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ABSTRACT Automated and precise segmentation of breast lesions can facilitate early diagnosis of
breast cancer. Recent research studies employ deep learning for automatic segmentation of breast lesions
using ultrasound imaging. Numerous studies introduce somewhat complex modifications to the well
adapted segmentation network, U-Net for improved segmentation, however, at the expense of increased
computational time. Towards this aspect, this study presents a low complex deep learning network, i.e.,
dense multiplicative attention enhanced encoder decoder network, for effective breast lesion segmentation
in the ultrasound images. For the first time in this context, two dense multiplicative attention components
are utilized in the encoding layer and the output layer of an encoder-decoder network with depthwise
separable convolutions, to selectively enhance the relevant features. A rigorous performance evaluation
using two public datasets demonstrates that the proposed network achieves dice coefficients of 0.83 and
0.86 respectively with an average segmentation latency of 19ms. Further, a noise robustness study using
an in-clinic recorded dataset without pre-processing indicates that the proposed network achieves dice
coefficient of 0.72. Exhaustive comparison with some commonly used networks indicate its adeptness with
low time and computational complexity demonstrating feasibility in real time.

INDEX TERMS Ultrasound, breast lesion segmentation, deep learning, U-Net, convolution neural network.

I. INTRODUCTION
Breast cancer is the most common cancer among women,
in the United States [1], [2]. Timely diagnosis of malignancy
in the breast lesions can help prevent progression to an
advanced stage of cancer and subsequently reduce the
mortality rate [3]. Self-examination and mammography are
common practices for screening of breast cancer [4], [5]. The
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use of Ultrasound (US) in conjunction with mammography
increases the diagnosis accuracy, particularly in patients with
dense breasts [6], [7], [8]. Furthermore, US is preferred
over other imaging modalities due to its non-invasiveness,
cost-effectiveness and real-time capability [9], [10], [11],
[12]. Locating and interpreting of a breast mass is a
time-consuming, operator dependent and difficult task that
involves expert radiologist [13]. In past few decades, attempts
have been made to develop computer-aided systems and
machine learning approaches to make the complex medical
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tasks easier and help time efficiency in clinical practice [14].
To that end, deep learning that has potential use in medical
applications and can offer expertise in resource limited-
settings [15], [16]. Therefore, automated segmentation of
breast lesions using deep learning can address the current
challenges by reducing the time complexity and improving
decision making in clinical practice [17], [18], [19].
Researchers have developed a variety of techniques

including, conventional and machine learning algorithms for
the automatic segmentation of breast lesions [20], [21], [22].
However, the segmentation performance of these algorithms
is poor due to the inability of high-level feature extrac-
tion [23]. To this end, researchers have recently explored deep
learning (DL) algorithms with the capability of automated
high-level feature extraction from the raw images [24], [25],
[26], [27], [28], [29]. These studies utilize different types
of DL algorithms, such as, convolutional neural networks
(CNNs), attention-based networks, encoder-decoder-based
networks, etc. to aid cancer diagnosis, which can further
reduce the workload of the physicians [27], [28].

A. LITERARY STUDIES
One of the most extensively used DL architectures for breast
lesion segmentation is U-Net, which possesses an encoder-
decoder-based structure, with several convolution layers [30].
Development of U-Net variants for breast ultrasound image
segmentation has been a primary research focus in the recent
studies [31], [32], [33], [34]. Significant improvements have
been reported in the segmentation performances with respect
to the conventional U-Net. For example, Byra et al. used
selective kernels to adjust receptive fields by using attention
mechanisms in U-Net [32], however, the validation on a
limited dataset is insufficient to demonstrate the effectiveness
of segmentation performance. Kumar et al. proposed a
multi-U-Net algorithm without using placement of an initial
seed to automatically segment the breast masses in real-
time [33]. The authors demonstrated the superiority of
the proposed algorithm w.r.t. the seeded U-Net algorithm,
however, the performance could be improved with a larger
dataset [33]. Guo et al. established an expanded U-Net
with addition of dropout layers for preventing over-fitting,
while preserving the surface and edge attributes at the
output [34]. Punn et al. introduced a residual cross-spatial
attention-directed inception U-Net (RCA-IUnet) utilizing
the basic training parameters to enhance the segmentation
performance of different lesion sizes [35]. However, the
trade-off between time complexity and performance limits
the model capability in real-time. Yan et al. proposed an
attention-based U-Net with hybrid-dilated convolution and
introduced a novel loss function to focus on the lesion region
for segmentation [36]. Tong et al. implemented a modified
version of U-net based on mixed attention loss function to
segment the breast US lesions, however, the use of images
with ambiguous edges is not clear [37]. Authors in [38]
addressed this issue by developing a multi-scale fusion-based

version of U-Net to derive the surface and edge features of the
image and overcome the substantial variations in the breast
lesions. In addition to this, the authors proposed a novel focal
loss for handling class imbalance problems in breast lesion
segmentation, the results were validated on a public dataset,
which is insufficient for performance validation. To handle
the data-insufficiency issues, authors in [39] proposed and
validated a saliency-guided morphology-aware U-Net on
five different datasets. More recently, Chen et al. developed
a hybrid adaptive attention-based U-Net by replacing the
convolution layers with channel and self-attention modules,
for capturing more relevant features with varying receptive
fields [31]. However, the false prediction rate could be
reduced by further optimizing the network.

Few recent research studies propose transfer learning-
based fully convolutional network (FCN)-AlexNet [2] and
boundary guided and region aware network with global
scale adaptive [9]. These studies demonstrate outstanding
segmentation performance on several datasets. However, the
complex networks used in these works require a large number
of floating point operations, which leads to increased output
prediction time. Further, the researchers in [2] reported a
significant decrease in the performance when inter-dataset
images were used in testing. The number of images in the
multiple datasets used in these works seem to be less, which
indicates lack of sufficient validation.

B. OBJECTIVE AND KEY CONTRIBUTIONS
The foregoing literary works employ a variety of CNNs along
with diverse alterations of the base U-Net architecture, such
as, introduction of attention units. The attentions mechanisms
adopted in these works help in enhancement of the pertinent
features and diminishing the extraneous features which
leads to improved segmentation performance. However,
it is achieved at the expense of increased computational
complexity of the networks. Furthermore, it is noted that the
validation results are dataset-dependent, which leads to less
robust networks with lack of explain-ability. To address these
limitations, this study proposes a novel dense multiplicative
attention enhanced encoder decoder network (DMAeEDNet)
for ultrasound-based automated breast lesion segmentation.
The proposed architecture uses encoding and decoding layers
with depth-wise separable convolutions and self-explanatory
multiplicative attention-based mechanism for the first time
to effectively segment the breast lesions with low time
and computational complexity. The novelty of the proposed
work is mainly about introducing two dense multiplicative
attention components after the depth-wise separable con-
volutions, where the first component helps in decreasing
the number of depth-wise separable convolution operations
after two downsampling steps in encoder to preserve both
generic and local features. Further, it introduces the dense
and multiply layers into the encoder-decoder structure for
performing custom attention-based feature extraction which
further enhances the segmentation performance, and has
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not been explored in existing studies in the context of
breast lesion segmentation. The performance of the proposed
network is evaluated using two different public datasets along
with an exhaustive analysis with respect to cross-dataset
images and noisy images taken from an in-clinic recorded
dataset. The key contributions of this study are summarized
here as follows.

• Introduction of novel dense multiplicative atten-
tion mechanisms in the decoding layers of an
encoder-decoder network for effective segmentation of
breast lesion using ultrasound.

• A comprehensive performance assessment and compar-
ison of the proposed network using two public datasets.

• Test-only performance analysis of the proposed network
with respect to inter-dataset images acquired from
different ultrasound machines.

• A noise robustness analysis of the proposed network
using an in-clinic data without pre-processing.

• Comparison of the time and computational complexity
of the proposed network with respect to existing
methods for demonstrating its feasibility in real-time
segmentation of breast lesions.

The study is presented and organized as follows. Section II
describes the datasets used and the proposed automated
segmentation network. Section III presents the performance
assessment results along with the comparison studies.
Section IV discusses the results and future directions of the
proposed study. Finally, section V concludes the study.

II. DATASETS
This section provides a description of the two public datasets
and an in-clinic dataset utilized in this study.

A. UDIAT DATASET
This dataset was acquired at the UDIAT Diagnostic Centre
of the Parc Taul′ı Corporation, Sabadell (Spain) [2]. A total
of 163 images were collected from various women using
Siemens ACUSON Sequoia C512 system 17L5 HD linear
array transducer at a frequency of 8.5 MHz. Each image
had one or more lesions, and a mean dimension of 760 ×
570 pixels. The lesions in 53 images were malignant,
and the remaining images had benign lesions. From the
malignant images, The lesions were manually segmented
by experienced radiologists. This dataset is accessible upon
request from the author in [2] for research purposes. The
images were processed for noise removal.

B. BREAST ULTRASOUND IMAGES (BUSI) DATASET
The breast ultrasound images data was acquired at Baheya
hospital, Cairo, Egypt, using LOGIQ E9 and LOGIQ E9
Agile ultrasound systemwith 1−5MHz transducers onML6-
15-D matrix linear probe [40]. It is publicly accessible at
https://scholar.cu.edu.eg/?=afahmy/pages/dataset. The data
was collected from 600 female participants aged between
25 and 75 years [40]. The total number of images were

reduced to 780, after removing the replicated images, and
stored in PNG format. The mean pixel dimension of each
image was approximately 500 × 500. The images were
pre-processed for artifact removal.

In addition to the above mentioned datasets, a few images
taken from the clinical dataset recorded at Mayo Clinic, using
LOGIQ E9, are utilized for evaluation of the proposed study
on inter-machine data.

C. IN-CLINIC RECORDED (ICR) DATASET
This work analyzes the noise-robustness of the proposed
network, by utilizing an in-clinic recorded dataset without
prior processing for any type of artifact removal. For
the ICR dataset, the institutional review board approval
(IRB:12-003329 and IRB: 19-003028)) was received in
compliance with the Health Insurance Portability and
Accountability Act along with signed written informed
consent with permission for publication from each enrollee
prior to this study. The breast ultrasound imaging data was
acquired at Mayo Clinic, using the Supersonic Imagine
Aixplorer (SSI, Aix-en-Provence, France) system equipped
with a 4-15 MHz array transducer. The data was collected
from 655 female participants on different days, with each
patient having a pre-biopsy visit, and three post-biopsy
visits. During each visit, six B-mode ultrasound images were
acquired in both longitudinal and transverse orientations.
After removing the replicated images, 2066 images were
obtained and stored in PNG format. The pixel dimension of
each image was 1400 × 1050. The lesions were segmented
manually for preparing the masks, i.e., ground truth images
for training the proposed segmentation network.

III. PROPOSED METHODOLOGY
This section presents a description of the proposed network,
i.e., DMAeEDNet, for the automated segmentation of breast
lesions in ultrasound images. Figures 1 and 2 represent the
high-level and detailed overviews of the proposed network’s
structure, consisting of corresponding structural components:
Ultrasound image acquisition and pre-processing, DMAeED-
Net layers, and predicted segmentation output. As observed
from the high-level structural overview in Figure 1, the input
ultrasound images are pre-processed prior to be fed to the
proposed network layers which are structured into encoding
(left) and decoding (right) parts with dense multiplicative
attention components (DMAC). The encoding layers consist
of the depth-wise separable convolutional layers for feature
extraction, followed by batch normalization and max-pooling
layers, which extract the more generic features and perform
downsampling while going deeper into the network. The
output of the encoder is fed to the proposed DMAC
component I, which applies a custom attention mechanism
by using a dense and a multiply layer to further refine the
encoder feature map. The corresponding DMAC-I output is
fed to the decoding layers which reconstruct the segmentation
mask, by using the depth-wise separable convolutional layers
with half channels as compared to decoding layers and skip
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FIGURE 1. High-level overview of the proposed segmentation network,
DMAeEDNet.

connections followed by batch normalization and upsampling
layers. The decoder parts receive the feature maps from the
corresponding encoder parts through skip connections which
use concatenation of corresponding features, and incorporate
that for reconstruction. The upsampling layers increase the
size of down-sampled encoder feature maps to retain the
original input dimensions for reconstructing the segmentation
mask. The output of decoder is again refined by DMAC-II
which extracts the mask-relevant feature map and eventually
leads to the predicted segmented mask after 1×1 convolution
operation, as shown in the figure. The detailed description
of all structural components is provided in this section as
follows.

1) ULTRASOUND IMAGE ACQUISITION AND
PRE-PROCESSING
The image data can be acquired either while scanning in real-
time, using an ultrasound machine, or from pre-recorded and
public data repositories. In this work, the B-mode images are
acquired from a number of subjects using SSI machine as
described previously. Prior to be fed as inputs to the proposed
DMAeEDNet, all images are converted to gray-scale and re-
sized to the dimension of 512 × 512 for maintaining the
computation efficiency of the proposed network. The pixel
intensity values are normalized to the range of 0 − 1 using
the empirical method, for preserving the uniformity across all
images. The corresponding mathematical representation for
each pixel value p at location (i, j) of an image I is obtained
as:

|p|(i,j)
max |I |

(1)

where |.| represents the absolute value, and max represents
the maximum intensity value of the image, i.e., 255 in this
case. The rationale behind this resizing and normalization
is explained as follows. As observed from the dataset
description above, there is a diverse variation in the image
sizes across all the datasets used in this work. Therefore,
resizing to one size and aspect ratio is needed to maintain the
uniformity across all datasets like also done in existing image
segmentation methods [30], [41]. Further, since the model
trains faster on smaller images due to low resource require-
ments, it is essential to resize them to a lower dimension,

specifically for real time tasks. Thereby, all images are resized
to 512 × 512 which is neither too small nor too large,
and helps to maintain a fair resolution without affecting
the overall performance. Additionally, choosing even width
and height dimension allows a consistent and smooth tiling
of the predicted segmentation mask since the encoder uses
2 × 2 max-pooling operations [41]. Normalization of the
image pixels to the range of 0-1 is an empirical method
for re-scaling all images and maintaining the consistency
among them, since the image pixel values have diverse and
dynamic ranges across the different subjects and datasets
used in this work [42], [43]. Also, this normalized range
of pixel values is suitable for the activation functions and
learning algorithm, which eventually leads to adequate model
training with stable optimization process, faster convergence,
and improved performance [43].

2) PROPOSED AUTOMATED SEGMENTATION NETWORK:
DMAeEDNet
As stated earlier, this work proposes the use of depth-wise
separable convolutional layers structured in an encoder-
decoder manner along with DMAC to effectively segment
the lesions with low time and computational complexity.
The proposed DMAeEDNet for automated breast lesion
segmentation is built in TensorFlow Keras framework in
Python, as shown in Figure 1 and detailed in Figure 2.
It comprises encoding (left) and decoding (right) layers
with dense multiplicative attention components (DMAC) as
illustrated in Figure 2. The description of these layers is as
follows.
• Encoding layers: The encoding layers consist of nine
depth-wise separable convolutional (DSepConv2D) lay-
ers with batch normalization after each layer. These
layers perform non-padded depth-wise and point-wise
convolution operation in two steps, which helps in
reducing the computation complexity as compared to
the conventional convolution operation [44], [45]. These
layers enhance the segmentation performance by gen-
eralizing better than standard convolutions. In addition,
since these layers perform the spatial and cross-channel
interactions separately, they can extract more abstract
and diverse feature representations, enhancing the
capability of the proposed network to learn complex
patterns. The basic operation of these layers is explained
as follows. Figure 3 illustrates the standard convolution
and depth-wise separable convolution operations for
a C channel input image with size I × I and filters
with size k × k [46]. The standard convolution
operation is performed for each input channel with a
particular filter and consequently, the final outcome
is obtained as the sum of the convolution outputs
from all channels [46]. All channels are convolved at
the same time. The number of weights are obtained
from the number of kernels and their dimensions, i.e.,
k × k × C × N . Accordingly, the total number of
operationsOpConv2D are estimated as the total number of

60544 VOLUME 12, 2024



M. Saini et al.: DMAeEDNet for US-Based Automated Breast Lesion Segmentation

FIGURE 2. Proposed segmentation network: DMAeEDNet.

FIGURE 3. Illustration of convolution and depth-wise separable
convolution operations: (a) Standard convolution operation between
I × I × C input and N filters/kernels each with a size of k × k × C ,
(b) Depth-wise convolution operation for each channel at a time with C
filters/kernels each with a size of k × k × 1, (c) Point-wise convolution
operation for all C channels at a time using N filters each with a size of
1 × 1 × C .

multiplications [46]:

OpConv2D = I × I × k × k × N × C (2)

The depth-wise separable convolution operation
is performed in two steps including depth-wise

convolution and point-wise convolution. As observed
from Figure 3 (b), depth-wise convolution is performed
as the convolution with each input channel at a time,
by splitting each of the previous filters into C k ×
k × 1 filters. Subsequently, point-wise convolution
is performed as the standard convolution operation
using 1 × 1 filters, as shown in Figure 3(c). This
leads to the number of weights as k × k × C +
C × N , and the total number of depth-wise separable
convolution operationsOpDsepConv2D are obtained as the
multiplications [46]:

OpDsepConv2D = I × I × k × k × C + I × I × C × N

(3)

For comparison of the complexities of standard
and depth-wise separable convolution operations, the
following ratio is computed:

OpDsepConv2D
OpConv2D

=
1
N
+

1
k2

It is evident from the ratio that the complexity of
the depth-wise separable convolution operation is con-
siderably reduced by the factor above. Thereby, the
number of weights and parameters are significantly low
for DSepConv2D layers, as compared to the standard
convolution layer.
Figure 1 depicts that the first layer, i.e., DSepConv2D
layer 1 receives B-mode images as inputs, the
corresponding output is fed to the second layer, and so
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on. Each DSepConv2D layer uses the rectified linear
unit (ReLu) activation function and varying number,
i.e., 2n (n ∈ [6, 9]) of 3 × 3 filters/kernels. Every
three convolution layers in the first two encoding parts
use the same number of kernels and are followed by
a maxpooling2D layer with a stride of 2 for down-
sampling. In the next two encoding parts, these layers
are reduced to two and one respectively. For reducing
the effect of overfitting, dropout regularization with a
factor of 0.5 is used after the final encoding layer.
To illustrate the contribution of the encoding depth-wise
separable convolution layers towards the overall seg-
mentation process, the feature maps of each layer are
generated in this work. As an example, a test image is
given input to the trained model and the corresponding
encoding layer output feature maps are extracted,
as shown in Figure 4. For ease of representation, single
filter map is presented at each step. It can be observed
from the figure that the input image is consecutively
encoded to extract the activations corresponding to the
lesion area by each DsepConv2D layer. The first layer
convolves the kernel with the input image to obtain
its varied intensity activation map, which is further
fed to the second layer. The second layer starts to
extract the feature mappings towards the segmentation
mask of the lesion. These feature/activation mappings
are represented by the pixel intensity variations across
the lesion area. The third layer further enhances the
features, as seen from the figure. The layers 4-6 further
extract the lesion area by refining the intensity variations
for the lesion area. The deeper encoding layers 7-8
extract the boundary features of the lesion and finally,
the layer 9 enhances the intensity activations relevant
to the lesion boundary. Therefore, it can be demon-
strated that the depth-wise separable convolution layers
effectively extract the feature maps which eventually
lead to the final segmented mask after passing through
the DMAC and decoding layers. Further, it indicates
that the depth-wise separable convolution layers can
enhance the overall segmentation performance with
computationally less intensive convolutions.

• Dense multiplicative attention component (DMAC):
The output of the encoding layer nine is fed to a dense
multiplicative attention component (DMAC-I). DMAC
was proposed by Saini et al. in [44] to classify mental
tasks using one-dimensional electroencephalogram sig-
nals. However, this work proposes the use of DMAC
for the first time to segment breast lesions using the
two-dimensional ultrasound images. This component
consists of a fully connected/dense layer with the
same number of neurons as the filters used in the
preceding layer, i.e., 512, followed by an element-wise
multiplication operation, as shown in Figure 1. It can
be observed that the output of encoding layer nine
is multiplied with the output of the dense layer to
enhance the high pixel intensities and suppress the

FIGURE 4. Encoding layer output feature maps for a test input image in
BUSI dataset. For illustration, single kernel/filter maps are presented.
Note the dimensions at each level is halved by the maxpooling operation
as shown in Figure 2.

FIGURE 5. Illustration of feature maps of DMAC-I module for a test image
in ICR dataset: (a) A test B-mode image with the selected lesion area,
(b) Feature map of the dense layer in DMAC-I, (c) Feature map of the
multiply layer in DMAC-I.

lower pixel intensities in the output. This helps in
attaining more valuable features with further reduction
in computational complexity due to the reduction in
the corresponding relevant weights. The working of
the DMAC module is demonstrated by extracting and
analyzing the corresponding activation/feature maps of
a test image, as shown in Figure 5. It can be observed
that the feature map of dense layer in Figure 5 (b)
is more selectively refined after the multiplication
operation in (c), which helps in capturing the lesion
area with enhanced efficacy. Further, the less number
of lighter pixel intensities in (c) as compared to (b)
demonstrates the reduction in the weights after using
the multiply operation in DMAC-I module. Finally, the
corresponding DMAC-I output is upsampled and used
as the input to the decoding layers.

• Decoding layers: These layers are analogous to the
encoding layers, with 2 × 2 up-sampling convolution
operations after two 3 × 3 DSepConv 2D layers with
ReLu activation functions in the first decoding part,
as illustrated in Figure 1. The number of features
are thereby reduced by halves after every up-sampling
operation. Analogous to the encoding part, the next two
decoding parts consist of three 3× 3 DSepConv 2D lay-
ers. The decoding layers also consist of skip connections
for concatenating the reduced feature outputs with the
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FIGURE 6. Illustration of feature maps of DMAC-II module for a test
image in ICR dataset: (a) A test B-mode image with the selected lesion
area, (b) Feature map of the dense layer in DMAC-II, (c) Feature map of
the multiply layer in DMAC-II.

corresponding encoding layer outputs as depicted in the
figure.
The output of the final DSepConv2D layer is fed to a
second DMAC prior to the final decoding convolution
layer for segmentation. DMAC-II refines the output
feature map by retaining the more relevant intensities
which further helps in attaining robust segmentation
output/mask. The working of DMAC-II is illustrated in
Figure 6 for the same test image (a) as used previously
for DMAC-I explanation. The output of dense layer in
(b) in DMAC-II module shows the lesion boundary,
however, it is not well defined along with an ambiguity
with the background represented by darker pixels. This
is resolved by using the multiply operation in DMAC-II
in Figure 6 (c) which enhances the features specific
to the boundary of the lesion, as observed from the
darker pixels specific to the lesion area only. This
demonstrates that DMAC-II can effectively discriminate
the background from the lesion by selectively capturing
the lesion-specific features.
For segmentation, the final layer is a convolution layer
which receives the DMAC-II feature map and uses a
sigmoid activation function to predict the mask.

The aforementioned layers are used to build he proposed
network. The data is split into 70% training, 20% for
validation, and 10% for testing. The selection of 70 − 20 −
10% train-test-validation split percentages is drawn from the
statistical modeling methodology [47] and empirical studies
[48]. Further, since the datasets have less number of images,
as a rule of thumb, we take 70% of that for training, and
remaining 30% for testing and validation purposes. This split
allows for more number of images in training, and it is
reported to be a good starting point for many deep learning
algorithms [48]. We have experimentally assessed that the
performance of the proposed network with this split is higher,
as compared to that with other data splits such as 60−20−20,
80 − 10 − 10, etc. For the training set, data augmentation
is applied using standard geometric transformations such
as translation, random flipping and rotating. The rationale
behind the augmentation techniques is derived from empirical
studies which use geometric transformations to alter the
images and increase the number of images [30], [49]. These
transformations such as random flipping and rotating used
in this work are traditional image augmentation approaches
which are simple and easy to execute [49]. They help in
increasing the distribution density and variability of the

data points in the training set, which eventually leads to
improved performance and better generalization. The training
hyper-parameters such as batch size, epochs, steps per
epoch, learning rate and algorithm, are discussed in the
later section. For building the proposed network, TensorFlow
Keras 2.2.1 deep learning framework is used in Python. The
pseudo-code for the proposed methodology is summarized
in Algorithm 1, including the pre-processing, training the
proposed DMAeEDNet, and segmented mask prediction.

Algorithm 1 Pseudo-Code for the Proposed Methodology
1: begin
2: for each subject do // Loading and pre-processing images
3: Load inputdata // BUSI , UDIAT , and ICR datasets
4: for each subject do
5: resized_rdata← resize(data, [512, 512])
6: save_image(rdata)
7: end for
8: for each resized_rdata do
9: img← normalize(resized_rdata)
10: save_image(imgn)
11: end for
12: end for
13: for each proposed scheme do
14: Load all pre-processed images and ground truth masks:
{imgnn, gtn}Nn=1

15: imgntrain, imgntest , imgnval , gttrain, gttest , gtval ←

Split(imgn, gt)
16: Batch_sizes← 2, 4
17: Learning_rate← 0.0001
18: No._of _epochs← 100
19: Steps_per_epoch← Size(imgtrain)/Batchsize
20: for i← No._of _epochs do // DMAeEDNet training using

the train and validation sets
21: for j← Steps_per_epoch do
22: Augment(batch_j)
23: gt ′train ← DMAeEDNet.fit(batch_j)
24: losstrain ← 1− Dice_coefficient(gttrain, gttrain)
25: Adam_optimizer(DMAeEDNet, losstrain)
26: gt ′val ← DMAeEDNet.fit(imgval )
27: lossval ← 1− Dice_coefficient(gtval, gt ′val )
28: save_model(DMAeEDNet)
29: end for
30: end for
31: losstest ← 0 // Predict the segmented masks for the test set

using the trained model
32: for t ← 1 to size(imgtest ) do
33: gtptest [t]← DMAeEDNet.predict(imgtest [t])
34: losstest [t]← 1− Dice_coefficient(gttest [t], gt

p
test [t])

35: losstest ← losstest + losstest [t]
36: save_predicted_segmented_mask(gtptest [t])
37: end for
38: average_losstest ← losstest/size(imgtest )
39: end for

IV. RESULTS
This section discusses about the performance assessment of
the proposed DMAeEDNet for automated segmentation of
breast lesions in ultrasound images. The different learning
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TABLE 1. Training hyper-parameters.

parameters and segmentation metrics are elaborated for
analysis of the proposed network.

A. TRAINING HYPER-PARAMETERS
The proposed network utilizes different learning parameters
during training phase. In this work, Keras tuner is used
for optimal hyper-parameter selection. Table 1 lists these
parameters. It can be observed from the table that an extensive
analysis is performed for network performance evaluation,
by using different batch sizes as also used in some literary
works [50], [51], [52], epochs based on early stopping
criteria, and steps per epoch. For optimization and handling
the local minima issue during training, Adam optimizer, i.e.,
adaptive moment estimation is used with a small learning rate
of 0.0001 as listed in the table. Adam optimizer combines
momentum with the adaptive learning algorithm, root mean
square propagation, RMSprop [53]. It controls the rate of
gradient descent for minimum oscillation at reaching the
global minima as well as incorporating high enough step
size to surpass the local minima problems along the path.
Thereby, smaller learning rate is required [50] than the
usual of 0.001 used mostly. This helps in reaching efficient
global minimum for convergence. This work also uses
batch normalization, dropout regularization as mentioned
previously and also used in existing works [50], [51], [52],
and He uniform weight initialization techniques for better
convergence.

B. SEGMENTATION PERFORMANCE METRICS
The performance of the proposed network is evaluated using
a train-validation-test split of 70%-20%-10% respectively
for both the datasets used in this work. For assessing the
generalization capability of the proposed network, ten-fold
cross-validation is used in both the datasets. To overcome the
class-imbalance in segmented masks, dice loss function and
dice coefficient metric are used during the training process
for performance assessment. The test performance of the
proposed network is evaluated using different well-adapted
segmentation metrics such as, dice coefficient (DC), jaccard
index (JI ), precision (PR), sensitivity/recall (SE), false
positive rate (FPR), and Matthews correlation coefficient
(MCC). Description of these metrics is provided in [54].

1) PERFORMANCE ASSESSMENT SCHEMES
In this work, different evaluation schemes are proposed for
an exhaustive analysis of the proposed segmentation network
with respect to intra-dataset, inter-dataset, and inter-machine
images. For all schemes, data augmentation is used by

randomly generating multiple images from the data presented
to the model. This helps in better generalization of the model
by learning diverse feature representations. A description of
these schemes is provided as follows.
• Scheme I- Training and testing using UDIAT dataset:
This scheme utilizes 70%−20% training-validation split
for ultrasound images from the UDIAT dataset during
training phase, and the remaining 10% images during
testing phase.

• Scheme II- Training and testing using BUSI dataset:
This scheme utilizes 70%−20% training-validation split
for ultrasound images from the BUSI dataset during
training phase, and the remaining 10% images during
testing phase.

• Scheme III- Training and testing using both BUSI -
UDIAT datasets: This scheme utilizes 70% − 20%
training-validation split for ultrasound images from
both the above mentioned datasets combined together
during training phase, and the remaining 10% from both
datasets during the testing phase.

• Scheme IV- Training using UDIAT dataset and testing
using BUSI dataset: This scheme utilizes 70% − 30%
training-validation split for ultrasound images from the
BUSI dataset during training phase, and all images from
the BUSI dataset during the testing phase.

• Scheme V- Training using BUSI dataset and testing
using UDIAT dataset: This scheme utilizes 70% −
30% training-validation split for ultrasound images from
BUSI dataset during the training phase, and all images
from the UDIAT dataset during the testing phase.

• Scheme VI- Training using BUSI -UDIAT datasets and
testing using inter-machine clinical data: This scheme
utilizes 70% − 30% training-validation split for ultra-
sound images from the combined BUSI -UDIAT dataset
during the training phase, and the clinical ultrasound
images taken from different machine during the testing
phase.

2) PERFORMANCE ANALYSIS
The evaluation metrics for different schemes and batch sizes
are presented in Table 2. It can be observed from the
table that for schemes I and II, the overall segmentation
performance is superior to that achieved in the other schemes.
This implies that training and testing the network using
the individual datasets helps in prominent feature extraction
resulting in effective segmentation of lesion area, with overall
dice coefficients of 0.86 and 0.83 for batch size of 4.
This attributes to the presence of pre-processed images
in these datasets, and training and testing on the images
captured using same machine and protocol. For scheme III,
the performance is quite comparable with the previous two
schemes, with dice coefficients 0.80 and 0.81, indicating
the effectiveness of the proposed network in segmenting
the images acquired from the combined datasets. A slight
drop in the performance attributes to the training process,
which uses combinations of images from all the datasets
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TABLE 2. Segmentation performance metrics of the proposed DMAeEDNet for all schemes (Mean over patients (Standard deviation)).

leading to increased variations in the data. This helps in
better generalization but slight decrease in the metrics.
Although, the change in performance is not too significant,
which demonstrates that the proposed network is capable
of learning variable feature representations of images taken
from different machines.

As mentioned previously, the cross/inter-dataset and
inter-machine ultrasound images are also used to analyze the
robustness of the proposed network. It can be observed from
Table 2 that for scheme IV and V, the overall performances
are comparable with the schemes II and I respectively. It can
be observed that for scheme V, the performance is better than
scheme IV, which attributes to the test images taken from
the UDIAT dataset correlating well with the performance in
scheme I. Since the images used in training and testing belong
to different datasets collected from different machines, there
is a slight decline in the performance. However, the network
is fairly able to segment the images with dice coefficients
of above 0.79, which demonstrates its effectiveness in
segmenting inter-dataset/machine images. This also indicates
that the proposed network can segment the breast lesion for
a new patient, without being trained on it prior. Furthermore,
it can be observed from the table that in scheme VI, although
the test images used are taken from different machines
and datasets, the proposed network is still able to achieve
comparable dice coefficients above 0.78, This attributes to
the less number and low clarity of the test images taken from
that machine (LE9). Finally, this demonstrates the robustness
of the proposed network with respect to inter-machine and
quality of data.

3) PROBABILITY DISTRIBUTION ANALYSIS OF
PERFORMANCE
In this sub-section, the dice coefficients obtained by the pro-
posed segmentation network are investigated for the varia-
tions in probability distributions. For this purpose, the DC of
each test image is plotted for both datasets used in this work.
Since scheme I and II utilize the two datasets individually,
these schemes are selected for analyzing the dataset-wise
performance distribution. Figure 7 represents the probability

FIGURE 7. Probability distribution analysis of dice coefficients for both
datasets.

distribution of the DC values in the datasets. It is observable
that best performance is achieved for the UDIAT dataset in
Figure 7 (a), with a mean DC of 0.86. Further, for the DC
values of above 0.9, the highest probability is achieved as
represented by the width of the curve. This demonstrates the
maximum likelihood of segmenting the images with above
90% dice score in this dataset. Similar interpretations can
be drawn for the BUSI datasets in Figure 7 (b). It can be
perceived that the proposed DMAeEDNet is able to achieve
about 85% and 90% dice scores for most of the images
in the BUSI and UDIAT datasets respectively. Finally, this
indicates a high probability of DMAeEDNet in segmenting
a lesion with a dice score of above 0.85 in both the datasets,
demonstrating its adaptability to the data.

4) SEGMENTATION PERFORMANCE EXEMPLIFICATION
This sub-section presents a demonstration of the segmented
masks by the proposed network, for the different schemes
mentioned previously. Based on the dataset used for testing,
the segmented masks are illustrated for distinct combinations
of the schemes in Figure 8. For each dataset, the true and
predicted segmented masks are exemplified in the figure.

Figure 8(a) represents the masked true and predicted
segmented lesions in (ii) and (iii)-(iv) respectively for a
test image in (i) taken from the BUSI dataset. It can be
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observed that the lesion predicted using scheme II in (iii) is
closely matched to the ground truth with respect to shape
and boundary. The same is indicated by the dice coefficient
value of 0.93, which is higher in comparison to that using
schemes III and IV in (iv) and (v) respectively. The decrease
in performance is due to the variation in the training images in
this scheme which causes the network to learn more diverse
feature representations rather than specific ones. Figure 8(b)
illustrates the masked true and predicted segmented lesions in
(ii) and (iii)-(v) respectively for a test image in (i) taken from
the UDIAT dataset. Similar interpretation can be drawn for
this dataset, however, the inter-dataset variability is minimal
in this case. This owes to the high contrast and clarity of the
images in the UDIAT dataset, as also observed from its best
overall performance as mentioned previously.

FIGURE 8. Illustration of actual and network-predicted segmented masks
using different schemes in test datasets (a) BUSI : (i) A test B-mode image
(ii) Ground truth mask, (iii), (iv), and (v) Predicted masks using schemes II,
III, and IV respectively, and (b) UDIAT : (i) A test B-mode image (ii) Ground
truth mask, (iii), (iv), and (v) Predicted masks using schemes I, III, and V
respectively.

C. NOISE ROBUSTNESS ANALYSIS
This sub-section analyses the performance of the proposed
network on the ICR dataset, which consists of artifactual
images, without any pre-processing. For this purpose,
70%− 20% training-validation split is used for ultrasound
images from the ICR dataset during training phase, and
the remaining 10% images are used during testing phase.
An overall average DC of 0.73 is achieved, along with a
sensitivity of 0.82. This indicates that the proposed network
is able to fairly segment the breast lesions in the low contrast
and artifactual images, demonstrating its robustness with
respect to noise. Figure 9 shows the probability distribution
graph for the DC values obtained for the test data. The
highest probability is achieved for the DC values of about
0.8, as represented by the width of the curve. This indicates
the maximum likelihood of segmenting the images with
approximately 80% dice score in this dataset. Finally, this
demonstrates the capability of the proposed network in
learning the feature representations in the artifactual images,
and effectively segmenting them.

D. EFFECTIVENESS OF DMAC
This work proposes the use of dense multiplicative attention
components for efficient segmentation of lesion in breast
ultrasound imaging. To demonstrate the effectiveness of
DMAC, an ablation analysis of the proposed network is

FIGURE 9. Probability distribution analysis of dice coefficients for ICR
dataset.

presented in this sub-section. For this purpose, the proposed
network is analyzed after removing the DMAC for ICR
dataset. An overall average dice coefficient of 0.62 is
achieved, which is low in comparison to that obtained with
DMAC. Figure 10 represents the true and predicted masks
using network with and without DMAC for a B-mode test
image in ICR dataset. It can be observed that the segmented
mask with DMAC is significantly appropriate in comparison
to that without DMAC. This indicates that the dense mul-
tiplicative attention enhances the segmentation performance
by extracting more relevant feature representations from the
input images.

FIGURE 10. Illustration of actual and predicted segmented masks using
network ablation for scheme I in test dataset ICR: (i) A test B-mode image
in ICR dataset, (ii) Ground truth mask, (iii), and (iv) Predicted masks using
the proposed network without and with DMAC respectively.

E. LEARNING CURVES
This sub-section elaborates the training and validation perfor-
mance of the proposed segmentation network to demonstrate
its learning process with respect to the iterations/epochs.
Figure 11 illustrates the learning curves of the proposed
network for all schemes during training phase. It can
be observed that for the network convergence is slower
for schemes I, III, IV, and V, and faster for the other
two schemes. However, the overall training and validation
performance indicates that the proposed network does not
over-fit irrespective of the speed of convergence.

F. PERFORMANCE COMPARISONS AND COMPUTATIONAL
COMPLEXITY ANALYSIS
This sub-section describes the performance comparison of
the proposed network with different recent state-of-art deep
learning networks for breast lesion segmentation. For this
purpose, some of the previously proposed segmentation net-
works based on encoder-decoder structure are implemented
and evaluated using all schemes in this study. Based on the
similarity of implementation with the proposed network, the
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FIGURE 11. Training curves for all schemes I-VI in (a)-(f) respectively.

following networks are used for experimentation: U-Net [30],
adaptive attention U-Net (AAU-Net) [31], selective kernel
U-Net (SKU-Net) [32], multi-U-Net [33], and attention
enhanced U-Net (AEU-Net) [36]. Figure 12 shows the
different performance metrics estimated after implementing
these networks using all six schemes proposed in this work.
It can be observed that the proposed network outperforms
all other networks for all schemes, with a comparable
performance with the recently proposed AAU-Net, and
U-Net for scheme I. Further, the proposed network uses
separable convolutions which reduce the overall complexity,
thereby, indicating its effectiveness with respect to U-Net
and AAU-Net. Further, the performance for the last three
schemes demonstrates the robustness of the proposed net-
work with respect to inter-machine data in comparison to
the existing networks. In this work, an analysis of the
time complexities involved in prediction of the segmentation
masks by existing and proposed networks is performed.
All the network implementations including training and
testing are done on Precision 7920 tower workstation with
NVIDIA® RTX™ A4000, 16 GB GDDR6, 4 DP GPU.
Figure 13 shows the average execution times of the existing
networks and the proposed network during test phase, for
each image. The execution time is shown after averaging over
all schemes, and denotes the prediction time to estimate the
segmented mask/lesion for each image. It is apparent from
the figure that the proposed network outperforms the existing
networks in terms of time complexity, with a considerably
low latency of 19ms.

This work elaborates the comparative analysis of the
proposed DMAeEDNet by including dataset-wise metrics
reported by existing works in table 3. The values of all metrics
are adopted from a recent work in [9]. The methods which
use both BUSI and UDIAT datasets are selected and listed
in the table. It is evident from the table that the proposed
DMAeEDNet outperforms all the reported methods for both
datasets in terms of all metrics, and is in close proximity to the
recently proposed method in [9]. Furthermore, DMAeEDNet
uses significantly low number of model parameters and
floating point operations (FLOPs) as compared to all methods
reported in the table. This demonstrates the effectiveness of
the proposed network in terms of segmentation performance
and low computational complexity of the model.

V. DISCUSSION
The performance assessment and analysis schemes used in
this work demonstrate the capability of the proposed network
towards effective lesion segmentation. The purpose of using
diverse schemes is to investigate the behavior of network with
respect to inter-dataset and inter-machine ultrasound images.
It is clearly observable from Table 2 and Figure 8 that the
proposed network exhibits a minuscule trade-off between
generalization and performance.

In this study, the learning graphs of the proposed
network in Figure 11 demonstrate its ability to achieve
similar performance for both training and validation data
with respect to the iterations. This further indicates its
appropriate learning behaviour without any over-fitting.
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FIGURE 12. Different segmentation evaluation metrics obtained by implementing the existing networks and proposed network for all schemes: (a) Dice
coefficient, (b) Jaccard index, (c) Precision, (d) Sensitivity, and (e) Matthews correlation coefficient.

TABLE 3. Comparison of the proposed DMAeEDNet with the existing
methods for breast lesions segmentation [9] in UDIAT , BUSI datasets.

Subsequent illustration using network ablation without
DMAC in Figure 10 shows the significance of the proposed
dense multiplicative attention components. Additionally,
it performs computationally less expensive operations by
reducing the overall number of weights in the feature
matrices. Further feature map-based analysis demonstrates
the activations of the proposed network before and after

FIGURE 13. Illustration of the test prediction times per image (average
over all schemes) for existing and proposed networks.

both DMACmodules I and II in Figures 5 and 6 respectively.
It is demonstrated in these figures that DMAC-I performs
enrichment of the encoder feature map by selecting the
lesion-relevant features with multiplication operation, and
DMAC-II refines the reconstructed the feature map for more
precise segmentation output. It signifies the relevance of
DMAC modules in selectively capturing the lesion-specific
boundary features. Therefore, the proposed network with
DMAC is capable of performing effective segmentation with
low computational complexity.

The exhaustive comparison of the proposed network with
select state-of-art encoder-decoder-based systems indicates
that the existing attention-based networks are compara-
ble to the proposed network in terms of performance.
While, the attention components in the proposed work are
light-weight, in terms of implementation and computation,
as opposed to these existing attention-based networks
AAU-Net and AEU-Net which are complex and require
more explain-ability. Therefore, the effectiveness of proposed
DMAeEDNet with respect to the existing networks is
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demonstrable. Further, the time complexity analysis in
Figure 13 indicates the superiority of the proposed network
in terms of efficient segmentation with low latency, and
further demonstrates its applicability in real-time. It is also
observable that the U-Net architecture exhibits a trade-off
between time complexity and performance, however, the
proposed network overcomes this issue by obtaining better
performance with low time complexity. The significant
reduction in computation time is crucial for real-time auto-
matic segmentation. Additional comprehensive comparative
evaluation of the proposed method with recently reported
existing methods in [9] further signifies its superiority in
segmentation performance with considerably low computa-
tional complexity in terms of FLOPs and model parameters.
Finally, the meticulous comparative analysis demonstrates
the reduction in overall complexity of the proposed network
with the use of depthwise separable convolution layers and
its effectiveness in feature extraction with the introduction of
DMAC modules.

The proposed network is able to segment the breast lesions
with superior performance and low complexity, however,
it has certain limitations with respect to the average perfor-
mance for inter-dataset images in schemes IV and VI, as well
as the noise robustness test for ICR dataset. Further, there is
a slight decrease in the segmentation performance for images
with ambiguous and hazy lesion boundaries. Therefore, the
future direction of the proposed study shall be towards
further improvement of the segmentation performance of the
inter-dataset images, the images which have unclear lesion
boundaries, and noise robustness. This shall be achieved
by exploring some modifications in the proposed attention
components and the pooling operations. Some recently
proposed hyper-parameter tuning schemes may be explored
for optimization of the proposed network [65]. Further, the
noise robustness analysis will be performed for the public
datasets by artificially contaminating the images, along with
more images acquired from different machines. Finally, the
segmented masks will be utilized in conjunction with the
original images for breast lesion categorization.

VI. CONCLUSION
In this study, a novel dense multiplicative attention enhanced
encoder decoder network is proposed for ultrasound-based
automated breast lesion segmentation. An extensive evalua-
tion analysis using different training schemes demonstrates
the adeptness of the proposed network toward segmentation
of breast lesions. The relevance of the dense multiplica-
tive attention components is also demonstrated through
the network ablation and feature-map-based analysis.The
comparative studies using implementation and evaluation
of existing networks with different schemes indicate the
supremacy of the proposed network in terms of all seg-
mentation metrics and latency. Further comparisons with
recently reported works indicates its efficacy in segmenting
the lesions with significantly low computational complexity.
Finally, the low time and computational complexity, and

inter-machine/dataset performance of DMAeEDNet demon-
strates its suitability for real-time breast lesion segmentation.
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