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ABSTRACT Machine vision systemswith programmed text detection and text recognition features are useful
in manufacturing process to automatically locate and read text markings on mounted printed circuit board
(PCB) components. To better handle input imageswith varying image quality, text quality, and text variations,
the robustness of deep learning approach for end-to-end text spotting on PCB component images is worth
exploring. However, limitations of public PCB component datasets for such research and imbalance of data
in actual collected PCB component datasets hinder the training of deep learning text spotting model, and
consequently necessitate the generation of synthetic data. In this study, a synthetic PCB component dataset
is generated using our synthetic data generator that adds synthetic text with random character sequences on
manually edited PCB component images to elevate the realism of the synthetic images. The synthetic dataset
covers 66 character classes while providing synthetic text with diverse text variations in font, style, size, and
color. We train an existing text spotting model called Text Perceptron using both real and synthetic datasets
to detect and recognize arbitrary-shaped text markings on PCB components. Our synthetic PCB component
dataset has improved the text spotting performance of Text Perceptron. The trainedmodel achieves promising
text detection result and encouraging end-to-end text spotting F-score on real PCB component images. It also
meets an acceptable average inference time per image. Still, the text spotting performance of the trained
model needs improvement to realize deployment for PCB component inspection.

INDEX TERMS Deep learning, printed circuit board component, synthetic data, text spotting.

I. INTRODUCTION
Throughout the assembly of electronic components on
printed circuit boards (PCBs), various inspections and tests
have to be carried out to ensure that the final assembled
PCBs are of high quality and free from PCB failure. Common
visual inspection of PCBs and the components requires
machine vision systems like automated optical inspection
(AOI) machines which screen for failures or defects such
as missing components, shifted components, poor soldering,
and so on. Only good PCBs flow to subsequent stages, while
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rejected ones require a rework. Some AOI machines are
programmed with text detection and text recognition features
to automatically locate and read text markings on the surface
of PCB components as shown in Fig. 1. Indeed, these features
support not only inspection of PCBs but also recording of
useful information (e.g., region of text marking and part
number) into the system.

Ideally, PCB component images as text detection and text
recognition input are of good image quality and text quality
for correct detection and recognition outputs, which can be
stored as data or compared with references retrieved from
the system for inspection. Nonetheless, their image quality
is often affected by factors like noise, sharpness, or reflective
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FIGURE 1. Performing text spotting on a PCB component image returns
the detected region of interest that contains a text marking (Green box)
and the recognized character sequence ‘‘2R2’’ (Green text).

surface of PCB components as shown in Fig. 2; plus, the text
markings on PCB components that have no strict standards on
printing method, layout, and font settings could be defective
as shown in Fig. 3. For example, blurry markings have
no clear edges whereas faded markings have low contrast
with the background. Poor image quality and text quality
in addition to text variations have made it more challenging
for AOI machines to correctly detect and recognize printed
text markings on PCB components. As a result, false failures
made by AOI machines may increase, at the same time,
it forces manual checking on the input image and the output
character sequence to reduce the number of misjudgments.
The worst case is when the text markings are unrecognizable
even by human operators. For open-source OCR engines
that are not designed for PCB component images, [1] shows
that they may struggle to read small text markings on
components. Hence, a more reliable text spotting solution is
expected to support the management of PCB components in
manufacturing.

Together with the advent of artificial intelligence, text
spotting research remains active with more challenging text
images to achieve accuracy like optical character recognition
(OCR) for documents. It will be advantageous if such text
spotting solutions can be applied to PCB component images;
however, many research [2], [3], [4], [5], [6], [7], [8], [9]
use scene text images [10], [11], [12], [13], [14], [15] but
not PCB component images [16] for end-to-end text spotting
task. One reason is that the former can be easily obtained from
public datasets, whereas the latter requires permissions from
factories regarding image data collection for confidentiality
purposes. Nevertheless, PCB component images that come
from the same site usually contain highly duplicated text
markings and the number of samples in each character
class may be imbalanced [17], [18], [19], [20]. Additionally,
accessible PCB datasets that provide information for text
markings on PCB components [21], [22], [23], [24] usually
need data preprocessing such as removing human mistakes
from the ground truth text annotations. These PCB datasets
differ from scene text datasets in that the latter can be used
directly for model training and as a benchmark for evaluation.
Although the dataset in [16] can be used for text spotting

research, the majority of its samples are defective characters
that are targeted for character-level aesthetic assessment task.
In other words, it is laborious to gather PCB component
images that meet both diversity and quantity requirements
to train a deep learning model for text spotting on PCB
component images.

Instead of relying entirely on real data, synthetic data
can be created to support the development of text spotting
methods for PCB component images. There are some
limitations of existing methods in generating synthetic PCB
component data, for example, generating synthetic images by
solely applying data augmentation methods on actual PCB
component images is ineffective for character classes that
have not collected any sample [18]. A large dataset could be
obtained by creating fully-synthetic text images [17], [18],
[19]; however, these synthetic images do not consider the
actual backgrounds of PCB components during data genera-
tion. Although the work in [20] generates partially-synthetic
images by replacing actual PCB component characters with
synthetic characters, the synthetic images are less ‘‘real’’
due to the edited regions that can be easily identified by
human eyes. Furthermore, excluding lowercase alphabets and
symbols during synthetic text generation is less sensible. The
character classes of synthetic text typically include digits
and uppercase alphabets, with no symbols [17], [18], [19],
[20], while lowercase alphabets are either omitted [19] or
selectively disregarded [17], [18].

Hence, we present a synthetic data generation method to
facilitate the training of text spotter for PCB component
images. The contributions of this paper are as follows
compared to the existing literature:

• We propose a practical synthetic PCB component data
generation method for supporting the training of a deep
learning text spotting model. It is a viable approach to
generate a sufficient amount of synthetic images from a
small set of real PCB component images.

• Our proposed method generates verisimilar synthetic
text data that cover 66 character classes for 10 digits,
52 Latin alphabets, and 4 symbols (period, underscore,
slash, and dash) to ensure the deep learning model
generalizes well on unseen data.

• The synthetic data generator is capable of generating
synthetic text data with diverse characteristics based
on 42 fonts in 4 styles with different sizes and
colors. This flexibility ensures that the synthetic dataset
encompasses a wide range of text variations.

• To elevate the realism of the synthetic data, the proposed
method leverages real PCB component images to create
a more realistic and representative dataset.

• To evaluate the performance of the proposed method,
we conduct the experiments using real-world PCB
images collected from an actual production line and
an existing Text Perceptron deep learning text spotting
model [2]. The synthetic PCB component dataset
has improved the end-to-end text spotting F-score of
Text Perceptron. Generally, the trained Text Perceptron
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FIGURE 2. Actual PCB component images. (a) A well-focused PCB component image. (b) Reflection or uneven illumination on component
surface. (c) Image with noise. (d) Lens flare or spot. (e) Low image sharpness. Images are cropped and brightness is adjusted for better
visualization.

FIGURE 3. Actual PCB component text markings. (a) Clear marking.
(b) Blurry marking. (c) Damaged marking. (d) Unrecognizable uppercase
alphabet ‘‘W’’ (Red box) that is judged based on its neighboring
characters. (e) Faded marking (Red box). (f) Missing character (Red box).
(g) Broken character (Red box). Another type of text marking defect that
is not included in this figure is the wrong character printed on a PCB
component. Images are cropped and brightness is adjusted for better
visualization.

shows promising text detection performance on PCB
component images. Its text spotting results on real test
data are encouraging and have room for improvement
for synthetic images while meeting acceptable average
inference time per image. The results also show that the
text spotting model has the potential for inspection on
PCB component images.

The remainder of this paper is structured as follows:
Section II reviews previous methods related to the work in
this paper; Section III describes the generation of synthetic
PCB component data and the overview of Text Perceptron for
text spotting on PCB component images; Section IV reports
the experiments on text spotting followed by discussion
on experiment results and comparison with state-of-the-art
methods; and Section V concludes the paper and suggests
potential improvements for future research.

II. RELATED WORK
This section briefly describes existing methods that generate
synthetic PCB component data for deep learning model
training. Then, it includes related work on text detection
and recognition for PCB component images together with
some existing scene text spotting models. A text detection

task is to locate all text regions in a text image; a text
recognition task is to transcribe a text image into character
sequence; and a text spotting task accepts a text image and
outputs the position of each detected text instance along with
its corresponding character sequence via an end-to-end text
detection and recognition model.

A. METHODS OF GENERATING SYNTHETIC DATA
PCB inspection tasks such as defect detection [25] or
component classification [26] usually have more public PCB
datasets that can be used for training or as a standard
to compare different methods. Among the available PCB
datasets, a few of them provide information for text
markings on PCB components [16], [21], [22], [23], [24],
as described in Table. 1. A common limitation of [21],
[22], [23], and [24] is the need for data cleaning before
feeding the text data for model training, particularly due
to unstandardized annotation format or human mistakes
in the ground truth text annotations, whereas the majority
of samples in [16] are defective character samples that
are targeted for character-level aesthetic assessment task.
Alternatively, PCB component images can be collected from
actual production lines; however, data that come from the
same site usually have imbalanced distributions within a
character class and between character classes [17], [18],
[19], [20]. The former happens when a character class
highly contains samples with similar structure, whereas the
latter means that some characters appear very frequently
while other character classes may have little or no samples
at all. To introduce diversity in the dataset, the collected
PCB component character images in [18] are augmented in
four ways: 1) color reversal; 2) random rotation between
+5 and −5 degrees; 3) image resizing (32 × 32 pixels);
and 4) random Gaussian noise. Still, data augmentation
methods are rendered useless for character classes that are
underrepresented in the training set, and this can hinder the
deep learning model’s ability to learn and generalize well on
the minority classes.

A more practical approach involves the generation of
synthetic images. Synthetic character images with random
colors for text and background are generated in [17]
and [18] based on empirically-defined color tones that the
authors claim to be frequently used on actual PCBs. First,
a generated image with black character and white background
is converted from RGB (red, green, blue) to HSV (hue,
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TABLE 1. Description of accessible PCB datasets with text information.

saturation, value) color model, and then, each pixel is set
with random values of H (hue), S (saturation), and V (value)
within their predefined ranges for text and background
pixels respectively. Before saving the character image, it is
converted back to RGB and the four sides are cropped to be
close to the character. Additionally, some of the synthetic
images in [18] are applied with random noise. Due to
character-level classification tasks in [17] and [18], uppercase
and lowercase alphabets with similar shapes but different in
size, e.g., ‘V’ and ‘v’ have to be combined into one class,
in which the lowercase ones are ignored during the generation
of synthetic images. As a result, only 10 digits, 26 uppercase
alphabets, and 16 lowercase alphabets are included in the
character classes.

Unlike synthetic RGB character images in [17] and [18],
8-bit grayscale synthetic text string images are generated
in [19] to train a word-level text recognizer for PCB
components. Each synthetic image with height and width of
32 and 128 pixels respectively, contains a synthetic text with
two to eight digits or uppercase alphabets using one of the
seven selected fonts that the author states to be commonly
found on PCB components. The generated background pixels
have random values between 50 and 150, whereas the text
pixels are brighter than the background by a value of 40.
Random data augmentation methods such as speckle noise,
rotation, horizontal/vertical scaling, and image shearing are

applied to the synthetic images. To ensure the synthetic
images follow fixed height and width, the remaining regions,
if any, are filled with black pixels. The steps to create
fully-synthetic text images are straightforward; nevertheless,
these images do not consider the actual PCB component
background during the generation of synthetic images.

In the Robust Reading Challenge on Integrated Circuit
Text Spotting and Aesthetic Assessment (RRC-ICText)
2021 competition, actual PCB component images with vary-
ing component structures, text orientations, image quality,
and text quality are gathered as a private dataset called ICText,
whereby the training images and annotations are released to
the participants for model training [16]. The leading team that
proposed the YOLOv5s-based text spotting model [20] has
generated partially-synthetic images to balance the training
samples for lowercase alphabets in ICText which are much
less than that for uppercase alphabets. The original printed
characters of the sampled ICText images are replaced with
three types of synthetic characters: 1) white color lowercase
alphabets in Windows fonts; 2) colorful lowercase alphabets
in Windows fonts; and 3) lowercase alphabets generated
using text style transfer method in [27]. Nonetheless, after
removing the original printed characters and overlaying the
synthetic characters, the resulting partially-synthetic PCB
component images in [20] appear less realistic due to
noticeable edited regions.
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Based on the previous works, it can be concluded that
data augmentation methods alone are not able to resolve
the problem of an imbalanced dataset, especially if there
are character classes with very minimal or absolutely zero
samples. While fully-synthetic text images are quantitatively
beneficial to model training, the generation of synthetic
data does not incorporate actual background information on
PCB components. Yet, partially-synthetic PCB component
images with clearly visible edited regions will reduce their
resemblance to real PCB component images. It is also
impractical to exclude lowercase alphabets and symbols from
synthetic text generation merely because of their relatively
low occurrence count in actual PCB component markings.

Thus, in this study, a synthetic PCB component data
generation method is proposed. It can generate synthetic text
data that cover a total of 66 character classes, including
10 digits, 52 Latin alphabets, and 4 symbols (period,
underscore, slash, and dash) for the deep learning model to
generalize well on unseen data. It is also flexible in generating
synthetic text data with diverse text variations in terms of
font, style, size, and color. Moreover, the proposed method
creates a more realistic synthetic dataset by leveraging real
PCB component images, which are collected from an actual
production line and grouped by part number. We generate
the synthetic PCB component dataset through: 1) random
sampling on real images from each image group; 2) manual
removal of original PCB component markings on sampled
images; 3) manual labeling of valid synthetic text region
for edited images; and 4) generation of synthetic text with
random character sequence, synthetic images, and ground
truth annotations using our synthetic data generator. Since
real PCB component text markings do not follow a specific
lexicon, each synthetic imagemay have one or more synthetic
texts with random character sequences.

B. TEXT SPOTTING MODELS
Unlike scene text spotting, the detection and recognition
of PCB component text markings may involve various
customized intermediate steps. In [1], a combination of
image filters and binarization methods is used to improve
the character recognition accuracy of Tesseract OCR [28] for
PCB components with light-colored text and dark-colored
backgrounds. However, finding a universal set of image
preprocessing steps for actual PCB components andmarkings
that have various colors is a nontrivial problem. A conven-
tional way to locate the positions of component markings is
by calculating the project profile of the component image
which is converted to binary or grayscale [29]. In [30], the
region that only contains the componentmarkings is specified
in the inspection system. Then, the row-sum of text (e.g.,
white) pixels are counted to determine the horizontal lines
that separate a marking from the background or between rows
of markings, in which the obtained line-level markings are
considered as the detected text region. If there is more noise
in the input component images, these methods are likely to
fail in locating the correct regions of markings. In addition,

FIGURE 4. Text markings (Green box) and non-text markings (Yellow box)
that are printed on a PCB component.

these image processing techniques are unable to distinguish
between text and non-text markings. A proper text detection
result should only include text while excluding other non-text
markings as shown in Fig. 4.
For character-level text recognition, image processing

techniques such as projection profile [29], counting the
column-sum of text (e.g., white) pixels [30], and text contour
border detection adopted from Suzuki’s border-following
algorithm [31] are used to segment PCB component text
markings into individual characters before the character
recognition stage. Yet, these methods are ineffective in
segmenting a character that is not well-connected or multiple
characters that are close to one another. Customized algo-
rithms usingmorphological operations are needed to combine
a fractured character or to segment joined characters [31].
Also, in [17] and [18], programmed inspection software
may segment printed characters on PCB components but
manual corrections are often needed, especially for fonts
that have short distances in between characters. After getting
the segmented character images, a straightforward character
recognition method is by matching each of them with the
stored patterns and checking for the degree of mismatch
according to a selected threshold [29]. Another way is to
apply feature extraction methods like projection profile,
zoning, moments, and contour profile on the segmented char-
acters to classify them into different character classes [30].
Since neural network character classifiers are more robust to
variations of text such as font, style, and size, various neural
networks are used to recognize segmented characters on
PCB components, including themodified LeNet [31], ResNet
and EfficientNet family [17], [18], and ShuffleNetV2 [32].
In [19], character segmentation is discarded, as opposed to the
previous works mentioned above which recognize markings
at character level. The author has adopted an LPRNet
to perform word-level text recognition, in which RNN is
excluded from the network to speed up the inference [19].

Instead of using separated text detection and text recog-
nition methods, a related work that involves text spotting on
PCB component images is the RRC-ICText 2021 competi-
tion [16]. Since it is proposed to seek better solutions for
quality inspection on each printed character, the text spotting
task is being treated as an object detection task that uses
COCO evaluation protocol for 62 character classes (10 digits
and 52 Latin alphabets). Among the participating models
for the text spotting task, a YOLOv5s-based model [20]
is reported as the leading solution. Nevertheless, the text
spotting mAP score for every participating team still has a
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huge room for improvement. For example, multi-oriented
characters and defective characters are the common chal-
lenges for all the participating text spotting models [16].

It is valuable to study existing text spotting models to
perform text spotting on PCB component images, based
on their reported performance on scene text benchmark
datasets [10], [11], [12], [13], [14], [15], [33], [34], [35], [36].
Earlier text spotters with cascaded, separately-trained text
detection model and text recognition model are sometimes
known as two-step text spotters [37], [38], [39], [40]. To avoid
the accumulation of errors between these cascaded models
and, at the same time, to realize the regularization of text
detection using text recognition output, and vice versa, end-
to-end trainable text spotting models are proposed. There are
mainly two groups of end-to-end trainable deep learning text
spotting models: 1) two-staged text spotter, and 2) one-staged
text spotter. Generally, two-staged text spotters sequentially
detect and recognize text in an image [2], [3], [4], [5], [41],
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52],
[53], [54]. Various tailored modules are proposed to connect
the text detection and text recognition modules for end-
to-end model training, such as ROI Align [3], [43], [47],
ROIRotate [46], ROISlide [48], and BezierAlign [4], [51].
On the other hand, one-stage text spotters simultaneously
predict text region and character sequence in an image [6],
[7], [8], [9], [55], [56], [57]. These kinds of models remove
customized ROI operations that usually require experts with
prior knowledge for the design of modules; however, they
may produce inaccurate text detection result that leads to
the failure of subsequent text recognition [55]. Furthermore,
existing deep learning two-staged and one-staged text
spotting models may use different representations to indicate
a text region, including axis-aligned horizontal rectangle [42],
[49], [55], oriented rectangle or quadrangle [6], [41], [44],
[45], [46], [48], [55], polygon [2], [3], [6], [7], [9], [43],
[47], [49], [52], point form [5], [50], and [57], parameterized
Bezier curve [4], [51], [54], kernel form [53], as well as
grid row and column with rough text locations [8]. While
most of these text spotters are capable of handling word-
level text [2], [7], [8], [9], [44], [45], [46], [47], [50], [52],
[55], [56] or line-level text [4], [5], [48], [49], [51], [53],
[54], [57], there are a few text spotting models that operate
at character level [6], [43]. To improve the prediction of
character sequence, CTC [41], [46], [48], [51] and attention
mechanisms [2], [3], [4], [8], [44], [47], [49], [50], [52],
[53], [54] including 1D-attention [42] and designed 2D-
attention [55] are popular approaches in designing a deep
learning text spotting model.

In this paper, Text Perceptron [2] is chosen as the text
spotting model for PCB component images. An end-to-end
trainable deep learning text spotter is beneficial to our model
training on PCB component datasets compared to a two-step
deep learning text spotter with cascaded text detector and
text recognizer that need separate training. This is because
mutual optimization of text detector and text recognizer is
possible for the former. One-staged text spotters that discard

ROI operations may lead to failure in text spotting due to
inaccurate text detection results; hence, a two-staged text
spotter is preferred to a one-staged text spotter. Since PCB
component text markings do not follow any lexicon or vocab-
ulary, a text spotter that involves language model in model
training is ill-suited for our text spotting task. To reduce
labeling cost, text spotters that require character-level training
data are not considered. Text spotters that only detect and
recognize text lines are excluded as well. The reason is that
the predicted PCB component text markings at line level may
group text of interest and irrelevant text as one text instance,
which requires postprocessing to correctly extract the desired
output. Therefore, text spotters that operate on word-level
text instances are more manageable for this study. In terms
of bounding box representation for text instances, we follow
polygonal ones as in [2] that can handle text markings with
arbitrary shapes.

III. METHODOLOGY
This section describes the real PCB component dataset and
explains the rationale behind the generation of synthetic PCB
component dataset, followed by the steps to generate the
synthetic dataset using our synthetic data generator. Then,
we briefly describe Text Perceptron [2] to be trained and
experimented on PCB component images.

A. GENERATION OF SYNTHETIC DATA
Before we generate the synthetic dataset, we prepare the
real PCB component dataset by collecting PCB component
images from an actual production line, followed by the
grouping of images based on their part number and labeling
of images for all image groups as shown in Fig. 5. The
ground truth annotations record the text marking regions
and text transcriptions for all the text markings on PCB
components at word level. At this stage, we use a horizontal
rectangular bounding box to represent the region of a text
marking on PCB component. Defective text markings that
are unrecognizable by human eyes are labeled with the ‘$’
symbol to be ignored from model training and evaluation
of Text Perceptron [2]. Since this study focuses on text
information on PCB components, we annotate text logos as
they carry information about the components’ manufacturers,
whereas aesthetic text logos are excluded as they usually
differ from the normal structure of characters. Also, logo
recognition is excluded from the scope of this study. This
is to avoid making assumptions about non-text logos with
unknown manufacturers during labeling.

After getting all the annotations, we convert the rectangular
bounding box annotations to polygonal form that is used
in [2]. Based on the width, height, and top-left coordinates
of a rectangular bounding box, its corresponding polygonal
bounding box with four pairs of (x, y) coordinates which
represent the top-left, top-right, bottom-right, and bottom-left
corners respectively, can be easily computed as shown in
Fig. 5. This method is practicable in this paper because
the text markings in our real dataset are mainly horizontal
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FIGURE 5. Preparation process for real PCB component dataset and synthetic PCB component dataset. T, C, and N represent the number of synthetic text
per image, the length of a synthetic text, and the number of synthetic images to be generated respectively.
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text without overlapping of text instances; therefore, we can
treat the rectangle bounding box as a polygon that has four
points. Although the small number of slightly-oriented text
markings may include some background in the bounding
boxes, they will not cause the text spotting model to
fail right away. Hence, we can utilize Text Perceptron to
detect and recognize arbitrary-shaped text markings without
going through strenuous and costly labeling work to obtain
tight polygonal bounding boxes for text markings on PCB
components. The text transcriptions for recognizable text
markings are kept the same, whereas those that need to be
ignored are labeled as ‘###’ as in [2].

Based on the ground truth annotations of real dataset,
we count the number of samples by character classes as
shown in Fig. 6 and we observe the imbalance of data.
First, digits and uppercase alphabets appear frequently,
whereas lowercase alphabets and symbols have little or
no samples for deep learning model training. Second, the
samples in character classes ‘‘a’’, ‘‘i’’, ‘‘k’’, ‘‘n’’, and ‘‘s’’ are
mostly duplicates from the repeated text marking ‘‘SanDisk’’
which have similar appearances. We do not opt for data
augmentation on the real dataset because there are seven
character classes that have no samples to be augmented.
Instead, we generate a synthetic PCB component dataset that
covers 66 character classes and more diverse synthetic text to
handle the imbalanced distribution of data in the real dataset.

As shown in Fig. 5, our proposed synthetic dataset is
generated based on real PCB component images through:

1) Random image sampling. An image group of real
dataset may contain more than one type of PCB components
with dissimilar structures. For each of the component type,
we randomly select two images. This step is repeated for all
image groups and a total of 758 real images are sampled.

2) Removal of PCB component markings.We manually
remove all the markings (text and non-text) on a PCB
component by clone stamping the component’s background
pixels with no markings to the regions with markings.
Hence, the edited regions retain the information of the
original background pixels, including the level of noise,
sharpness or blurriness, and the lighting condition. Any text
instance outside of the PCB component region, e.g., reference
designator on PCB is not removed. The graphics software
that we used is Microsoft Paint. This step is repeated for all
sampled images and 758 edited images are obtained.

3) Labeling of valid synthetic text region. We label the
component region that can be added with synthetic text for an
edited image as the valid synthetic text region TR. This step
is repeated for all edited images and 758 annotations for valid
synthetic text regions are obtained.

4) Generation of synthetic text, synthetic images,
and ground truth annotations. The character classes for
synthetic text cover 66 characters, including 10 digits, 52
Latin alphabets, and 4 symbols (period, underscore, slash,
and dash), while excluding symbols that are less likely to be
used in real text marking. We select 42 TrueType fonts which
consist of 28 Regular styles, 9 Bold styles, 3 Italic styles,

and 2 Bold Italic styles. Based on the edited PCB component
images, we generate the synthetic dataset using the synthetic
data generator to carry out the following steps:
a) Set N number of synthetic images to be generated.
b) Load an edited PCB component image and the annotations

of its valid synthetic text region TR.
c) Set an inner text region ITR based on TR’s widthWTR and

height HTR in pixels by padding the sides of TR:

plr = 0.1 ×WTR

ptb = 0.1 × HTR
x́min = xmin + plr
ýmin = ymin + ptb
x́max = xmax − plr
ýmax = ymax − ptb (1)

where plr is the left/right padding, ptb is the top/bottom
padding, (xmin, ymin) and (xmax , ymax) are the top-left
corner and bottom-right corner of TR respectively, and
(x́min, ýmin) and (x́max , ýmax) are the top-left corner and
bottom-right corner of ITR respectively.

d) Set the range for the number of synthetic text to be
generated based on ITR’s height HITR in pixels:

Minimum =


1 0 < HITR ≤ 200
3 200 < HITR ≤ 400
4 400 < HITR ≤ 600
5 Otherwise

Maximum =



1 0 < HITR ≤ 100
2 100 < HITR ≤ 200
4 200 < HITR ≤ 400
5 400 < HITR ≤ 600
6 Otherwise

(2)

The number of synthetic text T to be generated in ITR is
randomly chosen within this range. Divide ITR into T sub-
regions of equal height.

e) For each of the synthetic text to be generated, set the range
for the number of characters based on ITR’s width WITR
in pixels:

Minimum =



3 0 < WITR ≤ 200
4 200 < WITR ≤ 400
5 400 < WITR ≤ 600
6 600 < WITR ≤ 800
7 Otherwise

Maximum =



4 0 < WITR ≤ 200
5 200 < WITR ≤ 400
6 400 < WITR ≤ 600
7 600 < WITR ≤ 800
8 Otherwise

(3)
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FIGURE 6. Imbalanced distribution of character classes in real dataset. Lowercase alphabets and symbols are less than digits and uppercase
alphabets. Lowercase alphabets ‘‘b’’, ‘‘j’’, ‘‘o’’, ‘‘p’’, ‘‘q’’, ‘‘v’’, and ‘‘w’’ are character classes with no collected samples.

The number of characters C to be generated for each
synthetic text is randomly chosen within this range. Based
on the value of C , generate a character sequence by
randomly choosing one character at a time from the
66 characters. Repetition of characters is allowed. The
generated character sequence is accepted only if the first
and the last character is not a symbol, and it does not
contain two or more consecutive symbols. Otherwise, the
generation of a new character sequence repeats until the
conditions above are met.

f) For each generated synthetic text, randomly choose a
font from the 42 provided fonts. If T is greater than 3,
the default font size is 60, otherwise 30. Based on the
selected font, compute the width WT and height HT of
synthetic text using the default font size. The font size is
applied only if the values of WT and HT do not exceed
the values of WITR and HITR respectively. Otherwise, the
computation repeats by reducing the font size by 2 until
the conditions above aremet or when the font size is 2. The
final coordinates of the horizontal rectangular bounding
box of synthetic text are recorded. Next, the text color is
determined based on the background color of the recorded
text region. The color of the text region is inverted and the
first most frequent inverted color is set as the text color.
Then, the synthetic text is added in its text region with
top-left alignment.

g) After adding T number of synthetic text, the final
synthetic image is saved. The ground truth annotations
are recorded according to the format used in [2],
including information on the image’s width and height,
all the synthetic text regions and their text transcriptions,

in which the ‘care’ flag is set to 1 for all synthetic
texts.

h) Repeat steps (b) to (g) for N times.

To create synthetic text that resembles text markings on
real PCB components, we have carefully chosen the character
classes, fonts, and styles to be used for the generation of
random synthetic text. We follow the real dataset which
only covers digits, Latin alphabets and some symbols, while
characters in other languages are not included. Some font
examples that we have selected are 8Pin Matrix Regular,
Verdana Bold, Century Gothic Italic, and Century Gothic
Bold Italic. The majority of the selected fonts are in Regular
styles because we observe more text markings in this style
on real PCB components compared to the other three styles.
Instead of augmenting the synthetic images at the synthetic
data generation stage, we perform random augmentations
on the images during training as in the settings of [58] to
further increase the diversity of the training data. The data
augmentation methods include random crop, random jitter,
and random rotation, in which random jitter can introduce
changes in image brightness, contrast, saturation, and hue.
Nevertheless, augmentation methods such as adding image
noise, blurring, flare or spots are not carried out to ensure the
legibility of text in the images, since the real dataset contains
images that have these kinds of factors.

During the generation of synthetic text, the sides of
synthetic text are padded so that they will not exceed the
area of PCB components. We take into account the height
and width of the valid synthetic text region when setting
the number of synthetic text to be added and the length of
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FIGURE 7. Synthetic dataset that covers 66 character classes. Digits, lowercase alphabets, and uppercase alphabets are evenly distributed, whereas
symbols are less than them due to designed rules for the generation of synthetic text.

synthetic text respectively. A valid synthetic text region with
greater height in pixels can be added with more rows of
synthetic texts, and that with greater width in pixels can be
added with a longer synthetic text. Furthermore, we design
rules to validate the generated character sequence, especially
on symbols based on the general pattern observed in real PCB
component text markings and the logical usage of symbols.
As a result, symbol classes have lesser samples compared
to digits and alphabets classes. Fig. 7 shows the number
of samples by character classes of the generated synthetic
dataset. After a random font is selected for a synthetic
text, we apply the largest possible font size within its text
region, in which the text color is determined based on the
inverted background color to make the synthetic text more
legible.

B. DEEP LEARNING-BASED TEXT SPOTTING ON PCB
COMPONENT IMAGES
In this study, we use a deep learning model, Text Per-
ceptron [2] to perform text spotting on PCB components.
It sequentially detects and recognizes each text marking in a
PCB component image by predicting a word-level polygonal
bounding box and a character sequence. Text Perceptron
consists of a segmentation-based text detection module,
a Shape Transform Module (STM), and an attention-based
text recognition module [2] as shown in Fig. 8.

The text detection module can efficiently separate irregular
text instances using a ResNet-50-FPN backbone which
simultaneously learns three tasks: 1) order-aware semantic
segmentation; 2) corner regression; and 3) boundary offset

regression. The text detector learns multiclass semantic
segmentation to locate the text instances, in which text
boundary segmentation is used to separate different text
instances. Corner and boundary offset regression tasks are
learned to improve the segmentation of irregular text and to
provide position information of fiducial points around the
text. To handle text with arbitrary shapes, pixels around the
center text region are categorized into head, tail, top and
bottom boundaries as shown in Fig. 9(b). Moreover, a pair
of head and tail boundaries may capture information on the
reading order of a text such as from left to right or from top to
bottom. The corner regression task is to regress the geometry
offsets of head pixels to the two corner points (P1 and P2n) in
the head region while regressing the geometry offsets of tail
pixels to the two corner points (Pn andPn+1) in the tail region.
Meanwhile, the boundary offset regression task is to regress
the vertical and horizontal geometry offsets of center pixels to
their nearest boundaries. After computing the geometry offset
values for pixels in head, tail, and center regions respectively,
the geometry maps of these three regions are obtained.
During forward processing, the predicted segmentation maps
are obtained by overlaying the segmented head, tail, top
and bottom, and center feature maps, where center pixels
are the text. The training process of multiclass semantic
segmentation uses Dice coefficient-based loss [59], whereas
each regression task uses Smooth-L1 loss.

STM plays an important role in uniting the text detection
and text recognition modules to make Text Perceptron
an end-to-end trainable text spotter. It takes the predicted
segmentation maps and geometry maps produced by the
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FIGURE 8. Workflow of Text Perceptron [2]. Blue arrows and orange arrows indicate forward processing and backward processing respectively.
The text detector with ResNet-50-FPN backbone locates the text markings on PCB components by producing segmentation maps and
geometry maps. Based on the predicted text regions, STM iteratively generates fiducial points around each text instance and rectifies irregular
text using TPS. The attention-based FAN [61] is adopted as the text recognizer to output the character sequence.

FIGURE 9. (a) Ground truth polygonal bounding box. The value of n is set
to 7, which is the same value used in [2]. (b) Predicted segmentation map
by the text detector. Pixels around the center text region (Yellow) are
categorized into head (Green), tail (Pink), top and bottom (Blue)
boundaries. The reading order information may be captured by the head
and tail boundaries.

text detection module to iteratively generate fiducial points
around the text and rectifies the irregular text feature regions
into regular form using thin-plate splines (TPS) [60] based
on the supervision of text recognition module. Each text
instance has at least four corner fiducial points being
generated, i.e., two in head region and another two in tail
region before the generation of the remaining fiducial points
using dichotomous method that also applies to arbitrary-
shaped text. We follow the implementation in [2] which uses
14 fiducial points for a text instance, meaning that each top
and bottom side of the text has 7 points. After transforming
the text feature regions into regular shapes, they are passed
to the text recognition module.

The text recognition module in Text Perceptron [2]
directly adopts the Focusing Attention Network (FAN)
in [61] to produce the final character sequence. The main
modules of FAN are the attention-based RNN decoder
called Attention Network (AN) and the Focusing Network
(FN) with a focusing mechanism, in which AN recognizes
the target characters from the extracted features and FN
automatically adjusts the deviated attention of AN back to
the proper target character areas [61]. During the backward
processing of Text Perceptron, the differences between the
predictions and ground truths are back-propagated to all
pixel values in the irregular text feature regions through
STM to make adjustments on the fiducial points. Then, the
adjustment values are back-propagated to the corresponding
geometry maps in the head, tail, and center regions. Standard
cross-entropy loss is used in the training of text recognition
module.

FIGURE 10. (a) Real PCB component image. (b) Synthetic PCB component
image generated using the synthetic data generator.

IV. EXPERIMENT AND RESULTS
A. DATASET
Two private PCB component datasets are used in this paper,
i.e., a real dataset and a synthetic dataset. Fig. 10 shows
examples of real and synthetic PCB component images
respectively. The real dataset is split into 16,795 train images,
1,793 validation images, and 8,817 test images. These PCB
component images are collected at the actual production
line of SanDisk Storage Malaysia Sdn. Bhd., a company
of Western Digital. While excluding non-text markings,
defective text markings, and vertical text markings, only
horizontal text markings on real PCB components will be
trained and contribute to the performance of Text Perceptron.

In the synthetic dataset, 50,000 train images, 5,555
validation images, and 23,810 test images are generated using
our synthetic data generator based on a small sample of
edited real PCB component images. All the original markings
on these sampled PCB components are removed, and then,
horizontal left-aligned synthetic texts with random character
sequences are overlaid on the images. A total of 66 character
classes are covered during the generation of synthetic text,
including 10 digits, 52 Latin alphabets, and 4 symbols that are
present in the real dataset, i.e., period, underscore, slash, and
dash. Hence, the synthetic dataset alleviates the imbalanced
data in the real dataset and removes the hindrance to the
goal of having a text spotter that can detect and recognize
digits, alphabets, and specific symbols on PCB components.
Furthermore, it provides synthetic text with diverse text
variations in terms of font, style, size, and color.

In both datasets, the region of each ground truth text
instance is represented by a word-level polygonal bounding
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FIGURE 11. Training loss curve of text perceptron.

box with four pairs of (x, y) coordinates that represent
the top-left, top-right, bottom-right, and bottom-left corners
respectively, and its corresponding ground truth text tran-
scription is labeled as a word-level text. During training, the
mixture of real train set and synthetic train set follows the
ratio of 1:3. At inference stage, Text Perceptron is tested on
real test set and synthetic test set separately.

B. EVALUATION METRICS
In [2], the performance of Text Perceptron on Total-Text [13]
is evaluated for both text detection and end-to-end text
spotting tasks. We use the same evaluation protocol to
evaluate our trained Text Perceptron on the PCB component
datasets. The precision, recall, and F-score of text detection
task are calculated based on the selected IoU threshold value,
which is 0.5. For end-to-end text spotting task, F-score is
calculated using the same IoU threshold value of 0.5 based
on the ‘None’ metric that is lexicon-free. This metric is more
relevant to the text spotting task in this paper compared to the
‘Full’ metric that needs a lexicon for the evaluation of text
spotting model. Given a ground truth polygon and a predicted
polygon, if the IoU is below 0.5, the predicted polygonwill be
suppressed to reduce false detection. Otherwise, the predicted
text within this predicted polygon is compared with the
corresponding ground truth text transcription. Only an exact
match contributes to the text spotting performance. If not, it is
considered a false positive.

Another aspect to be evaluated is the speed of Text
Perceptron. In this paper, inference time refers to the elapsed
time for model prediction, which excludes elapsed time to
read the input image and postprocess on output. For each
resized test image, out of the five recorded inference time, the
minimum and maximum time are discarded, and the average
of the remaining three is calculated. Then, an averaging of all
these averages is carried out to obtain the average inference
time of Text Perceptron.

C. IMPLEMENTATION DETAILS
We follow the original work of Text Perceptron [2] based on
the implementation provided by DavarOCR [58], which is an
open-source OCR toolbox. We train the Text Perceptron in
an end-to-end manner from scratch without using pretrained
weight for 150 epochs with AdamW optimizer and fixed
learning rate at 3×10−4. Fig. 11 shows the training loss curve
of Text Perceptron on the mixed train sets which generally
decreases with the number of iterations.

Throughout the training of Text Perceptron, the checkpoint
with the highest end-to-end text spotting F-score on the
validation set is recorded as the best checkpoint. In this
paper, we use the final best checkpoint to evaluate the
performance of Text Perceptron. Fine-tuning using the real
train set is not performed because the real dataset does not
have full coverage on the 66 character classes as mentioned
in Section III-A. The data augmentation steps applied on the
real and synthetic PCB component images during training
follow the settings in [58], including random crop, random
jitter, and random image rotation within the range of [−15◦,
15◦]. For both training and inferencing, the PCB component
images are resized by setting its longer side to 384 pixels
while keeping its original aspect ratio. Training of Text
Perceptron runs in PyTorch with 2 NVIDIA Tesla V100
SXM2 32GB GPUs, whereas inferencing runs on single
GPU.

D. RESULT AND DISCUSSION
After training and evaluating Text Perceptron using PCB
component images, the precision, recall, and F-scores for text
detection task, as well as the end-to-end text spotting F-scores
are recorded as shown in Table. 2. The experimental results
show that the model achieves satisfactory text detection
F-scores under all settings, which is above 99%. The model
is trained on slightly rotated PCB component images; thus,
it can detect most text regions in both test sets which are
mainly horizontal text. With data augmentation, the text
detection F- scores for real test set increase. Generally, we say
that the text detection module of Text Perceptron serves the
purpose of finding text marking regions on both real and
synthetic PCB component images.

For end-to-end text spotting task, the model achieves an
encouraging F-score of 90.16% on the real PCB component
test images, which is also the highest F-score obtained by
training on both datasets with data augmentation. Fig. 12
shows examples of correct text spotting predictions made
by Text Perceptron on PCB component images. Still, there
is room for improvement for end-to-end text spotting
F-scores on synthetic test images as shown in Table. 2.
The. performance gap of end-to-end text spotting between
real images and synthetic images is possibly due to the
randomness of character sequences in the synthetic dataset
that do not follow any string pattern, unlike real text
markings that have duplicated character sequences. It is also
possible that the text variations in terms of font, styles, size,
and color are more than that in the real dataset, making the
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TABLE 2. Result on synthetic test set and real test set.

FIGURE 12. Correct text spotting results predicted by the trained model
for (a) text markings on real PCB component images and (b) synthetic text
on synthetic images.

text recognition task on synthetic PCB component images to
be more challenging.

From another aspect, the text spotting performance of
Text Perceptron reveals the limitations of real and synthetic
datasets. Firstly, the repetition of text markings, e.g., ‘‘San-
Disk’’, ‘‘MALAYSIA’’, or part numbers of PCB components
in the real train set can be a double-edged sword. On the
one hand, at inference stage, the trained model may give a
correct prediction for test input that has the same character
sequence as in train data, though not every character of the test
input is clear and free from printing defects. It is beneficial
to the inferencing on long text markings which may contain
some slightly blurred or faded characters. On the other hand,
a test input with one or more blurred characters is possible to
be predicted incorrectly as other similar character sequence
that occurs repeatedly in train data. Secondly, the synthetic
data generator is designed to generate character sequences

FIGURE 13. Examples of failure cases for real PCB component test
images. (a) Digit ‘‘9’’ is predicted as ‘‘8’’. (b) Alphabet ‘‘D’’ is predicted as
digit ‘‘0’’.

in a completely random manner. It does not take into
account the common patterns of text markings in real dataset.
For example, the synthetic data generator may generate a
synthetic text such as ‘‘g.S_6/T’’ which fulfills the designed
rules for symbols; nevertheless, it is less likely to observe this
kind of pattern in real text markings on PCB components with
3 symbols out of 7 characters. Moreover, despite the number
of training samples generated for each character class, the
trained model fails to distinguish characters that look alike
as shown in Fig. 13.

To further evaluate the performance of our synthetic
dataset, we study the predicted text sequences of the real
test set that have equal length with their corresponding
ground truths. Assuming that a pair of ground truth and
predicted text sequences can be compared character-wise, the
precision of the predicted results is calculated by character
group, including digit, lowercase and uppercase alphabets,
and symbols as shown in Table. 3. Note that we have excluded
the pairs of ground truth and predicted text sequences that
have different lengths from the calculation of precision by
character group because such pairwise sequence alignment
may result in one or more optimal pairings. Based on
Table. 3, when synthetic data is used for model training,
it has increased the precision for digit and uppercase alphabet
character groups by 1.17% and 0.41% respectively, which
demonstrates the benefit of our proposed method since
the actual PCB component text markings usually contain
more digits and uppercase alphabets. Additionally, from the
character-wise comparison, we observe that the synthetic data
has reduced the total number of incorrect character pairs (e.g.,
‘‘A-B’’, if an alphabet ‘‘A’’ is being predicted as ‘‘B’’) by 26%
from 4257 to 3150 pairs. Meanwhile, the drop in precision for
the symbol character group is possibly due to fewer samples
in the synthetic dataset compared to other character groups as
described in Section III-A.
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TABLE 3. Precision of predicted text sequences (real test set).

The average inference time of Text Perceptron on the real
test set is 87.75 milliseconds per image. This result shows
that the model can detect and recognize text markings in PCB
component images at an acceptable average inference time
per image. In future research, the accuracy-speed trade-off
needs to be tackled, for example, the network size may be
deeper to achieve better end-to-end text spotting performance
while maintaining the inference speed.

E. COMPARISON WITH THE STATE-OF-THE-ART
Brief descriptions for the state-of-the-art methods [17], [18],
[19], [20] and our proposed method along with the respective
text recognition or text spotting performance on PCB
component images are summarized in Table. 4. In comparison
with the methods in [17], [18], [19], and [20], the proposed
method appears promising in several regards. First, its
performance is comparable if not better than the previously
proposed methods. As shown in the table, the increase in
performance of the deep learning model for our proposed
method is about 2.08%. In [17], a grid-based sampling
method [62] for data reduction, data augmentation methods,
and a synthetic data generation method are applied to produce
a balanced dataset consisting of 10 digits and 42 Latin
alphabets. Lowercase alphabets that have similar forms to
their capital letters are ignored, for example, ‘‘c’’ and ‘‘C’’.
For each character class, the mean and standard deviation of
pixel values in the V color channel are visualized through a
2D data distribution graph. After dividing the graph into small
grids, the grid algorithm randomly samples a percentage of
data, e.g., 10%, from each of the grids to maintain the overall
distribution of the original dataset. Furthermore, augmented
images are generated through random slight rotation (left and
right), image resizing, and random Gaussian noise, whereas
synthetic character images are created using 35 fonts with
empirically-defined color tones to provide different character
images for the training of classification model. The proposed
method is trained and evaluated on different combinations of
two real datasets and two generated datasets. A mixture of
real and synthetic images containing 8,000 images per class
without augmented images gives the highest improvement of
20.84% in the model performance. In other words, the data
augmentation methods in [17] are less effective in generating
a representative dataset for model training compared to
synthetic data generation.

The work in [18] follows the grid-based sampling method
and synthetic data generation method in [17] for generating
a balanced dataset while using data augmentation methods

such as color reversal, random rotation, image resizing,
and random Gaussian noise. Still, lowercase alphabets are
conditionally excluded as in [17]. The combination of
two real datasets and one generated dataset sampled using
the grid-based method increases the model performance
by 17.84%. In addition, an n-pick (n = 3) algorithm
that samples n data from each of the grids in the data
distribution graphs is proposed to reduce the size of dataset.
The proposed methods in [17] and [18] handle the text
on PCB components at character level, which allows the
methods to reduce redundant data in original datasets while
generating new synthetic data. Also, a short inference time
is needed to classify each character image. However, these
character-based methods have limited application whereby
the methods cannot be used to support the training of deep
learning models that operate at a higher semantic (word
or line) level to capture contextual information between
characters.

As mentioned in Section I, the quality of printed char-
acters is often affected throughout the production process.
This could make character segmentation before character
classification to be more difficult. Hence, the proposed
method in [19] opts for word-level text recognition on PCB
components. Since the real data in [19] is very limited, fully-
synthetic 8-bit grayscale text images at word level are created.
For synthetic text generation, seven fonts are included but
all lowercase alphabets are ignored. Each synthetic image
contains a synthetic text with two to eight characters, in which
the remaining regions for shorter text are filled with black
pixels to maintain the fixed size of all synthetic images.
Random data augmentation methods such as speckle noise,
rotation, horizontal/vertical scaling, and image shearing are
applied to the synthetic images. After using the synthetic
dataset and real dataset to pretrain and fine-tune the model
respectively, the evaluation using the remaining real data
results in text recognition accuracy of 93.80%. From Table. 4,
we can see that the inference time of [19] is longer compared
to [17] and [18] as it increases with the number of characters
in a single test image. On the one hand, large datasets can
be obtained by creating fully-synthetic images to support
model training when it is hard to collect real PCB component
data [17], [18], [19]. On the other hand, these synthetic
images do not incorporate actual background information on
PCB components.

The generation of partially-synthetic images in [20] for
balancing the dataset involves character-level replacement
of original characters on real PCB component images with
synthetic lowercase alphabets. The synthetic characters can
be white or colorful in Windows fonts, or are generated
through text style transfer [27]. Results in [20] show that
the synthetic dataset increases the model performance by
1.80%. In terms of inference speed, it is unsurprising that
more time is needed in [20] like our work to process all
characters in each PCB component image compared to [17],
[18], and [19]. Though real images are used in [20] for
synthetic data generation, the noticeable edited regions on
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TABLE 4. Description of state-of-the-art methods and their performance.

the resulting synthetic images are making them look less
realistic.

Our proposed method involves the removal of original
markings on real PCB component images and overlaying of
word-level synthetic text on the edited images, which leaves
no noticeable edited regions. This study differs from the state-
of-the-art methods in [17], [18], [19], and [20] as it leverages
real PCB component images for generating more realistic
partially-synthetic images that are overlaid with word-level
synthetic text data. Furthermore, it is the only work that
considers not only all lowercase alphabets but also some
reasonable symbols as part of the character classes, regardless
of their occurrence count in actual PCB component markings.
Last but not least, the synthetic dataset demonstrates the
flexibility of proposed method in synthetic text generation,
which creates a wide range of text variations using 42 fonts
with different styles, sizes, and colors.

V. CONCLUSION
This paper generated a synthetic PCB component dataset
based on real PCB component images using a synthetic data
generator. The synthetic dataset has covered 66 character
classes and provided synthetic text data with diverse text
variations in terms of font, style, size, and color. Hence,
it alleviated the imbalance of samples between character
classes and within a character class observed in the real
dataset. We trained Text Perceptron with real and synthetic
datasets to perform text spotting on PCB component images.
It achieved promising text detection F-score on PCB
component images while showing encouraging end-to-end
text spotting F-score on real images. Moreover, it met the
acceptable average inference time per image. Still, effort is

needed to improve its end-to-end text spotting performance
such as using a deeper text recognition model while
maintaining the inference speed. A possible improvement on
the synthetic dataset is to generate synthetic text data based
on the patterns of actual text markings on PCB components.
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