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ABSTRACT In multi-object tracking(MOT), identity(ID) switches (i.e., single tracklet containing different
objects) are common. Here, we propose a semi-online tracking refinement method, where the ID switches are
detected by monitoring the changes in appearance similarity within a short duration temporal window. When
an ID switch occurs, frames containing different object will firstly enter the window, causing a large drop in
appearance similarity. As the window moves forward, the ID switch frame will exit the window, causing an
increase in appearance similarity since the window is about to be solely filled with the switched object. This
‘drop-increase’ pattern in appearance similarity within the moving temporal window can be used to identify
the ID switch point. Frames containing switched object are then split from the original tracklet and attached
to other tracklets based on the similarities among their multiple representative prototypes. Comparing to
the baseline, our refinement method can significantly improve the IDF1 score on MOT17 and MOT?20 in a

real-time manner.

INDEX TERMS Multi-object tracking, tracking refinement, online processing.

I. INTRODUCTION
Identity(ID) switch is a common problem in multi-object
tracking (MOT) due to occlusion in crowded scenes, and
post-processing is usually used to alleviate this problem [1],
[2], [31, [4], [5], [6], [7], [81, [9], [10]. The common procedure
follows a two-step scheme: split and merge. In the split step,
the tracklet is divided into several small pieces at the ID
switch time point, aiming to make each piece correspond to
only one person; while in the merge step, these pieces are
connected to a longer trajectory according to their similarity.
For offline tracking refinement, where the entire frame
sequences in the whole trajectory are used, clustering has
been widely used as an effective approach to reduce ID switch
errors [1], [11]. For online tracking which is performed in a
frame-by-frame manner, to decide which tracklet the current
frame (detected bounding box) belongs to, only the detections
before this moment can be utilized. However, in offline
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method, the detections before and after this moment are both
adopted in clustering, leading to better discrimination.

An example illustrating the difference between offline
and online methods is shown in Figure 1 (1) and Figure 1
(3), where the object’s appearance gradually changes in
both ‘cross’ (ID switch happens) and ‘occlude’ (temporary
occlusion) scenes at frame ¢ = 6. But different consequences
are obtained, that is, an ID switch occurs in former case but
not in the latter one. For correct tracking, these two scenes
should be distinguished. In the offline clustering method,
since the entire trajectory is utilized, the two scenes can
be simply separated by checking the number of clusters.
In the case of ‘cross’, multiple clusters will be obtained since
different IDs are contained; conversely, only one cluster is
generated for the ‘occlude’ scene. Despite its effectiveness,
the accuracy benefit of offline tracking refinement is gained
at the cost of real-time characteristic, i.e., the result is
obtained only after the whole trajectory is generated, making
it unsuitable for the real-time tracking scenarios.

However, ID switch detection is difficult for online
schemes, as the gradual change characteristics (e.g., frame
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FIGURE 1. Cropped images in the first row are the selected frames in tracklet for cross/occlude scene. (1)/(2) depicts the similarity curve when the ID
switch point enters and exits the sliding window. (3)/(4) depicts the similarity curve when the occlude point enters and exits the sliding window. (better

view in color).

t = 6 in Figure 1 (1) and Figure 1 (3)) are similar for both
‘cross’ and ‘occlude’ scenes. Therefore, merely relying on
the previous and current frames in online tracking refinement
is often insufficient in determining whether an ID switch
has occurred. Inspired by offline methods that integrate
information both before and after the current moment,
we propose to incorporate near-future frames within a short
duration, such as 1~2 seconds. It’s important to note that this
method still operates on a frame-by-frame basis and doesn’t
necessitate the entire trajectory, making it an online approach.
This strategy strikes a balance between real-time processing
and high accuracy, albeit with the trade-off of introducing
some latency due to reliance on future information.

In different situations such as cross, temporary occlusion,
and continuous tracking of the same person, the pedestrian
appearance will exhibit specific characteristics, with which
the ID switch point can be detected. Here, we adopt a
short duration window to calculate the feature similarity
curve within the window range by comparing the appearance
features of the center frame and other frames. This approach
can capture appearance changes effectively. For the ‘cross’
scene, the ID switch causes a change to the object’s identity
in the latter part of the trajectory. As the ID switch frame (e.g.,
t = 6 1in Figure 1 (1)) first enters the short duration window
from the right side, the appearance within the window will
change drastically since it contains two different objects.
Moreover, when the ID switch frame is about to exit the
window from the left side as the window moves along the
time axis (as shown in Figure 1 (2)), the appearance change
within the window will terminate, since the window is about
to be solely filled with the switched identity. Therefore, for
the ‘cross’ scene, the appearance similarity curve within
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the window experiences a significant drop (Figure 1 (1)),
followed by a sharp increase (Figure 1 (2)) around the ID
switch frame as the window moves forward. For the ‘occlude’
scene, the target object is blocked by others, but it returns
in the following frames. As the occluded frames enter and
exit the short duration window (as shown in Figure 1 (3) and
Figure 1 (4)), the appearance will have minor changes since
the frames within the short duration window still contain the
same object. In this case, the appearance similarity curve will
have a slight drop and then increase immediately. Based on
the previous analysis, the ID switch position will be detected
when similarity has a sharp drop and increase.

After the ID switch position is detected, the latter frames
that contains a different object will be split from the original
tracklet. The split piece will then be merged with other
existing tracklets. In the merging step, the similarity between
the split piece and previous tracklets will be calculated
to decide if the switched identity has ever occurred in
the previous tracklet. Based on this analysis, the split
piece will either be assigned with a new ID or merged
with an existing tracklets. In our semi-online tracking
refinement method, only a short duration of future frames
(i.e. 1~2 seconds) is utilized. These frames only represent
one specific appearance in a given capturing condition and
lack variance such as changes in lighting, pose, or background
etc. When comparing the similarity with existing tracklets,
which typically cover longer temporal periods, the merging
process may fail if the tracklet contains appearance change.
To address this issue, we use multiple prototypes to represent
the tracklet, each encapsulating a typical appearance. The
similarity is then computed between the short duration
split piece and the tracklets’ prototypes. If the split piece’s
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appearance feature is similar to any of the prototypes, it will
be merged with the corresponding tracklet. This enhances
the method’s capability to handle diverse appearance changes
over the tracklet’s temporal span.

To the best of our knowledge, our semi-online tracking
refinement method is the first of its kind, where the split and
merge steps are performed in a frame-by-frame manner. This
method can serve as a plug-and-play module and can be added
to the existing tracker for real-time online tracklet refinement.
The contributions of our method can be summarized as three
aspects:

I. By integrating the near future frames in the short duration
window, the ‘drop-increase’ characteristic of similarity curve
shape around ID switch is identified to predict the split
position.

IT Multi-prototype representation is adopted in the merge
step to ease the difficulty of comparing similarity between
split piece that containing short-range appearance and the
long-range tracklets, which may have appearance variances,
such as changes in lighting, pose, or background, etc.

III. A semi-online tracking refinement method is proposed
so that the refinement can be performed in a frame-by-frame
manner. Compared with the baseline, our refinement method
can significantly improve the IDF1 score on MOT17 and
MOT?20 in a real-time manner.

In this paper, we present a novel semi-online tracking
refinement method aimed at improving MOT (multi-object
tracking) accuracy. In the following sections, we first discuss
the previous work in MOT and also in tracklet refinement
methods that aiming to correct the ID switches, and highlight
the limitations of existing methods in addressing this
challenge (Section II). We then delve into the details of our
proposed semi-online tracking refinement method, including
tracklet split method based on similarity curve (Section ITI-A)
and tracklet merge method based on multi-prototype rep-
resentation (Section III-B). Next, we provide experimental
results to evaluate the performance of our method on
benchmark datasets and compare it with baseline approaches
(Section IV). Additionally, we discuss the key components
in our method and also the limitation and comparison with
previous works (Section V). Finally, we conclude our paper
by summarizing the main findings, discussing potential future
research directions, and emphasizing the significance of our
contributions to the field of MOT (Section VI).

Il. RELATED WORKS

A. MULTI OBJECT TRACKING (MOT)

The baseline MOT trackers mainly have two categories:
SORT(simple online realtime tracking) -based methods [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29] and transformer-
based methods [30], [31], [32], [33], [34], [35]. Among
the SORT-based methods, original SORT [14] uses Kalman
filter to predict the object location and uses Hungarian
algorithm to associate the bounding boxes. DeepSORT [12]
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extends the original SORT by incorporating appearance
feature via a pre-trained association metric. Bytetrack [13]
uses YOLOX [36] based detector and only uses the IoU
for association. StrongSORT [37] improves the DeepSORT
method in terms of object detection, feature embedding, and
trajectory association, and can largely surpass the baseline.
BoTSORT [15] combines motion and appearance and uses
advanced camera-compensation and kalman filter. Recently,
researches in motion compensation [24], [26], [27] and noise
handling in crowd scene [22], [29] are gaining more and
more attention and have largely surpass the previous online
trackers. For example, UCMCTracker [18] uses projected
probability distribution on ground plane to capture the motion
patterns for further compensation. ConfTrack [29] adopts the
combination of low score object penalization and cascading
method to handle noisy detections. Both these two methods
have top rank in the MOT challenges.

Recently, the attention machanism based transformer
has also been widely used for MOT. TrackFormer [30]
proposes an end-to-end model using the encoder-decoder
transformer. Transtrack [31] proposes to do object detec-
tion and association in a single shot. MOTR [32]
models the tracked instances as ‘query’ and uses them
to perform iterative prediction. TransMOT [33] uses
graph transformer to model the objects’ spatial-temporal
interactions.

In addition to the two major categories mentioned above,
which are both online tracking methods, a smaller subset
of research has utilized semi-online approaches for object
detection and tracking [38], [39], [40]. These methods
employ techniques such as Markov Random Field [38] or
graph model [39] to achieve their objectives. Similar to our
approach, they also leverage information from near-future
frames for tracking purposes. However, it’s important to
note that our method differs from these approaches in that
it serves as a post-refinement method. This means that it
can be seamlessly integrated as a plug-and-play module
into existing trackers, enhancing their performance without
requiring extensive modification.

Furthermore, given the rapid advancements in the MOT
research field, the performance of online trackers has
significantly improved, achieving state-of-the-art results in
the MOT17 and MOT?20 challenges. Therefore, in this paper,
we primarily use the online method as the baseline to
demonstrate the performance improvement achieved by our
semi-online refinement method.

Despite these advances on MOT tracking methods,
ID switches are common, mainly due to occlusion, necessi-
tating tracking refinement for further correction.

B. TRACKING REFINEMENT

Since ID switch is inevitable for the existing MOT tracking
method, several tracking refinement methdods [1], [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11] have been proposed.
These methods all follow the ‘split-merge’ procedure, where
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the ID switch position is first detected and used to split
the tracklet into small pieces, then the split pieces are
merged into a new tracklet aiming to make sure it only
contains single identity. Among these methods, [1] proposes
a model-agnostic method where the split and merge steps
are improved by self-supervised learning on appearance
features. Reference [3] uses appearance based clustering for
tracklet splitting and completion. Reference [2] uses stacked
dialted convolution for the split and multi-head self-attention
encoder for the merge. Recently, graph model has been
widely used in both tracklet generation [41], [42], [43], [44],
[45] and tracklet refinement [46]. For example, [46] uses deep
network for split position prediction and uses affinity matrix
to fed into a graph model for tracklet connection prediction.
However, these methods are all offline methods, which means
they require the entire frame sequences in the whole trajectory
for the refinement purpose. To the best of our knowledge, our
semi-online tracking refinement method is the first of its kind,
where the split and merge steps are performed in a frame-
by-frame manner. Our method can serve as a plug-and-play
module and can be added to the existing tracker for realtime
online tracklet refinement.

lll. METHOD

We use a semi-online scheme for tracking refinement, where
the future frames within a short duration (e.g., 1~2s) is
used. For current frame ¢, we assume the tracklets for 0 ~
t — 1 frames are all correct, since for online process, the ID
will be fixed once the tracking refinement is done. We use a
short duration similarity curve to characterize the pedestrian’s
appearance changes and identify potential ID switches. Here,
the similarity curve is defined as the re-identification (RelD)
feature similarities between the central frame and remaining
ones in a short duration temporal window. Let 7 and ( —
N~t + N) be the current frame and the short window
centered at ¢ respectively, the similarity curve S’ is then
calculated as

rk
S,:[ )

TG

N,...,t—=1,t+1,...,t+N¢,
ey

where f¥ denotes the RelD feature at frame k.

The similarity curve contains two halves: the former half
&'~ with frame index k < ¢ and the latter half S+ with frame
index k > t. The pseudo code for similarity curve calculation
is demonstrated in Section I in supplement.

In order to determine whether an ID switch happens at
current ¢-th frame, the similarity curve S’ will be used
which utilizes both previous and future frames. If an ID
switch does occur, the future frames (r + 1~t + N) will
be split from the original tracklet and then be merged
with other existing tracklets. The split and merge steps
will be demonstrated in Section III-A and Section III-B
respectively.
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A. SIMILARITY CURVE BASED TRACKLET SPLIT (SCTS)

1) CHARACTERISTIC OF ID SWITCH

Figure 2 presents similarity curves for various conditions
in the ‘cross’ scene. When there is no ID switch within
a short duration window, the similarity curve illustrates
the appearance changes of the same individual over a
brief period. Consequently, this curve generally maintains
smoothness on both sides of frame #, as depicted in Figure 2
(1). In the scenario where two people cross in the latter
part of this window and an erroneous ID switch takes place,
the former N frames come from the same person while
the subsequent N frames involve different individuals. As a
result, the similarity curve in the former part (S'-) remains
smooth with higher values, but drops drastically in the latter
part (S™), reaching around 0.0 at the point when the two
person is completely switched, as shown in Figure 2 (2).
This sudden drop in the latter part can be represented by
S"(t + 1) — min(S™) > thga. Conversely, if crossing
occurs in the former part of the window duration, a symmetric
similarity curve is obtained, with a sudden value increase in
the former part followed by smooth and higher values in the
latter part, as illustrated in Figure 2 (4). This sharp increase in
the former part can be represented by 8™ (t — 1) —min(S’-) >
thgap. When the crossing happens precisely at the center
position (frame ¢), the former and latter frames are from
different persons, while the middle frame ¢ is a mixture of the
appearance of these two individuals. In this case, the middle
frame is not similar to either of the two parts, leading to a
similarity curve exhibiting lower values yet maintaining a
rough symmetry in both former (S'-) and latter (S'+) halves,
as in Figure 2 (3).

ID switch is identified by examining the similarity curve
at each time stamp along the trajectory, and it is realized by
monitering three events: pre-crossing (as shown in Figure 2
(2)), crossing (as shown in Figure 2 (3)), and post-crossing (as
shown in Figure 2 (4)). When the sliding window approaches
the ID switch point, that is, the switch point is covered by the
latter part of this window, a similarity curve similar to that in
Figure 2 (2) will be first observed. This indicates that the ID
switch occurs at the future time of the current time stamp,
known as pre-crossing. As the window progresses further
along the time axis, a similarity curve resembling Figure 2
(3) is obtained, which means that the ID switch is occurring at
current time spot ¢, known as crossing. Finally, when the latter
part of the window is switched into another person, this will
lead to higher value in the latter half of similarity curve, and a
similarity curve like Figure 2 (4) will be found. Till now, the
ID switch process is considered finished, i.e., post-crossing,
and the ID switch detection process will be terminated.

In order to detect the ID switch, we need to distinguish
the ‘occlude’ scene (no ID switch) with ‘cross’ scene (an
ID switch occurs). In a similar way, ‘occlude’ scene can
also be characterized by similarity curve, where the subject
is temporarily occluded and then appears again. In other
word, the tracked object doesn’t change within the tracklet.
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FIGURE 3. Similarity curves for ‘occlude’ scene that is caused by
temporarily occlusion. Window range is (t — 15~t + 15). Tracklet is
generated by applying Bytetrack [13] on MOT17 video. Frame with red
dash box is the ‘occlude’ position.

Therefore, the similarity curve will drop temporarily at the
occluded frame since the object is blocked by others (Figure 3
(1)), and increase immediately as the object fully appears
again (Figure 3 (2)). The bottom of the similarity curve is
reached when the occlusion happened. At this moment, the
similarity value is still relatively high since there is still some
visible parts of the tracked object that have not been blocked,
as shown in Figure 3 (1). In order to distinguish the similarity
curve between ‘cross’ scene (Figure 2 (2)) and ‘occlude’
scene (Figure 3 (1)), the bottom value threshold th,,;, is
used. If the bottom of latter half similarity curve S'+ satisfies
min(S8™) < thyn, then it will be considered as ‘cross’ scene
and our method will begin to search for ID switch.

2) DETECTION OF ID SWITCH POSITION

For ID switch caused by crossing, the similarity curve is
characterized by several features, including sharp value drop
in the former or latter part, sufficiently small minimal value,
left-right symmetry, etc. In order to identify these features,
we use three criteria in our method, including slope ratio,
former/latter average similarity, and KL distance.

a: SLOPE RATIO
The slope ratio is defined as: sr = sl'=/sl'+. si'- is the
average slope of former half of the similarity curve S'-,
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calculated using the curve’s peak and bottom values: si’- =
|y§,‘ - ytb_| / |x,t,_ — xé_ |. sI'+ can be computed in a similar
manner. When transitioning from pre-crossing to crossing,
the similarity curve changes from that in Figure 2 (2) to
Figure 2 (3), and a large decrease of slope ratio will be
observed.

Therefore, the significant drop of slope ratio may indicate
an ID switch point, where :

t—1

sr —srl > thy,

@
t—1

sr’~" and sr’ are the slope ratio calculated using similarity
value sets 8’1 and &', where window is centered at frame
t — 1 and ¢ respectively. Slope ratio change threshold thg,
is used to identify the ID switch position. The relationship
between the slope ratio value and the ID switch point is
illustrated in Figure 4 (1).

b: FORMER/LATTER AVERAGE SIMILARITY

Similarity value is another feature characterizing the similar-
ity curve. When transitioning from pre-crossing (as shown
in Figure 2 (2)) to crossing (as shown in Figure 2 (3)), the

average value of latter part increases (Savg > Savg ) while
that of the former part decreases (Savg < wagl’ ). For

crossing state (as shown in Figure 2 (3)), the average values
of latter and former parts are close:

3

where thgyy is the threshold to detect whether the average
values of latter and former halves of similairty curve become
close. The relationship between the former/latter average
similarity value and the ID switch point is illustrated in
Figure 4 (2).

t r_
|Satg — Savg| < thaif,

c: KL DISTANCE

KL distance is adopted to measure the symmetry between
former half S~ and reversed latter half S+ halves of
similarity curve. In pre-crossing state (as shown in Figure 2
(2)), the KL distance is very large due to the drastical drop in
the latter part. In crossing state (as shown in Figure 2 (3)), the
similarity curve becomes symmetrical, leading to a smaller
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KL distance value. With this analysis, significant drop of KL
distance indicates ID switch point, where:

K'Y — k' > thy, 4)

where kI'~! and kI’ are the kI value calculated based on
within-window similarity values S'~! and S’, where window
is centered at frame ¢ — 1 and ¢ respectively. The relationship
between the KL distance and the ID switch point is illustrated
in Figure 4 (3).

These three metrics above provide a comprehensive
analysis of the similarity curve, offering complementary
insights: KL distance measures the symmetry of the curve,
slope ratio describes its general shape, and former/latter
average similarity measures its values. As a summary, the ID
switch point is usually featured by the above three criteria.
If the similarity curve satisfies one of the criteria above,
it will be considered as ID switch point. The reason why
such a loose criterion is used is that ID switch check is the
foundation for the tracking refinement and it is crucial to
find as many ID switch points as possible to avoid tracking
performance decreasing caused by erroneous ID switch.
This loose criterion may cause some over-splitting problem.
However, this problem will be corrected in the following
merging step since the wrongly split tracklets still have larger
similarity with their original tracklet and can be merged
together again. Also, the increased number of wrongly split
pieces will not add much extra computational complexity
for the following merge step, because the computation of
similarity between split pieces and existing tracklets can run
very fast, as demonstrated in Section III-B.

Besides appearance similarity, the motion information is
also adopted as a complementary factor, under the assumption
that pedestrian trajectorie is linear in a short time [1], [12],
[14]. If the trajectory in the short duration window deviates
much from a straight line, it can be thought of as the
concatenation of two different trajectories. Here, the motion
is formulated by a linear function f(x) = ag + a1x, which
is approximated through least squares regression using the
detection centers (x,y) of tracked object within the short
duration window. For the detection center (x’,y’) at the
middle frame ¢, the estimated position /' (x") is compared with
the real position y' to measure the deviation d’ from straight
line. If d' is larger than a threshold thy, it will be considered
as ID switch point:

d" = |lIf ") = y'lI/h" > tha, &)

where h' is the bounding box height for normalization
purpose.

The pseudo code for computing metrics for split check and
the workflow of the similarity curve based tracklet split are
demonstrated in Section II and Section III of the supplement.

B. MULTI-PROTOTYPE TRACKLET MERGE (MPTM)
In the MOT, many tracklets are often maintained simultane-
ously to correspond to multiple objects. At a given moment,
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all these tracklets are analyzed to find ID switch points based
on the similarity curve within the short duration window.
If frame 7 is identified as ID switch point, the latter frames
(t + 1~t + N) are split from its original tracklet since the
tracked object has changed. Therefore, we must decide if this
divided part belong to some other tracklet or not. For this
purpose, the merging operation is adopted.

For tracklet merging, the offline methods mainly use
clustering [1], [11] or graph multi-cut [46] methods based
on the similarity matrix among tracklet pairs. However, these
methods are time-consuming and don’t meet the real-time
requirement of online applications. To solve this problem,
we directly compare the appearance between the split part
(latter frames) and existing tracklets 7 = {7;|i =1, ..., M},
and use an appearance similarity threshold to decide if the
split piece should be merged with existing tracklets or be
assigned with a new track ID.

Since only a short duration of future frames, i.e. 1~2 sec-
onds, are used in our online tracking refinement method,
these frames only represent one specific appearance in a
given capturing condition and lack variance such as changes
in lighting, pose, or background etc. When comparing
the similarity with existing tracklets which usually have
long temporal coverage, the merging process may fail
if the tracklet contains appearance change. To solve this
problem, we use multiple prototypes to represent the tracklet,
where each prototype encapsulates a typical appearance,
thereby enhancing the method’s capability to handle diverse
appearance changes over the tracklet’s temporal span.

Inspired by [47], an incremental updating scheme is
designed to get multiple prototypes for each tracklet. For
i-th tracklet 7; € 7, a prototype set is maintained P; =
{p’;.}. When new detection is added to 7;, cosine similarities
between its appearance feature f and the prototype set P; are
first calculated. If any of the similarity value is larger than a
given threshold thg;,,, then feature f will be used to update
the prototype with maximum value by a moving average
strategy. Otherwise, if none of the similarity values surpasses
the threshold, this means that the new appearance feature is
sufficiently different with respect to the previous prototypes.
In this case, the current feature f will be assigned as a new
prototype and added to the prototype set.

During tracklet merging, cosine similarities between the
average feature of split latter frames f* and the prototype
set P; of i-th tracklet 7; will be computed. If the maximum
value of the cosine similarities between f and P; is larger
than a given threshold 74"} . it means the object in the split
latter frames has appeared before in the i-th tracklet. Then the
split latter frames will be attached to i-th tracklet. Otherwise,
they will be considered as never showed up in the previous
tracking scene. Therefore, the split latter frames will be
assigned with a new tracklet ID and the average feature £
will be assigned as its prototype.

In real-world scenarios, multiple tracklets may have
similarity values exceeding the predefined threshold to the
average feature of the split piece f . In such cases, the split
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piece should merge with the tracklet that has the highest
similarity value.

The pseudo code for multi-prototype-based tracklet merge
and the overall workflow of the semi-online tracklet refine-
ment, including split and merge steps, are presented in
Sections IV and V of the supplement.

IV. EXPERIMENT RESULT

A. DATASET

Datasets of MOT17 [48] and MOT20 [49] challenges are
employed for evaluation. The evaluation metrics include
IDF1 score, ID Precision (IDP), ID Recall (IDR), ID Switches
(IDSw), and multi-object tracking accuracy (MOTA).,
as specified in [48], [49], and [50]. Among these metrics,
MOTA is calculated using false positive (FP), false negative
(FN) and IDSw. Since the numbers of FP and FN are
much larger comparing with IDSw, therefore, MOTA is more
closely related to the detection performance. IDF1 score
emphasizes more on the tracklet-level association accuracy
rather than the detection performance. In our method, we aim
to correct ID switches and improve the temporal continuity of
correctly tracked identity based on existing detections. Thus,
the IDF1 score will serve as the primary evaluation criteria.

B. IMPLEMENTATION DETAILS

Since our method is based on the preacquired tracklets, which
makes it eligible to be attached to any existing MOT tracking
methods. Here, we select Bytetrack [13] to generate tracklets
as it properly balances accuracy and speed. In order to achieve
fast inference time, among the high performance RelD
models [51], [52], [53], [54], [55], we choose a fast openvino
model [52] to encode the appearance feature of detected
object, which is based on the OmniScaleNet [51] backbone
with Linear Context Transform [56] blocks developed for fast
inference.

The first parameter we need to decide is the optimal value
for sliding window width N. We have tested the impact
of different values of N (5 ~ 25 with interval as 5) on
MOT17 videos, as shown in Table.1. The speed in Table 1
is tested on Intel(R) Xeon(R) CPU E5-2620. In the result,
the IDF1 score increases in the beginning when N <
15 and saturates when N > 15. The reason is that it’s
difficult for shorter window to capture the trend of similarity
curve around ID switch. However, larger N doesn’t provide
additional discriminativeness for the detection and correction
of ID switch and the runing speed drops significantly since
more frames are utilized. For a better trade-off between the
performance and speed, the window width N is selected as
15 in the following experiments, which is about 1.5 seconds
given the video’s frame rate. This is consistent with our
intention where the future 1~2 seconds are used to detect the
ID switch.

To determine the parameters for ID switch detection (as
shown in Section III-A1 and ITI-A2), several ID switch points
on the MOT17 tracklets are manually annotated. The values
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TABLE 1. Window width N selection based on MOT17. For speed (frames
per second (FPS), tested on Intel(R) Xeon(R) CPU E5-2620), ‘+" means the
speed for Bytetrack, including object detection and association steps. ‘{*
means the speed for online tracking refinement method, including
appearance feature extraction, ID switch detection and split-merge steps.

WindowWidth|Bytetrack| 5 10 15 20 25

IDF1 79.2% (80.4% 81.1% 81.7% 81.7% 81.9%
Speed (FPS) | 29.6* | 837 66" 547 307 25f

of the ID switch check criteria described in Section III-A2
at different annoated ID switch points, where thg,, = 0.8,
thyin = 0.1, thy = 0.15, thy = 3.0, thy, = 3.0, and thgyy =
0.25. Since the capture environment differs from one video to
another, the optimal parameter may vary. But, the ID switch
point will still be found since it only has to satisfy one of the
criteia. For the tracklet merging, parameters thy;,,, and th';rm in
Section III-B are empirically set as 0.8 and 0.6.

C. COMPARISON OF CRITERIA FOR ID SWITCH
DETECTION

In order to detect the ID switch point, we propose a method
to examine the similarity curve within a short-term window
using three criteria, including slope ratio, former/latter aver-
age similarity and KL distance. The relationships between
ID switch points and the curves of these three criteria are
illustrated as Figure 4. The tracklets are generated using
Bytetrack on MOT17-09 video (a sample frame for MOT17-
09 is shown in Figure 5).

(1) Slope ratio (2) Former Sim Avg (solid) & (3) KL distance

Latter Sim Avg (dash)

- : GroundTruth ID Switch Position

FIGURE 4. Curves of the three different criteria (slope ratio, former/latter
average similarity, KL distance) for ID switch point detection. Red dot
indicates the ground truth ID switch point. (better view in color).

In Figure 4, the red dots highlight the ground truth ID
switch points, which are obtained by visual inspection on
the original tracklet generated by Bytetrack. We can observe
that the trends we have demonstrated in the Section III-A2
are consistent at the ID switch point. Specifically, at ID
switch point, we can notice a sharp drop in both slope
ratio (Figure 4 (1)) and KL distance (Figure 4 (3)), while
the former average similarity increases, and latter average
similarity decreases in Figure 4. Moreover, at the ID switch
point, former/latter average similarity values become close.
Therefore, we can conclude that using these three criteria to
evaluate the similarity curve can facilitate the detection of the
ID switch point.

Our approach adopts a loose constraint where the frame is
classified as an ID switch point if any one of the three criteria
is satisfied. By doing so, we aim to ensure maximum recall
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FIGURE 5. Sample frame of MOT17-09 video.
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FIGURE 6. Other criteria for similarity curve based ID switch point
detection. Red dot indicates the ground truth ID switch point. (better view
in color).

of the real ID switches. Although this approach may lead to
falsely detected ID switch points, these points will still be
used for the following tracklet split and merge. Since the split
pieces generated by the falsely detected ID switch points still
contain same object with respect to the original tracklet, they
will be reattached to the original tracklet in the merge step,
since they still have larger similarity to the original tracklet.

Besides these three criteria, we have also tested other
possible methods, including skewness/kurtosis of similarity
curve, mutual information and correlation between former
and latter halves of similarity curve, and JS distance and
Wasserstein distance between former and latter similarity
curve. The curves of these criteria are also generated based
on the tracklets generated by Bytetrack on MOT17-09 video.
However, from Figure 6, we can see that the ID switch
position (red dot) doesn’t show discriminative characteristic
on these curves, which make it difficult for them to be utilized
for ID switch detection. Therefore, in our method, we use
the previously stated three criteria for the ID switch detection
instead of using these methods.
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TABLE 2. Ablation study for different criterion for similarity curve based
tracklet split (SCTS). ‘F/L sim avg’ means ‘former/latter average similarity.

Larger drop on IDF1 indicates larger importance of this criterion.

Dataset|Experiment  [[DF1 | IDP | IDR [IDSwMOTA

Bytetrack [13](79.2% 83.9%|74.9%| 165 [76.6%
SCTS 81.9 % 87.7%(76.9%| 128 |76.4%
- slope ratio (80.7%(-1.2)|86.1%|75.9%| 131 {76.3%
- F/L sim avg|80.8%(-1.1)|86.4%|75.9%| 135 {76.0%
- KL distance(80.4%(-1.5)|86.0%|75.4%| 135 {76.1%
- motion 81.5%(-0.4)|87.1%|76.5%| 129 (716.1%
Bytetrack [13](75.2% 81.4%|70.2%|(1,223(77.8%
SCTS 78.3% 84.1%\73.2%|1,097(77.9 %
- slope ratio |77.3%(-1.0)|83.2%|71.9%|1121(77.7%
- F/L sim avg|77.5%(-0.8)|83.0%|72.0%| 1109 {77.8%
- KL distance(77.1%(-1.2)|82.7%|70.9%| 1134 |77.6%
- motion 78.0%(-0.3)|83.9%|72.5%| 1097 |77.8%

MOT17

MOT?20,

D. ABLATION STUDY

1) ABLATION STUDY FOR ID SWITCH DETECTION CRITERIA
IN SIMILARITY CURVE BASED TRACKLET SPLIT (SCTS)

Here, the criteria for ID switch detection consist of similarity
curve based methods, such as slope ratio, former/ latter
similarity average, and KL distance, supplemented by the
motion-based metric. In order to evaluate the importance
of different ID switch detection criterion in SCTS, first of
all, the overall criteria combination is evaluated using MOT
metrics. Then each individual criterion are elinimated from
the combination to assess the performance drop, as shown
in Table.2. In this way, we can find out which criterion has
more contribution. The results show that the similarity curve
based metrics are more important than the motion based
metric since the performance drop is larger if these criteria are
removed. The reason might be that the deviation of objects’
moving direction is small in the MOT videos. Nonetheless,
the motion based metrics may still be useful to detect the ID
switch position, especially when the objects move in varying
direction.

As for similarity curve-based methods, similar trends
on MOT17 and MOT20 are observed, where both KL
distance and slope ratio make comparable contributions
towards improving the IDF1 score, since they both measure
the evenness of the similarity curve. However, KL dis-
tance outperforms slope ratio slightly as it is evaluated
element-wise and is more sensitive, whereas slope ratio
describes the general shape of the curve. The former/latter
average similarity shows a similar level of contribution as
KL distance/slope ratio, indicating that the trend of similarity
curve around the ID switch position cannot be fully described
by the similarity curve shape alone (KL distance/slope ratio),
but also by the values of the similarity curve (former/latter
average similarity).

2) ABLATION STUDY FOR MULTI-PROTOTYPE
REPRESENTATION IN MULTI-PROTOTYPE

TRACKLET MERGE (MPTM)

In order to assess the significance of tracklet’s multi-
prototype representation in multi-prototype tracklet merge
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TABLE 3. Ablation study for multi-prototype tracklet representation in
multi-prototype tracklet merge (MPTM).

Dataset[Experiment  [IDF1 | IDP | IDR [I[DSWMOTA

Bytetrack [13]|79.2% 83.9%|74.9%| 165 [76.6%
MOT17TMwMP  [81.9% 87.7%(76.9%| 128 [76.9 %
TM wo MP  |81.3%(-0.6)|87.0%|76.3%| 136 [76.4%
Bytetrack [13](75.2% 81.4%|70.2%|1,223(77.8%
MOT20TM w MP  [78.3% 84.1%|73.2%|1,097/77.9 %
TM wo MP  |76.3%(-2.0)|82.0%|71.5%|1,12777.7%

(MPTM), tracklet merging with/without multi-prototype
representation are evaluated, as shown in Table.3. We can
observe that without multi-prototype representation, the
tracklet merge performance both drop on MOTI17 and
MOT20. However, the drop rate in MOT20 is larger
comparing with MOT17, which means multi-prototype
representation plays an more important role in the MOT20
tracking refinement.

The purpose of multi-prototype strategy is to represent
the typical appearance change for the long-range tracklets so
that the matching with the short duration split pieces can be
more likely to succeed, since the split piece only captures
the appearance within only 1~2 seconds. On MOT?20, the
video length is much longer comparing to MOT17 (2 minutes
v.s. 30 seconds), which means it has much more long-range
tracklets during the tracklet merging step. This is the reason
why MPTM is more effective on MOT20.

E. REFINEMENT WITH SOTA TRACKING METHOD

Our semi-online tracklet refinement method corrects the ID
switch in a frame-by-frame manner and can be added as
a plug-and-play module to any existing tracking methods.
In the previous experiments, Bytetrack [13] is used as
the baseline tracker. Since Bytetrack doesn’t use appear-
ance feature, we also investigate several other SOTA
tracking methods, including Strong-SORT [37], BoT-SORT
[15], ConfTrack [29] and UCMCTrack [18] and use our
semi-online method for tracklet refinement. Comparing
with transformer based tracker, the selected SORT-based
methods have better performance in terms of IDF1 score on
MOT17/20. Therefore, we use these four models for further
evaluation.

From Table.4, by using our semi-online refinement
method, the tracking metrics can all be improved, especially
for the ID related metrics, such as IDF1. However, the
improvement on MOTA is rather small than the IDF1 score,
or decrease slightly in some cases. The main reason is that
MOTA is calculated based on the FP, FN and ID switch. Since
ID switch number is much smaller comparing with the FP and
FN, MOTA is mainly related to the detection results. In our
method, the detection is same with the baseline trackers,
therefore the changes of FP and FN are negligible, and the
reduction of ID switch number is too small comparing to the
FP and FN value. This is why the correction of ID switch
contributes less to the improvement on MOTA than on IDF1
score.
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TABLE 4. Refinement with state-of-the-art (SOTA) tracking methods. For
the speed (frames per second (FPS), tested on Intel(R) Xeon(R) CPU
E5-2620), ‘+" means the speed for the original tracking method, including
object detection and association steps. ‘{" means the speed for the online
tracklet refinement method, including appearance feature extraction,

ID switch detection and tracklet split-merge. Since offline method cannot
run in frame-by-frame manner, the speed (FPS) is ‘n/a’.

Dataset|Experiment

Bytetrack [13]

|IDF1 | IDP | IDR [IDSwMOTA|FPS

79.2%(83.9%(74.9%)| 2196 | 76.6%[29.6*
+ours 81.9%(87.7%(76.9%| 1828 |76.4%|54.0°
+offline [1] 82.3%|88.9%(77.6%| 1710 |76.9%|n/a

Strong-SORT [371[79.5%|84.2%(14.4%| 1194 79.6% [27.6"

MOT17| tours 82.4%|87.2%(76.4%| 1021 |79.5% [54.0"

Videos | +offline [1] 82.5%(89.2%(77.4%| 919 |80.5%|n/a
UCMC [18] 81.0%]|85.1%|76.9%| 1689|80.6% 23.7"
+ours 82.9%|88.4%(77.4%| 1479 |80.5% [54.0"

+offline [1] 83.0%|88.1%(77.9%| 1221|80.6% |n/a
Bytetrack [13]  [75.2%|81.4%](70.2%|1,223]77.8%|17.5"
+ ours 78.3%|84.1%(73.2%|1,127|77.7%33.0F

+offline [1]
BoT-SORT [15]
MOT20| +ours

79.2%|85.0%|(73.9%|1,097|77.9% |n/a
77.5%|82.5%[71.9%|1,313[77.8%[15.5~
79.0%(85.4%(73.2%|1,197|77.8%33.01

Videos | +offline [1] 79.8%|86.1%(73.9%|1,123|77.9% |n/a
ConfTrack [29] [80.2%|83.5%](76.9%| 702 |77.2% |14.07
+ours 81.29%(85.9%(76.5%| 671 |77.1%33.0°

+offline [1] 81.5%|86.3%(76.8%| 653 |77.2%|n/a

To the best of our knowledge, our semi-online tracking
refinement method is the first of its kind. Therefore, it is
challenging to compare it with SOTA methods of the same
type. Instead, we turn to an offline refinement method [1]
for comparison, which employs frames from the whole
trajectory. As the analysis above suggests, offline method
must wait for the entire trajectory to be generated. Although
it typically performs better than online methods due to the
utilization of entire frame sequence, it is not suitable for
online applications. Our goal in this comparison was not
necessarily to surpass the performance of offline method,
as our online tracking refinement method only utilizes neigh-
boring frames within a short duration window. We sought
to assess whether the drop in performance is acceptable for
practical use. As seen in Table.4, our online method (‘ours’)
slightly underperforms the offline method [1], but achieves a
substantially fast processing speed. It should be noted that
the performance drop is relatively minor, with an average
decrease of only 0.5% on IDF1 score, which is acceptable
for practical application.

F. EXAMPLE OF ID SWITCH CORRECTION USING OUR
SEMI-TRACKING REFINEMENT METHOD

One example of the ID switch correction is shown in Figure 7.
Here, the first row is the pre-obtained tracklet where two
different objects are assigned with same tracklet ID (ID
4). After tracklet refinement using our semi-online method,
the new object will be assigned as a new tracklet (ID 26)
since it has never occured in the previous frames. Since
the original tracking result contains multiple track IDs, for
better visualization, we only select one target object here for
demonstration.
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FIGURE 7. Example of correction on MOT17 video using our tracklet refinement method. First row is the pre-obtained tracklet by Bytetrack
that contains ID switch. Second row is the tracklet refined by our online method. The frames that contain ID switch and after correction have
been annotated with red arrow. (better view in color).

V. DISCUSSION

The key advantage of the proposed semi-online tracking
refinement method over traditional approaches lies in its
ability to process temporal data in real-time while still
achieving high accuracy. Unlike traditional offline meth-
ods that require the entire trajectory for refinement, the
semi-online method incorporates only a short duration of
future frames. This enables it to make decisions frame-by-
frame, allowing for faster processing and more immediate
feedback. Additionally, by integrating near-future frames
within a short duration window, the method can accurately
predict ID switch points without relying on the entire
trajectory, striking a balance between real-time processing
and high accuracy.

The method detects the ID switch point by monitoring
changes in appearance similarity within a short temporal
window. When an ID switch occurs, frames containing
different objects enter the window, causing a significant drop
in appearance similarity followed by a sharp increase as
the window moves forward. The ‘“‘drop-increase’ pattern in
appearance similarity within the moving temporal window is
identified through the analysis of several metrics, including
slope ratio, KL divergence, average similarity values, and
motion deviation within sliding windows. This analysis aids
in pinpointing the ID switch point.

This step is crucial for effective tracklet split and
subsequent merging because it accurately identifies the point
where a change in object identity occurs within a tracklet.
By precisely segmenting the tracklet at the ID switch point,
the method ensures that frames containing different objects
are split from the original tracklet. This segmentation is
essential for maintaining the integrity of each tracklet and
avoiding ambiguity in subsequent processing steps.

Furthermore, by detecting the ID switch point, the method
can effectively merge split tracklets based on similarity
criteria, ensuring that frames containing the same object
are grouped together. This merging process helps recon-
struct accurate trajectories by connecting split tracklets and
minimizing fragmentation in the tracking results. Overall,
the detection and utilization of the ID switch point are
fundamental steps that enable the method to achieve accurate
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tracklet segmentation and merging, leading to improved
multi-object tracking performance.

While a comprehensive review of related work is provided
in the ‘Related Work’ section of our paper (Section II),
it’s essential to briefly discuss previous approaches in this
context. Prior refinement methods in multi-object tracking
have predominantly focused on offline tracklet refine-
ment techniques, where the entire trajectory is processed
retrospectively to detect and correct ID switches. While these
methods have demonstrated efficacy in improving tracking
accuracy, they often suffer from limited scalability and
real-time processing constraints. In contrast, our proposed
semi-online tracking refinement method offers a novel
approach by combining elements of both online and offline
processing, allowing for more efficient and adaptive tracklet
refinement in real-time tracking scenarios. By leveraging near
future frames within a short temporal window, our method
effectively identifies and addresses ID switches without the
computational overhead associated with processing the entire
trajectory. This hybrid approach not only enhances track-
ing accuracy but also improves computational efficiency,
making it well-suited for real-world multi-object tracking
applications.

While our proposed semi-online tracking refinement
method shows promising results in improving multi-object
tracking accuracy, it is not without its limitations. One
notable limitation is the reliance on appearance similarity
for ID switch detection, which may not always accurately
capture the underlying object identity changes, particularly
in scenarios with complex occlusions or abrupt appearance
variations. Additionally, our method may struggle in han-
dling long-term occlusions or object disappearances, as it
primarily focuses on fixed short-term temporal windows
for tracklet refinement. Addressing these limitations will be
crucial for further enhancing the robustness and applica-
bility of our approach in real-world multi-object tracking
scenarios.

VI. CONCLUSION
In this work, we proposed an semi-online tracking refinement
by using the near future frames with in 1~2 seconds.
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It does not require the whole trajectory but just the local
neighbouring frames within a short duration window. This
makes our method capable of being conducted in a frame-by-
frame manner. Our method follows the two-step refinement
procedure including split and merge. For split step, it will
segment the tracklet into pieces at the frame of ID switch
and ensure each piece is only related to one person. To detect
the ID switch point, a sliding window is running across the
tracklet to capture the similarity change around ID switch
position. Around the ID switch frame, the latter half of
the similarity curve will first drop sharply since the latter
half frames of the window contain different object as the
ID switch frame enters the window. As the short duration
window moves forward, the former half of the similarity
curve will increase when the ID switch frame is about to
exit the window. When the window centers at the ID switch
frame, the similarity curve will become even. Based on this
pattern, the ID switch point can be detected and utilized
for the tracklet splitting. Once the tracklet is segmented,
the short duration frames are used to compare appearance
similarity with existing tracklet for merging. Our method
utilizes multiple prototypes to represent the tracklet since the
short duration latter frames only capture a very small period
of appearance and may miss important long-term appearance
variances, such as changes in lighting, pose, or background
etc. Our method shows promising improvement both on
MOT17 and MOT20.
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