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ABSTRACT In recent years, GraphConvolutional Networks (GCNs) have emerged as a crucial methodology
for handling graph-structured data, exhibiting superior performance in semi-supervised classification tasks.
However, most existing GCNs encounter two main issues in real-world scenarios: 1) graph-structured data
may be incomplete, for example, containing outlier nodes and noisy edges, which poses a great challenge for
GCNs to extract the relation information for classification tasks; 2) the scarcity of labeled data, often limited
to a few-shot scenario, hampers the ability of GCNs to learn comprehensive embedding representations.
To cope with these issues, we propose a novel framework called pseudo labeling collaborative multi-channel
graph convolutional networks (PCM-GCN). First, considering incomplete graph-structured data, we develop
two modules: graph generation module and multi-channel fusion module. The graph generation module
is designed to extend the raw data to multiple graphs, which avoids being constrained by the effective
expression ability of the raw data. Meanwhile, the multi-channel fusion module integrates embeddings from
multiple graphs, capturing the complementarity among multiple channels. Second, to address the problem
of sparse labels, we develop a confidence-based pseudo labeling module, appending confident data with
pseudo label to the labeled set to enlarge the training set. PCM-GCN leverages pseudo labeling to enhance
multi-channel embedding fusion, resulting in rich and comprehensive node embedding representation.
Extensive experiments on five benchmark datasets have shown that PCM-GCN surpasses other state-of-
the-art methods in semi-supervised node classification tasks.

INDEX TERMS Graph convolutional networks, multi-channel, pseudo labeling, semi-supervised
classification learning.

I. INTRODUCTION
The graph-structured data [1], [2], [3], [4], [5], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], which can characterize entities and their associations,
is increasingly popular in real-world scenarios, such as social
networks, bank fraud detection, urban planning, and knowl-
edge graphs. Meanwhile, Graph Neural Networks (GNNs)
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have become a powerful paradigm because of achieving their
performance in various complex graph learning tasks, such as
node classification [1], [11], [12], [14], [19], [21], [22], [23],
[24], [25], link prediction [5], [6], [26], [27], [28], [29] and
graph classification [7], [8], [30].

In general, GNNs such as Graph Convolutional Net-
work(GCN) [2], Graph Attention Network(GAT) [1], and
Diffusion Improves Graph Learning (GDC) [31] have
achieved better performance in semi-supervised node
classification tasks. In these models, a message-passing
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mechanism is typically employed to transform the initial
representation of a node into a compact embedding
representation. The GCN extends the convolution operator
to graph data, and the main idea is to learn the embedding
representation of a node by iteratively aggregating the
neighbor features of the node. The receptive field of
each node depends on the number of convolutions [32].
Meanwhile, in semi-supervised tasks, learning a rich
embedding representation via GCN is generally impacted by
the amount of labels.

Although GNNs and their variants have achieved great
success in semi-supervised tasks, some baseline methods
primarily learn node embedding representation based on a
given graph structure (adjacency matrix). Note that because
edges (relations) in graph-structured data are defined man-
ually, there are potential information discrepancies between
the given graph structure and the expected one [33], which
leads to possible limitations in the expressive power of the
baseline models. Considering the above issues, recent related
works [7], [23], [24], [31], [33], [34], [35] have improved the
performance of GNNs in semi-supervised node classification
tasks by employing a two-channel (or multi-channel) pattern.
For example, multiple adjacency matrices are developed
from the multi-order neighbor information of each node,
such that the adjacency matrices can directly capture the
multi-order connectivity between nodes [23], [34], [35], [36].
AM-GCN [37] constructs a k-nearest neighbor graph based
on the node feature matrix and then extracts embeddings
from the k-nearest neighbor graph, the raw graph, and
their combinations simultaneously. Augmented graphs are
generated via perturbed node features, and then fusion
learning of augmented graphs and input graph is performed
simultaneously, called PA-GCN [24]. However, some issues
remain to be addressed: (1) for these models, the perspective
for developing the reconstruction graphs is single and simple
(e.g. multi-order information or node features); (2) there are
very few labeled nodes in many real-world scenario node
classification tasks, yet a considerable amount of labeled
nodes are required for a multi-channel GCN to train a
classifier. Based on this, it is natural to consider exploring the
relationship between pseudo labeling [13], [14], [32], [38],
[39] and multi-channel embedding representations, which
integrates unlabeled node information into the multi-channel
training process.

Following the above discussion, in this paper, we propose a
Pseudo labeling Collaborate Multi-channel Graph Convolu-
tional Network (PCM-GCN) framework for semi-supervised
classification learning. Initially, the graph generation module
extracts the underlying graph structure embedded in the
raw graph by using perturbation algorithms (e.g., k nearest
neighbours and edge modification, etc.). The multi-channel
fusion module is developed to input multiple underlying
graphs into different GCN encoder. Furthermore, considering
the homogeneity of the graphs and the consistency among
the multi-channel, we design a consistency loss function
to ensure that the embedding representations generated by

multiple channels are correlated. Finally, to address the issue
of not enough labeled data in real scenarios, we introduce the
pseudo labeling module to learn the hidden information in
unlabeled data to collaborate the multi-channel embedding
representations, and then fuse the multi-channel to obtain
the final node embedding representation for downstream
classification tasks. In summary, the main contributions of
this study are described below:

(1) Propose an end-to-end multi-channel neural net-
work framework, which can effectively perform
multi-channel node embedding representation based on
pseudo labeling collaborative method.

(2) Exploit the node embedding representation of each
channel, thereby providing a way for the reliability
of the pseudo-labels, i.e., stable pseudo-labels are
generated for the unlabeled nodes by considering the
proximity of the nodes in the feature and embedding
space.

(3) The proposed framework is leveraged to conduct
semi-supervised classification tasks, and achieves
superior performance compared with other state-of-
the-art graph-based learning algorithms. Furthermore,
the framework can be generalized to variants of GCNs
without any constraints.

The rest of this paper is arranged as below: Section II
involves the related work. Our proposed PCM-GCN frame-
work is showed in Section III. The extensive experimental
results and analysis of the proposed PCM-GCN are presented
in Section IV. Finally, Section V concludes this work.

II. RELATE WORK
Graph Convolutional Networks based on multi-channel
fusion have spawned many representative works due to
their excellent performance in semi-supervised classification
tasks [7], [10], [33], [34], [37], [40]. One of the most
noteworthy aspects is the multi-channel fusion model for
augmented graphs. Here they share two common traits.
(1) Extend a single channel into multiple channels with graph
augmentation. (2) Only the labeled data is considered to
be added to the training of the multi-channel fusion model.
Thus, we discuss related work to our method from the two
perspectives below.
Graph Augmentation: Graph augmentation [41], [42] is

a data augmentation technique that aims to increase the
diversity of training data. Therefore, graph augmentation
is considered of great importance in graph representation
learning tasks, as shown in various works [10], [24], [31],
[37], [43], [44]. The effective graph augmentation methods
can be grouped into two categories. (1) From the perspective
of node feature, for example, GDC [31] creates a new
graph by utilizing the similarity of adjacent nodes in
the graph. AM-GCN [37] constructs a k-nearest neighbor
graph based on node features, and JFGCN [43] utilizes the
k-nearest neighbor and the k-farthest neighbor to generate
an adjacency matrix, in order to keep similar nodes close
to each other and different nodes far away from each other.
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PA-GCN [24] develops a feature strategy that utilizes the
raw graph relationships to avoid introducing noisy node
features. (2) From the perspective of graph topology, edge
modification [10], [44] builds the second view by randomly
perturbing the edge structure of the raw graph. However,
these studies [24], [37] consider the fusion of only a single
new graph with the raw graph, leading to the underutilization
of the complementarity among multiple graphs. In this
paper, we reconstruct new graphs using graph augmentation
from multiple perspectives and develop a constraint to
ensure the complementarity of new graphs with the raw
graph.
Multi-Channel Representation Learning of GCN: The

multi-channel graph convolutional network model can fully
capture the diversity information in the graph structure,
thereby improving the performance of the model in various
graph structure-based tasks. Multi-channel models typically
fuse the representations of different channels to obtain
a final embedding representation. For example, there are
fusion frameworks based on different multi-order adjacency
matrices [34], [35], [36], augmented graph topologies [33],
[37], and augmented node features [24]. Notably, the
single-channel model CLP-GCN [32] introduces pseudo
labeling to achieve excellent performance. Consequently,
these studies [24], [33], [37] mostly neglect the importance
of pseudo labeling in multi-channel embedding learning.
Although MFGCN [22] is a pioneering research to address
such a problem, the pseudo labeling only exploits the
proximity of the nodes in the embedding space and ignores
the similarity of the nodes in the feature space.

III. THE PROPOSED FRAMEWORK: PCM-GCN
A. GCN ENCODER
An undirected graph G = (A,V,X), V = {v1, v2, . . . , vn} is
the set of n nodes. The properties of the nodes are described
by the feature matrix X ∈ Rn×f , where n is the total
number of nodes, and f is the dimension of their features.
A ∈ {0, 1}n×n is the adjacency matrix, aij = 1 reflects
the connectivity between nodes vi and vj in the graph with
corresponding degree matrix D. Ã = A + In represents the
adjacency matrix Ã for a graph with self-connection and D̃ =

D+ In is the degree matrix of Ã, where In is the unit matrix.

Â = D̃
−

1
2 ÃD̃

−
1
2 denotes the symmetrically normalised

adjacency matrix with a self-connection. We suppose that C
is the number of classes.

The vanilla GCN is proposed by Kipf and Welling [2].
It aggregates information of neighbors by symmetric normal-
ized adjacency matrix Â to generate new node representation.
The simple form of the GCN model can be described by:

ZZZGCN = σ (ÂReLU (ÂXW (0))W (1)) (1)

whereW (0) andW (0) denote the trainableweightmatrix of the
first and second layer of GCN, respectively. σ and ReLU are
nonlinear activation functions. ZZZGCN is the final prediction
for a two-layer GCN.

B. FRAMEWORK OVERVIEW
This section introduces Pseudo-labeling Collaborative Multi-
channel Graph Convolutional Network (PCM-GCN). The
architecture of PCM-GCN is shown in the following Fig. 1.
Our framework encompasses the following key modules.
(1) Graph generation module: graph generation can

explore diversity information in graph data. This
module develops multiple adjacency matrices by
extracting the underlying structure of the nodes from
the topology space and feature space. By generating
adjacency matrices containing rich underlying infor-
mation, we enhance support for other modules.

(2) GCN-based multi-channel fusion module: the GCN
encoder is specialized for semi-supervised node clas-
sification learning. The module is designed to fuse
embedding representations in multiple channels into
a consistent low-dimensional vector for classification
tasks and pseudo labeling module.

(3) Pseudo labeling module: during the training pro-
cess, this module confidently assigns pseudo-label to
unlabeled data. Unlike the traditional multi-channel
GCN, we exploit pseudo labeling collaborative embed-
ding representation to obtain a rich node embedding
representation.

C. GRAPH GENERATION MODULE
In order to fully exploit the intrinsic information of the graph
data distribution, we propose a graph generation module
based on the k-nearest neighbor (knn) algorithm and the edge
modification (em) algorithm, as in Fig. 2. The two algorithms
are designed to obtain more comprehensive graph data in
terms of features and topology, as described in detail below.

1) PERTURBATION NODE FEATURES
Firstly, in order to obtain the topology information of the
nodes in the feature space, we construct the k-nearest
neighbor graphs by means of the node feature matrix X .
The k-nearest neighbor graphs retain only the connections
between nodes and their immediate neighbors, thus reducing
the impact of outliers. Specifically, we firstly compute the
cosine similarity matrix B ∈ Rn×n among n nodes, assuming
that xi and xj are the feature vectors of the nodes vi and vj, and
the cosine similarity values between them are formulated as
follows:

bij =
< xi, xj >

∥ xi ∥ · ∥ xj ∥
(2)

Then we select the top k similar nodes for each node
to update the edges, where k is searched in the range
of [8, 16, 32, . . . , n], and finally we get a set Af ={
Af1 ,Af2 ,Af3 , . . . ,Afn

}
, and the elements inside Af denote

the corresponding adjacency matrix. Then the feature-based
fusion graph GF = (AAAF ,X), where AAAF can be obtained by
the following equation:

AAAF =
1
n

∑n
i=1Af i (3)
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FIGURE 1. PCM-GCN. This framework consists of three main parts: (i) Graph generation module; (ii) GCN-based multi-channel fusion module; (iii)
Pseudo labeling module. By introducing pseudo labeling into a multi-channel model, PCM-GCN can effectively enhance the node embedding
representation for each channel.

FIGURE 2. The basic concept of the graph generation module.

2) PERTURBATION EDGES

From the input graph adjacency matrix, inspired by the
edge modification [10], [44], we not only remove a fraction
of the number of edges uniformly and randomly but also
add the same number of edges uniformly and randomly
at the same time. In this way, we are trying to maximize
the preservation of the properties of the raw graph while
capturing the information of the multi-order nodes of the
graph with the new edges. In our experiments, given an
adjacency matrix A, we first set a fixed scale P which

searches in the range [0.1, 0.2, 0.3, . . . , 0.9], following the
em algorithm we can get m new adjacency matrices, denoted
as At =

{
At1 ,At2 ,At3 , . . . ,Atm

}
. Then the edge-based fusion

graph GT = (AAAT ,X), where AAAT can be obtained by the
following equation:

AAAT =
1
m

∑m
i=1At i (4)

Importantly, equations (4), (5) aim at fusing the multiple
graphs into a single augmented graph to enhance the GCN’s
ability to learn graph data.
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D. GCN-BASED MULTI-CHANNEL FUSION MODULE
Given a graph G = (A,V,X), we use the knn and em to
obtain the graphs {GF = (AF ,X), GT = (AT ,X) } in feature
space and topology space, respectively. We take vanilla GCN
as an encoder to learn graph embedding. We input G into the
two-layer GCN as follows:

ZZZ1 = (ÂReLU (ÂXW (0))W (1)) (5)

whereZZZ1 denotes the embedding result learned from the raw
graph.

Similarly, GF and GT are input into the independent GCN
to obtain graph embedding ZZZ2 and ZZZ3, respectively. For the
three graph embeddings, namely ZZZ1, ZZZ2 and ZZZ3, we use
the fusion mechanism to determine the final embedding
outputZZZ .

ZZZ = σ (
1
3

∑3
i=1ZZZ i) (6)

We suppose that the subset VL = {v1, v2, ..., vL} of node
set V is labeled training set, and the corresponding labels are
YL = {y1, y2, ..., yL}. In addition, VU is is the unlabeled set,
we can obtain V = VL ∪ VU . For each node vl ∈ VL has
two types of labels: real label yl and predicted labelZZZ l . Then
the cross entropy error for node classification over all labeled
nodes is represented as:

L0 = −
∑

vl∈VL
∑C

t=1yl lnZZZ lt (7)

ForZZZ2 andZZZ3, they are the embedding representations of
nodes, respectively. To ensure that ZZZ2 and ZZZ3 are closer to
ZZZ1 in the embedding space. Here, we design a consistency
constraint to ensure their commonality. Consistency indicates
that the augmented graph is similar and close to the raw
graph in the embedding space, which yields the following
constraint:

L1 =

∥∥∥ZZZ2nor ·ZZZT
2nor −ZZZ1nor ·ZZZT

1nor

∥∥∥2
F

+∥∥∥ZZZ3nor ·ZZZT
3nor −ZZZ1nor ·ZZZT

1nor

∥∥∥2
F

(8)

where ZZZ1nor ,ZZZ2nor and ZZZ3nor denote the embedding
matrices ZZZ1,ZZZ2 and ZZZ3 are normalised by the
L2-normalization.

E. PSEUDO LABELING MODULE
Pseudo labeling plays an important role in alleviating the
lack of labels in semi-supervised learning classification tasks.
The features of nodes with the same label tend to be similar,
so we use the feature cosine similarity between two nodes
to mark unlabeled nodes with pseudo labels. In this paper,
we take two perspectives: (1) the similarity of nodes in the
feature space; (2) the proximity of nodes in the embedding
space.

Initially, we estimate the pseudo label with the cosine
similarity between VL and VU . The element sij in similarity
matrix S ∈ Rn×n can be calculated by the sum of the
embedding space matrix ZZZ and the node feature space

matrix X , which is expressed by the following formula:

sij =

〈
ZZZ i,ZZZ j

〉
∥ZZZ i∥ ·

∥∥ZZZ j
∥∥ +

〈
X i,X j

〉
∥X i∥ ·

∥∥X j
∥∥ (9)

where ⟨, ⟩ denotes the inner product between vectors, and
∥·∥ is the operation of vector lengths, sij stands for the
cosine similarity between vi and vj. For an unlabeled node
vi ∈ VU and every labeled nodes vj ∈ VL , compute all
sij between them, i.e., the maximum value of sij indicates
that the two nodes most likely belong to the same class. The
maximum value can be achieved by comparing

{
sij

}L
j=1 =

{si1, si2, . . . , siL}, then the pseudo labeling loss function can
be expressed as following:

ŷi = yj if max
{
sij

}L
j=1 ≥ δ (10)

where δ is an adjustable threshold, ŷi ∈ Ŷi is the pseudo-label
of vi and yj ∈ Yj is the true label of vj, the labels of Yj are
distributed to Ŷi as pseudo-label.
Meanwhile, the index ai can be found by the following

formula:

ai =

{
1, if max

{
sij

}L
j=1 ≥ δ,

0, otherwise.
(11)

Then the loss function for unlabeled samples is formu-
lated as:

L2 = −
∑

vi∈VU
∑C

t=1ai · ŷi lnZZZ it (12)

Explain that for each vi ∈ VU , the pseudo labeling is Ŷi and
the predicted label isZZZ it . Therefore, the final loss function of
the model is expressed as follows:

L = L0 + L1 + λL2 (13)

where λ is a balance hyper-parameter.
Algorithm 1 shows the entire training process of the model.

Algorithm 1 The Training Framework of PCM-GCN
Input: Feature matrix X; adjacency matrices A; epochs N ;

hyper-parameters n,m,P, δ and λ;

Output: The sample class prediction matrixZZZ;

1: Initialize hyper-parameters: n,m,P, λ, and δ;

2: Perturbing the node feature of X creates a set Af via k-
nearest neighbor;

3: Perturbing the edge structure of A creates a set At via
edge modification;

4: for int epochs = 0 to N − 1 do
5: CalculateAAAF andAAAT by Eq.(3), Eq.(4);
6: CalculateZZZ1,ZZZ2 andZZZ3 by Eq.(5);
7: CalculateZZZ by Eq.(6);
8: Calculate L0, L1, L2 respectively by Eq.(7), Eq.(8),

and Eq.(12);
9: Calculate total loss: L = L0 + L1 + λL2;

10: end for
11: returnZZZ
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IV. EXPERIMENTS
In this section, we test our proposed model against sev-
eral popular graph-based semi-supervised node classifica-
tion models. Then, we perform ancillary experiments to
evaluate the effects of hyper-parameter and the perfor-
mances of the components of PCM-GCN. The visualisation
of model accuracy further demonstrates the effectiveness
of PCM-GCN.

A. DATASETS
In this study, we utilize five real benchmark datasets. The
citation networks Cora, Citeseer, and Pubmed, where the
nodes represent papers and the edges represent citation
relationships among papers. ACM is a dataset of paper
relationships, where the nodes represent papers and two
papers are considered related if they share at least one author.
Coauthor-cs is a dataset of coauthorship relationships, where
each node represents an author, and there exists an edge
between two authors if they have collaborated on at least one
paper. The detailed statistics of these five benchmark datasets
are shown in Table. 1.

TABLE 1. Description of the dataset for the semi-supervised classification
tasks.

B. BASELINES
We compare our proposed PCM-GCN with state-of-the-art
semi-supervised classification learning methods, including
the following five categories:

• Base encoder: GCN [2], SGC [4], GAT [1].
• Sampling-based encoder: FastGCN [3].
• Multi-scale information fusion-based encoder:

N-GCN [23], IGCL [11].
• Graph generation fusion-based encoder: MOGCN [34],

PA-GCN [24].
• Pseudo labeling-based encoder: MFGCN [22],

LaenNet [21].
We run the proposed model 20 times and record the

average accuracy. For the other methods, we operate the code
provided by the authors and record the average results.

C. EXPERIMENT SETTINGS
In our study, 500 samples are taken as validation set data
and 1000 samples are utilized as test set samples. For these
five datasets, we use only the labeled training set to train
the PCM-GCN model. The Adam optimizer with a learning
rate of 0.01 is employed to train the proposed PCM-GCN.
In these five datasets, the value of weight decay is set

TABLE 2. Summary of classification accuracy (%). The best results are
highlighted.

to 5e-4, the number of hidden neurons is selected from
[8, 16, 32], and the dropout parameter is placed at 0.8 to
prevent over-fitting. In addition, δ is set at the range
of {0.9, 1} in order to maximize the performance of pseudo
labeling module. In our experiment, m and n take the same
value and the balance parameters m and n take values in the
range {1, 2, 3, 4, 5}, we perform a sensitivity study for these
two parameters.

D. EXPERIMENT RESULTS
1) NODE CLASSIFICATION
The average accuracy (%) of the node classification of ours
and baseline are summarized in Table 3, where the bold value
represents the best result. We observe the following results:

(1) Compared to the baseline described above, PCM-GCN
is confirmed to achieve the best results on all five datasets.
Notably, PCM-GCN shows a significant advantage on the
Citeseer, ACM, and Coauthor-cs datasets.
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TABLE 3. Accuracy(%) of node classification tasks. The best results are highlighted.

TABLE 4. Accuracy(%) of ablation experiments on five datasets.

(2) PCM-GCN outperforms multi-scale information
fusion based encoder (MOGCN, N-GCN, PA-GCN, IGCL,
GCN+LaenNet), multi-view fusion based encoder(MFGCN)
and sampling based encoder(FastGCN) on most of the
datasets. The explanation is that our proposed model
reconstructs the graph in terms of raw graph topology
and node features, allowing the model to capture more
reliable information from different graphs. At the same time,
the fusion of multi-channel information can significantly
improve the representation of the model for downstream
tasks.

(3) When labeled samples are sparse, such as when there
are only 5 or 10 samples per class, PCM-GCN has been
proven to be effective, i.e., PCM-GCNmaintains a fairly good
classification performance. Especially for the ACM dataset,
our proposedmodel relieves the problem of rapid degradation
of classification performance due to label sparsity. This
is attributed to our pseudo labeling module that generates
feasible pseudo-labels for a large number of unlabeled
samples in semi-supervised learning, thereby meeting the
label data requirements for training comprehensive node
embedding representation.

2) FRAMEWORK STUDY
As previously recounted, PCM-GCN can easily incorporate
different GCNs frameworks without imposing restrictions.
In this section, in addition to GCNs, we incorporate basic
encoders (SGC, GAT) into the PCM-GCN framework,
denoted as GAT+OURs and SGC+OURs, respectively.
Defining GAT, SGC, GAT+LaenNet, and SGC+LaenNet as
the baselines, we evaluate their classification accuracy under
sparse labels, and the results are presented in Table 2.

From Table 2, PCM-GCN can enhance GCN on most
datasets. In particular, for Cora, ACM, and Coauthor-cs, our
proposed model shows significant improvement at different
labeled rates. For example, PCM-GCN can improve GAT by
up to 10.8 % on Cora when the number of labeled nodes per
class is 10. The above observation shows the scalability of
PCM-GCN on different encoders.

3) ABLATION EXPERIMENT
In order to clearly explain the validity of the graph generation
module and the pseudo labeling module, we conducted abla-
tion experiment to show the contribution of each component.
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FIGURE 3. The visualization of classification results of GCN, GAT, and PCM-GCN on Cora, Citeseer datasets with 140, 120 labeled
samples.

FIGURE 4. The performance of GCN+OURs with varied hyper-parameter K .

Two ablation experiments are designed as follows and the
experimental results are shown in Table 4.

• GCN #A: GCN #A denotes a variant of GCN which
is the base GCN fused with the graph generation module;
the hyper-parameters n and m take equal values in the
experiments, and we search for the highest accuracy in the
range {1, 2, 3, 4, 5} as the experimental result.

• GCN #B: GCN #B represents a method that is based on
the pre-training of the vanilla GCN combined with the pseudo
labeling module to form a learner.

For GCN #A: It improves the classification accuracy at
different label rates compared to the original GCN. For
example, observing the ACM and Coauthor-cs datasets,
the GCN with graph generation mechanism improves the
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FIGURE 5. The performance of SGC+OURs with varied hyper-parameter K .

classification accuracy by 19.5%, 14.4%, 11.94% and 2.06%,
1.7%, 1.87% respectively.

For GCN #B: Compared to GCN, GCN with pseudo
labeling module performs better at low label rates. Specifi-
cally, when the training set of ACM is 30, the improvement
is 24.3%. For Pubmed with a sample size of 15, the pseudo
labeling module helps GCN to improve by 4.66%. This
confirms that our pseudo labeling eases the label sparsity
problem in the semi-supervised tasks.

It is observed that PCM-GCN outperforms GCN #A and
GCN #B on the five datasets, which confirms that the
combination of the graph generation module and the pseudo
labeling module is effective.

4) CLASSIFICATION RESULT VISUALIZATION
In order to demonstrate the effectiveness of our proposed
model more intuitively, we perform a visualisation task
(distribution of raw data and classification results of GCN,
GAT and PCM-GCN) on the Cora and Citeseer datasets
using the t-SNE [45] algorithm. As can be seen in Fig. 3,
the distribution of the raw data is irregular. Meanwhile, the
visualisation results of GCN and GAT are not satisfying
because there is no clear boundary between different
classes. Obviously, the proposed model performs better
due to its larger inter-class distance and smaller intra-class
distance.

5) PARAMETER SENSITIVITY STUDY
In this section, we investigate the sensitivity of the balance
parameters n and m to the experimental results over four
datasets. the values of n and m are set to {1, 2, 3, 4, 5},
and for simplicity we use K in place of n and m. Fig. 4 and
Fig. 5 illustrate the effect of different values of K on the node
classification results.

It is observed that classification accuracy at different label
rates tends to obtain best at K > 1, which confirms the
validity of our proposal to integrate multi-graphs into one
enhanced graphs.

V. CONCLUSION
In this paper, we propose an end-to-end GCNs framework for
semi-supervised node classification tasks. This framework
develops three modules: (1) graph generation module;
(2) multi-channel fusionmodule; (3) pseudo labelingmodule.
The graph generation module utilizes the topology and
features of the raw graph to generate multiple graphs
individually, and the multiple graphs are input to separate
GCN encoder. Then, the multi-channel fusion module aims
to fuse the embedding representations of multiple GCNs,
achieving joint learning of important information hidden
in the topology and features. Finally, the pseudo labeling
module utilizes unlabeled node information to enhance the
embedding representation, achieving more effective node
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embedding. Extensive experiments show that the proposed
model can obtain good performance even with a small num-
ber of labels. Furthermore, we have showed the flexibility and
effectiveness of PCM-GCN for introducing different GCNs
models in our framework study. Experiments on five publicly
available datasets have demonstrated that our proposedmodel
outperforms other state-of-the-art models in semi-supervised
node classification. For future work, we aim to explore the
model ŕs potential for other graph-related tasks.
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