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ABSTRACT Statistical distribution of taxi demand is essential for modeling the dynamics of taxi services.
An accurate demand prediction not only helps the drivers lessen their searching time but also helps the
passengers shorten their waiting time. Moreover, the temporal distribution of taxi demand is a critical
component in traffic simulation. Obviously, a simulator needs to know how many new taxi pickup events
to schedule after the others. In most studies, a poisson distribution is often used to model the temporal
distribution of taxi pickups. However, this assumption has mostly been used without validation with
empirical data. Therefore, it is unclear whether such an assumption is appropriate for modeling the statistical
distribution of taxi demand. In this study, we characterize the temporal distribution of taxi pickups based on
real taxi trip data from Bangkok, Thailand, and Chicago, IL, USA. It is shown that, in most cases, the poisson
distribution is not suitable for modeling the temporal distribution of taxi pickups. On the contrary, this study
demonstrates that a geometric distribution is more appropriate in modeling the temporal distribution of taxi
pickups. To our knowledge, this has not been discovered in any prior studies.

INDEX TERMS Taxi demand, statistical modeling, statistical analysis, poisson distribution, intelligent
transportation systems.

I. INTRODUCTION
Knowledge of the temporal distribution of taxi demand is
vital for improving the efficiency of taxi services. Under-
standing the underlying statistical distributions of demand
is absolutely crucial to demand prediction. An accurate
demand prediction allows vacant taxis to cruise to the areas
where they are more likely to find passengers. This not only
helps the drivers lessen their searching time but also helps
the passengers shorten their waiting time. In addition, the
temporal distribution of taxi demand is a critical component
in traffic simulation. Obviously, a simulator needs to know
howmany new taxi pickup events to schedule after the others.
These are determined by the temporal distribution of taxi
pickups.

In most studies, it is frequently assumed that the temporal
distribution of the number of taxi pickups follows a poisson

The associate editor coordinating the review of this manuscript and

approving it for publication was Ivan Wang-Hei Ho .

distribution [1], [2], [3], [4], [5], [6]. Nonetheless, this
assumption has mostly been used without validation with
empirical data. One of the main reasons why a poisson
distribution is often assumed is that many of its properties
can help simplify an analysis. First, when an arrival process
(e.g., arrivals of pickup requests) is poisson, it automatically
implies that the interarrival time (i.e., the time between
consecutive arrivals) follows an exponential distribution.
This tremendously helps save the troubles of characterizing
the interarrival time distribution, which could be difficult
to derive had the other types of arrival process been
assumed. Second, by assuming that both the arrivals of
pickup requests and the arrivals of vacant taxis (i.e., services)
are poisson, the system’s dynamics can be modeled with
a Markovian queue. The Markovian queues have been
thoroughly analyzed; therefore, the known results can readily
be applied. Using other arrival processes would not allow the
system to be conveniently modeled as a Markovian queue.
However, any analysis is meaningless unless the underlying
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assumption is valid. In this paper, we will verify whether a
poisson distribution is appropriate for modeling the temporal
distribution of the number of pickups. If it is not, we will
suggest a suitable statistical distribution that can effectively
model the number of pickups.

In this study, the temporal distribution of the number
of pickups is characterized based on real taxi trips in
Bangkok, Thailand, and Chicago, IL, USA. A statistical
procedure is performed to test whether any particular
statistical distribution can model the temporal distribution of
the number of pickups. Three types of discrete probability
distributions are investigated. They are poisson distribution,
negative binomial distribution, and geometric distribution.
Since the poisson distribution is frequently assumed in
most studies without validation with empirical data, we will
examine it here. The negative binomial distribution was used
to model the temporal distribution of the number of pickups
in [7]; therefore, it is also included for investigation here.
Finally, to our knowledge, the geometric distribution has not
been used to model the temporal distribution of the number of
pickups in any existing studies. It is newly introduced here to
characterize the temporal variation of the number of pickups.

The contributions of this work can be summarized as
follows.

1) With two independent datasets, we characterize the
temporal distribution of the number of pickups. The
characterized distribution is crucial to future develop-
ment in the theoretical analysis and simulation of taxi
demand. It provides a fundamental basis for researchers
to formulate new theories and build models upon.

2) We verify with real data that, in most cases, the
poisson distribution is ineffective in modeling the
temporal distribution of the number of pickups. In fact,
we demonstrate that the poisson distribution can
only model the temporal distribution in the scenario
where the mean number of pickups is extremely
small. Although it might be well-established within
traffic flow modeling that the poisson distribution is
appropriate for modeling vehicle arrivals in light traffic
scenarios, this is yet to be established within the
context of taxi demand. The finding that the poisson
distribution is only appropriate for the scenario where
the mean number of pickups is extremely small is
substantiated for the first time in this study.

3) Finally, we discover a new distribution that is more
appropriate than the poisson distribution in modeling
the temporal distribution of the number of pickups.
While the effectiveness of the poisson distribution is
only limited to the scenario where the mean number
of pickups is extremely small, we demonstrate that
the geometric distribution is effective in broader
scenarios with a higher mean number of pickups. The
geometric distribution has never been used tomodel the
distribution of taxi pickups in any existing work. It is
introduced for the first time in this study.

The rest of this paper is organized as follows. In Section II,
we briefly discuss related work. The methodology used in
this study is presented in Section III. Results are discussed
in Section IV. Finally, we conclude this study in Section V.

II. RELATED WORK
The statistical distributions of demand and supply are crucial
to studies on mobility services such as traditional taxis and
on-demand ride-sharing. A number of studies on demand
and supply in mobility services exist. These studies typically
involve predicting short-term demand and supply, evaluating
the quality of service, and rebalancing demand and supply in
the system. All of them have to make critical assumptions on
the temporal distributions of demand and supply. In order to
stress the importance of these distributions, we briefly review
relatedworks inwhich the distributions of demand and supply
are required.

Being able to predict demand and supply in a mobility
service system is beneficial to both the customers and the
service provider. For example, in the case of a traditional
taxi system, an accurate demand prediction allows the taxis
to cruise to the regions where they are more likely to get
passengers. Similarly, an accurate supply prediction allows
the passengers to know when and where they are more likely
to find vacant taxis. In most of the studies on demand and
supply prediction, it is usually assumed that the demand
(e.g., the number of passenger arrivals or the number of
service requests), as well as the supply (e.g., the number of
arrivals of vacant taxis), follows a poisson distribution [1],
[2], [3], [4], [5], [6]. In addition, to cope with the time-
varying nature of demand and supply, a non-homogeneous
poisson distribution is typically employed. In [1] and [2],
a combination of a non-homogeneous poisson model and an
autoregressive integrated moving average (ARIMA) model
was used in predicting passenger demand in a given region.
In [3], the impact of spatial resolution on the demand
prediction of an autonomous taxi service was investigated.
It was assumed that the number of service requests followed
a non-homogeneous poisson distribution. In [4], the authors
used non-homogenous poisson distributions to model and
predict the demand and supply of a traditional taxi system in
Munich, Germany. However, only the daily average number
of pickups could be predicted instead of the actual number
of pickups. The empirical distribution was not characterized.
In [5], the authors proposed a recommendation system for
taxis and passengers. It was assumed that the number of
arrivals of vacant taxis on a given road segment followed a
non-homogeneous poisson distribution. In [6], a short-term
demand prediction model for a bus system was proposed.
It was assumed that the number of passenger arrivals at a bus
stop followed a non-homogeneous poisson distribution.

Many studies concentrate on modeling the dynamics of
mobility service systems. In these studies, queuing models
and simulation models are often used to describe and mimic
the stochastic interaction between elements of the system.
In all of these models, it is assumed that the number of
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passenger arrivals or service requests follows a poisson
distribution [8], [9], [10], [11], [12], [13], [14]. In [8],
a taxi stand operation was described by a queuing model.
It was assumed that the number of passenger arrivals and
the number of taxi arrivals followed poisson distributions.
In [9], a queuing model was proposed to capture the
dynamics between the demand and the supply of a street-
hail taxi system at the street segment level. The arrivals of
passengers and the arrivals of vacant taxis were modeled by
poisson distributions. The poisson arrival assumption was
also validated on the NYC taxi data during the morning
peak hour from 8 am to 9 am on Tuesdays to Thursdays.
In [10], the authors also proposed a queuing model, which
assumed that the number of passenger arrivals and the number
of taxi arrivals could be described by poisson distributions.
A hypothesis test was performed on the NYC taxi data
to verify this assumption. It was shown that the poisson
assumption only limitedly held in the one-hour peak period
from 6 pm to 7 pm and in the one-hour off-peak period from
10 am to 11 am. In [11] and [12], the waiting time of the
passengers was estimated. The number of passenger arrivals
and the number of taxi arrivals were modeled using poisson
distributions. In addition to the traditional taxi services, other
mobility services have also been considered. In [13], a vehicle
rental system was modeled with a queuing network, where
the number of customer arrivals was assumed to follow a
poisson distribution. In [14], the number of customer arrivals
in an air taxi network was also assumed to follow a poisson
distribution.

Rebalancing of demand and supply in a mobility service
system has also been investigated in many studies [15],
[16], [17], [18]. In [15], the authors proposed a solution
to re-position bikes among the sharing stations. It was
assumed that the number of customer arrivals at the sharing
stations followed a poisson distribution. Similarly, in [16],
an algorithm to assign idle vehicles in a ride-sharing service
to the regions that required rebalancing was proposed. The
number of request arrivals in each region was assumed to
follow a non-homogeneous poisson distribution. In [17], the
authors proposed a queuing network to model a mobility
service system where autonomous robots could rebalance
themselves to maintain the desired quality of service. The
number of customer arrivals was assumed to follow a poisson
distribution. In [18], the authors proposed an algorithm to
redistribute empty autonomous taxis so that the waiting
time of the passengers was minimized. It was assumed
that the number of passenger arrivals followed a poisson
distribution.

As observed in the literature, the poisson arrival assump-
tion has been used extensively without validation with real
data in most of the works. Only a few studies directly
investigated the temporal distribution of demand in mobility
service systems. In [19], the authors used samples from
the NYC taxi data to evaluate how different variants of
poisson models can represent the temporal variation of the
pickups. However, these variants of poisson models were not

compared with other types of distributions. In [7], the authors
compared the ability of the negative binomial distribution and
the ability of the poisson distribution to model the temporal
variation of the pickups. The evaluation was done on the NYC
taxi data. It was shown that the negative binomial distribution
was more appropriate for modeling the pickup count data.

In this paper, we characterize the temporal distribution
of taxi pickups based on real taxi trips in Bangkok and
Chicago. In fact, we demonstrate that, in most scenarios, the
geometric distribution can capture the temporal variation of
the pickups more effectively than the poisson distribution and
the negative binomial distribution. This new discovery has not
been reported in any existing studies.

III. METHODOLOGY
In this section, we provide details on the datasets and the
method used to analyze the temporal distribution of the
number of pickups.

A. DATA
In this study, we analyze the taxi trips in December 2019 from
two independent datasets. One of them is from Bangkok,
and the other is from Chicago. In the following sections,
we provide details on the characteristics of these datasets.

1) BANGKOK TAXI DATA
The first dataset used in this study is publicly provided by
the Thai Intelligent Traffic Information Center (iTIC) [20].
It contains real global positioning system (GPS) records
of Bangkok taxis. The data were collected from each taxi
roughly every one to three minutes. Besides the primary
positioning data, such as latitude, longitude, and timestamp,
the ‘‘for-hire’’ light status and the vehicle engine status were
also collected. The status of the for-hire light is a logical
variable, where 0 indicates that the light is off and 1 indicates
that the light is on. Similarly, the vehicle engine status is
also a logical variable, where 0 indicates that the engine is
off and 1 indicates that the engine is on. These features are
essential for differentiating between busy trips and vacant
trips. Basically, when the status of the for-hire light is 1, it can
be implied that the taxi is vacant. In contrast, when the status
of the for-hire light is 0, it can be implied that the taxi is
carrying a passenger.

The study area in the Bangkok dataset is defined as the
rectangular region shown in Fig. 1. The geolocations of the
four corners of the study area are given in Table 1. Any data
with geolocations outside of the study areawill be filtered out.
In addition, we only concentrate on the period when each taxi
is active (i.e., when the engine is running). Thus, all the data
with inactive engine status will be filtered out as well. Finally,
after this filtering process, we are left with the records of taxis
that are active inside the study area.

Next, we need to identify where the pickup locations are.
A pickup location is essentially the starting point of a trip.
A taxi trip can be viewed as a sequence of consecutive GPS
records with the same for-hire status. Basically, there are
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FIGURE 1. The study area considered in the Bangkok dataset is shown
inside the rectangular bounding box. (This map is created from the open
data provided by OpenStreetMap [21] under the Open Database
Licence [22].)

TABLE 1. Four corners of the study area in the Bangkok dataset.

two types of trips: 1) busy trip and 2) vacant trip. A busy
trip or a trip with passengers is defined as a sequence of
consecutive GPS records with inactive for-hire status (i.e.,
a sequence of consecutive GPS records with ‘0’ in the for-hire
status). In contrast, a vacant trip or a trip without passengers
is defined as a sequence of consecutive GPS records with
active for-hire status (i.e., a sequence of consecutive GPS
records with ‘1’ in the for-hire status). Since we are merely
interested in the distribution of pickups, only the busy trips
will be considered. The beginning point of a busy trip is
assumed to be the pickup location, and the endpoint of the trip
is assumed to be the drop-off location. Suppose that a busy
trip consists of five consecutive GPS points, for example,
P1 → P2 → P3 → P4 → P5. Then, in this case, the
estimated pickup location is P1, and the estimated drop-off
location is P5.
An additional cleanup is performed in order to filter out

some possibly erroneous data. First, trips with abnormally
long and abnormally short duration will be excluded. In this
study, trips that are longer than or equal to 4 hours and trips
that are shorter than or equal to 1 minute are considered
abnormal. Second, trips with unusually large distances will
also be filtered out. The maximum driving distance from one
corner of the study area to its diagonally opposite corner
is around 120 km. Thus, trips that are larger than 120 km
will be considered abnormal. After the cleanup, there are
approximately 1.27 million busy trips.

FIGURE 2. Average number of pickups in the study area considered in the
Bangkok dataset in each hour of the day.

The average number of pickups in the study area in each
hour of the day is illustrated in Fig. 2. It can be observed
that the average number of pickups follows a typical pattern
of hourly demand. Basically, the average number of pickups
is small in the early morning hours (e.g., between 1 am and
4 am). It then increases during the daytime and drops during
the evening hours.

FIGURE 3. The study area considered in the Chicago dataset is shown
inside the rectangular bounding box. (This map is created from the open
data provided by OpenStreetMap [21] under the Open Database
Licence [22].)

2) CHICAGO TAXI DATA
The second dataset considered in this study is publicly
provided by the Chicago Data Portal [23]. Unlike the
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TABLE 2. Four corners of the study area in the Chicago dataset.

Bangkok dataset, which contains only the rawGPS records of
each taxi, the data in the Chicago dataset are already provided
in a trip format. Important variables of each trip include the
timestamp and the geolocations of the census tracts where the
pickup and the drop-off occur. For privacy reasons, the actual
pickup and drop-off locations are not revealed. Only the
latitude and longitude of the census tract or the community
area where pickup and drop-off occur are provided. The study
area in the Chicago dataset is defined as the rectangular region
shown in Fig. 3. The geolocations of the four corners of the
study area are given in Table 2.

The total number of pickups in the study area in December
2019 is 315,464. The average number of pickups in the study
area in each hour of the day is shown in Fig. 4. Similar to
that observed in the Bangkok dataset, the average number of
pickups follows a typical pattern of hourly demand. Basically,
the average number of pickups is small in the early morning
hours (e.g., between 12 am and 6 am). It then increases during
the daytime and drops during the evening hours.

FIGURE 4. Average number of pickups in the study area considered in the
Chicago dataset in each hour of the day.

B. EXPERIMENTAL PROCEDURES
In this section, we describe the approach used in analyzing the
temporal distribution of the number of pickups. Themain idea
is to determine whether the number of pickups observed in a
given space over time can be modeled by a known statistical
distribution. A common technique used in identifying the
temporal distribution is to count the number of pickups in
a given region during an observation period and determine
whether these values come from a particular distribution.

In this study, we define a test region to be a square of size
1 km2. The Bangkok study area can be divided into 3,417
test regions, and the Chicago study area can be divided into
392 test regions.

Due to the periodic nature of demand, the average number
of pickups in each hour of the day varies, as shown in Fig. 2
and Fig. 4. The parameters of the distribution that describes
the number of pickups in each hour will definitely be
different. As a result, it is not logical to find a single statistical
distribution to model the variation of pickups within a day.
Instead, it is more rational to investigate if the number of
pickups during the same hour of the day over different days
follows any statistical distribution (e.g., poisson distribution).
Thus, we observe how the number of pickups in a given hour
of the day varies over different days for each test region. This
is the same as the scenario where the poisson distribution is
traditionally used to model customer arrivals at fixed points,
such as taxi stands. The only difference is that we model
the arrivals (pickups) in a fixed space (e.g., a square of size
1 km2) instead of a fixed point. Let Ri be a test region i.
Let Tj for j ∈ {0, 1, . . . , 23} be the hours of the day. For
example, T0 refers to the period between 12 am and 1 am,
and T23 refers to the period between 11 pm and midnight.
A pair of test region and the hour of the day (i.e., (Ri,Tj))
uniquely identifies a set of pickup samples in the region,
which will be referred to as a temporal test set. Since there
are 31 days in December, each temporal test set will consist
of 31 pickup samples. There are 3,417 test regions in the
Bangkok dataset and 24 hours in a day. As a result, there
would be a total of 3,417 × 24 = 82,008 temporal test sets
in the Bangkok dataset. Similarly, there are 392 test regions
in the Chicago dataset. As a result, there would be a total of
392 × 24 = 9,408 temporal test sets in the Chicago dataset.
To characterize the distribution of the number of pickups

in a temporal test set, we need to determine whether these
samples are drawn from a particular hypothesized distribu-
tion. For example, we can ask if these 31 samples could
have come from a poisson distribution. Since the number of
pickups is a discrete value, a discrete probability distribution
should be used as a hypothesized distribution. In addition, the
distribution should be able to support the entire range of non-
negative integers (i.e., x ∈ {0, 1, 2, . . . }). The following three
well-known discrete probability distributions fit this profile;
therefore, they are used as the hypothesized distributions in
this study.

1) Poisson distribution: Due to many of its properties
that help simplify the analysis, a poisson distribution
is often assumed in many studies, as discussed in the
related work section. A discrete random variable X is a
poisson random variable if its probabilitymass function
(PMF) can be described as

PX (x) =


λx

x!
e−λ, x ∈ {0, 1, 2, . . . }

0, otherwise

(1)
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where λ > 0 is the parameter of the distribution.
A rather unique characteristic of the poisson distribu-
tion is that both its mean and its variance are equal to
λ.

2) Geometric distribution: A geometric distribution typ-
ically models the number of Bernoulli trials before
success. It can be regarded as a discrete counterpart of
the exponential distribution. To our knowledge, it has
not been used to model the temporal distribution of the
number of pickups in any existing studies. A discrete
random variable X is a geometric random variable if its
PMF can be described as

PX (x) =


(1 − p)xp, x ∈ {0, 1, 2, . . . }

0, otherwise

(2)

where p is the probability of success in each Bernoulli
trial. Note that p is the only parameter of the geometric
distribution.

3) Negative binomial distribution: A negative binomial
distribution typically models the number of failures in a
sequence of Bernoulli trials before a specified number
of successes are observed. It was used to model the
pickup count of the NYC taxis [7]. A discrete random
variable X is a negative binomial random variable if its
PMF can be described as

PX (x) =


(
x + r − 1

x

)
(1 − q)xqr , x ∈ {0, 1, 2, . . .}

0, otherwise

(3)

where r is the specified number of successes, and
q is the probability of success in each Bernoulli trial.
In contrast to the poisson distribution and the geometric
distribution, the negative binomial distribution has two
parameters (i.e., r and q).

In this study, we determine whether any of these three
distributions can be used to model the number of pickups in
each temporal test set.

A statistical procedure commonly used in determining
whether a set of random samples comes from a hypothesized
distribution is the goodness-of-fit test. Since the hypothesized
distributions are discrete distributions, we resort to the chi-
square goodness-of-fit test. The idea is to assume that the
samples are drawn from a hypothesized distribution (e.g.,
poisson, geometric, and negative binomial) and see if the null
hypothesis can be rejected at a desired statistical significance
level. The null hypothesis and the alternative hypothesis in
the chi-square goodness-of-fit test are given as follows.

H0: samples are from the hypothesized distribution
H1: samples are not from the hypothesized distribution

Essentially, the chi-square goodness-of-fit test determines
if the difference between the values observed from the
samples and the values expected from the hypothesized

distribution is significant enough to reject the null hypothesis.
Readers are referred to [24] for additional details on the chi-
square goodness-of-fit test. In our experiment, we perform
the chi-square goodness-of-fit test on each of the temporal
test sets for each type of the hypothesized distributions.
The parameters of the hypothesized distributions used in
evaluating each temporal test set are estimated from the
pickup samples in the set. More specifically, the parameter λ

of the poisson distribution, the parameter p of the geometric
distribution, and the pair of parameters (r, q) of the negative
binomial distribution are estimated from the pickup samples
in the temporal test set under investigation. The chi-square
goodness-of-fit test results on these temporal test sets are
presented and discussed in Section IV.

IV. RESULTS AND DISCUSSION
A. BANGKOK TAXI DATA
The chi-square goodness-of-fit test is performed on each
temporal test set to determine whether the pickup samples
in the set come from the hypothesized distributions. In this
study, the null hypothesis is rejected at the 5% significance
level. It is not meaningful to analyze the test sets that mostly
have no pickups; therefore, only the temporal test sets where
the mean number of pickups is at least 1 are considered. The
temporal test sets that fail the chi-square test (i.e., the null
hypothesis is rejected) and those that pass the chi-square test
(i.e., the null hypothesis cannot be rejected) are identified.

FIGURE 5. Percentage of the temporal test sets that pass the chi-square
goodness-of-fit test for each type of hypothesized distributions. Four
different ranges of the mean number of pickups are compared. The data
are from the Bangkok taxi dataset.

The overall test result is shown in Fig. 5. The horizontal
axis illustrates four ranges of the mean number of pickups in
the temporal test sets. The first range represents the temporal
test sets with the mean number of pickups between 1 and 5,
while the last range represents the temporal test sets with
the mean number of pickups above 15. The vertical axis
illustrates the percentage of the temporal test sets in each
range that pass the chi-square goodness-of-fit test. Basically,
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the height of each bar indicates the percentage of the temporal
test sets that can be modeled by the hypothesized distribution.
For example, for the temporal test sets with the mean number
of pickups between 1 and 5, 86% of them can be modeled
by the poisson distribution. In other words, 86% of the
test sets in this range pass the chi-square test when the
poisson distribution is used as the hypothesized distribution.
In contrast, for the temporal test sets with the mean number
of pickups above 15, only 20% of them can be modeled by
the poisson distribution. Generally, it can be observed that
when the mean number of pickups is extremely small, the
poisson distribution can model the pickup samples really
well. However, as the mean number of pickups increases,
the poisson distribution becomes much less effective. On the
contrary, as the mean number of pickups increases, the
geometric distribution becomes increasingly more effective
in modeling the variation of the pickup samples. In fact, more
than 92% of the temporal test sets can be modeled by the
geometric distribution when the mean number of pickups is
between 10 and 15. Moreover, when the mean number of
pickups is above 15, the geometric distribution can model
more than 96% of the temporal test sets. Evidently, when
the mean number of pickups is above 10, the geometric
distribution is more effective than the poisson distribution and
the negative binomial distribution.

FIGURE 6. A box plot of variance-to-mean ratio of the temporal test sets
that pass the chi-square goodness-of-fit test. The data are from the
Bangkok taxi dataset.

It is essential to understand the characteristics of the pickup
samples that each type of the hypothesized distributions can
model. For instance, it is important to know why the poisson
distribution can only model the pickup samples well when the
mean number of pickups is extremely small. To characterize
the pickup samples in each temporal test set, we use a
quantitative variable called variance-to-mean ratio (VMR).
It is basically a ratio between the variance and the mean of
the pickup samples. A box plot of the VMR of the temporal
test sets that pass the chi-square goodness-of-fit test is shown
in Fig. 6. Clearly, the VMR values of the temporal test sets

that the poisson distribution can model concentrate around 1.
This is coherent with the fact that the VMR value of the
poisson distribution is always equal to 1 (i.e., the variance
and the mean are identical). In fact, the temporal test sets
with the VMR values that are much larger than 1 cannot be
modeled by the poisson distribution. On the other hand, the
negative binomial distribution cannot model the temporal test
sets with the VMR values that are smaller than 1. Finally, the
geometric distribution covers the range of the VMR values
that cannot be modeled by the poisson distribution and the
negative binomial distribution. The VMR values in this range
correspond to those that are much larger than 1 and those that
are smaller than 1.

FIGURE 7. A box plot of variance-to-mean ratio of all the temporal test
sets at different ranges of the mean number of pickups. The data are
from the Bangkok taxi dataset.

To understand why the poisson distribution becomes
less effective and the geometric distribution becomes more
effective when the mean number of pickups increases,
we investigate the VMR of all the temporal test sets at
different values of the mean number of pickups. A box
plot of the VMR of all the temporal test sets at different
ranges of the mean number of pickups is shown in Fig. 7.
Generally, it can be observed that the VMR values increase
as the mean number of pickups increases. When the mean
number of pickups is extremely small (i.e., between 1 and 5),
most of the VMR values are close to 1. This is the main
reason why the poisson distribution can model most of
the temporal test sets in this range. However, as the mean
number of pickups increases, the VMR values of the temporal
test sets become much larger than 1. In this case, the
poisson distribution is not effective in modeling the pickup
samples. On the contrary, the geometric distribution, which
can model the pickup samples with high VMR exceptionally
well, becomes distinctly effective when the mean number of
pickups increases.

A close look at the PMFs of these two distributions
provides a theoretical justification for why the geometric dis-
tribution might be more suitable than the poisson distribution.
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The PMF of the poisson distribution with parameter λ,
where λ > 0, is as described in (1). Both its mean and
variance are equal to λ. Therefore, the VMR value of the
poisson distribution is always equal to λ/λ = 1. As a
result, the poisson distribution will not be able to model
the empirical samples with the VMR value that is much
larger than 1, as observed in the empirical results. On the
other hand, the PMF of the geometric distribution with
parameter p, where p ∈ [0, 1], is as described in (2). Its mean
is equal to (1 − p)/p, and its variance is equal to (1 − p)/p2.
Therefore, the VMR value of the geometric distribution is
always equal to 1/p. As a result, the geometric distribution
can model the empirical samples with much larger VMR
values. Fig. 8 illustrates the VMR value of the geometric
distribution as a function of the parameter p. Clearly, the
geometric distribution can support an extensive range of
VMR values. This theoretically explains why the geometric
distribution is more suitable than the poisson distribution,
especially when the empirical samples have high VMR
values.

FIGURE 8. The variance-to-mean ratio of the geometric distribution as a
function of the parameter p.

It is crucial to know if spatial resolution has any effect
on the test results observed earlier. In other words, would
changing the size of the test region alter the conclusions
drawn from the result shown in Fig. 5? To investigate this
issue, we repeat the experiment by changing the test region
size from 1 km2 to 4 km2. The percentage of the temporal
test sets that pass the chi-square goodness-of-fit test in the
scenario where the test region size is 4 km2 is shown in
Fig. 9. Essentially, the same trend as noted in Fig. 5 is
still observed here. The poisson distribution can only model
the pickup samples well when the mean number of pickups
is extremely small. It becomes much less effective when
the mean number of pickups increases. On the contrary,
the geometric distribution can model the pickup samples
more effectively as the mean number of pickups increases.
A similar result is also observed when the test region size is

FIGURE 9. Percentage of the temporal test sets that pass the chi-square
goodness-of-fit test for each type of hypothesized distributions in the
scenario where the test region size is 4 km2. The data are from the
Bangkok taxi dataset.

changed to 2 km2. However, the result is omitted due to space
limitations.

FIGURE 10. Percentage of the temporal test sets that pass the chi-square
goodness-of-fit test for each type of hypothesized distributions in the
scenario where the length of the observation period is 30 minutes. The
data are from the Bangkok taxi dataset.

Next, we investigate if time resolution affects the test
results observed earlier. In other words, would changing
the length of the observation period alter the conclusions
drawn from the result shown in Fig. 5? To examine this
issue, we repeat the experiment by changing the length of
the observation period from 1 hour to 30 minutes. The
percentage of the temporal test sets that pass the chi-square
goodness-of-fit test in the scenario where the length of the
observation period is 30 minutes is shown in Fig. 10. In this
scenario, we still see the same trend that we have observed in
Fig. 5. As the mean number of pickups increases, the poisson
distribution becomes less effective in modeling the pickup
samples. On the contrary, as the mean number of pickups
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increases, the geometric distribution becomes increasingly
more effective in modeling the pickup samples. A similar
result is also observed when the length of the observation
period is changed to 2 hours. However, the result is omitted
due to space limitations.

In summary, we can conclude from the Bangkok taxi
data that the poisson distribution can only model the pickup
samples well when the mean number of pickups is extremely
small. The main reason is that the pickup samples with small
mean tend to have a VMR value close to 1, which fits the
unique characteristic of the poisson distribution. However,
as the mean number of pickups increases, the VMR value
tends to be much higher than 1. In this case, the geometric
distribution is more effective in modeling the pickup samples.

FIGURE 11. Percentage of the temporal test sets that pass the chi-square
goodness-of-fit test for each type of hypothesized distributions. Four
different ranges of the mean number of pickups are compared. The data
are from the Chicago taxi dataset.

B. CHICAGO TAXI DATA
The same chi-square goodness-of-fit test procedure per-
formed on the Bangkok dataset is also repeated on the
Chicago dataset. The temporal test sets that fail the chi-
square test (i.e., the null hypothesis is rejected) and those
that pass the chi-square test (i.e., the null hypothesis cannot
be rejected) are identified. The percentage of the temporal
test sets that pass the chi-square test for each type of the
hypothesized distributions is shown in Fig. 11. Similar to the
Bangkok dataset, trend-wise, the effectiveness of the poisson
distribution in modeling the pickup samples decreases as the
mean number of pickups increases. Nonetheless, a subtle
difference can be observed. Unlike the results observed in
the Bangkok dataset, the percentage of the temporal test
sets that can be modeled by the poisson distribution in
this dataset is much smaller. This is due to the fact, which
will be shown later, that most of the VMR values of the
temporal test sets in this dataset are much larger than 1. This
makes the poisson distribution unsuitable for modeling these
pickup samples. Similar to the Bangkok dataset, however,

we observe that the geometric distribution can model the
pickup samples exceptionally well when the mean number of
pickups increases. Indeed, when the mean number of pickups
is greater than 10, the geometric distribution is more effective
than the other two distributions.

FIGURE 12. A box plot of variance-to-mean ratio of the temporal test sets
that pass the chi-square goodness-of-fit test. The data are from the
Chicago taxi dataset.

A box plot of the VMR of the temporal test sets that
pass the chi-square goodness-of-fit test is shown in Fig. 12.
Similar to the Bangkok dataset, it can be observed that
the poisson distribution can only model the temporal test
sets with the VMR values that concentrate around 1. The
negative binomial distribution cannot model the test sets
with the VMR values that are smaller than 1. Evidently, the
geometric distribution can model the temporal test sets with
a wider range of VMR values in comparison to the other two
distributions.

FIGURE 13. A box plot of variance-to-mean ratio of all the temporal test
sets at different ranges of the mean number of pickups. The data are
from the Chicago taxi dataset.

Analyzing the VMR values of the temporal test sets reveals
why the poisson distribution is not effective in modeling
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the pickup samples across all ranges of the mean number
of pickups in the Chicago dataset. A box plot of the VMR
of all the temporal test sets at different ranges of the mean
number of pickups is shown in Fig. 13. It can be observed
that most of the VMR values of the temporal test sets, across
all ranges of the mean number of pickups, are much larger
than 1. This is the main reason why the poisson distribution
is not able to model the pickup samples well across all ranges.
Similar to the Bangkok dataset, trend-wise, we observe that
the VMR values tend to increase as the mean number of
pickups increases. This explains why the effectiveness of the
geometric distribution increases while the effectiveness of the
poisson distribution decreases as the mean number of pickups
increases.

FIGURE 14. Percentage of the temporal test sets that pass the chi-square
goodness-of-fit test for each type of hypothesized distributions in the
scenario where the test region size is 4 km2. The data are from the
Chicago taxi dataset.

To investigate if spatial resolution has any effect on the
conclusions drawn from the result shown in Fig. 11, we repeat
the experiment by changing the test region size from 1 km2 to
4 km2. The percentage of the temporal test sets that pass
the chi-square goodness-of-fit test in the scenario where the
test region size is 4 km2 is shown in Fig. 14. Basically, the
same trend as noted in Fig. 11 is still observed here. The
effectiveness of the poisson distribution decreases while the
effectiveness of the geometric distribution increases as the
mean number of pickups increases. A similar result is also
observed when the test region size is changed to 2 km2.
However, the result is omitted due to space limitations.

Finally, to investigate if time resolution affects the
conclusions drawn from the result shown in Fig. 11, we repeat
the experiment by changing the length of the observation
period from 1 hour to 30 minutes. The percentage of the
temporal test sets that pass the chi-square goodness-of-fit test
in the scenario where the length of the observation period
is 30 minutes is shown in Fig. 15. Clearly, changing the
time resolution does not alter the conclusions drawn from the
result discussed earlier. In this scenario, we still observe the

FIGURE 15. Percentage of the temporal test sets that pass the chi-square
goodness-of-fit test for each type of hypothesized distributions in the
scenario where the length of the observation period is 30 minutes. The
data are from the Chicago taxi dataset.

same trend that we have observed in Fig. 11. A similar result
is also observed when the length of the observation period
is changed to 2 hours. However, the result is omitted due to
space limitations.

In summary, the results observed in the Chicago dataset
are similar to those observed in the Bangkok dataset. As the
mean number of pickups increases, the poisson distribution
becomes less effective. On the contrary, the geometric
distribution becomes more effective as the mean number of
pickups increases. In the scenario where the mean number
of pickups is greater than 10, it is clear that the geometric
distribution is more suitable for modeling the pickup samples
than the other two distributions.

Taxi demand is subject to temporal effects (e.g., time of
the day, weekdays, weekends) and spatial effects (e.g., com-
mercial area, residential area, nightlife area). One certainly
could analyze a conditional distribution of taxi demand given
a combination of these conditions (e.g., a commercial area
during the 9 am-10 am period onweekdays, a nightlife district
during the 9 pm-10 pm period on weekends, etc.). However,
this study aims to characterize the marginal probability
distribution that represents taxi demand in general without
conditioning on the type of days or land use.

In fact, this study provides a higher layer of abstraction
beyond these specific conditions. We treat a temporal test set
as a spatiotemporal unit where its characteristics are purely
defined by the statistical traits of the demand in the unit,
not by the type of days and land use. We demonstrate that
the poisson distribution is appropriate for a test set with an
extremely low mean number of pickups. On the contrary,
the geometric distribution is more suitable for a test set
with a higher mean number of pickups. Essentially, we use
the statistical characteristics of the demand to discriminate
the scenarios where each type of distribution would be
applicable. Therefore, our results are also applicable to
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scenarios with specific conditions. For example, to select an
appropriate probability distribution to model taxi demand in
a commercial area from 9 am to 10 am on weekdays, one
can first determine the mean number of pickups in the area
from 9 am to 10 am on weekdays. If the mean number of
pickups is high, the geometric distribution should be used.
Similarly, to select an appropriate probability distribution to
model taxi demand in a residential area from 10 pm to 11 pm
on weekends, one can first determine the mean number of
pickups in the area from 10 pm to 11 pm on weekends.
If the mean number of pickups is extremely low, the poisson
distribution could be used.

C. IMPLICATION OF THE RESULTS
Based on the empirical evidence shown in the previous
sections, it is clear that the poisson distribution is only
effective in modeling the temporal distribution of the number
of pickups in the scenario where the mean number of pickups
is extremely small. In most practical scenarios, the geometric
distribution is more suitable. In this section, we will quantify
the implication when the incorrect assumption (i.e., the
poisson distribution) is used in lieu of the correct distribution
(i.e., the geometric distribution). Essentially, we will evaluate
the difference it makes when the incorrect assumption is
presumed.

A typical metric commonly used for measuring the
difference between two probability distributions is the
Kullback-Leibler (KL) divergence. The KL divergence
between two discrete probability distributions, PX (x) and
QX (x), is defined as [25].

D(P∥Q) = −

∑
x

PX (x) log
(
QX (x)
PX (x)

)
. (4)

The KL divergence basically measures the expected log
difference between the two distributions. Particularly in
our case, we will use the KL divergence to quantify the
difference between the poisson distribution and the geometric
distribution.

Let PX (x) be the PMF of the poisson distribution with
mean λ, and let QX (x) be the PMF of the geometric
distribution with the same mean. Then, PX (x) is as given
in (1), and QX (x) is as given in (2) with parameter p =

1/(λ + 1). In other words, QX (x) is

QX (x) =


(
1 −

1
λ + 1

)x (
1

λ + 1

)
, x ∈ {0, 1, 2, . . .}

0, otherwise.

(5)

Substituting PX (x) andQX (x) into (4), the KL divergence can
be expressed as

D(P∥Q) = (λ + 1) log(λ + 1) − λ

−

∞∑
x=0

λx

x!
e−λ log x! . (6)

Unfortunately, the exact expression for the KL divergence
given in (6) does not have a closed-form solution, and thus it
has to be obtained numerically. Nonetheless, an approximated
solution can be derived. This can be done by rewriting the
KL divergence in terms of the difference between the cross
entropy of PX (x) and QX (x) and the entropy of PX (x), which
is [25]

D(P∥Q) = H (P,Q) − H (P) (7)

where

H (P,Q) = −

∑
x

PX (x) logQX (x) (8)

is the cross entropy of PX (x) and QX (x), and

H (P) = −

∑
x

PX (x) logPX (x) (9)

is the entropy of PX (x).
The cross entropy of PX (x) andQX (x) has an exact closed-

form solution, which can be written as

H (P,Q) = (λ + 1) log(λ + 1) − λ log λ. (10)

The entropy of PX (x) is the entropy of the poisson
distribution, which unfortunately does not have a closed-form
solution. However, it can be approximated as [26]

H (P) ≈
1
2
log(2πeλ) −

1
12λ

+ O
(

1
λ2

)
. (11)

Finally, substituting (10) and (11) into (7), the KL divergence
between the poisson distribution and the geometric distribu-
tion can be approximated as

D(P∥Q) ≈ (λ + 1) log(λ + 1) − λ log λ

−
1
2
log(2πeλ) +

1
12λ

. (12)

FIGURE 16. The KL divergence between the poisson distribution and the
geometric distribution as a function of the mean of the distributions
(i.e., λ).

In Fig. 16, the KL divergence between the poisson
distribution and the geometric distribution is shown as a
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function of the mean of the distributions (i.e., λ). The values
obtained numerically from the exact solution in (6) are
shown with the dashed line, while those obtained from the
approximation in (12) are shown with the solid line. First,
it can be observed that the values of D(P∥Q) obtained from
the approximation and those obtained from the exact solution
are remarkably close. This verifies that the approximation
is valid. Second, it can be observed that the KL divergence
between the two distributions increases as the mean of the
distributions, λ, increases. Even at a small value of λ, the
two probability distributions already exhibit a significant
divergence. For instance, at λ = 10, the KL divergence
between the two distributions is around 0.79, which means
that they differ by a factor of e0.79 ≈ 2. This basically
implies that, at λ = 10, the probability of the number
of pickups estimated by the poisson distribution will differ
from the actual probability by a factor of 2, on average. The
probability of the number of pickups estimated by the poisson
distribution deviates from that of the actual distribution (i.e.,
the geometric distribution) by a larger factor as the mean
number of pickups increases.

D. LIMITATIONS
In this section, we discuss a few limitations of this work.

1) OBSERVED PICKUPS AND ACTUAL DEMAND
Like most related work on taxi demand, this study uses the
observed number of pickups as a proxy for actual demand.
In practice, the actual demand is likely larger than the
observed number of pickups. In fact, the observed number of
pickups only represents a scaled or subsampling version of
the actual demand. However, the main objective of this study
is not to obtain the numerical value of actual demand. Instead,
we focus on characterizing the statistical distributions that can
be used to model the actual demand. The type of distribution
is determined from the scaled version of the actual demand.
The actual demand follows the same type of distribution as its
scaled version but with different distribution parameters (e.g.,
with a larger mean). Indeed, proper distribution parameters
for the actual demand distribution or an appropriate scaling
factor must be obtained from a field experiment. Nonetheless,
the pickup data suffice for characterizing the type of demand
distribution.

2) REPRESENTATIVENESS OF DATA
The taxi data investigated in this study are from Bangkok,
Thailand, and Chicago, USA. These data represent taxi
operations in a typical urban environment in Southeast Asian
and North American cities. The two datasets are independent,
and both confirm our hypothesis on the temporal distribution
of taxi demand. Nonetheless, the distribution of taxi demand
in other regions could differ from what we have investigated
here. It remains open for future study.

3) SPECIAL EVENTS
This study only concentrates on characterizing the statistical
distribution of taxi demand in a normal situation. Special
events, such as concerts, conferences, and holidays, may
affect demand distribution. For example, these events can
create a surge in demand in a particular location. Charac-
terizing the distribution of demand under these exceptional
circumstances could be interesting, but it is beyond the scope
of this study.

V. CONCLUSION
In this study, we characterize the temporal distribution of the
number of pickups based on the real taxi trip data in Bangkok
and Chicago. A chi-square goodness-of-fit test is performed
on three types of hypothesized distributions, which are the
poisson distribution, the negative binomial distribution, and
the geometric distribution. It is shown that the poisson
distribution is only effective in modeling the temporal
distribution of the number of pickups in the scenario where
the mean number of pickups is extremely small (i.e., between
1 and 5 pickups). Its effectiveness decreases immensely when
the mean number of pickups increases. On the contrary,
the effectiveness of the geometric distribution increases
as the mean number of pickups increases. In fact, the
geometric distribution can model the temporal distribution
of the number of pickups exceptionally well in most
scenarios (i.e., when the mean number of pickups is greater
than 10).

To select an appropriate distribution for a particular area
and observation period in practice, one must first determine
the mean number of pickups in that area and period.
This can be achieved by observing the historical data. For
example, to determine a suitable distribution for modeling
the number of pickups between 8 am and 9 am in a desired
area, one can first observe the historical pickup data and
determine the mean number of pickups in such area and
period. If the mean number of pickups is extremely small,
use the poisson distribution. Otherwise, use the geometric
distribution.

The poisson arrival assumption has been used extensively
in most analyses on mobility demand, especially in demand
prediction. However, we have shown empirically in this study
that this assumption is not likely valid. In fact, most of the
time, this fundamental assumption does not hold. A more
appropriate distribution to use, on the contrary, is the geomet-
ric distribution. It would be interesting to see how the existing
demand analyses would change under the assumption that
the temporal distribution of the number of pickups is a
geometric distribution. This is a subject worth investigating
in future research. Nonetheless, at the fundamental level,
we have shown in this study that the probability of the
number of pickups estimated by the poisson distribution is
significantly different from that of the geometric distribution.
The divergence between the two distributions gets more
prominent as the mean number of pickups increases.
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Lastly, the results presented in this study open up a few new
research directions. First, new theoretical demand prediction
models based on a geometric probability distribution can be
investigated. Second, new queuing models and simulation
models can be developed based on the new discovery that the
arrivals of pickup requests follow a geometric distribution.
Finally, new strategies for rebalancing demand and supply in
an on-demand mobility service system can also be explored.
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