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ABSTRACT Cancer associated with the nervous system and brain tumors ranks among the leading causes
of death in various countries. Magnetic resonance imaging (MRI) and computed tomography (CT) capture
brain images. MRI is pivotal in diagnosing brain tumors and analyzing other brain disorders. Typically,
radiologists or experts manually assess MRI images to detect brain tumors and abnormalities in the
early stages for appropriate treatment. However, early brain tumor diagnosis is complex, necessitating
computerized methods. This research introduces a novel approach for the automated segmentation of brain
tumors and a framework for classifying brain tumor regions. The proposed methods comprise several stages:
preprocessing, enhancing the coherence of MRI brain images using Contrast Limited Adaptive Histogram
Equalization (CLAHE) and diffusion filtering in the first two steps, followed by the segmentation of the
region of interest using the Fuzzy C-Means (FCM) clustering technique in the third step. The last step
involves classification using the Support Vector Machine (SVM) classifier. The classifier is applied to
different brain tumor types, from meningioma to pituitary tumors, utilizing the CE-MRI database. The
proposed method exhibits significantly improved contrast and proves the effectiveness of the classification
framework, achieving an average sensitivity of 0.977, specificity of 0.979, accuracy of 0.982, and a Dice
score (DSC) of 0.961. Furthermore, this method demonstrates a shorter processing time of 0.42 seconds
compared to existing approaches. The performance of this method underscores its significance when
compared to state-of-the-art methods in terms of sensitivity, specificity, accuracy, and DSC. For future
enhancements, it is possible to standardize the approach by incorporating a set of classifiers to increase
the robustness of the brain classification method.

INDEX TERMS Brain tumor, segmentation, classification, diffusion filtering, contrast limited adaptive
histogram equalization, Fuzzy C-Means, support vector machine.

I. INTRODUCTION
In e-health, medical experts strive to enhance patients’
healthcare efficiency by adopting digital medical technology.

The associate editor coordinating the review of this manuscript and

approving it for publication was Sudhakar Radhakrishnan .

Within this context, the field faces intricate challenges, partic-
ularly in the domain of magnetic resonance imaging (MRI) of
the brain. The brain, a remarkably intricate component of the
human body, orchestrates the operation of billions of cells [1].
Brain tumors, constituting an unregulated proliferation of
abnormal cells within the brain, profoundly disrupt the brain’s
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FIGURE 1. The comparison of CT images and MRI images of the brain. The
brain CT images (Fig A) showed the hypodensity of the right frontal lobe
of the brain and the T1 and T2 weighted MRI images (Fig B and C) also
showed the hypointensity of the lesion with less noise and gives better
image representation.

normal functioning [2]. This abnormal cell growth exerts a
substantial toll on the patient’s well-being [3]. To address
this critical issue, computerized techniques emerge as a
viable solution for the early detection of brain tumors.
These techniques excel in isolating abnormal regions within
brain MRI scans, primarily relying on image segmentation
and classification methodologies. The components of the
brain, including gray matter, white matter, and cerebrospinal
fluid, are intricately involved in this process, and image
segmentation techniques prove invaluable for their precise
extraction [4], [5]. Researchers commonly leverage brain
MRI images to identify and expedite the treatment of
brain abnormalities. The quality of these MRI images
significantly impacts the depth of insight into brain structure
and associated cell anomalies, underscoring the importance
of acquiring high-quality images [6], [7].
While several methods are available for capturing brain

images,MRI is amore resilient and efficient choice compared
to computed tomography (CT). CT scans of the brain may
exhibit superior contrast; however, they often suffer from
noise, restricting the radiologist’s ability to evaluate medical
images thoroughly. Figure 1 offers a visual comparison
between CT and MRI brain images [8], [9]. Notably, the
brain CT images reveal hypodensity in the right frontal
lobe. In contrast, the T1 and T2 weighted MRI scans
also depict lesion hypointensity but with reduced noise,
providing a superior image representation. Brain tumors
exhibit diverse classifications based on their behavior and
therapeutic considerations, and the optimal management of
these tumors helps minimize the necessity for biopsies by
effectively categorizing them into benign and malignant
types.

Various techniques are employed to identify brain tumors
within brain MRI images. Primarily, clustering techniques,
such as color-based and histogram methods, are applied
to enhance the precision of tumor detection. Subsequently,
classifiers come into play to distinguish between normal
and abnormal tumor regions, with neural network-based
classifiers predominantly serving this purpose [10], [11],
[26]. Nevertheless, these segmentation and classification
methodologies exhibit several limitations, including a decline
in accuracy, noise, variations in contrast, intensity irreg-
ularities, computational complexity, intricacies in feature

selection, and time-consuming processes [12], [13]. We have
proposed a novel approach focusing on image denoising and
improving overall detection performance to address these
challenges and enhance tumor detection accuracy.

In essence, the distinctiveness of the article is rooted in its
introduction of an innovative framework for the automated
segmentation and classification of brain tumors within brain
MRI images. This research work introduces a novel frame-
work for automated brain tumor diagnosis throughMRI anal-
ysis, offering distinct advancements over existing methods.
The proposed automated segmentation pipeline, starting with
innovative preprocessing techniques like contrast-limited
adaptive histogram equalization (CLAHE) and diffusion
filtering, streamlines identifying and classifying brain tumors
within MRI images. Using the Fuzzy C-Means (FCM)
algorithm for segmentation and integrating a Support Vector
Machine (SVM) classifier for categorizing brain tumor
regions represent significant methodological improvements.
Evaluating a Contrast-Enhanced Magnetic Resonance Imag-
ing (CE-MRI) database encompassing diverse brain tumor
types validates the method’s efficacy and facilitates compar-
isons with alternative classifiers. The proposed framework
exhibits enhanced performance metrics, including superior
sensitivity, specificity, accuracy, and Dice Score (DSC),
highlighting its proficiency in precise tumor identification.
Moreover, the method’s remarkable time-efficient process-
ing, with a duration of only 0.42 seconds, surpasses con-
ventional approaches, showcasing its potential for practical
implementation in clinical settings. Overall, the article’s
distinct contributions lie in its innovative pipeline, advanced
algorithms, and superior performance metrics, positioning
it as a noteworthy advancement in automated brain tumor
diagnosis compared to existing methods. Here, we enumerate
the key contributions that underscore its novelty:

• Automated Segmentation Pipeline: This research
introduces an automated pipeline, encompassing mul-
tiple sequential stages, to streamline the segmentation
and classification of brain tumors within MRI images.
It commences with preprocessing steps, employing
techniques like contrast-limited adaptive histogram
equalization (CLAHE) and diffusion filtering to enhance
and coalesce MRI brain images in preparation for
subsequent segmentation and classification.

• FCM Based Segmentation: Within this proposed
pipeline, the FCM algorithm takes center stage for
segmenting abnormal regions in brain images. FCM is
recognized for its efficacy in delineating structures in
medical images.

• SVM Based Classification: The pipeline leverages
a Support Vector Machine classifier to categorize
brain tumor regions. SVMs are widely acclaimed in
machine learning for their capacity to tackle intricate
classification tasks.

• Evaluation using CE-MRI Database: The effective-
ness of this pipeline is thoroughly assessed using a
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Contrast-Enhanced Magnetic Resonance Imaging (CE-
MRI) database with image 512 × 512, encompassing
a diverse array of brain tumors, including meningioma
and pituitary tumors. This evaluation substantiates its
efficacy across various tumor types and facilitates
comparisons with alternative classifiers and methods.

• Enhanced Performance: The results generated by
this proposed pipeline manifest superior contrast and
efficiency when contrasted with existing methodologies.
It attains remarkable average sensitivity, specificity,
accuracy, and Dice Score (DSC), affirming its profi-
ciency in precisely identifying and classifying brain
tumor regions.

• Time-Efficient Processing: Significantly, the proposed
method exhibits a shorter processing time of merely
0.42 seconds in contrast to conventional approaches.
This attribute holds substantial importance for practical
implementation in clinical settings, where prompt diag-
nosis remains a pivotal consideration.

The primary aim of this research endeavor revolves around
the segmentation of brain tumors and the subsequent classifi-
cation of their stage based on brainMRI images. The analysis
of these images presents a formidable challenge due to
the multifaceted processing issues inherent in computerized
brain MRI images. To tackle this challenge, the proposed
methodology comprises five distinctive stages. In the initial
stage, brain MRI images undergo preprocessing, which
includes noise elimination. The second stage centers on
harmonizing the brain MRI images, a crucial step since these
images often exhibit non-coherent regions, complicating
ensuring consistency in the contrast between foreground
and background elements. The third stage focuses on
contrast adjustment due to the persistent presence of varying
contrast regions. The fourth stage is dedicated to segmenting
abnormal or tumor regions within the images, while the
final stage encompasses the classification of the identified
brain tumors. Importantly, all these stages are underpinned
by innovative image-processing techniques.

II. RELATED WORK
The incidence of brain tumors has seen a significant increase,
ranging from 10% to 15% between 2004 and 2020, under-
scoring the pressing need to address this health crisis. In the
field of medical diagnostics, advanced imaging technologies,
such as computed tomography (CT) and magnetic resonance
imaging (MRI), have become indispensable for detecting and
understanding central nervous system (CNS) disorders [14].
MRI, in particular, stands out as a noninvasive diagnostic tool,
providing detailed cross-sectional images of the brain that
enable healthcare professionals to examine brain anatomy
intricacies with exceptional sensitivity [15]. Despite the
promise of these imaging techniques, their effective use
relies on the expertise of medical specialists, and interpreting
the wealth of information they convey remains a meticu-
lous and time-intensive process [16]. Enhancing healthcare

providers’ skills in this domain is imperative for accu-
rately diagnosing CNS disorders [17]. Magnetic resonance
imaging (MRI) has emerged as the foremost technique for
detecting and classifying brain tumors (BTs), encompassing
distinct modalities such as T1-weighted MRI (T1), T2-
weighted MRI (T2), T1-weighted contrast-enhanced MRI
(T1-CE), and fluid-attenuated inversion recovery (FLAIR)
[18], [19], [20]. Utilizing software-based tools alongside
MRI scans facilitates the segmentation, identification, and
categorization of tumors, expediting treatment strategies and
contributing to improved patient survival rates [18], [21],
[22], [23]. Consequently, software specialists are increasingly
focused on developing tumor detection systems, particularly
emphasizing image processing techniques [Isn2016]. The
growing volume of image datasets, fueled by the widespread
adoption of digital cameras and imaging technologies, poses
a challenge, making it essential to address the management
and analysis of these extensive datasets [25].

The segmentation and precise classification of brain tumor
regions, utilizing a combination of machine learning and
image processing, pose a formidable challenge, given the
multitude of methodologies proposed for brain tumor detec-
tion within brain MRI images [27]. The related work section
discusses various recently introduced methods addressing
this issue. One recent study introduced a computerized
approach to brain tumor classification. This method hinged
on the Harmony Search Algorithm (HCS) optimization
technique to train a multi-class Support Vector Neural
Network (SVNN) [39]. The approach incorporated the
Bayesian fuzzy clustering method to identify tumors in
MRI images automatically. For this purpose, an array was
constructed using the HCS optimization technique, which
involved the deployment of multiple multi-class Support
Vector Neural Networks (multi-SVNNs). Notably, the study
exclusively centered on the BRATS dataset, and its findings
may not be broadly applicable to other datasets. Several
similar techniques have also been proposed that use brain
MRI images for brain tumor detection, employing the
Bayesian fuzzy clustering method in conjunction with the
HCS optimization algorithm [28], [29]. Notably, these HCS
optimization algorithms have outperformed existing methods
in certain contexts [30]. However, it’s important to note that
implementing these techniques is typically restricted to a
limited set of images from the Brain Tumor Segmentation
(BraTS) database and may not be directly transferable to
other databases [27].

Yin et al. [31] introduced a method structured around
three key steps: background correction, the segmentation of
abnormal regions, and the classification of brain tumors.
Their approach incorporated a multilayered perception neural
system and utilized whale optimization algorithms rooted in
disarray hypothesis and procedural base mapping to attain
optimal brain tumor segmentation and classification results.
However, it’s important to note that this algorithm did not
yield a notable enhancement in accuracy. In a distinct study,
Alagarsamy et al. [32] presented an enhanced brain image
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segmentation technique called BAT-IT2FCM (Bat Algorithm
and Interval Type-2 Fuzzy C-Means clustering). This method
draws upon BAT calculations to discern the most suitable
groupings within the IT2FCM clustering process. Although
this approach improved accuracy, it relies on threshold factors
and necessitates a more extended processing time.

Kumar et al. [33] introduced theWeighted Correlation Fea-
ture Selection-Based Iterative Bayesian Multivariate Deep
Neural Learning (WCFS-IBMDNL) method for early-stage
brain tumor analysis. It employed an Iterative Bayesian
Multivariate Deep Neural Network (WC-FS) to select
pertinent medical features that formed the model for brain
tumor regions. However, their use of the Iterative Bayesian
Multivariate Deep Neural Network (IBMDNN) classifier
led to false pixel detection, ultimately diminishing method
accuracy. Ozyurt et al. [34] implemented a hybrid approach,
combining Neutrosophy with Convolutional Neural Network
(NS-CNN) for tumor region characterization in brain images.
They utilized brain MRI images segmented using the
neuromorphic ensemble main, employing the extreme fuzzy
sure entropy method. While their approach, which harnessed
three classifiers (CNN, Support Vector Machine, and K-
Nearest Neighbors), demonstrated enhanced accuracy, the
neurotrophic method’s inconsistency in the CNN structure
adversely affected overall performance.

Selvapandian and Manivannan [35] employed the
non-subsampled contourlet transform (NSCT) to enhance
brain images and extract tumors. They utilized the Adaptive
Neuro Fuzzy Inference System (ANFIS) to distinguish
between typical and glioma brain images. Tumor regions
within glioma brain images were extracted using morpho-
logical operations, but the proposed method yielded only
satisfactory results on BRATS. Sharif et al. [36] proposed
a brain image analysis method that involved the removal
of the cranial part of brain images using brain surface
extraction (BSE) techniques. This process eliminated the
skull based on images using particle swarm optimization
(PSO) for improved image segmentation. Subsequently, the
local binary model technique was employed to extract brain
tumor regions, with an Artificial Neural Network (ANN)
classifier for tumor classification. However, limitations in
optimizing the tumor substructure location impacted method
accuracy.

Sharma et al. [37] introduced a hybrid approach combining
the k-means algorithm with Artificial Neural Networks
(ANN) for brain tumor detection. They employed the Gray-
Level Co-Occurrence Matrix (GLCM) for feature extraction
and utilized a fuzzy inference system for classification, with
tumor segmentation accomplished using the K-means algo-
rithm. While their method demonstrated enhanced perfor-
mance, it occasionally flagged false pixels, particularly in the
case of smaller tumors. In a separate study, Shree et al. [38]
based their brain tumor detection and classification on
Discrete Wavelet Transformation (DWT) and Probabilistic
Neural Networks (PNN). Features were extracted using
GLCM, and the brain tumor region was segmented using

DWT. This approach not only improved performance but
also streamlined the complexity of tumor segmentation. The
PNN was trained and tested on brain MRI images, yielding
satisfactory results.

A two-phase multidimensional approach was employed in
a study to distinguish between brain tumors and healthy brain
tissue. In the first phase, Convolutional Neural Networks
(CNNs) were utilized for preprocessing and feature selection,
while the second phase focused on classification using
Error-Correcting Output Codes Support Vector Machines
(ECOCSVM). To attain the highest accuracy, which reached
99.55%, the first phase employed Visual Geometry Group-
19 (VGG-19), Visual Geometry Group-16 (VGG-16), and
AlexNet, withAlexNet proving to be themost successful. The
study drew data from the BraTS and RIDER databases [40].
In another study, SVM and Otsu thresholding were used
for brain tumor classification [41]. However, a compara-
tive analysis revealed that the method’s accuracy required
improvement. To address this issue, Molina-Torres employed
a kernel SVM approach utilizing the Gaussian Radial Basis
(GRB) kernel for brain tumor classification and assessed
performance using metrics like specificity, precision, and
accuracy [42].

Numerous investigations have explored brain tumor
detection using diverse methodologies and deep learning
models [27]. However, some studies lack performance com-
parisons between proposed models and traditional machine-
learning approaches, and specificmodels have been criticized
for their computationally intensive processes [27], [43].
Additionally, many relevant studies focus on classifying
three types of brain tumors, often neglecting data related
to healthy subjects [44]. From a scientific standpoint,
diagnosing tumors through medical imaging is prone to
errors and heavily depends on radiologists’ expertise. Given
the variability in pathology and the potential for human
specialists to experience fatigue, a compelling argument
exists for integrating computer-assisted interventions in
medical imaging [27]. Computational intelligence-oriented
techniques, particularly deep learning ones, play a crucial
role in analyzing, segmenting, and classifying cancer images,
specifically on brain tumors [45]. These approaches offer
a promising avenue to assist researchers and physicians
in identifying and categorizing brain tumors. Despite the
substantial efforts invested in brain tumor detection research,
several limitations persist, underscoring the need for a
novel algorithm that leverages MR images to enhance
the accuracy and reliability of brain tumor detection—
notably, existing researchwork, particularly in preprocessing,
warrants improvement for enhanced performance. In the
following section, we delve into the methodology of the
proposed approach.

III. PROPOSED METHOD
Brain MRI images are preferred in medical imaging due to
the non-invasive nature of MRI, which eliminates the risk
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FIGURE 2. The Proposed Method steps for segmentation and classification of Brain MRI Images.

of radiation exposure, making it safe for the human body.
Moreover, MRI scans offer a multi-dimensional analysis that
surpasses other imaging modalities like computed tomogra-
phy and X-ray images. While brain MRI image segmentation
is primarily employed for brain tumor delineation, manual
segmentation is time-consuming and can be challenging
to achieve with pinpoint accuracy. In this research paper,
we introduce a novel approach featuring five distinct steps
for the computerized classification and segmentation of brain
MRI images in the context of brain tumor detection.

The primary objective of this method is to identify tumor
areas within brain MRI images. Illustrated in Figure 2, this
proposed approach is a computer-based solution designed to
detect abnormal brain MRI findings. It relies on coherent
contrast, coupled with classification and segmentation tasks
for brain tumor detection. Themethod unfolds in four sequen-
tial steps, with the first two comprising the preprocessing
stage. The initial step focuses on image processing for brain
MRI images, aiming to address inconsistencies in the MRI
data. To rectify these inconsistencies, the second step delves
into enhancing the coherence of brain MRI images through
oriented diffusion filtering. The subsequent two steps form
the post-processing stage. The third step involves binary
segmentation of brain tumors using the FCM method, while
the fourth step employs a support vector machine classifier
for brain tumor classification. This cohesive algorithm is
recognized as a computerized solution for detecting brain
tumors within brain MRI images.

A. BRAIN MRI IMAGE PROCESSING
The processing of brain MRI images constitutes a crucial
step within the pre-processing stage of the proposed method.
Brain MRI image processing primarily revolves around data
enhancement and the reduction of noise levels. In this study,
we performed image processing on brain MRI scans acquired
from three different planes, specifically the axial, sagittal, and
coronal planes, all sourced from the CE-MRI database.

A 5 by 5 Wiener filter was employed to alleviate noise
in brain MRI images, as depicted in Figure 3. The Wiener
filter is a mathematical technique specifically designed for
noise reduction in brain MRI images. It hinges on two key
parameters: the local window for each pixel, which, in this

instance, utilized the 5 by 5 Wiener filter, and the noise
variance.

The Wiener filter operates on a local window encompass-
ing each pixel, and the output at each pixel is computed using
Equation 1. This equation encompasses the Wiener filter,
the local mean of the input image, and convolution. Sub-
sequently, the Wiener filter is determined using Equation 2
and 3, which considers the local variance of the input image
within the pixel’s vicinity and the variance associated with the
noise. Themathematical steps involved in theWiener filtering
process can be enumerated as follows:

1) The Mean of noise contained image is calculated
accordingly to provide the mask. Equation 1 is a
representation of the mathematical problem for this
step

µ =
1
NM

N∑
n1=1

M∑
n2=1

I (n1, n2) . (1)

The N − by − M local neighborhood of each pixel in
the image is used for this calculation.

2) The Variance of the noisy image is calculated
accordingly to provide the mask. Equation 2 is a
representation of the mathematical problem for this
step.

µ =
1
NM

N∑
n1=1

M∑
n2=1

I2 (n1, n2) − µ2. (2)

The N − by − M local neighborhood of each pixel in
the image is used for this calculation.

3) Utilising these estimates, a pixel-wise Wiener filter
is created by the adaptive Wiener. Equation 3 is a
representation of themathematical problem in this step.

F (n1n2) = µ +
σ 2

+ v
σ 2 (I (n1, n2) − µ) . (3)

Accordingly, the noise variance is v. However, when no
noise variance is given, then adaptive Wiener filter will
take an average of all of the estimated local variances
for use.

Once the noise reduction is accomplished in the proposed
method’s first step, attention is turned to addressing the
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FIGURE 3. Enhanced the clarity of brain MRI: comparison of original and
filtered images on the axial, sagittal and coronal planes. The first row
shows the original and filtered images in the axial planes. The second
row shows original and filtered images in the sagittal planes. The third
row shows original and filtered images in the coronal planes.

issue of variable low-contrast regions observed in brain MRI
images in the subsequent step as shown in Figure 3.

B. COHERENCE OF BRAIN MRI IMAGES
Following the noise reduction process, non-coherent regions
remain challenging within brain MRI images, making it
intricate to identify tumor-affected areas. These non-coherent
regions often appear in multiple sections within a single
image. To overcome this challenge, oriented diffusion
filtering is the initial step in brain MRI tumor detection.

Oriented diffusion filtering necessitates calculated orienta-
tion data derived from regions within the image, known as the
orientation (OF) field. This information guides the diffusion
tensor to align with the appropriate direction of detail

consistency within the image [46]. Achieving coherence
within the MRI image of the brain is imperative, as it
enables better visualization of details crucial for brain tumor
detection. For this purpose, we adopted the optimization
scheme of the Anisotropic Diffusion Filter [47]. This process
encompasses the following steps:

1) Computation of the second-moment matrix for each
pixel within the brain MRI region.

2) It ensures that each pixel within the region possesses its
unique diffusion matrix.

3) Compute the intensity change for each pixel within the
region, given by ∇ (D∇L).

4) Image refinement using the difference formula defined
in equation 4. This leads to a coherent image,
as illustrated in Figure 4.

f t+
a
t
= f t +

i
t × ∇ (D∇f ) . (4)

The utilization of oriented diffusion filtering aids in address-
ing the challenge of non-coherence within brainMRI images,
thereby improving the accuracy of tumor detection.

A comprehensive image analysis of the coherent process
has been conducted, as illustrated in Figure 5. It is evident
from the analysis that the brain tumor region, indicated by
the yellow circle, is more perceptible and coherent in the
processed image. Furthermore, the matter anatomy, denoted
by the red rectangle, is distinctly analyzed with uniform
contrast in the coherent image. However, it is important to
note that this output can potentially lead to an improper
segmentation of the brain tumor region.

C. CONTRAST ENHANCEMENT OF BRAIN MRI IMAGES
Contrast-limited adaptive histogram equalization (CLAHE)
is employed to prevent excessive contrast amplification,
a crucial consideration when dealing with small brain tumor
regions in MRI images. The rationale behind choosing
CLAHE lies in its operation at the tile level, aligning with
the localized nature of brain tumor regions in MRI images.
The process can be deconstructed into several key steps
to comprehend the mathematical underpinnings of CLAHE
in the context of brain MRI images. Firstly, the image
is divided into smaller regions or tiles. Next, the pixel
intensity histogram is computed for each tile. A contrast
limiting function is applied to reduce the number of pixels
with extreme values. Subsequently, the histogram within
each tile is redistributed through histogram equalization.
Finally, the processed tiles are combined to reconstruct the
original image. The contrast limiting function embedded
within CLAHE is mathematically defined by Equation 5,
where k serves as a constant governing the extent of contrast
limitation, L signifies the minimum pixel intensity value
within the tile, and Lmax denotes the maximum pixel intensity
value within the tile.

f (x) =


0, if x < L
k(x − L), if L ≤ x ≤ Lmax
k(Lmax − L), if x > Lmax

(5)

VOLUME 12, 2024 61317



S. M. Alqhtani et al.: Improved Brain Tumor Segmentation and Classification in Brain MRI

FIGURE 4. Improving Clarity in Brain MRI Images: Transitioning from Non-Coherent (Fig(a)) to Coherent (Fig(b)). It is evident that
non-coherent images lack clarity, especially in terms of matter anatomy, which significantly affects the tumor region. On the other hand, the
coherent image in Fig(b) illustrates enhanced matter anatomy with uniformity. Further enhancement provides a more detailed analysis.

FIGURE 5. Detailed analysis of the coherent process. The yellow circle highlights the enhanced visibility of the brain tumor region, while the
red rectangle indicates a clear analysis of matter anatomy with uniform contrast in the coherent image. Note that this output may result in
improper segmentation of the brain tumor region.

Histogram equalization, on the other hand, is a technique
employed to enhance image contrast by redistributing pixel
intensities. This is achieved by calculating the image’s
cumulative distribution function (CDF) and then mapping

each pixel intensity to a new value based on the CDF.
Consequently, the image exhibits a more uniform distribution
of pixel intensities, thus bolstering its contrast. CLAHE
uniquely performs histogram equalization within each image
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FIGURE 6. The enhanced image from CLAHE reveals a more prominent
depiction of the brain tumor area. The first row displays the coherent
image, while the second row showcases the CLAHE output image.

tile rather than applying it globally to the entire image. This
localized approach helps prevent the amplification of noise
or artifacts that may be present in the image while preserving
the local contrast details. Consequently, CLAHE produces
a more detailed image with improved contrast. CLAHE
plays a pivotal role in enhancing the contrast of medical
images, including Magnetic Resonance Imaging (MRI) in
this research, as it reveals critical features and structures
within brainMRI images that might be challenging to discern
otherwise. The output of CLAHE is depicted in Figure 6,
illustrating its impact on enhancing image contrast.

D. POST-PROCESSING:SEGMENTATION OF BRAIN TUMOR
REGION BASED ON FCM
Fuzzy C-means (FCM) segmentation is vital in extracting
brain tumor regions from MRI images. This technique is
instrumental in creating an initial binary representation of
the brain MRI images, serving as a foundation for further
analysis and classification. FCM assigns pixels to multiple
classes, each with a membership function level between
0 and 1. The goal of FCM is to determine the cluster
centers that best represent the pixel distribution within the
image.Mathematically, the FCM model can be expressed as
follows:

Given a set of brain MRI images, let X represent the
image domain. Each pixel xi within this domain is assigned
a membership function uij, where j denotes the class index.
The FCM algorithm aims to find cj cluster centers that best
characterize the pixel distribution for the given set of images.
The goal is to minimize the following objective function:

J (U ,C) =

N∑
i=1

M∑
j=1

umij ∥xi − cj∥2. (6)

In this equation 6, J (U ,C) represents the objective
function to be minimized. N is the total number of pixels in
the image. M is the number of classes (clusters). uij is the

membership value for pixel xi in class j. m is the fuzziness
exponent (typically set to 2 for FCM). xi is the pixel in the
image. cj is the cluster center for class j. The FCM algorithm
operates iteratively to optimize the cluster centers cj and the
membership values uij. The steps involved in FCM are as
follows:

1) Initialization: Start with an initial estimate of cluster
centers cj.

2) Membership Calculation: Compute the membership
values uij for each pixel xi indicating the likelihood of
belonging to each class.

3) Update Cluster Centers: Recalculate the cluster centers
cj using the updated membership values.

4) Convergence Check: Determine if the algorithm has
reached convergence. If not, repeat steps 2 and 3.

5) Termination: Once convergence is achieved, the algo-
rithm concludes, providing the cluster centers cj and the
membership values uij.

In the context of brain MRI images, FCM is employed to
identify the actual pixels belonging to the tumor region. This
pre-processing step is pivotal in improving the accuracy of
subsequent classification methods, such as Support Vector
Machine (SVM). By accurately delineating the tumor region
through FCM, SVM can then effectively classify it. The
FCM model essentially seeks to find the best cluster centers
that represent the pixel distribution within the brain MRI
images, with the goal of accurately segmenting the tumor
regions. In our approach, the SVM classifier as it is last step
of proposed method as elaborated in section III-E receives
the segmented output generated by the Fuzzy C-Means
(FCM) algorithm as its input. Specifically, the SVM classifier
operates on features extracted from the segmented regions,
particularly from the cluster 2 output image. Both the FCM
cluster 1 output and cluster 2 output are depicted in the
Figure as segmented images. The segmented images serve
as the SVM classifier’s input, contributing to the accurate
detection of the brain tumor region.

E. BRAIN TUMOR CLASSIFICATION
The final step of our proposed method is classification of
brain tumor by using Support Vector Machine(SVM). SVM
is the supervised learningmethod based on statistical learning
theory to classify data [50]. The first step, data labeling
is necessary for the training dataset to be represented as
D = {|x, y| |x → datasample, y → classlabel|}. The main
task of SVM is to calculate functions that represent with f
such as f (x) = y for all image data or image pixels with
the aim of classifying the brain tumor. Hinge loss function
is a mathematical function commonly used SVM for binary
classification tasks, including those involving brain MRI
images. It quantifies the ‘‘loss’’ or ‘‘cost’’ associated with
misclassifying data points and encourages the SVM to find a
decision boundary (hyperplane) that separates the two classes
with a certain margin.Mathematically, the hinge loss L(y,
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FIGURE 7. Segmentation results from the Fuzzy C-Means (FCM) algorithm
are depicted, with Row 01 illustrating the cluster 1 output and Row
02 representing the cluster 2 output. The segmented 2 image, serving as
the input to the Support Vector Machine (SVM) classifier, plays a pivotal
role in achieving the accurate detection of the brain tumor region.

f(x)) for a single data point (x, y) is defined as:

L (y, f (x)) = max (0, 1 − y ∗ f (x)) . (7)

where:
• y is the true class label of the data point (-1 or 1, for
binary classification).

• f (x) is the SVM’s decision function output for that data
point. It represents the signed distance of the data point
to the decision hyperplane.

The hinge loss has the following characteristics:
1) When the data point is correctly classified (y ∗ f (x) > 1) ,

the loss is 0, indicating no penalty for correct
classifications.

2) When the data point is misclassified and lies on the
correct side of the decisionmargin (0 < y ∗ f (x) < 1),
the loss increases linearly as the distance from the
margin decreases.

3) When the data point is misclassified and lies on the
wrong side of the decision margin (y ∗ f (x) < 0),
the loss increases linearly with the negative value of
y ∗ f (x), which encourages the SVM to correct the
misclassification.

In the context of brain MRI images, the hinge loss serves as a
critical component in determining an optimal hyperplane that
effectively distinguishes between different classes of brain
images, such as healthy versus abnormal or tumor regions.
By minimizing the hinge loss, the Support Vector Machine
(SVM) fine-tunes its hyperplane to balance maximizing the
margin between classes and minimizing misclassifications.
In essence, the hinge loss acts as a guiding principle during
SVM training, penalizing misclassifications and playing a
pivotal role in learning an effective decision boundary for
binary classification tasks, which encompass brain MRI
images. The comprehensive process of SVM, illustrated in

Figure 8, aims to establish a functional relationship between
sample labels and data classification, facilitating accurate
brain tumor detection. The decision function, integral to
the classification of tumor and non-tumor regions, is a
fundamental element of the feed-forward process in SVM
classification and is mathematically represented as follows:

D (m) =

(∑N

i=1
αiyiK (d imi) + t

)
. (8)

In the equation 8, αi represents the alpha coefficient
associated with support vector class labels or feature vectors.
The variables yi denote the SVM vector, while di represents
the input vector. Additionally, K (dimi) signifies the kernel
function, which includes a bias term denoted as ‘t.’.
The SVM-based brain tumor image classification process
unfolds in three distinct steps. The initial step involves the
selection of feature vectors through feature vector extraction.
Subsequently, the second step encompasses the training of the
data, and in the third step, the classification process is carried
out to identify and delineate the tumor region.
The formation of the feature vector is achieved by

aggregating data into an array, making it ready for the
database processing that will eventually lead to object
classification. In the context of brain tumor images, the
process begins by converting the image into a binary
representation, a transformation illustrated in Figure 9(a).
Subsequently, the binary image undergoes skeletonization,
as demonstrated in Figure 9(b). This processed image is
divided into zones and areas, eventually combining to create
the image matrix. The derived feature vector relies on various
parameters, including Euler numbers and pixel distributions
across the x and y planes. The outcome is a feature
vector comprising around 100 distinct features, essential
for accurately classifying brain tumor regions. In our work,
we processed over 500 brain images for tumor classification.
The SVM training leverages the feature vectors organized
in a matrix format to classify tumor regions effectively.
Support vectors in the SVM method represent the nearest
data points to the decision surface. This assignment is a
crucial aspect of brain tumor classification and involves an
optimization process to determine the precise location on the
surface corresponding to the region. SVM seeks to maximize
the margin around the hyperplane separating classes, with
the decision function relying on a subset of the training
samples to identify the tumor region. The results of the SVM
classification process are depicted in Figure 8.
Our proposed method effectively addresses the challenge

of imbalanced segmentation in brain tumor detection,
providing accurate results even when the tumor region is
significantly smaller than the non-tumor regions. Figure 9
illustrates cases where brain tumors have notably smaller
regions than non-tumor areas. Despite this imbalance, our
proposed method demonstrates high accuracy in detecting
these smaller tumor regions. Our approach could serve as a
valuable clinical tool for tumor analysis, given its proficiency
in handling imbalanced quantities and achieving precise
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FIGURE 8. SVM-based classifier workflow for brain tumor detection. Figure (a): Binary
representation of a brain image. Figure (b): Skeletonized image. Figure (c): SVM
classifier applied to brain image. Figure (d): Detection of brain tumor regions.

segmentation—especially in scenarios where the tumor
region is considerably smaller, presenting a challenging task.

F. COMPOSED ALGORITHM
The proposed algorithm excels in precisely identifying
brain tumors while effectively addressing inherent challenges
within brain MRI images. The sequential steps of the
algorithm:

Step 01: Noise Reduction and Contrast Enhancement

• The algorithm recognizes the challenges associated with
noise and inconsistent contrast in different brain regions
of MRI images.

• Employing noise reduction techniques such as Wiener
filtering, it tackles noise-related issues to improve image
quality.

• The algorithm utilizes oriented diffusion filtering
with Contrast-Limited Adaptive Histogram Equaliza-
tion (CLAHE) to enhance contrast across diverse brain
areas.

• These methods collectively constitute the ‘‘Enhance-
ment Approach,’’ aimed at enhancing the overall quality
of brain MRI images.

Step 2: Comprehensive Investigation of FCM and SVM
Classification

• The algorithm’s impact on subsequent steps, particularly
the FCM and SVM classification, is thoroughly exam-
ined.

• FCM is employed to accurately segment brain regions,
leveraging the enhanced contrast achieved in the previ-
ous step.

• SVM classification further refines identifying tumor
regions, benefiting from the improved image quality.

The algorithm follows a logical progression from noise
reduction and contrast enhancement to precise segmentation
and classification, ultimately proving its efficacy in address-
ing challenges specific to brain MRI images and accurately
detecting brain tumors as culmination of algorithm is given
below and The visual representation in Figure 10 further
elucidates the interconnected steps of the algorithm.

Culmination of Composed Algorithm

• The workflow culminates by highlighting the algo-
rithm’s adeptness in effectively addressing challenges
related to noise and contrast within brain MRI images.

• The algorithm’s ability to accurately detect brain tumors
is emphasized, showcasing its significance in medical
image analysis.
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FIGURE 9. Illustration of brain tumor cases with notably smaller tumor regions, highlighted in red circles, compared to
non-tumor areas. This emphasizes the precise detection achieved by our proposed method. The first column represents the
original image, the second column displays the ground truth image, and the third column showcases the brain tumor
detected through our proposed method.

FIGURE 10. Enhanced Brain Tumor Detection Algorithm: A Comprehensive Workflow for Accurate Analysis of MRI Images.

• Empirical assessments affirm the algorithm’s superiority
over existing brain tumor detection methods, reinforcing
its reliability and effectiveness.

IV. DATABASE AND PARAMETERS MEASUREMENT
The proposed approach undergoes comprehensive evaluation,
encompassing both the segmentation and classification of
brain tumor regions. Segmentation performance is gauged
through the analysis of six key parameters: mean, standard
deviation, contrast, entropy, kurtosis, and skewness. In par-
allel, the classification of brain tumors is assessed based on
sensitivity, specificity, and overall accuracy.

A. MEASURING PARAMETERS:SEGMENTATION OF BRAIN
TUMOR
The performance of the segmentation results is assessed using
six distinct parameters: mean, standard deviation, contrast,
entropy, kurtosis, and skewness. Detailed explanations for
each of these parameters can be found in [51].

B. MEASURING PARAMETERS:CLASSIFICATION OF BRAIN
TUMOR
To measure the classification parameters, we conducted
evaluations on both training and testing data. In order
to thoroughly assess the database, we employed cross-
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FIGURE 11. Visualization depicting the Performance Confusion Matrix of
a Classification Model.

validation, a common technique for validating the perfor-
mance of classification models. The following parameters
were calculated for evaluating the classification model:

C. CONFUSION MATRIX
A confusion matrix serves as a structured table, offering a
detailed summary of a classification model’s performance
on a specific dataset. It categorizes the model’s predictions
into four distinct outcomes: True Positives (TP), True
Negatives (TN), False Positives (FP), and False Negatives
(FN). Figure 11 provides an illustrative representation of the
Confusion model.

The confusion matrix is a crucial tool for assessing a
classification model’s performance. It categorizes predictions
into four outcomes: True Positives (correctly identified
positives), True Negatives (correctly identified negatives),
False Positives (incorrectly predicted positives), and False
Negatives (missed positives). In medical imaging like brain
MRI analysis, these components help evaluate the model’s
accuracy in detecting conditions, such as brain tumors.In
medical imaging, particularly in brain MRI analysis, under-
standing these four outcomes is vital for computing key
performance metrics, including sensitivity, specificity, and
accuracy. These metrics play a crucial role in assessing the
model’s effectiveness in detecting conditions such as brain
tumors, and their detailed explanations are provided below.

1) SENSITIVITY
Sensitivity (SN), also referred to as True Positive Rate (TPR)
or Recall, is a performance metric that gauges the model’s
accuracy in correctly identifying positive instances. In the
context of brain MRI images, sensitivity assesses the model’s

capability to accurately detect genuine brain MRI pixels.
Mathematically, sensitivity is determined as follows:

Sensitivity (Se) = TP/ (TP+ FN ) . (9)

where: Sensitivity is a crucial metric in the evaluation of
a classification model’s performance, especially in medical
imaging tasks like the analysis of brain MRI images. It can
be explained by considering the two key components of the
confusion matrix: True Positives (TP) and False Negatives
(FN). TP represents the number of actual positive cases,
such as diseased brain MRI images, that the model correctly
identifies. On the other hand, FN represents the instances
where the model misses or fails to identify actual positive
cases. A higher sensitivity score indicates that the model
excels at detecting the condition accurately, correctly identi-
fying a larger proportion of true positive cases. This metric
holds great significance in medical imaging applications
where the primary objective is the precise detection and
diagnosis of diseases, such as identifying brain tumors inMRI
images. An elevated sensitivity value reflects the model’s
proficiency in minimizing the chances of missing potential
cases, ultimately contributing to improved patient care and
diagnostic accuracy.

2) SPECIFICITY
Specificity (SP), also known as True Negative Rate (TNR),
is an essential metric for evaluating the performance of
a classification model. In the realm of brain MRI image
analysis, specificity assesses the model’s capability to
accurately identify negative instances, including false pixels.
The mathematical expression for calculating specificity is as
follows:

Specificity = TN/ (TN + FP) . (10)

In the realm of medical diagnosis and specifically within
the context of brain MRI images, the assessment of model
performance revolves around two key components:

• True Negatives (TN): True negatives are the instances
where the model accurately identifies non-cases, such
as correctly recognizing healthy brain MRI images. TNs
play a pivotal role in ensuring the model’s capability to
correctly classify cases where the condition is absent.

• False Positives (FP): In this particular scenario, false
positives signify the instances where the model incor-
rectly categorizes non-cases as cases of the medical
condition. Essentially, these are instances of false
alarms.

Specificity emerges as a paramount metric, particularly
in medical imaging and brain MRI analysis. It determines
the model’s proficiency in accurately identifying negative
instances while endeavoring to minimize the occurrence of
false positives. A higher specificity score underscores the
model’s effectiveness in distinguishing instances that do not
exhibit the condition, a crucial aspect for reducing false
alarms and maintaining the precision of medical diagnoses.
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3) ACCURACY
Accuracy (AC) stands as a fundamental metric when it
comes to assessing the comprehensive performance of a
classification model, a principle that extends to applications
involving brain MRI images. This pivotal metric quantifies
the proportion of instances or pixels that the model has
correctly predicted within the entire dataset. Mathematically,
accuracy can be succinctly calculated through the following
formula:

Accuracy =
(TP+ TN )

(TP+ TN + FP+ FN )
. (11)

In the realm of brain MRI images and medical diagnosis,
these terms signify:

• TP: The number of positive cases correctly identified by
the model.

• TN: The number of negative cases correctly identified
by the model.

• FP: The number of negative cases incorrectly identified
as positive by the model.

• FN: The number of positive cases incorrectly identified
as negative by the model.

When accuracy is elevated, it signifies that the model adeptly
and correctly classifies a larger proportion of both positive
and negative pixels.

4) DICE SCORE
The Dice score (DSC) serves as a metric that illuminates the
extent of overlap between the predicted output and the true
ground truth values. It quantifies this overlap by normalizing
the true positive values against the mean of the predicted and
ground truth values. The mathematical representation of the
Dice score is as follows:

DSC =
2 × TP

(2 × TN + FN + FP)
. (12)

D. HAUSDORFF DISTANCE
Hausdorff distance (HD) is a mathematical metric used
in brain MRI analysis to gauge the dissimilarity between
segmented regions in different images, typically the region
of interest in one image and its counterpart in another,
known as the ground truth image. It assesses the accuracy
of a segmentation algorithm by quantifying how well the
segmented region aligns with the ground truth. A lower
Hausdorff distance signifies better alignment, indicating
more accurate segmentation that closely matches the actual
shape and position of the region in the ground truth
image. In applications like brain tumor detection, this spatial
accuracy is crucial for precise diagnosis and treatment
planning. HD is a key evaluation measure in brain MRI
analysis, providing insights into the accuracy of segmentation
algorithms.

The mathematical representation of the Hausdorff distance
(HD) between two sets A and B (A represents the segmented
brain tumor image set, and B is the ground truth image set) in
a metric space is as follows:

Let A and B be two subsets of a metric space M with the
distance function d (x, y), where x and y are points inM . The
directed Hausdorff distance from A to B, denoted H (A,B),
is defined as:

H (A,B) = max [min[ d (a, b) : b ∈ B ] : a ∈ A] . (13)

In this equation:
• For each point a in set A, we calculate the minimum
distance between a and any point in set B.

• Then, we take themaximumof theseminimumdistances
on all set A points.

Similarly, the directed Hausdorff distance from B to A,
denoted H (B,A), is defined as follows:

H (B,A) = max [min[ d (b, a) : a ∈ A ] : b ∈ B] . (14)

The symmetric Hausdorff distance between sets A and
B, denoted HD(A, B), is the maximum of the two directed
Hausdorff distances:

HD (A,B) = max [H (A,B) ,H (B,A) ] . (15)

In brain image analysis, A and B often represent the
segmented region of interest in the test and ground truth
images, respectively. The Hausdorff distance helps quantify
the dissimilarity between these regions, providing a measure
of precision for segmentation algorithms.

E. JACCARD SIMILARITY INDEX
The Jaccard Similarity Index (JSI), often referred to as
Jaccard’s Index or Coefficient, is a mathematical measure
employed to evaluate the similarity between two sets by
examining the ratio of their intersection to their union.
When applied to brain MRI images, the Jaccard similarity
index quantifies the level of overlap or concordance between
two segmented regions, like brain tumor regions, in distinct
images. Its mathematical definition is as follows:

Let A and B be two sets representing segmented regions
of interest, such as brain tumor regions, in two brain MRI
images.

• The intersection of sets A and B, denoted |A ∩ B|,
represents the number of elements (pixels) common to
both sets. In the context of brain MRI images, this
corresponds to the number of pixels that overlap between
the two segmented regions.

• The union of sets A and B, denoted by |A∪B|, represents
the total number of combined elements (pixels) in the
two sets. MRI images of the brain correspond to the total
number of pixels in the two segmented regions.

The Jaccard Similarity Index (JSI) is then calculated as the
ratio of the intersection of the sets to the union of the sets:

JSI (A,B) = |A ∩ B| / |A ∪ B| . (16)

In the realm of medical imaging, including the analysis
of brain MRI images, the Jaccard Similarity Index plays
a crucial role in evaluating the precision of segmentation
algorithms. A higher JSI value signifies a more substantial

61324 VOLUME 12, 2024



S. M. Alqhtani et al.: Improved Brain Tumor Segmentation and Classification in Brain MRI

overlap and resemblance between the segmented areas
and the ground truth image, leading to more accurate
segmentation. Conversely, a lower JSI value suggests less
alignment and less precise segmentation.

In the specific context of brain MRI image analysis,
a high Jaccard similarity index indicates that segmented
tumor regions in different images are well-aligned, signifying
accurate segmentation and a strong correspondence to the
ground truth. The Jaccard similarity index, along with other
metrics like the Dice score and Hausdorff distance, offers
valuable insights into the performance of segmentation
algorithms and their capability to faithfully represent regions
of interest in brain MRI images.

F. DATABASES
When referring to a biological CE-MRI brain dataset,
we allude to a compilation of images generated by applying
contrast-enhanced magnetic resonance imaging (CE-MRI)
techniques. These techniques are employed to investigate
biological structures, and they involve the administration of
contrast agents to augment the visibility of specific tissues
or pathological conditions within MRI brain images during
diagnostic procedures. Here are some key points about
CE-MRI datasets and their potential applications:

1) The acquisition of CE-MRI datasets encompasses var-
ious imaging protocols, particularly contrast-enhanced
T1-weighted sequences. These enhanced T1-weighted
sequences enable the visualization and quantification
of the distribution of the contrast agent in tissues over
a specified time frame.

2) CE-MRI datasets are frequently gathered in the context
of clinical trials for research purposes. They are often
hosted in public repositories and research institutions,
such as The Cancer Imaging Archive (TCIA) and the
Alzheimer’s Disease Neuroimaging Initiative (ADNI),
which store MRI databases, including CE-MRI data,
alongside other imaging modalities.

3) These datasets typically comprise 3D volumetric image
sequences acquired at different time points following
the administration of a contrast agent. Theymay consist
of pre-contrast images, dynamic post-contrast series,
and additional sequences for anatomical reference.

4) In brain tumor imaging, CE-MRI extensively evaluates
brain tumors and delineates their boundaries. Contrast-
enhanced sequences can highlight abnormal regions
within brain MRI images, which indicate tumors.
This functionality aids in diagnosing, planning, and
monitoring treatment responses.

5) The dataset in question contains 3064 contrast-
enhanced T1-weighted images obtained from
233 patients diagnosed with three different types of
brain tumors: meningioma (708 slices), glioma (1426
slices), and pituitary tumors (930 slices) [53].

6) This dataset, called the CE-MRI Image Database [53],
was compiled from Nanfang Hospital, Guangzhou,

FIGURE 12. Celebrating Diversity: Brain Tumor Illustrations in CE-MRI
Images: Fig (a) shows meningioma brain tumor. Fig (b) shows glioma
brain tumor. Fig (c) shows pituitary brain tumor.

China, and General Hospital, Tianjin Medical Uni-
versity, China, from 2005 to 2010. It encompasses
3064 images from 233 patients, comprising 708menin-
giomas, 1426 gliomas, and 930 pituitary tumors. These
images have a resolution of 512 × 512 pixels with
a pixel size of 0.49 × 0.49mm2 and a slice gap
of 1mm. Data was split into 70% for training and
30% for testing. Three highly experienced radiologists
manually identified the tumors in these images. Some
sample images from the CE-MRI Image Database are
displayed in Figure 12. This dataset is a valuable
resource for research and development in brain tumor
detection and analysis. It offers a diverse collection of
images representing different types of brain tumors,
facilitating the evaluation and improvement of medical
imaging algorithms.

The standard reference to the biological characteristics
of a CE-MRI brain dataset pertains to a collection of
images acquired through the application of contrast-enhanced
magnetic resonance imaging (CE-MRI) methodologies.
CE-MRI entails the introduction of contrast agents to
improve the visibility of specific tissues or patholog-
ical conditions in brain MRI scans during diagnostic
procedures.

V. RESULTS ANALYSIS AND DISCUSSION
A. ANALYSIS OF SEGMENTATION MODULE
PERFORMANCE
Various parameters are assessed to evaluate the performance
of the brain tumor segmentation module using the CE-
MRI database. The analysis is based on statistical metrics,
as detailed in Table 1, which indicate optimal contrast
throughout the region and enable accurate brain tumor seg-
mentation. The image contrast (IC) of the proposed method’s
output has been significantly enhanced, with an IC value
of 0.0299 recorded for the challenging pituitary tumor case.
This result demonstrates substantial improvements in terms
of uniformity and asymmetry measurements. The statistical
analysis also demonstrates minimal pixel misclassifications
or errors, resulting in precise tumor region segmentation,
as visually depicted in Figure 13. The clear visualization
of tumor detection underscores the efficacy of brain tumor
detection.
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TABLE 1. Performance analysis of Segmentation model of brain tumor.

FIGURE 13. Results of brain tumor segmentation using the proposed method. The first column displays
images from the database, the second column shows the ground truth, and the third column illustrates the
algorithm-generated output.

B. COMPARISON OF SEGMENTATION MODULE
PERFORMANCE BASED ON DIFFERENT CLASSIFIER
Results of brain tumor segmentation using the proposed
method is evaluated by measuring different parameters.
As it is shown in the Figure 13, the first column displays
images from the database, the second column shows the
ground truth, and the third column illustrates the algorithm-
generated output. Various researchers have employed differ-
ent classifiers to segment brain tumors and have evaluated
their performance using statistical metrics. These metrics

often include measures like mean, standard deviation (STD),
image contrast (IC), and peak signal-to-noise ratio (PSNR).
In Table 2, you can see a performance comparison of
several classifiers, including K-Nearest Neighbor (KNN),
Self-Organizing Map (SOM), Genetic Algorithm (GA),
Graph Convolutional Neural Network (GCNN), Kernel-
Based SVM, and our proposed approach (FCM-SVM). The
results reveal that our proposed method surpasses existing
techniques, underscoring its effectiveness in brain tumor
detection and accurate tumor region classification. Further

61326 VOLUME 12, 2024



S. M. Alqhtani et al.: Improved Brain Tumor Segmentation and Classification in Brain MRI

FIGURE 14. The representation of different tumor types in Brain MRI
images.

details on the classification performance are provided in the
following section.

C. ANALYSIS OF CLASSIFICATION MODULE
PERFORMANCE
The assessment of the brain tumor classification module on
the CE-MRI database involves scrutinizing various parame-
ters. The Figure accompanying this information illustrates the
representation of different tumor types in Brain MRI images.
A comprehensive analysis of the classification model’s
performance is outlined in Table 3, with a specific focus on
diverse brain tumor types, including meningiomas, gliomas,
and pituitary tumors as shown in Figure 14. Please noted that
statistical numbers of following parameters are averaged over
multiple images of database.

The proposed method consistently exhibits robust predic-
tive capabilities, as indicated by consistently high sensitivity
and specificity values across all types of tumors. This
performance is visually illustrated in the accompanying
Figure 15. These elevated values affirm the model’s profi-
ciency in accurately identifying positive and negative cases,
which is crucial for precise medical diagnoses. Additionally,
noteworthy precision values reflect the overall accuracy of the
model’s predictions. However, it is imperative to delve into
potential class imbalances and assess the clinical significance
of these findings.

Dice score coefficients (DSC) indicate a substantial over-
lap between predicted and actual tumor regions, suggesting
accurate segmentation. Nevertheless, in situations where
minor discrepancies may have significant consequences,
investigating the clinical implications of these overlaps

becomes necessary. Low Hausdorff distance (HD) values
and Jaccard Index (JI) values further underscore the model’s
precise tumor segmentation, emphasizing its spatial accuracy
and the degree of overlap between segmented and ground
truth regions.

The effectiveness of the FCM-SVM classifier in accu-
rately detecting abnormal tumor regions is verified through
statistical parameter analysis. Essential metrics such as
sensitivity, specificity, and accuracy are derived from the
confusion matrix. Figure 16 illustrates the confusion matrix
for randomly selected images of different brain tumor types,
we took around 50 images of each classes of brain tumor
images. The visual observation of brain tumor detection in
different cases of brain tumors in MRI images, as depicted
in the Figure 17, supports these findings. It indicates that our
proposed method presents a promising approach for accurate
and efficient brain tumor detection in medical applications.

D. COMPARISON OF CLASSIFICATION MODULE
PERFORMANCE OF DIFFERENT CLASSIFIER
The presented Table 4 provides a comprehensive comparative
analysis of various brain tumor detection methods, including
the proposed method, based on performance metrics such
as sensitivity, specificity, accuracy, Dice score (DSC), and
processing time. Notably, the proposed method exhibits
outstanding performance, achieving a sensitivity of 0.977,
specificity of 0.979, accuracy of 0.982, and a DSC of 0.961.
These metrics indicate a commendable balance between cor-
rectly identifying true positive and true negative cases, which
is essential for accurate tumor detection and segmentation.
Furthermore, the proposed method distinguishes itself with
an efficient processing time of 0.42 seconds, underscoring its
suitability for real-time or near-real-time applications. The
proposed method consistently outperforms sensitivity and
specificity compared to other methods, including traditional
techniques like K-NN and more advanced approaches such
as SVM, CNNs, and GANs. This suggests its efficacy in
automating brain tumor detection through MRI analysis,
offering a promising contribution to the field. However,
it’s essential to note that the absence of time information
for some methods and the lack of performance metrics for
others limit a comprehensive evaluation. Nonetheless, the
proposed method emerges as a robust and efficient solution,
showcasing its potential significance in advancing automated
brain tumor diagnosis.

Our findings indicate that the proposed approach outper-
forms a majority of existing methods, demonstrating superior
levels of sensitivity, specificity, accuracy, and Dice score.
Furthermore, it highlights an expedited processing time when
compared to certain models, emphasizing its capability for
precise classification of tumor regions in brain imaging.

E. COMPARATIVE ANALYSIS WITH EXISTING WORK
To assess the effectiveness of our proposed method, we con-
ducted a performance comparison with recent techniques
developed from 2019 to the present, as depicted in Table 5.
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TABLE 2. Comparsion of Performance Segmentation model of brain tumor detection.

TABLE 3. Performance analysis of Classification model of brain tumor.Note: Se represent Sensitivity, Sp represent Specificity, AC represent Accuracy.

TABLE 4. Comparsion of Performance classification model of brain tumor detection with different classifier.

Our method exhibited relatively superior performance when
compared to existing classifiers. It is worth noting that despite
the emergence of more CNN or deep learning-based methods
since 2019, their performance remains comparatively modest

due to the absence of groundbreaking processing methods.
In contrast, our proposed method, which is rooted in
FCM-SVM and advanced techniques, surpassed many other
methods due to the enhanced coherence among diverse
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TABLE 5. Performance of exiting MR imaging segmentation methods.

brain MRI image regions, resulting in an improved classifier
performance. Our forthcoming research will center on the
development of innovative techniques that harness machine
learning to augment training data, ultimately aiming to
outperform existing methods.

F. DISCUSSION ON PERFORMANCE OF PROPOSED
METHOD
The outcomes of the proposed pipeline demonstrate sig-
nificant enhancements in various aspects when classifying
meningioma versus pituitary tumors compared to existing
methods. Here’s a breakdown of the achieved performance
based on each parameter:

• An average sensitivity of 0.981 indicates a high success
rate in accurately identifying pituitary tumors.

• A specificity of 0.981 suggests the method’s effective-
ness in distinguishing pituitary tumors from menin-
gioma tumors.

• With an accuracy value of 0.982, the method exhibits
high precision in correctly identifying meningioma
tumors without misclassifying pituitary tumors.

• A Dice Similarity Coefficient (DSC) of 0.961 demon-
strates substantial agreement between the proposed
method’s classifications and the actual tumor locations,
indicating high accuracy.

• Notably, the proposed method boasts a shorter execution
time of 0.42 seconds compared to existing works,
signifying efficiency and computational speed.

Overall, the results imply that the proposed method surpasses
existing sensitivity, specificity, accuracy, and DSC tech-
niques. These improvements hold great promise in medical
imaging, potentially leading to more precise and efficient
diagnoses. This, in turn, can expedite treatment decisions for
patients with meningioma and pituitary tumors, ultimately
enhancing their care.

VI. STRENGTHS AND LIMITATIONS: A COMPREHENSIVE
ANALYSIS
The suggested approach has its merits and drawbacks, with
the strengths outlined below.

• A standout feature of the study is the introduction
of a sophisticated automated segmentation pipeline.
This novel approach integrates advanced preprocessing
techniques, such as contrast-limited adaptive histogram
equalization (CLAHE) and diffusion filtering, stream-
lining the segmentation and classification of brain
tumors in MRI images to potentially enhance accuracy.

• The incorporation of the Fuzzy C-Means (FCM)
algorithm for segmentation is a noteworthy strength.
Recognized for its efficacy in delineating structures
in medical images, FCM contributes to improved
accuracy in identifying abnormal regions related to brain
tumors. However, the sensitivity of FCM to outliers
and noise necessitates caution. To address this, hybrid
approaches were implemented, combining FCM with
other methods or incorporating additional preprocessing
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FIGURE 15. Visual representation of brain tumor segmentation across
diverse brain types. The first column displays brain MRI images, the
second column exhibits ground truth images, and the third column
showcases the segmented output images.

steps to enhance segmentation accuracy, particularly in
datasets with noise or outliers.

• The incorporation of a Support Vector Machine (SVM)
classifier enhances the proposed method’s ability to
handle complex classification tasks, leveraging the
effectiveness of SVMs in machine learning applications
with intricate decision boundaries.

• The study demonstrates strength in a comprehensive
evaluation, utilizing a Contrast-Enhanced Magnetic
Resonance Imaging (CE-MRI) database that includes
various brain tumor types. This approach ensures the
robustness and generalizability of the proposed method.

• The proposed method showcases superior performance
metrics, including high sensitivity, specificity, accuracy,
and Dice Score (DSC). These metrics collectively affirm
the method’s proficiency in precisely identifying and
classifying brain tumor regions, marking a significant
strength.

• The methodology boasts a notably shorter processing
time of 0.41 seconds, a crucial aspect for practical imple-
mentation in clinical settings where timely diagnosis
is imperative. This efficiency stands out as a notable
strength compared to conventional approaches, adding
a novel dimension to the proposed methodology.

Despite the promising results demonstrated by the pro-
posed MRI-based automated brain tumor segmentation and
classification method, it is imperative to acknowledge its
inherent limitations:

• Limited Generalization: The method’s optimized
performance on the specific CE-MRI database used
for testing may not seamlessly generalize to diverse
datasets or populations, presenting challenges that will
be addressed in future implementations.

• Dependency on Image Quality: The efficacy of the
proposed method is susceptible to variations in the
quality of input MRI images, where artifacts, poor
resolution, or other quality issues may compromise
segmentation and classification accuracy. The validation
of preprocessing on extensive databases is essential to
enhance performance and plays a pivotal role in refining
future brain tumor methodologies.

• Sensitivity to Parameter Settings: The Fuzzy C-
Means (FCM) clustering technique and Support Vector
Machine (SVM) classifier’s performance may be sen-
sitive to parameter settings, requiring careful tuning as
optimal parameters for one dataset may not be directly
applicable to others. Selecting optimal parameters
through validation on a large database becomes crucial
for effective clustering.

• Lack of Clinical Validation: The proposed method
lacks validation in a large-scale clinical setting, posing
a potential gap in ensuring its reliability and safety in
real-world scenarios.

• Future Data Drift andUpdates: Themethod’s efficacy
may diminish over time due to evolving imaging tech-
nology, changes in clinical practices, or the availability
of new datasets. Regular updates and adaptation to
emerging trends in medical imaging are essential to
maintain relevance.

Addressing these limitations through ongoing research,
particularly in diverse clinical settings, will contribute
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FIGURE 16. Confusion Matrix of randomly selected Images sets of brain different brain tumor types.

significantly to fortifying the robustness and real-world
applicability of the proposed method.

VII. CONCLUSION AND FUTURE DIRECTION
This research presents a comprehensive pipeline for the
automated segmentation and classification of brain tumors.
The proposed method stands as a testament to innovation
and efficacy in brain tumor detection. Our method introduces
unique modifications in each step, emphasizing its innovative
nature. The true essence of its uniqueness lies in the
meticulous combination and adaptation of these techniques,
specifically tailored to address the intricacies of magnetic
resonance (MR) images. By carefully selecting and inte-
grating established methodologies, we have made deliberate
adjustments to optimize their performance, acknowledging
and addressing the challenges presented by MR images.
Notably, our method introduces a novel framework with
innovative preprocessing techniques like contrast-limited
adaptive histogram equalization (CLAHE) and diffusion
filtering, enhancing and coalescing MR brain images to
suit the specific characteristics of MR imaging. Including
the Fuzzy C-Means (FCM) algorithm for segmentation
and integrating a Support Vector Machine (SVM) classifier

further contributes to the uniqueness of our approach.
The selection of two clusters in FCM, one representing
the background image and the other encompassing the
brain area, including tumors, is a pivotal contribution. This
integration, coupledwith SVM, successfully overcomes over-
segmentation issues, improving performance. Our method
employs coherent filtering and novel contrast adjustments,
producing a well-uniform contrast image with minimal noise.

Moreover, our proposed pipeline undergoes a compre-
hensive evaluation using a Contrast-Enhanced Magnetic
Resonance Imaging (CE-MRI) database covering diverse
brain tumor types. The performance metrics, including
sensitivity, specificity, accuracy, and Dice Score (DSC),
demonstrate the proficiency of our method in precisely
identifying and classifying brain tumor regions. Notably, its
efficient processing time of only 0.42 seconds underscores its
practical viability in clinical settings.

Numerous opportunities for further enhancement and
expansion have been identified for futurework. Standardizing
the pipeline through ensemble techniques and machine
learning innovations can enhance robustness. Additionally,
integrating deep learning methods, such as convolutional
neural networks (CNNs), holds promise for further accuracy
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FIGURE 17. The figure provides a scrutiny of brain tumor detection across
various types from distinct MRI planes, with each image presenting its
own set of challenges. In the first column, original images containing
brain tumors are presented, showcasing diverse tumor locations. The
second column exhibits the corresponding ground truth images, and the
third column highlights the results produced by our proposed method.

gains. Including a larger and more diverse dataset and
multimodal image analysis is essential to improving gen-
eralizability. Validation studies, real-time applications, and
integration with clinical decision support systems represent
promising avenues for future research, fostering advances in
automated brain tumor analysis.

Collectively, these improvements enhance the diagnostic
process and pave the way for more accurate and efficient
brain tumor diagnosis, benefitting patients by enabling timely
and well-informed treatment decisions. The significance
of this research lies in its potential to contribute to the
development of state-of-the-art medical imaging tools with
tangible impacts on patient care and outcomes. Our method
introduces significant adaptations and innovations, showcas-
ing its effectiveness in automated brain tumor diagnosis. This
approachmarks a noteworthy advancement over conventional
methods, offering a promising avenue for accurate and
efficient brain tumor detection in medical applications.
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