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ABSTRACT To solve the problems of limited computing power resources, low accuracy of small target
detection, high miss rate, and poor real-time detection of mobile vehicle platforms in the automatic driving
environment, The present study introduced a one-stage target detection algorithm TTD-YOLO (Traffic
Target Detection YOLO) that improved YOLOV5-S, which is enhanced in four aspects: Enhanced the
network’s multi-scale feature extraction performance through the utilization of the improved M-ELAN
architecture; added 3D attention mechanism SimAM to the network structure to enable the network to
learn important feature information and enhance the efficiency of detecting accuracy; the parameter ratio
of backbone and neck is adjusted to close to 1:1 by adjusting the number of output channels and stacking
times of CSPLayer modules in the backbone and neck, while maintaining the model complexity, experiments
show that improving the neck’s parameter ratio helps enhance the efficiency of detecting accuracy without
changing the network structure; used EIoU loss instead of the bounding box loss function accelerates network
convergence and improved detection accuracy. Under the condition of avoiding significantly changing the
network structure, our TTD-YOLO outperforms the baseline model and other mainstream object detection
algorithms such as Faster RCNN, SSD, and YOLOX-S on the autopilot dataset SODA10M with fewer
parameters, higher detection accuracy, and faster inference speed. Compared to the baselinemodel, themodel
parameters decreased by 8.6%, average precision(mAP@.5:.95)increased by 2.5%, and the inference speed
under the same experimental platform increased by 4.8%.

INDEX TERMS YOLO, traffic target detection, real-time detection.

I. INTRODUCTION
The study of autonomous driving has consistently been a
significant area of focus in the field of artificial intelligence
and holds promising potential for advancement. Automated
driving technology mainly includes an environment aware-
ness system, positioning and navigation system, decision
planning system, and control execution system.

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

An environmental awareness system provides necessary
scene environment information for decision planning and
control of autonomous vehicles and is critical to the
technical support for automatic driving [1]. Target detection
is an integral part of the environmental perception of an
autonomous vehicle. As an essential part of perception
technology, detecting traffic targets in the road environment
can collect the surrounding road environment information
and participate in the decision-making activities in the
panoramic perception system of autonomous vehicles [2].
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However, the road environment in the automatic driving
scene is often very complex. The detection tasks, including
traffic targets and traffic signs, may be interfered with by
many factors, especially in urban areas where there are
many vehicles and pedestrians when the cars share the
road with other traffic participants, safety accidents are
likely to occur [3]. To avoid such mishaps, collecting the
location information of other traffic participants or obstacles
is necessary. In general target detection tasks, Large objects
in the image occupy many pixels. They are often easier to
detect, while small objects are usually easily ignored because
they occupy fewer pixels and carry limited information
[4]. Other factors, such as lighting conditions, photography
angle, object deformation, motion blur, distance, etc., will
affect the detection accuracy [5]. At the same time, as an
essential part of the automatic driving perception system,
we should enhance the precision of detecting and ensure
real-time detection so that the collected environmental data
can be handed over to the decision-making system for
processing the first time planning for the next step. Some
unexpected situations in the driving process should be
promptly addressed to ensure traffic participants’ safety.
At present, the problem of striking a balance between the
accuracy and speed of detecting targets is a significant issue
in the field of target detection. It is also a severe difficulty
in the critical technologies of automatic driving perception
systems.

To address the aforementioned issues, we employ a deep
learning-based approach, thoroughly evaluate the precision
of detection and the ability to detect in real-time, and
use the single-stage target detection algorithm YOLOV5-
S as the research and development benchmark to propose
a lightweight traffic target detection algorithm TTD-YOLO
exhibiting exceptional detection precision and rapid detection
velocity.

The subsequent sections of this manuscript are outlined as
follows. The second chapter primarily presents an overview
of the existing literature on automatic driving object detec-
tion, explicitly focusing on deep learning techniques. The
third section describes the specific implementation methods,
working principles, and innovations. The fourth chapter is
about the experiment and result analysis. Finally, the fifth
chapter puts forward the conclusion.

II. RELATED WORKS
Within this particular section, we mainly introduce some
work in relation to traffic target detection.

Traditional target detection methods usually include three
steps:

(1) Preprocess the picture data that was entered. For
instance, image correction, camera calibration, cropping and
scaling of images.

(2) Extract candidate regions that may contain detection
targets. Usually, sliding windows with different proportions
are used to stroke the whole picture to extract the area of
interest.

(3) Use the classifier to classify the target. Process the
filtered candidate regions and classify the targets in the
candidate regions.

Although this method can accurately identify the target
objects, the time complexity of region selection technology
based on sliding windows is high, and it will generate several
redundant windows. And the features designed by hand could
be more robust to diversity changes.

In recent times, the approach relies on deep learn-
ing techniques has made a significant breakthrough in
target detection. Training the depth convolution neural
network through labeled datasets can enable the network
to quickly learn the required feature information to detect
the target object end-to-end. Currently, the techniques
employed for target detection can be categorized into
two main types: two-stage and single-stage. Two-stage algo-
rithms are represented by the R-CNN [5] series, which first
generate regions of interest in the image using region recom-
mendationmethods and then classify these regions of interest.
After classification, use post-processingmethods to eliminate
redundant borders. This kind of algorithm is characterized
by high detection accuracy. Still, the model is more intricate
and the speed of inference is reduced, which is unsuitable for
completing the real-time target detection task in high-speed
scenes and requires high computing power on the deployment
platform. Hence, deploying to a mobile platform with
limited computing power is complicated. The algorithm in
a single-stage, as denoted by SSD [6] and YOLO [7] series,
the user can input an image and generate a direct output that
includes the category name and score of the box, as well as
the objects contained within the box. Only one network can
complete the detection frame and classification tasks. It has
high real-time, fast inference speed, small model parameters,
and low computational complexity. However, the precision
of the suggested approach is marginally inferior to that of
the two-stage approach. At present, the research of single-
stage algorithms is relatively hot. With the deepening of
research, some single-stage algorithms can surpass two-stage
algorithms in accuracy while ensuring detection speed and
parameters.

At the same time, some excellent network structures and
improvement strategies have been put forward. Backbone
networks such as MobileNet [8] and ShuffleNet [9] adopt
methods such as deep separable convolution [10] and
channel shuffle, which not only have excellent feature
extraction performance but also have fewer parameters
compared with some traditional networks and are easier
to deploy to mobile devices; The Feature Pyramid Net-
work (FPN) [11] structure combines advanced semantic
characteristics with detailed geographical characteristics,
strengthens the information exchange among feature layers
of various scales, effectively enhances the detection accuracy
of small targets. However, these methods are relatively
limited in optimizing the target detection model, and
the task requirements in complex traffic scenarios cannot
be met.
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Yang et al. [2] introduced a novel object detection
algorithm to tackle the challenges associated with low
detection accuracy and high miss rate of minor traffic signs.
And signals in the road environment. This technique incor-
porates a YOLOV3-based multi-scale attention mechanism
module. This can enhance the network’s focus on crucial
feature information and strengthen the network’s capacity
to represent features. The inclusion of low-level prediction
heads enhances the detection accuracy of small targets.
Although adding additional layers of detection is beneficial
to small targets, it also leads to an escalation in computational
expenses and impacts themodel’s inference speed. Dewi et al.
[12], [13] combined SPP (Spatial Pyramid Pooling) with
YOLOV3 and YOLOV4 to enhance the model’s capability
to extract features from a global perspective and achieved
better results in the traffic sign detection task. Cai et al. [14]
Suggested a YOLOV4-based technique for real-time traffic
target recognition and performed model pruning, effectively
enhancing the inference speed. At the same time, Wang et al.
[15] suggested a streamlined traffic target detection method
utilizing enhanced YOLOv4 Tiny to address the issue of a
high rate of undetected dense targets in intricate traffic situ-
ations. The algorithm uses a K-means clustering algorithm
to produce an a priori anchor box that is appropriate for
the training datasets. It proposes a feature map optimization
strategy, enriching the network feature level through the low-
level feature map’s low-level information and enhancing the
precision of detecting diminutive targets. The NMS algorithm
in the post-processing stage is improved. Based on soft NMS
[16], the prediction box’s confidence score, which exceeds
the predetermined threshold, is no longer assigned a value of
0. This method is very effective for improving the recall rate
under dense targets. Wenjie et al. [17]captured fine-grained
spatial features and improved detection by introducing a
deformable convolutional coordinate attention mechanism
in YOLOV8. Cao et al. [18] proposed the MCS-YOLO
algorithm based on YOLOV5-S, added the swin transformer
structure and coordinate attention module to the backbone
network to improve the feature extraction performance of
the model, and a multiscale structure was also designed for
detecting small targets. The algorithm enhanced the precision
to detect small targets in the traffic road scenario.

III. TRAFFIC TARGET DETECTION-YOLO
This section first briefly introduces the principle of YOLO
series algorithms and the overall network structure of TTD-
YOLO (Traffic Target Detection YOLO), then introduces the
improvement module in detail.

A. OVERALL INTRODUCTION TO NETWORK
ARCHITECTURE
YOLO series algorithms are representative of single-stage
real-time target detectors. Their basic idea is to redefine
target detection as a single regression problem. After end-
to-end training, the image input network will directly
output predicted bounding box coordinates and category

probabilities [19]. Compared with the general two-stage
algorithm, it does not need to generate the region of interest.
Therefore, compared with the two-stage algorithm, it has a
more significant improvement in detection speed, excellent
detection accuracy, and better robustness.

Currently, the most popular YOLO series algorithm,
YOLOV5, uses CSPDarknet as the backbone network. The
network consists of a multilayer residual module CSPLayer
with strong feature representation capability. Meanwhile, the
SPPF (Spatial Pyramid Pooling Fast) structure is added after
the backbone network. The SPPF structure enhanced the
multiscale features by serially passing the input feature layer
through multiple maximum pooling layers with different
sizes. It performs the feature fusion, thus solving the target
multiscale problem to a certain extent. Compared with
parallel connections, serial connections have less memory
and faster computation speeds. After the input image passing
through the backbone network, three feature layers of
different scales are generated to detect objects of different
scales. These feature layers are bi-directionally semantically
fused in the FPN+PAN structure of the neck to promote
fusion and communication amidst the low-level and high-
level feature information and enhance themodel’s multi-scale
feature representation capability. Finally, a coupled detector
simultaneously outputs the network’s predicted bounding box
coordinate and category probability information.

However, when this series of algorithms are used in
some specific scenes, numerous issues persist (such as target
occlusion, low accuracy of small target detection, high rate
of missed detection, intricate models that pose challenges
in implementation, and slow inference speed). Therefore,
based on YOLOV5-S, we propose a traffic target detection
algorithm TTD-YOLO (Traffic Target Detection YOLO) in
the automatic driving scene. This model reduces the model’s
parameters and achieves the overall improvement of detection
accuracy and speed without the initial model undergoing a
substantial alteration in its network structure. Fig 1 illustrates
the network architecture of TTD-YOLO. Its main innovation
points are as follows:

(1) The enhanced M-ELAN module substitutes the partial
convolution in the initial network nick. The M-ELAN
module’s parameters are reduced by 81.4% compared to
the ELAN module, and the module utilizes a multi-
size convolution kernel to enhance its feature extraction
capability. The experiment demonstrates a notable reduction
in model parameters, a decrease in computing complexity,
and an enhancement in detection speed while maintaining
accuracy.

(2) SimAM is added in the feature fusion stage of the
network. SimAMcan calculate the channel and space weights
of the output feature layer without adding any parameters,
providing 3D weights for the network.

(3) Modify the ratio of parameters. Under the condition
of ensuring the original parameter quantity, the proportion
of parameters in the neck can be improved by adjusting
the output channels and stacking times of the CSPLayer
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FIGURE 1. Proposed TTD-YOLO network.

in the backbone and neck. Experiments show that under
the condition that the total parameters remain unchanged,
the enhancement of detection accuracy can be efficiently
achieved by increasing the parameter proportion of the neck
part within a specific range.

(4) Substitute the CIoU loss employed in the first model
with the EIoU loss. In the context of bounding box
regression, the EIoU loss quantifies the disparity among
the three geometric components: overlapping area, center
point distance, and aspect ratio. Simultaneously, the Focal
loss is introduced as a solution to address the issue of
sample imbalance. It can potentially enhance the detection
accuracy and recall rate of the model while also expediting
the convergence process.

B. IMPROVED M-ELAN MODULE
The ELAN (Efficient Layer Aggregation Networks) module
proposed in YOLOV7 [20] enables more efficient learning
and convergence of deeper networks by regulating the
shortest and longest paths of the gradient. This cross-layer
feature intermingling combining shallow abstract informa-

tion and deep fine-grained information allows the model
to ensure efficient recognition capabilities while reducing
the over-reliance on the depth and width levels of the
network. It mainly comprises three convolution layers of
size 1 × 1, four convolution layers of size 3 × 3, and
one concat layer (all convolution operations will perform
the corresponding padding operation without altering the
width and height dimensions of the feature layer). There
are four branches in total, as shown in Fig 2 (a). The top
two convolution layers of size 1 × 1 are used to adjust
the quantity of channels, and four convolution layers of
size 3× 3 are used to extract features. The concat layer splice
feature layers are generated from four branches according
to channel dimensions. Finally, use one convolution layer
of size 1 × 1 to integrate feature information and adjust
the quantity of channels to the specified output. Besides the
three convolution layers of size 1 × 1 used to adjust the
quantity of channels, the quantity of input channels and
output channels of each branch are consistent. This design
minimizes memory loss, assists in improving the inference
speed, and reduces the hardware cost, as demonstrated in
ShufflenetV2 [21]. At the same time, this multi-branch
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FIGURE 2. ELAN module and its improved version.

structure enhances the integration of semantic data, hence
promoting the improvement of detection accuracy. However,
it also increases network parameters, increases computational
complexity, and significantly impacts the model’s detection
speed. It is unfriendly to deploy mobile terminals, and
applying them to some scenarios requiring high real-time
performance is challenging. Therefore, we first carried
out a lightweight transformation to the last two branches.
Convolution layers of size 3 × 3 replaced by depthwise
separable convolution layers of size 3 × 3, and then the
second convolution layer of size 3 × 3 on the branch
is replaced by a convolution layer of size 1 × 1 is
used to integrate the information on the channel. This can
significantly reduce the parameters of the module. Here,
we name the lightweight ELAN structure T-ELAN (Tiny
ELAN), as seen in Fig 2 (b).

Through experimental comparison, the parameters are
reduced by about 77.0%. However, the computational
complexity is still relatively large due to many branches, even
if the parameters are reduced. The computational cost for
mobile devices is high, so we further reduced the module
branches. Firstly, we removed the convolution operation on
the leftmost branch, which not only reduces the amount
of computation but also preserves the initial information
from the input feature layer. To avoid the module repeatedly
extracting redundant feature information and improve the
speed of inference, we removed the first branch on the
right. The depthwise separable convolution also reduced
the model’s parameters. In addition, convolution kernels
with different sizes are used to obtain multi-scale semantic
information to compensate for the loss of accuracy caused
by branch reduction. We named it M-ELAN (Multi-scale
ELAN), and the precise configuration is depicted in Fig 2
(c). M-ELAN can significantly minimize the parameters and
computational complexity, enhance the inference speed, and
reduce 81.4% compared with the original ELAN module

parameters, meeting the requirements of mobile terminal
deployment.

C. SIMAM
The current attention mechanisms are limited to calculating
the weight either over the channel or spatial dimension.
This approach disregards the association between the channel
and spatial dimension and lacks flexibility. Examples of
such mechanisms include SE [22], CBAM [23], CA [24],
and ECA [25]. In comparison to the current channel and
spatial attention mechanisms, SimAM [26] has designed
an energy function that can simultaneously calculate the
weights of channel and spatial dimensions without adding
additional parameters, providing 3D attention weights for
feature layers, and improving the network’s ability to extract
critical information while avoiding excessive adjustment of
network structure. In this paper, we enhanced the information
extraction capability of the network by adding a SimAM
mechanism after three feature layers of neck structure output.
By quantifying the similarity between feature maps and using
this to adjust the weight allocation of each feature map,
SimAM prompts the model to focus more sharply on regions
within the image that share similar features, which in turn
improves the recognition of and attention to the target object
and surrounding associated structures. The Fig 3 compares
the existing attention mechanism and the working principle
of the SimAM.

The energy function associated with each neuron in
SimAM is determined by quantifying the linear divergence
among the target neuron and other neurons. Specifically as
shown in Formula 1:

et (wt , bt , yt , xi) =
(
yt − t̂

)2
+

1
M − 1

M−1∑
i=1

(yo − x̂i)2, (1)
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FIGURE 3. Comparisons of different attention steps.

where t and xi represent the focal neuron and additional
neurons in the single input feature’s channel;wt is the weight,
bt is the offset; x̂i and t̂ are linear transformations of xi and
t; yt and yo are two different variables used to regulate the
final output. Output is minimized when t̂ is equal to yo. M
is the aggregate count of all neurons present on the channel.
Minimizing the aforementioned formula is equivalent to
training the linear independence among a selected neuron
and other neurons in the identical channel. The ultimate
energy function is derived by utilizing binary labels and
incorporating standard terms. The specific definition is
shown in Formula 2:

et (wt , bt , yt , xi) =
1

M − 1

M−1∑
i=1

(−1 − (wtxi + bt))2

+ (1 − (wt t + bt))2 + λw2
t , (2)

after deriving the neuron energy function, the author uses the
scaling operator instead of adding it to obtain better thinning
features. As shown in Formula 3:

X̃ = sigmod(
1
E
) ⊙ X , (3)

where E represents grouping all neurons in channel and
spatial dimensions and finally using the sigmoid function to
ensure that the value is between 0 and 1 and multiplying with
the input result to obtain the final output result.

D. PARAMETER BALANCE STRATEGY BETWEEN
BACKBONE AND NECK
Some previous improvements of the neck, such as NASFPN
[27], BiFPN [28], and ASFF [29], often focus on how
to modify the feature fusion method and strengthen the
feature fusion through the multi-branch and multi-connection
structure. Although it has some effect on improving the
detection accuracy, introducing too many connections will
increase the delay of the detector and the memory overhead,
which is unsuitable for lightweight algorithms. In RTMdet
[30], the strategy of not introducing additional connections
but changing the ratio of parameter quantities between
backbones and necks is selected. By upwardly adjusting the
expansion ratio of the neck base module, a portion of the
parameter count and computational load in the backbone

network is shifted to the neck structure, ensuring that the
parameter ratio of the two is close to 1:1 and avoiding
the excessive tilting of resources among different parts of
the model, thus realizing an ideal balanced deployment
of computational accuracy. Besides, experiments show that
when necks account for a higher proportion of parameter
quantities in the whole model, the delay is lower, and the
impact on accuracy is small. Using this idea for reference,
we adjusted the stacking times and the number of channels
of the CSPLayer modules in the YOLOV5-S backbone and
neck structures so that the parameter ratio of the backbone
and neck is close to 1:1. According to the experimental
findings, the accuracy, average precision, and inference speed
of this algorithm have undergone substantial enhancements in
comparison to the initial network architecture.

E. IMPROVED LOSS FUNCTION
The loss function is a technique utilized to quantify the
predictive accuracy of a model. During the training process,
the model’s optimization is guided by identifying the
discrepancy between the predicted and actual values. The
selection of an appropriate loss function has the potential
to expedite the convergence of the model and enhance its
quality.

The BCEWithLogits loss function is utilized in YOLOV5
for both object loss and classification loss, and CIoU is used
as bounding box loss. The bounding box loss is primarily
used to locate the prediction target in the image [31]. The
traditional IoU loss [32] only works when the bounding boxes
intersect. In the nonoverlapping scenario, it does not generate
any dynamic gradient. It is not feasible to ascertain the most
suitable intersection method when the prediction box and the
real box exhibit identical intersection and union ratios. The
CIoU loss [33] considers three important geometric factors:
overlapping area, center point distance, and aspect ratio.
The gradient needs to be updated when the borders are not
coincidental, thorough attention is paid to the data concerning
the distance between the center points of the bounding box
and the scale information related to the width-height ratio of
the bounding box. Prediction box regression exhibits superior
speed and accuracy. Formula 4 provides the exact definition
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of the cost term in the loss.

ℜCIoU =
ρ2

(
b, bgt

)
c2

+ av, (4)

where a denotes a favorable trade parameter; v employed for
quantifying the uniformity of aspect ratio.The definitions of
a and v are shown in Formula 5 and Formula 6:

α =
v

(1 − IoU ) + v
, (5)

v =
4
π2 (arctan

wgt

hgt
− arctan

w
h
)2, (6)

the final loss function is is shown in Formula 7:

LCIoU = 1−IoU +
ρ2(b, bgt )

c2
+ αv, (7)

where IoU denotes the extent to which the forecast box and
the actual box intersect and blend, b and bgt indicate the
central points of the forecast box and the actual box, ρ(•) is
the Euclidean distance, and c represents the lateral length of
the minimal bounding box that contains both boxes.

When evaluating the bounding box regression, the CIoU
loss incorporates the overlapping area, distance between
center points, and aspect ratio, the observed discrepancy
solely pertains to the difference in aspect ratio rather than
the difference between the projected width and height and
the actual width and height. Occasionally, it impedes the
efficient optimization of the model. EIoU loss [34] took
apart the aspect ratio based on CIoU loss, clearly measured
the difference of three geometric factors, and introduced
Fcoal loss [35] in order to address the issue of an imbalance
between challenging and straightforward samples. Through
experiments, It has been observed that employing the EIoU
loss can expedite the convergence rate during the training
process. Additionally, this approach enhances the detection
accuracy and recall rate of the model. The specific function
is shown in Formula 8:

LEIoU = LIoU + Ldis + Lasp

= 1−IoU +

(
b, bgt

)
(wc)2 + (hc)2

+
ρ2

(
w,wgt

)
(wc)2

+
ρ2

(
h, hgt

)
(hc)2

, (8)

the wc and hc, as well as wgt and hgt depict the dimensions
of the tiniest box that encompasses both the forecast box and
the actual box. The LIoU is IoU loss; the Ldis is distance loss;
the Lasp is phase loss.

IV. EXPERIMENTS
This section introduces the autopilot dataset SODA10M [36],
experimental settings, and evaluation indicators. Following
this, the group tests were carried out in order to validate
the efficacy of certain approaches that had been previously
enhanced, and all the improvements were applied to the
original model. Then, ablation experiments were carried
out to test our proposed new model. Finally, the suggested

TABLE 1. Experimental platform.

framework is being compared against the current mainstream
works to assess the feasibility.

A. DATASET
The model was trained and validated using the publicly
available dataset SODA10M. SODA10M is a comprehensive
dataset for automated driving that focuses on 2D self/semi-
supervised object detection, including 10 million unmarked
automatic driving environment images and 10000 images
marked with six representative traffic targets. The pho-
tographs encompass a diverse range of weather conditions,
temporal periods, and geographical locations across 32 dis-
tinct urban centers. Experiments show that the dataset has
an excellent performance in training and fine-tuning models
in the field of automatic driving. We use 10000 tagged
images as the dataset and divide them into the training
set and verification group according to the proportion of
9:1. The model’s training procedure employs a mosaic data
enhancement method to augment the quantity and variety of
training samples, hence enhancing the model’s resilience.

B. EXPERIMENTAL SETUP
The tests undertaken in this study were carried out within the
specified experimental setting. It mainly includes the Linux
operating system, Intel (R) - i9 processor, NVIDIA GeForce
GTX 3090Ti/24G, Python 3.8, PyTorch 1.11, CUDA11.3,
etc. See Table 1 for details.

Experiments were conducted using YOLOV5’s default
optimizer SGD to train the models. Each model is trained
for 200 epochs iteratively, and the dimensions of the input
images are uniformly scaled to 640 × 640, each batch of
training data contains 32 images, and a mosaic enhancement
strategy is used to improve the diversity of the training
samples. The initial learning rate is set to 0.01, in order
to ensure that the model can be trained stably, the learning
rate is gradually increased in the earliest three epochs using
the warm-up strategy, and the cosine annealing strategy is
used to decay the learning rate, so that the trajectory of the
learning rate is associated with the cosine function, to prevent
the occurrence of local minima, and to improve the overall
training efficiency. The main parameter configuration during
training is shown in Table 2.

C. INDICATORS OF EVALUATION
To effectively evaluate the model, AP (Average Precision),
Precision, recall rate, mAP@.5:. 95 (mAP represents the
average AP for all categories, mAP@.5:. 95 is the average
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TABLE 2. Main training parameters.

TABLE 3. The comparative experiment of the ELAN module and its
improved version.

value of mAP calculated at the IoU threshold of every
0.05 units between 0.5 and 0.95 to validate the precision of
the model’s detection), and FPS (Frames Per Second) were
used to quantify the detection accuracy and the speed of
model inference. Among them, the deployment mode of the
model has a substantial influence on the FPS of the algorithm.
Therefore, for the fairness of the experiment, All models were
optimized and accelerated using TensorRT and deployed to an
experimental platform (Table 1) for testing.

D. M-ELAN MODULE
We replaced only the two convolutional layers of size 1× 1 in
the neck structure with the ELAN module and the improved
T-ELAN and M-ELAN modules without changing the rest
of the structure of the network. Under identical conditions,
the convolution is learned and subsequently compared to
the original model. The experimental findings demonstrate
that the network’s detection accuracy is enhanced by using
ELAN in comparison to the original model, but the network
parameters and floating point computation are significantly
increased; the T-ELAN module is a lightweight version of
the ELAN module we proposed. Although it reduces the
parameters of the module, it also causes a decline in accuracy.
Neither of these two modules can balance the detection
accuracy and detection speed well. In comparison to the
preceding two enhancements, the M-ELAN module that we
have ultimately put forth not only significantly decreases
the number of parameters and floating point computations
but also enhances the precision. See Table 3 for specific
experimental data. Compared with the original model, with
only a few parameters and floating point calculations
added, the detection accuracy and recall rate have been
comprehensively improved. Moreover, the parallel structure
of the module is designed to be highly compatible with the
computing characteristics of the GPU, and the computational
efficiency is greatly improved. Even though a small number
of parameters are added, the inference speed of the model
is not reduced, which is proved in the subsequent ablation
experiments(Table 8).

TABLE 4. The comparative experiment of different attention mechanisms.

E. SIMAM
We have selected several mainstream attention mechanisms
and added them behind the three feature layers of the
neck structure outputs while ensuring that 200 epochs
are trained under identical training circumstances. Table 4
shows that SimAM achieves the best average precision and
accuracy results without adding parameters. At the same time,
in comparison to the initial model, there has been a notable
enhancement in the recall rate.

F. PARAMETER BALANCE STRATEGY BETWEEN
BACKBONE AND NECK
Under the condition of guaranteeing the original parameter
amount and calculation complexity amount, we adjusted
the stacking times and channel numbers of CSPLayer
modules in the YOLOV5-S backbone and neck to change
the parameter ratio of backbone and neck to close to 1:1.
Table 5 provides precise information regarding the specific
adjustments. Compared with the original model experiment,
Table 6 displays the average precision and recall rate
after adjusting the parameter ratio of backbone and neck,
which have significantly improved; the effectiveness of the
improvement is verified. At the same time, as the proportion
of parameters in the feature fusion part is strengthened, the
information fusion between feature layers of different scales
is more abundant, and the low-level feature layer responsible
for detecting small target objects also obtains more feature
information, which dramatically improves the precisionwhen
detecting small targets.

G. LOSS FUNCTION
We used EIoU [34], SIoU [37], and GIoU [38] loss as the
model’s bounding box loss function. Under the condition that
other conditions remain unchanged, the model employs the
EIoU loss achieved the best balance in the average precision
and recall results, and its average precision and recall are
significantly improved compared with the original model.
See Table 7 for specific experimental data.

H. ABLATION EXPERIMENT
Based on the above experimental results, we added the
improved modules to YOLOV5-S to analyze their contribu-
tions to the model performance and propose TTD-YOLO
based on these improvements. As shown in Table 8, the
M-ELAN module enhances the network feature extraction
performance with its multi-scale efficient aggregation net-
work structure, enriches the semantic information fusion
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TABLE 5. Parameter adjustment details.

TABLE 6. Comparison of the initial model and the enhanced model.

FIGURE 4. Comparison of training loss between the initial model and the
improved model.

between different feature layers, and effectively improves the
detection accuracy; SimAM enhances the network’s ability
to acquire valuable feature information from the channel and

TABLE 7. Comparative analysis of the initial model and the enhanced
model.

FIGURE 5. The average precision comparison curve between the
proposed method and the initial model.

spatial dimensions; the parameter balance strategy between
backbone and neck enhance the detection accuracy with
the most straightforward idea without adding any additional
connections; using EIoU loss as the loss function can
accelerate the convergence speed during training. In the end,
our proposed model obtains the highest detection accuracy
but lags slightly behind the inference speed compared to
Method 1 and Method 3, due to the fact that the EIoU
loss function and SimAM attention mechanism increase
the computational effort while improving the model per-
formance. Ignoring these minor delays, their contribution
to the detection accuracy is quite substantial, and the final
model exhibits superior inference speed compared to the
baseline model. Considering the balance between detection
accuracy and inference speed, we adopt these two strate-
gies and finally propose TTD-YOLO that outperforms the
baseline model in terms of detection accuracy and inference
speed.

The training loss curves of the original model and
the modified one are compared in Fig 4. A comparison
curve depicting the average precision between the suggested
method and the initial model is presented in Fig 5. Fig 6
presents a comparative analysis of the detection outcomes
obtained from the original model and the enhanced model
across various traffic conditions, Table 9 records the number
of targets detected in each scenario in detail.
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FIGURE 6. Comparison of detection results of YOLOV5-S(left) and TTD-YOLO(right) in different traffic scenarios.
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TABLE 8. Ablation experiment.

TABLE 9. Comparison of the number of targets detected in different scenarios.

FIGURE 7. Comparison of average precision calculated by different algorithms for each category.

TABLE 10. Comparison of detection results of different algorithms on the
SODA10M dataset.

We experimentally compared the proposed TTD-YOLO
with the current mainstream target detection algorithm.
According to the data presented in Table 10, TTD-YOLO
demonstrates superior performance compared to other mod-
els of similar size regarding both the accuracy of detection

and the speed of inference. Fig 7 shows the comparison
chart of average precision calculated by all models for
each category, it can be seen that our proposed model is
significantly superior to other models in detecting small
targets (bicycles and tricycles), mainly due to the addition
of the M-ELAN module, which improves the model’s ability
to extract multi-scale feature information. At the same time,
the parameter balancing strategy increases the proportion of
feature fusion in the neck structure, allowing the shallow
feature layer to obtain rich semantic information, greatly
improving the model’s ability to detect small targets.

V. CONCLUSION
Utilizing the YOLOV5-S algorithm framework, this paper
presents a lightweight real-time traffic target detection
algorithmTTD-YOLO for complex traffic scenarios. To solve
the problems of limited computing power resources, low
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accuracy of small target detection, and poor real-time detec-
tion of the mobile vehicle platform in the automatic driving
environment, the algorithm mainly proposes four feasible
improvement strategies: the utilization of the enhanced M-
ELAN module is proposed as a substitute for the partial
convolution within the initial network neck, compared with
the ELAN module, the M-ELAN module has 81.4% fewer
parameters and has a more vital ability to extract multi-scale
feature information, it can improve the detection speed of
the model while ensuring accuracy; in the feature fusion
stage of the network, SimAM is incorporated to compute
3D weight, enabling the network to acquire more valuable
feature information without the need for supplementary
parameters; under the condition that the original parameter
quantity is guaranteed, the proportion of parameters in the
neck can be improved only by adjusting the number of
output channels and stacking times of CSPLayer modules
in backbone and neck, the experiment proves that under the
condition that the total parameter quantity is unchanged,
enhancing the parameter fraction of the neck within a
specified range can significantly enhance the detection
accuracy; the loss function in the initial model is substituted
with the EIoU loss, which can accelerate the convergence and
enhance the detection accuracy. The conclusive experiment
demonstrates that TTD-YOLOV5-S surpasses its baseline
model and other mainstream algorithms, such as SSD, Faster
RCNN, YOLOV3-Tiny, and YOLOX-S, on the SODA10M
dataset with fewer parameters, higher detection accuracy,
and faster inference speed. In comparison to the YOLOV5-
S baseline model, the parameter decreased by 8.6%, average
precision(mAP@.5:. 95)increased by 2.5%, and inference
speed increased by 4.8%.
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