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ABSTRACT The safe implementation and adoption of Autonomous Vehicle (AV) vision models on public
roads requires not only an understanding of the natural environment comprising pedestrians and other
vehicles but also the ability to reason about edge situations such as unpredictable maneuvers by other drivers,
impending accidents, erratic movement of pedestrians, cyclists, and motorcyclists, animal crossings, and
cyclists using hand signals. Despite advances in complex tasks such as object tracking, human behavior
modeling, activity recognition, and trajectory planning, the fundamental challenge of interpretable scene
understanding, especially in out-of-distribution environments, remains evident. This is highlighted by the
84% of AV disengagements attributed to scene understanding errors in real-world AV tests. To address
this limitation, we introduce the Diverse Naturalistic Edge Driving Scene Dataset (DivNEDS), a novel
dataset comprising 11,084 edge scenes and 203,000 descriptive captions sourced from 12 distinct locations
worldwide, captured under varying weather conditions and at different times of the day. Our approach
includes a novel embedded hierarchical dense captioning strategy aimed at enabling few-shot learning and
mitigating overfitting by excluding irrelevant scene elements. Additionally, we propose a Generative Region-
to-Text Transformer, with a baseline embedded hierarchical dense captioning performance of 60.3mAP,
a new benchmark for AV scene understanding models trained on dense captioned data sets. This work
represents a significant step toward improving AVs’ ability to comprehend diverse, real-world edge and
complex driving scenarios, thereby enhancing their safety and adaptability in dynamic environments. The
dataset and instructions are available at https://github.com/johnowusuduah/DivNEDS.

INDEX TERMS Autonomous vehicles, edge and complex scenes, embedded hierarchical dense captioning,
generative region-to-text transformer, scene understanding.

I. INTRODUCTION
In recent years, the performance of Autonomous Vehicle
(AV) driving systems in tasks related to visual scene
understanding has witnessed significant improvement, owing
to the emergence of various benchmark datasets [1], [2], [3],
[4], [5], [6], [7], [8] and rapid advances in deep learning [9],
[10], [11]. Eighty-four percent (84%) of AV disengagements
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during tests on public roads in California, the only state
that mandates AV manufacturers to report instances of AV
disengagements on public roads, are attributed to errors in
scene understanding in unexpected environments [12]. This
indicates that despite advancements in human behavior mod-
eling, pedestrian prediction, activity recognition, trajectory
planning, object detection, tracking, and other downstream
tasks, the fundamental task of timely interpretable scene
understanding, particularly in out-of-distribution scenarios,
remains a challenge. For example, in a fatal accident
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FIGURE 1. Single Scene Annotation vs Embedded Hierarchical Dense Captioning (a): We can observe that single scene bounding boxes, when
paired with scene descriptions, encompass background features that are essentially irrelevant to the given description. In this instance,
approximately less than 40% of the receptive field of the single scene or image caption is salient to the scene description. (b): On the other hand,
in (b), embedded hierarchical dense captioning showcases its ability to capture a more effective feature space that eliminates irrelevant
background regions. Zoom in for best viewing.

involving Uber’s AV on March 18, 2018 in Tempe, Arizona
[13], Uber’s AV initially identified the victim of the accident,
who was pushing a bicycle across a poorly lit four-lane road
at an undesignated location, as an unknown object, then as a
vehicle, and finally as a bicycle, all within a 6-second time
span. Enabling Autonomous Vehicles (AVs) to rapidly grasp
edge scenarios involving a diverse array of road users under
varying conditions is imperative for their safe operation in
dynamic environments. This capability is crucial for ensuring
that AVs meet the stringent safety requirements necessary to
gain widespread acceptance and adoption. To address this
challenge, this study introduces a novel dataset comprising
diverse naturalistic edge scenarios. These scenarios are
annotated using a novel embedded hierarchical dense
captioning strategy that effectively localizes and describes
salient regions within driving scenes. Furthermore, the
study introduces a benchmark Generative Region-to-Text
Transformer, known as theDiverse Naturalistic Edge Driving
Scenes Transformer (DivNET), designed specifically for
enhancing scene understanding in these challenging contexts.

A significant body of research embraces graph-based
frameworks to model the relationships between various
elements in traffic scenarios [14], [15], [16], [17]. However,
these graph-based methods, while effective at capturing rela-
tionships, often lack interpretability for downstream tasks,
particularly in complex and edge scenarios. Understanding
why an AV agent makes specific decisions based on a
graph structure remains challenging. In parallel, research
on natural language and AV vision grounding has emerged,
with a focus on interpretable AV action understanding and
AV navigation with natural language. DRAMA [18], for

instance, connects risk localization to explanations in driving
scenes, wheras HDD [9] deconstructs driving scenes into
layers to understand the causal relationships between human
driver actions and traffic situations. BDD-X [19] predicts
AV control commands and provides rationalization and
introspective explanations of actions.HAD [20] andTalk2Nav
[21] explore the use of natural language for AV guidance,
withHAD assessing behavior, comprehending user language,
and explaining its internal state, wheras Talk2Nav focuses
on enhancing human-AV agent interaction through verbal
navigational instructions. However, these studies suffer from
poor generalization as a result of relying on datasets with
narrow scope and diversity, and single scene annotations that
include irrelevant background information.Whereas previous
research has made significant contributions to AV scene
understanding, it falls short in addressing the timely and
thorough comprehension of diverse naturalistic edge driving
scenes for the following reasons:

1. Existing datasets typically comprise a narrow scope,
idealistic environments and homogeneous driving scenes that
are specific to particular cities, thereby constraining their
capacity to be generalized to diverse edge and complex
scenarios. For instance, DRAMA [18] exclusively captures
scenes in which an ego-driver must engage brakes in Tokyo,
Japan. Oxford RobotCar [22] consists of 100 repetitions of a
consistent route through Oxford, United Kingdom. Similarly,
bothHDD [9] andHAD [20] were exclusively captured in San
Francisco, USA.

2. Current research beyond semantic scene understand-
ing [9], [18], [20] relies on single scene bounding boxes
and descriptive annotations, including background elements

VOLUME 12, 2024 60629



J. O. Duah et al.: DivNEDS for Autonomous Vehicle Scene Understanding

FIGURE 2. Deconstruction of embedded hierarchical dense captioning
strategy showing three (3) levels of annotation utilized in each image.
Objects, attributes and actions are highlighted in blue, green and pink,
respectively. The lowest level of annotation deviates from conventional
object detection annotations by including object attributes. Our
embedded hierarchical dense captioning strategy allows our transformer
to learn associative relationship between the receptive fields of low,
middle and high level captions.

irrelevant to specific annotations. This dilutes the feature
spaces and leads to poor performance on unseen data
with similar backgrounds. The ultimate result is that AV
systems learn extraneous information and perform poorly
when applied to unseen data with similar background. Fig. 1
illustrates the difference between the single scene description
bounding box annotation strategy used in contemporary
research and our embedded hierarchical dense captioning
strategy. We observe that the majority of the receptive field
captured by the single scene bounding box is irrelevant to its
description.

3. Traditional approaches to comprehensive scene under-
standing rely on extensive multi modal sensor data, including
video feeds, LiDAR point clouds, radar and GPS. How-
ever, LiDAR and radar sensors have limited operational
ranges, introducing failure modes [1], including latency
and overfitting, during adverse driving conditions. However,
human drivers can make informed decisions with less precise
representations of the real world, highlighting the need
for AVs to infer relationships, attributes, and actions from
low-level data like images [23]. These limitations have also

been highlighted in avoidable safety incidents involving AVs
on public roads [13], underscoring the need for more robust
and generalizable approaches. Our current study focuses on
filling these gaps using a Diverse Naturalistic Edge Driving
Scene Dataset (DivNEDS). The main contributions of this
study is summarized as follows:

1. We present 11,084 scenarios comprising a wide range
of diverse naturalistic edge situations annotated with 203,000
descriptive captions. These scenarios involve sudden and
unpredictable maneuvers by other road users, impending
accidents, animals and debris within right of way, hand
signals from cyclists, and unusual interactions involving
pedestrians, cyclists, and motorcyclists in right-hand and
left-hand traffic. The dataset was captured in various
locations, including New York, San Francisco, Seattle,
Minneapolis (United States), Toronto (Canada), Madhepur,
Mumbai (India), Johannesburg (South Africa), Jakarta
(Indonesia), Melbourne (Australia), London (England), and
Lagos (Nigeria) to capture variations in road standards
and behaviors. The data collection occurred under different
lighting conditions such as direct sunlight, overcast, snowy,
foggy, and rainy conditions. DivNEDS contains an equal
distribution of images captured during both daytime and
nighttime. Unlike other related datasets, DivNEDS includes
scenes from rural areas and images with varying resolutions
and qualities making it a robust representation of real-
world scenarios. To the best of our knowledge, this dataset
stands is the most diverse and comprehensive resource for
understanding complex and edge scenes in the context of AV
research.

2. We introduce a novel embedded hierarchical dense
captioning strategy that enables few-shot learning and
improves conventional dense captioning schemes. Conven-
tional dense captioning methods utilize a flat annotation
strategy that requires multiple images and frames to capture
contextual information, which, in contrast, can be efficiently
captured using an embedded hierarchical dense captioning
scheme within a single image. We used hierarchical anno-
tations with the lowest level approximating object detection
annotations with attributes embedded within middle-level
annotations. In Fig. 2, the low-level bounding box is
captioned, ‘‘cyclist in black shirt,’’ and is embedded within
a middle-level bounding box with the caption, ‘‘cyclist
in black shirt riding a bicycle signaling right turn.’’ The
middle-level annotations describe relationships and actions
of objects in a road scene. The highest annotation layer
embeds low-level and middle-level annotations and describes
the scenes captured within the images. As illustrated in Fig. 2,
the highest level scene caption, ‘‘cyclist in black shirt riding
a bicycle signaling right turn in front of gray car changing
lane,’’ embeds all relevant low and middle-level information
describing the scene. This approach allows the definition of
multiple contextual feature spaces within each image, leading
to a reduced dataset comprising a relatively smaller number
of images while maintaining a comparable feature space.
Each level of annotation contributes to different aspects of
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TABLE 1. Comparative summary of DivNEDS dataset in relation to other related datasets exploring varied annotations, environmental conditions and
locations worldwide.

the scene understanding, thereby creating various layers of
context. The outcome is a feature-rich space with 203,000
descriptive annotations that highlight salient regions in all
11,084 images. Embedded hierarchical dense captioning
requires a computer vision system to identify and describe
multiple salient regions within images in natural language.
This approach is necessary because image captioning often
falls short of effectively describing multiple activities in a
singular complex and edge scene. In addition, in light of the
existing gaps in AV scene understanding and the potential
impact of enhancing safety measures, our primary focus in
this paper is on addressing the need for interpretable scene
understanding.

Our work includes experiments aimed at exploring the
performance of pre-trained schemes and zero-shot under-
standing of DivNET. We also performed ablations studies
that evaluated multiple backbones of the vision transformer
used in DivNET. The remainder of the paper is organized as
follows: Section II provides a detailed discussion of related
works. Sections III and IV discuss data statistics and the
architecture of DivNET, respectively. Experiments, results
and applications are discussed in Section V. Section VI
provides the applications of DivNEDS and DivNET, and
conclusions are outlined in Section VII.

II. RELATED WORKS
A. GRAPH-BASED DRIVING SCENE UNDERSTANDING
Several studies have utilized graph-based frameworks to
model relationships among traffic participants, as well as
spatial and temporal information to understand the current
and future state of AV environments for autonomous
navigation [14], [15], [16], [17]. In [14], the authors
decompose egocentric interactions into two types: ego-thing

and ego-stuff interactions, using two graph convolutional
networks. They also introduce a novelMaskAlign operation to
extract features of irregular objects in ego-stuff interactions.
Mylavarapu et al. [14] employ a multi-relational graph with
bidirectional edges to encode the spatio-temporal relations
between nodes. This representation is used to represent active
and passive objects in driving scenes. In [16], the authors
combine a Multi-Relational Graph with a Long Short-Term
Memory (LSTM) Neueral Network and attention layers. This
combination helps model the risk of driving maneuvers,
which is formulated as a supervised scene classification
problem. RSG-Net [11] is proposed to simulate human-level
understanding of dynamic road events by predicting potential
semantic relationships among objects in a road scene.
RSG-Net [11] proposes the use of scene graphs as a more
effective approach to tackle the intricacies of real-world
scenarios. Positioned between model-based and end-to-end
deep network models, RSG-Net relies on a Road Scene
Graph dataset to model the behaviors of vehicles, pedestrians,
and obstacles. Although these graph-based methods excel
at capturing relationships, they lack clear interpretability
for downstream tasks, such as decision-making, especially
in complex scenarios. Understanding why an AV agent
makes a particular choice based on a graph structure can
be challenging.In addition, these methods inherit overfitting
problems inherent in the datasets on which they are trained.

B. NATURAL LANGUAGE AND AV VISION GROUNDING
Safe cooperative and autonomous driving relies on an
accurate understanding of risk during navigation and easy-to-
interpret introspective explanations of AV behavior. Research
in this domain is further classified into interpretable AV
action understanding [9], [18], [19] and AV navigation
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FIGURE 3. Grid layout representation of DivNEDS showing diverse characteristics.

with natural language [20], [21]. DRAMA [18] proposes a
method that connects risk localization to explanations in
driving scenes by using 17,785 interactive driving scenarios
collected in Tokyo, Japan. Each video clip in the DRAMA
dataset captures an ego-driver’s reaction to the perceived risk,
often resulting in vehicle braking. Although risk is often
attributed to individual objects in DRAMA, it is important to
note that in complex environments, risk rarely stems solely
from individual objects. For example, consider a scenario
in which an AV follows another vehicle that suddenly
brakes owing to a pedestrian crossing the roadway at an
undesignated location up ahead. In this case, the risk is not
solely assigned to the braking vehicle. Instead, it involves
a causal relationship between the action of the pedestrian
and the driver of the braking vehicle. HDD [9] introduces
a novel annotation framework that deconstructs driving
scenes into layers of goal-oriented action, stimulus-driven
action, cause, and attention to understand the interactions
and causal relationships between human driver actions
and corresponding traffic scene situations. BDD-X [19]
proposes novel methods to predict AV control commands
given scenes and extracts rationalization and introspective
explanations for such actions. This provides end-users with
an understanding of what triggered a particular behavior.
The strategic approach of ROAD [10] views agents, actions,
and their locations as essential components for understanding
road events. However, ROAD has limitations. It confines

road events to permutations of 30 distinct action classes,
12 distinct agent classes, and 15 unique location classes.
ROAD inherits the poor generalizability associated with
the Oxford RobotCar dataset [22]. Although these studies
have advanced beyond scene understanding, their use of
single scene captions encompasses the entire background
and irrelevant scene parts, failing to effectively capture
multiple disparate salient regions in complex and edge
scenes. Another limitation is the limited scope of AV actions
in their datasets. For instance, DRAMA captures only the
ego-driver’s braking in reaction to perceived risk. HAD [20]
introduces an innovative driving model that accepts natural
language inputs from end-users. It focuses on two types of
guidance: goal-oriented advice, which assists the vehicle in
navigation tasks, and stimulus-driven advice, which directs
the vehicle’s attention to visual cues. HAD possesses the
capability to assess behavior, comprehend user language, and
explain its internal state for communication with the vehicle.
Talk2Nav [21] is designed to enhance the intuitiveness of
human-AV agent interaction by training a model to navigate
an interactive visual environment using verbal navigational
instructions. Inspired by spatial cognition research, Talk2Nav
utilizes a soft dual-attention mechanism to extract two partial
instructions from segmented language instructions; one for
matching upcoming visual landmarks and the other for
matching local directions. Additionally, a spatial memory
scheme is introduced to encode local directional transitions.
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These models inherit limitations, including a lack of diversity
and a limited scope, from the datasets on which they are
trained on.

C. DATASETS
A common limitation of graph-based driving scene under-
standing [24], natural language and vision grounding [9],
[18], [19], [20] is that they are often captured in sin-
gular locations. For instance, Oxford RobotCar comprises
100 repetitions of a consistent route through Oxford,
United Kingdom, and both HDD and HAD are captured
in San Francisco, USA. Consequently, models developed
using these datasets may not be generalizable to other
environments. In addition, the use of single scene captions
in these datasets fails to effectively capture per-pixel salient
features for AV training. Finally, these datasets do not capture
complex edge traffic scenes, leading to overfitted models that
perform poorly on unseen edge driving scenes. As illustrated
in Table 1, DivNEDS presents the most diverse dataset
reported thus far, collected from 12 different locations, across
all weather conditions involving diverse edge scene types.
This dataset is annotated using a novel embedded hierarchical
annotation strategy [25], [26] that maps per-pixel salient
regions to natural descriptions of scenes, addressing some of
the limitations observed in existing datasets.

D. EMBEDDED HIERARCHICAL DENSE CAPTIONING
Several general scene understanding datasets utilize a flat
dense captioning scheme, wherein single bounding boxes
with descriptive captions are leveraged to capture contextual
information about image contents [25], [27], [28], [29]. This
necessitates the annotation of numerous images to construct
representations from which computer vision models can
learn. We address this challenge through our novel embed-
ded hierarchical dense captioning approach, which enables
few-shot learning via nested multilevel scene descriptions.

III. DATA STATISTICS, CROWDSOURCING STRATEGIES
AND ANNOTATION PROCESS
A. DATA STATISTICS
The curation of scenes for DivNEDS was informed by
situations that would be critical for AVs to understand in
order to interact efficiently with the real world. We decided
to source images from diverse origins in distributions that
mimic how often ego vehicles are anticipated to encounter
such environments. Fig. 3 outlines a representative sample
from each geographic location, weather condition, resolution,
demography and time of day. DivNEDS comprises 11,084
images from 12 distinct locations. In total, there are 203,619
bounding boxes accompanied by descriptive captions.

The average number of captions in a scene is 18.
A significant majority of the images, constituting 19.5% of
DivNEDS, are sourced from London, UK. New York, USA,
and Melbourne, Australia contribute 16.6% and 14.2% of
the images, respectively. The lowest proportion of images
is derived from Minneapolis, USA, at 0.8%. Driving scenes

FIGURE 4. Distribution of the Top 5 High-Level and Low-Level Captions.
Square brackets [], as employed in [black], serve as a placeholder for an
object attribute, as demonstrated by the example of color in this case.

FIGURE 5. Composition of DivNEDS by geographic location.

from Jakarta, Indonesia, and Madhepur, India, comprise
1.1% and 1.4% of the images, respectively. Scenes captured
in Minneapolis and Seattle were captured under snowy
and overcast weather conditions, respectively. Scenes from
each geographic location are randomly split into training,
validation and test sets, with an approximate split of
80%-10%-10%. DivNEDS edge scenarios comprise 44% of
congested corridors with motorcyclists and cyclists, 31%
involve unexpected maneuvers of other vehicles including
impending accidents, debris within the roadway, and animal
crossings, and 21% involve unusual interactions between the
ego-vehicle and pedestrians and cyclists. Nighttime snowy
conditions, rural corridors, and cyclists using hand signals
each representing 1% of DivNEDS. The object classes and
scene descriptions in the images sourced for this study were
not artificially balanced to ensure an even distribution across
classes. As a result, the uneven caption count distribution
observed in Fig. 4 reflects real-world frequencies. For
example, although animals and objects obstructing roadways
represent an important edge case, such scenarios arise less
frequently in practice than pedestrian jaywalking incidents.
Retaining an authentic representative sample of real-world
edge scenarios strengthens DivNET’s real-world capability.

B. CROWDSOURCING STRATEGY
To capture diverse representations of naturalistic autonomous
vehicle environments of edge case scenarios, DivNEDS
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comprises both original captures by the authors and pub-
licly available images under Creative Commons licenses.
We captured scenes in New York, Minneapolis, Seattle
and San Francisco in person. We sourced scenes from
Madhapur, Mumbai, Johannesburg, Melbourne, London,
and Jakarta from Wikimedia Commons. Supplementary
images portraying unexpected vehicle maneuvers, animal
crossings, and cyclist hand signals were sourced from
Pixabay using Creative Commons Zero public domain
dedication. Images displaying identifiable vehicle license
plate information were discarded from the final dataset as
an additional extra data privacy step. Fig. 5 and Fig. 6
provide multidimensional analysis of the composition of
DivNEDS.

C. ANNOTATION PROCESS
Four (4) human workers with qualifications in transportation
engineering annotated the images, and the authors verified
annotations. The dataset was collected and annotated over
12 months, following a 3-month period of experimentation.
During the experimental stage, we honed in on a sequence
of drawing low-level bounding boxes around objects first.
Bounding boxes were drawn to cover entire objects and
were as tight as possible around objects mentioned in the
description. We drew middle-level bounding boxes with
captions and then drew high-level bounding boxes and
captions. We found that having more than four (4) human
workers resulted in long turnarounds. One of the critical
requirements of the workflow was to ensure that objects and
attributes occurring in multiple images across origins had
consistent descriptions. To achieve this, the authors annotated
20 diverse images from each origin to ensure the consistency
and quality of the natural language across all human workers.
A video recording of the annotation process was shared with
the human workers with documentation. The first annotation
stage involved human workers annotating the first batch of
30% of images from each origin and a joint verification and
revision. The annotation documentation was updated with the
most common errors of the first stage annotation. At this
stage, approximately 40% of the images had typographical
errors, grammatical errors or inconsistent syntax of labels
across multiple images. The second stage also involved joint
verification and revision of the second batch of 30% of the
images from each origin.Fifteen percent of the images were
identified as having annotation errors at this stage. The final
stage of the annotation process was implemented in two (2)
phases. The first phase entailed each human worker’s peer
reviewing the final 60% of the images from each origin
annotated by another human worker. The authors performed
the final verification and revision of all annotations. The final
error rate after the two phases was 9%.

IV. DIVNET
Since GRiT [26] outperforms conventional dense captioning
models such as FCLN [25], JIVC [30], ImgG [31], COCD
[31], COCG [31], CAG-Net [32], and TDC + ROCSU [33] on

FIGURE 6. Composition of DivNEDS by edge scenario type.

the Visual Genome dataset, we modify GRiT’s architecture
for DivNET and make two (2) modifications to the ViT
[34] backbone to allow few-shot learning on our embedded
hierarchical dense captioned dataset. First, we instantiate
separate learned position embeddings for each caption level
in the ViT backbone. Next, we add separate positional
embeddings in the forward pass based on the appropriate
caption target level for that output, guiding DivNET to learn
contextual hierarchical representations. Fig. 7 illustrates the
high level architecture of DivNET.

A. VISUAL ENCODER
ViT-L serves as the evaluated backbone for the visual encoder,
with layer-wise learning rate decays of 0.8. Coswin-H is
included in the backbone of the DivNET scheme. A 16 ×

16 input image patch size is used in the training process.
Feature maps at scales of 1/64 and 1/128 are generated by
downsampling from 1/32.

B. FOREGROUND OBJECT EXTRACTOR
CenterNet [35] employs a proposal generator, which gen-
erates 2000 proposal boxes during training and 256 during
testing. The RoI head is constructed using a 3-stage Cascade
R-CNN [36]. For each stage classifier, both foreground and
background classes are defined, and the object box used by
the text decoder is predicted in the final stage. The objectness
score is computed by averaging the foreground scores from
all three stages.

C. TEXT DECODER
The text decoder is a component of DivNET responsi-
ble for comprehending and describing objects, attributes,
relationships, and activities in natural language. In this
process, words are transformed into text tokens using BERT’s
WordPiece tokenizer [37]. The text decoder is built with
a 6-layer transformer, augmented with a beginning token
[task]. Object descriptions are generated using text tokens
individually in an autoregressive manner until an end token
[EOS] is reached [26].
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FIGURE 7. High-Level Overview of DivNET Architecture: The visual encoder extracts object features defined heirarchies of nested captions then the
foreground object extractor predicts object boxes.

D. TRAINING
The training loss of DivNET consists of losses computed
by the foreground object extractor and text decoder, Lo, and
language modeling loss, Lt . Lt is imposed on the foreground
objects predicted by the foreground object extractor.

Language modeling (LM) loss is computed as follows:

Lt =
1

N + 1

N+1∑
i=1

CE(yi, p(yi|o, yo, . . . , i− 1)), (1)

where p(yi|o, yo, . . . , i − 1) is the predicted score for the
i-th text token given object features o and the previously
generated text tokens yo N is the number of text tokens in the
given object description. yo and yN+1 are the start and end
token, respectively. CE is the cross-entropy loss with label
smoothing of 0.1. Lt is computed for the foreground objects
predicted by the foreground object extractor.

V. EXPERIMENTS
Although DivNET stands out as the first AV scene under-
standing dataset annotated with a dense captioning strategy,
making it unique within its category without a comparable
model for architectural comparison, we conducted ablation
studies as well as pre-trained and zero-shot understanding
experiments. Our ablation experiments aimed to dissect
DivNET’s backbone and assess which option achieved the
best performance. Furthermore, we conducted pre-trained
experiments to determine which pre-training scheme was
most effective for our specific use-case. Additionally, evalu-
ating the performance of a scene understandingmodel in edge
and complex scenarios necessitates assessing its capabilities
on out-of-distribution data. Therefore, we conducted a
zero-shot experiment to evaluate the performance of DivNET
in previously unseen edge situations.

A. ABLATION STUDIES
We ran ablations with all three (3) ViT configurations to
determine which backbone was best suited for DivNET.
Unlike [34] where the input image size was 1024, we resized
the input images to 416 to improve training and inference
speed. Thus, we defined relatively larger patch embedding
dimensions for all three ViT configurations to compensate for

the information loss from down sampling. As summarized
in Table 2, the base model (ViT-B) uses 12 layers, a hidden
size of 1920, an MLP size of 7680, 12 heads, and
215M parameters. The large model (ViT-L) uses 24 layers,
2560 hidden size, 10240 MLP size, 16 heads, and 768M
params. Finally, the huge model (ViT-H) has 32 layers,
3200 hidden size, 12800 MLP size, 16 heads, and 1580M
parameters. We measured the mAP for each iteration of
DivNET on the test data.

As shown in Table 2, the large model with ViT-L achieved
the best performance with an mAP of 60.3. It is counter-
intuitive that DivNET with a relatively smaller backbone in
ViT-L outperforms the larger iteration with a ViT-H backbone.
We attribute this to the fact that, with a larger number of
parameters, the iteration ofDivNETwith the ViT-H backbone
is prone to overfitting. The number of parameters of DivNET
with a ViT-L backbone aligned better with the number of
captions present in DivNEDS.

B. PRE-TRAINED EXPERIMENT
All images were resized to 416 × 416 pixels to expedite
the training and inference and training were conducted using
eight (8) NVIDIA T4 GPUs. A minimum of 90% of the
annotated images were enforced to ensure that the models
learned to recognize instances where objects were absent.
This reduction in false negatives leads to an increase in
recall. No data augmentation was applied to the dataset,
and all Exchangeable Image File Format rotations were
discarded, with standardized pixel ordering. The primary
evaluation metric for dense captioning tasks is the mean
average precision (mAP), which is calculated across various
thresholds for both localization and caption description
accuracy. For localization, IoU thresholds of 0.3, 0.4, 0.5,
0.6, and 0.7 were employed, for language description, and
a METEOR score with thresholds of 0, 0.05, 0.1, 0.15, 0.2,
and 0.25. The final mAP metric was derived as the mean of
the average precisions (APs) calculated across all pairwise
combinations of these threshold types.
Pre-Training:We explore two pre-training schemes. GRiT

Visual Genome (GRiTVG pre-training): The ViT backbone
and text decoder were initialized from the pre-trained
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TABLE 2. Results of DivNET backbone ablation study.

TABLE 3. Result of pre-trained experiment.

GRiT (ViT-L, which was trained on Visual Genome [27].
We selected this scheme to leverage learned the object
descriptions related to pedestrians and vehicles in the Visual
Genome dataset.
MAE [38] pre-training: The ViT-L backbone was ini-

tialized from the self-supervised MAE model, which was
trained on ImageNet-1K [39]. All the other parameters were
randomly initialized. We chose MAE for this experiment to
evaluate the performance of a model designed to mitigate
overfitting. MAE was also chosen for its ability to recover
masked image patches, which may lead to superior local-
ization performance. We fine-tuned the model initialized
from GRiTVG on DivNEDS for 100k iterations with a
training batch size of 32. In contrast, the pre-trained MAE
model was fine-tuned for 180k iterations with a batch
size of 64. We utilized the AdamW optimizer [40] with a
learning rate of 8 × 10−5 and cosine learning rate decay
schedule. As shown in Table 3, the GRiTVG pre-trained
model outperforms MAE pre-trained model with a mAP of
60.3. We performed inferences on the sample test images
using DivNET pretrained on GRiTVG and the results are
shown in Fig. 8.

C. ZERO-SHOT UNDERSTANDING
It is useful for AVs to describe out-of-distribution edge
scenarios. Thus, we investigated whether DivNET could
achieve zero-shot understanding of animal crossing scenes.
To accomplish this, we initialized GRiTVG and fine-tuned
it on a version of DivNEDS that excluded animal crossing
scenes. We observed that the trained model generates diverse
dense captioned descriptions for different regions within
the same image. However, as shown in Fig. 8, there were
certain images in which the zero-shot scheme did not yield
satisfactory results. The results of this experiment revealed
that DivNET identifies animals crossing roadways. However,
this method fails to accurately classify animals in zero-shot
scenes. Deers and bears in driving scenes captured at night
were wrongly captioned as dogs. Consequently,DivNET fails
to generate high-level dense captions and some middle-level
dense captions. The mAP of the zero-shot understanding
experiment is 20.1

VI. APPLICATIONS
As outlined in the Related Works section, current datasets for
AV scene understanding often fall short in capturing edge
cases and complex scenarios addressed by DivNEDS. The
comprehensive nature of DivNEDS, with its scenes available
for open-source use, offers significant potential when inte-
grated into existing AV scene understanding datasets. Beyond
enhancing the diversity of scenarios, DivNEDS can serve
as a foundational resource for integrating AV commands,
facilitating risk analysis, and conducting causal and effect
studies. These capabilities make DivNEDS a valuable asset
for various applications within the AV field. In the following
sections, we discuss the additional specific applications and
benefits of DivNEDS.

A. SAFETY ASSESSMENT AND VALIDATION
DivNEDS provides a vital benchmark for evaluating AV
systems’ comprehension of naturalistic edge environments.
By leveraging DivNEDS to test AV perception models
under diverse and nuanced conditions, researchers can
validate the safety, reliability and readiness of these systems
for real-world operation. The edge cases represented in
DivNEDS are critical for highlighting potential deficiencies
in state-of-the-art AV technologies and identifying areas that
require additional research and development before broad
deployment can be undertaken responsibly.

B. NATURAL LANGUAGE INTERFACES
The dense image captions from DivNEDS could enable
natural language human-computer interfaces for autonomous
vehicles. This allows passengers to query the vehicle’s per-
ceptual systems using free-form speech and receive detailed
natural language descriptions of the car’s surroundings. Such
an interface improves the trust and transparency between
humans and AVs.

C. MODEL INTERPRETABILITY AND REGULATORY
COMPLIANCE
Researchers and engineers can harness DivNEDS to develop
and appraise models designed specifically for interpreting
edge driving scenarios. This entails not merely recognizing
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FIGURE 8. Sample inference results on test data. In (a), DivNET accurately understands dust emanating from the car as it careens toward the
intersection ahead of the ego vehicle. (b) shows DivNET’s ability to understand an edge scene involving a cyclist in blue shirt falling of a bicycle
behind gray car at intersection in the lane of ego vehicle.
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FIGURE 9. Zero-shot object understanding predictions We observe that DivNET has poor zero-shot object understanding of animals crossing the
roadway. Here we observe inaccurate predictions of dog instead of bear and deer. Zoom in for the best viewing.

objects and situations, but also generating explanatory
captions that elucidate the rationale behind the model’s
decisions, providing insights into its inferential process. Such
interpretability is often a prerequisite for AV regulatory
approval. DivNEDS enabled us to demonstrate that AV mod-
els can provide lucid, human-understandable clarifications
for their perceptual surroundings.

D. DRIVER ASSISTANCE SYSTEMS
The dense captions generated by the models trained on
DivNEDS could be deployed in Advanced Driver Assistance
Systems (ADAS) to provide enhanced environmental aware-
ness and hazard avoidance for human drivers. By describing
nuanced edge cases, the system can alert drivers to objects
and situations that pose imminent danger. This application
leverages DivNEDS to improve driving safety without
requiring complete vehicle autonomy.

E. SIMULATION AND VIRTUAL TESTING
Diverse edge driving scenarios in DivNEDS can be used
to construct challenging simulated environments for virtual
testing and validation of autonomous vehicle systems.
By augmenting existing simulation platforms with novel
edge cases from DivNEDS, researchers could thoroughly
vet AV technologies without real-world road testing. Such
simulations facilitate rapid design iterations and provides
crash-free assessment.

VII. CONCLUSION
With its large volume of diverse, naturalistic and embedded
hierarchical dense captioned images from a range of edge
driving scenarios,DivNEDS enables the development, assess-
ment and benchmarking of novel methods for interpretable
and timely understanding of complex edge scenes. A mAP

of 60.3% demonstrates the strong baseline performance of
DivNET even as a baseline model. Going forward, harnessing
datasets such as DivNEDS will prove key to instilling
AVs with human-like abilities to instantly make sense of
unusual driving environments. By spurring innovations in
this direction, the DivNEDS resource marks an important
step toward next-generation AV agents that are dependably
competent in comprehending and responding to even themost
difficult real-world edge case.
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