE ON HIGH-DEFINITION (HD) MAPS AND
INFRASTRUCTURE
Driving SDVs rely on detailed, constantly updated HD maps
to navigate. However, creating and maintaining these maps
for every road everywhere is a massive undertaking. Addi-
tionally, poorly marked lanes, construction zones, or missing
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FIGURE 21. Comparison of different types of implementation percentages among the survey papers. (a)Implementation percentage for
behaviour Planning. (b)Implementation percentage for trajectory planning. (c) Implementation percentage for E2EL. (d) Overall percentage
between simulation and Real-world Implementation. Simulation (Sim), Numerical Analysis (NA), Real-Time Implementation (RTI), Real World
Implementation (RWI).

signage can disrupt a SDV that relies too heavily on pre-
programmed information.

3) SENSOR LIMITATIONS AND ADVERSE WEATHER
SDVs uses a complex suite of sensors to perceive their
surroundings. However, these sensors can be fooled by
things like fog, heavy rain, or even bright sunlight. Recent
challenges include improving sensor performance in adverse
weather conditions and ensuring they can’t be easily confused
by external factors.

4) CYBERSECURITY THREATS
SDVs are essentially computers on wheels, and like any
computer system, they are vulnerable to hacking. Amalicious
actor could potentially take control of a SDV, causing
accidents or privacy breaches. Ensuring robust cybersecurity
measures are in place is crucial.

5) ETHICAL CONSIDERATIONS AND MORAL DILEMMAS
SDVs may someday face situations where an accident
is unescapable. How the SDV is programmed to react
in these ‘‘split-second’’ scenarios raises complex ethical
questions. Engineers are grappling with how to program
these vehicles to make the safest decisions possible, while
considering factors like pedestrian safety and minimizing
harm.

6) DATASET
High-quality datasets must be readily available in order to
train and evaluate SDV algorithms. Although simulators
are essential to this procedure, models that are exclusively
trained in virtual environments frequently encounter diffi-
culties when applied to real-world situations [172]. Thus,
to effectively develop research in this subject, bridging the
gap between simulated and realistic data is crucial.
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B. FUTURE RECOMMENDATIONS
Motion planning, the art of navigating a SDVS safely and
efficiently, is on the cusp of significant advancements. Here’s
some of the future recommendation in the field of motion
planning for SDVs.

1) INTERPRETABILITY: DEMYSTIFYING THE BLACK BOX
Currently, manyAImodels used formotion planning function
as ‘‘black boxes.’’ Their decision-making processes are
opaque, making it difficult to understand why a car took
a particular route or performed a specific maneuver. This
lack of transparency is a major hurdle for gaining public
trust and regulatory approval. The future of motion planning
lies in interpretable planning. This means developing
algorithms that can explain their reasoning in a way humans
can understand. Imagine a system that could highlight
factors like traffic flow, pedestrian presence, and signal
interpretations when making a decision. This transparency
will be crucial for building trust with regulators and
the public, paving the way for wider adoption of SDV
technology.

2) Sim2Real TRANSFER: BRIDGING THE SIMULATION GAP
A major challenge in developing SDV is the disparity
between the controlled environment of simulations and the
unpredictable nature of the real world [173], [174]. This
gap can lead to situations where the SDV struggles to
adapt its motion planning strategies when encountering
unexpected obstacles or variations in road conditions.
The future will see advancements in Sim2Real transfer.
This involves developing algorithms that can effectively
translate learnings from meticulously crafted simulations
to the real world. Imagine a virtual environment that can
realistically simulate not only ideal conditions but also
diverse weather patterns, construction zones, and even
erratic driver behavior. By training and validating motion
planning algorithms in these nuanced simulations, developers
can ensure a smoother and safer transition to real-world
deployment.

3) DIGITAL TWIN INTEGRATION: A VIRTUAL PLAYGROUND
FOR TESTING
virtual replicas of SDV and their environments will continue
to play a vital role in refining motion planning algorithms.
These virtual cities can be populated with millions of
meticulously crafted scenarios, allowing researcher to test
and refine the SDVs decision-making under a vast array
of conditions. Imagine a digital twin simulating a busy
intersection during rush hour with malfunctioning traffic
lights and a jaywalking pedestrian. By testing motion
planning algorithms in these complex situations, researcher
can identify potential weaknesses and refine the SDVs
ability to handle the unexpected, leading to a significant
improvement in overall safety and performance.

4) RELIABILITY: BUILDING CONFIDENCE ON THE
ENVIRONMENT
For SDVs to become a reliable mode of transportation, they
need to demonstrate exceptional reliability. Current motion
planning algorithms can sometimes struggle with unexpected
situations like sudden sensor failures or previously unseen
traffic patterns. The future will focus on developing highly
reliable motion planning algorithms. This involves incor-
porating strategies for graceful degradation and fail-safe
mechanisms. Imagine a SDV that can not only navigate
flawlessly under normal conditions but also has backup
plans or alternative routes in case of sensor malfunctions or
unforeseen circumstances. Additionally, algorithms will be
designed to continuously learn and adapt from real-world
experiences, further enhancing their reliability over time.

5) GOVERNANCE: ESTABLISHING THE RULES OF THE ROAD
With the rise of SDVs, a clear and comprehensive gover-
nance framework will be essential. These frameworks will
define how SDVs interact with human-driven vehicles and
pedestrians, ensuring order and predictability on the roads.
Imagine a set of regulations that govern communication
protocols between SDVs, establish right-of-way rules in
complex situations, and clearly define liability in case of
accidents. Developing robust governance frameworks will be
a collaborative effort between policymakers, developer, and
industry leaders, fostering a safe and efficient transportation
ecosystem.

VIII. CONCLUSION
This review paper provides an extensive overview of
innovative models in DL based motion planning and E2EL
technologies within the field of SDV) It covers various per-
formance metrics and challenges encountered in SDVs devel-
opment. The primary approaches discussed include behavior
planning, trajectory planning, and E2E learning (Imitation
Learning and Reinforcement Learning). Each approach’s
state-of-the-art model is presented and compared. The survey
also highlights the importance of practical enablers such
as datasets and simulation deployment frameworks, along
with their comparisons and reviews. Additionally, the survey
offers insights into the implementation of state-of-the-art
techniques and compares common performance metrics
across behaviour planning, trajectory planning, and E2E
learning for SDV. It analyses the distribution of different
implementation types among reviewed papers. Furthermore,
the survey identifies ongoing challenges in the development
of SDV for real-world environment and provides future
recommendations for addressing these challenges.
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