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ABSTRACT p, q, r−spherical fuzzy (p, q, r−SF) sets are a significant advancement in fuzzy set (FS) theory,
providing an effective way to describe hesitation inside a set. This development goes beyond membership
degrees (MDs) by incorporating three parameters (p, q and r) that shape and define the spread of FS. The
presence of these parameters makes p, q, r−SF sets ideal for dealing with complicated decision-making
(DM) scenarios in a wide range of applications. In this paper, we proposed a new reliable method for smart
DM in logo design projects that uses p, q, r−SF Einstein aggregation operators (AOs). First, we present the
p, q, r−SF Einstein operators, which are accomplished of capturing the relationship and interrelationship
of numerous criteria while making decisions on logo design, including originality, relevance, beauty, and
usability. Next, we use the proposed framework, a multi-criteria decision analysis tool, to rank the choices.
We demonstrate the practical application and efficiency of our method in a scenario in which a team of
three designers is entrusted with developing five different logo styles for diverse enterprises. Moreover,
we compare proposed procedure with some existing methods, demonstrating its advantages in terms of
precision and reliability.

INDEX TERMS p, q, r−spherical fuzzy set, Einstein operations, aggregation operators, decision-making,
optimization.

I. INTRODUCTION
In the contemporary landscape, decision-making is essential
in both personal and professional arenas, with unequaled
importance in the dynamic fabric of modern life. Indi-
vidual decisions concerning schooling, professional routes,
and lifestyles have long-term consequences, illustrating
empowerment and determining destinies. In the corporate
world, strategic decisions affect market dynamics, product
innovation, and resource allocation, distinguishing strong
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businesses from those that are struggling. Governments
are confronted with decisions that shape the fates of
nations, particularly in the face of global issues such as
climate change and epidemics. The digital age amplifies
the complexity with an influx of information, necessitat-
ing adeptness in data-driven decision-making. Moreover,
problem-solving and decision-making are closely related;
decision-making serves as a bridge between identifying
problems and putting effective solutions in place. Effective
decision-making is an art and science that is fundamen-
tal to navigating the complex difficulties of the modern
world [1], [2], [3], [4], [5].
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Zadeh developed fuzzy sets (FSs) [6], which play an
important role in multi-criteria decision making (MCDM) by
providing an adaptable basis for dealing with imprecision
and ambiguity. FSs make it possible to describe criteria
with varying degrees of membership in MCDM choices,
which entail numerous conflicting criteria and the need
for a nuanced depiction of ambiguity. Fuzzy weighing
mechanisms make it easier to give uncertain weights to
criteria, while fuzzy aggregation operators, such as weighted
sums, allow decision-makers to integrate fuzzy information
while accounting for the inherent uncertainty in decision-
making [7], [8], [9], [10]. Fuzzy decision-making models,
such as fuzzy TOPSIS and fuzzy AHP, use fuzzy sets
to rank and choose alternatives according to a variety of
criteria [11], [12], [13], [14]. In addition, fuzzy sets are
useful in dealing with linguistic factors as they allow for
the introduction of qualitative judgments and subjective
preferences into decision-making processes. Overall, using
fuzzy sets improves MCDM’s flexibility and resilience in
dealing with the complexities and uncertainties that arise
in real-world decision scenarios [15], [16], [17], [18].
FSs represent partial membership using a single degree of
membership (MD), whereas Intuitionistic Fuzzy Sets (IFSs)
[19] introduce the concept of hesitation, which provides a
more elaborate representation of uncertainty by taking into
account both membership and non-membership, as well as
a degree of hesitation. In IFS, the sum of the degrees of
membership ( ) and non-membership ( ) must be less
than or equal to one i.e., + ≼ 1. In some real-
world scenarios, the conditions for IFSs may not be satisfied.
For example, when a decision-maker assesses an item with

= 0.50 and = 0.70, it is clear that the total of
these values (0.50 + 0.70) is more than 1. As a result,
intuitionistic fuzzy (IF) types sets cannot properly handle
these specific classes of information. This emphasizes the
need to explore alternate methodologies or modifications
when dealingwith evaluations that fall beyond the established
parameters of IFSs in actual decision-making. Yager [20]
proposed Pythagorean fuzzy sets (PFSs) as an extension of
IFSs to handle situations in which IFS restrictions may not be
relevant. PFSs require the square sum of the and the square
of the to be less than or equal to one i.e., 2

+
2 ≼ 1.

Furthermore, Senapati and Yager developed Fermatean fuzzy
sets (FFSs), which include the requirement that the cube sum
of the and the cube of be less than or equal to one
i.e., 3

+
3 ≼ 1. Yager expanded on the concepts of

IFSs, PFSs, and FFSs to present q−rung orthopair fuzzy sets
(q−ROFSs). In this generalization, a condition is applied that
requires the qth power sum of the and the qth power of
the to be less than or equal to one, where q is less than
or equal to 1 i.e., q

+
q ≼ 1. In q−ROFSs, there is a

single parameter, q, that regulates the influence of both MD
and NMD. However, some situations may need the use of
various parameter values to control the impact of membership
degrees. In such cases, the adaptive nature of q−ROFSs may
be insufficient to handle the issue. To handle such scenarios,

Seikh and Mandal [21] developed p, q−Quasirung Orthopair
Fuzzy Sets (p, q−QOFs), which extended the notion of
q−ROFSs. In p, q−QOFSs, two parameters, p and q, are used
to separately control the impact of the degree of MD and
NMD. The condition states that the pth power sum of and
the qth power of must be less than or equal to one ( p

+
q ≼ 1). This addition provides a more flexible framework,

allowing decision-makers to use alternative parameter values
for more precise control over the influence MD and NMDs
in various decision-making circumstances. FSs sets and their
extension are presented in Figure 1.

FIGURE 1. Fuzzy sets and their extensions.

In the above-mentioned communication, it becomes appar-
ent that all investigations focus on the MD and NDM,
ignoring the importance of the natural membership degree
(NAMD). However, it should be highlighted that the NAMD
plays an important part in appraising an item throughout
the decision-making process. Cuong and Kreinovich [22]
developed picture fuzzy sets (PiFSs), which incorporated the
terms of MD, NMD, and NADM. This system is considered
to be more realistic and adaptable than IFSs. The terms of
PiFSs are subject to the requirement that the sum of DM,
NMD, and NAMD ( ) be less than or equal to 1 i.e., +

+ ≼ 1. Gündoğdu and Kahraman [23] proposed spherical
fuzzy sets (SFSs), which are an extension of PiFSs. In SFSs,
the square sum of MD, NDM, and NADM must be less than
or equal to one i.e., 2

+
2

+
2 ≼ 1. This expansion

extends the concept of PiFSs by providing a framework
that takes into account a broader number of criteria for a
more nuanced depiction of uncertainty in decision-making
processes. Mahmood et al. [24] enhanced the concept of
spherical fuzzy sets by introducing T−spherical fuzzy sets
(T−SFSs). In T−SFSs, the parameter ’t’ can be adjusted
based on decision-makers’ information, ensuring that the
t th power of MD, NDM, and NAMD are all less than or
equal to 1. In T−spherical fuzzy environment the decision-
makers are bound to use the same value of parameter t
for all terms of membership degrees. However, in some
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situation, the decision makers may need to set different
values for MD, NMD, and NAMD. This situation cannot
be deal with the T−SFSs. Therefore, Rahim et al. [25]
proposed p, q, r−spherical fuzzy sets (p, q, r−SFSs) which
the extension of T−SFSs. In p, q, r−SFSs, three parameters
play distinct roles: p governs the influence of MD, q regulates
the impact of NMD), and r controls the influence of the
natural NAMD within the p, q, r−SFSs such that p

+
r
+

q ≼ 1 where p, q ≽ 1 and r = max (p, q). Figure 2
represent the special cases of p, q, r−SFSs. Some special
cases of p, q, r−SFSs are shown in Figure 2.

FIGURE 2. p, q, r−SFSs and their special cases.

A. AGGREGATION OPERATORS
AOs are algorithms for computation that integrate several
source data and provide a single outcome. They are
essential in a variety of professions, especially quantitative
information, computational science, and cognitive studies.
These mathematical operators commonly utilize functions
such as arithmetic mean, weighted mean, maximum, and
minimum, each of which serves a distinct purpose based
on the qualities of the aggregated result. AOs are used in
decision-making, data analysis, and fuzzy reasoning, and can
vary from simple summation and product operators to more
complicated approaches like ordered weighted averaging
and limited sum operators. They offer a broad toolbox for
combining information or preferences from several sources.
The choice of an operator is contingent upon the nature
of the data and the objectives of the research, highlighting
their significance in several computational and decision-
support contexts. Scholars have created many AOs that are
appropriate for certain circumstances. For example, Wang
and Liu [26] presented a collection of Einstein geometric
AOs to handle cases when the given inputs take the form
of IF values. Khan et al. [27] proposed picture fuzzy
Einstein-weighted and Einstein-ordered weighted operators,
examined their characteristics and presented a numerical
illustration of how to use them in a group decision-making
problem. Garg [28] presented a series of Einstein AOs for
Pythagorean fuzzy information to handle decision-making
problems. Farid et al. [29] proposed Einstein prioritized
weighted averaging and geometric operators as a reliable
method for tackling Multiple Criteria Group Decision
Making (MCGDM) issues. Khan et al. [30] presented a set

of aggregation operators (AOs) tailored for spherical fuzzy
rough sets, to successfully consolidate information in the
context of spherical fuzzy roughness. Readers are encouraged
to review the references [31], [32], [33], [34] for a more in-
depth understanding of Einstein-based aggregation operators.

B. RELATED WORK
Product development projects involve the process of creating
and bringing new products of features to the market. Suc-
cessful product development is a combination of creativity,
market research, technical expertise, and effective project
management. Product development projects are complex
endeavors that require a myriad of decisions to be made at
various stages of the process. From the conceptualization
phase to market launch, decision makers navigate uncer-
tainties, ambiguities, and the ever-changing landscape of
consumer preferences. Traditional decision-making models
often struggle to capture and incorporate the inherent vague-
ness and imprecision present in the data and information
associated with product development. The integration of
fuzzy sets into decision making processes offers a promising
avenue to address the uncertainties inherent in product
development. Büyüközkan and Feyzıog̃lu [35] developed
fuzzy logic-based decision-making approach for new product
development. Furthermore, they also proposed products
development projects using artificial intelligence and fuzzy
logic [36].
Jung and Seo [37] employed the AHP to evaluate various

projects. In the intricate landscape of market competition,
numerous fuzzy decision-making methods have been applied
to the selection of R & D projects. For instance, Hassan-
zadeh et al. [38] introduced a fuzzy payoff method for
effective assessment of R & D projects. Building upon this,
Collan and Luukka [39] extended the fuzzy payoff method,
introducing four innovative variants related to fuzzy TOPSIS.
Taylan et al. [40] developed a project selection and risk
assessment framework that combines fuzzy AHP and fuzzy
TOPSIS methods. Wu et al. [41] took a distinct approach,
integrating fuzzy MADM with fuzzy multi-objective pro-
gramming to introduce a comprehensive framework. In a
unique contribution, Relich and Pawlowski [42] proposed an
innovative model for project portfolio selection, incorporat-
ing a fuzzy weighted average approach. Similarly, Karasakal
and Aker [43] assessed R & D projects using an extended
MADM method integrated with DEA.

C. GAP AND MOTIVATIONS
In order to facilitate decision-making that combines adapt-
ability, robustness in the context of uncertainty, and the ability
to accept weighted aggregation, Einstein AOs offer a flexible
and useful framework. They are widely used in fields like
artificial intelligence and decision science because of their
adaptability to a wide range of data types, including FSs and
their expansion, as well as the addition of duality.
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Because these operators are mathematically simple, they
are easy to use and comprehend. Furthermore, their utility in
capturing complex relationships and preferences is increased
by their capacity to preserve sequence information and
perform well with uncertainty. However, the hierarchical
structure of p, q, r−SF sets is more adjustable and para-
metric. Unfortunately, there hasn’t been much research
done on aggregation operators till recently, particularly
those built for p, q, r−SF datasets. Given the importance
of AOs as fundamental mathematical tools in decision-
making, this study addresses a need by introducing a set of
Einstein AOs for aggregating preferences given as p, q, r−SF
numbers (p, q, r−SFNs). These operators aim to successfully
combine multiple preferences and devise methods for making
decisions in scenarios involving p, q, r−SF sets. Given the
importance of aggregation operators as critical mathematical
tools in decision-making issues, this study fills a vacuum by
providing a set of Einstein aggregation operators designed
for aggregating preferences given as p, q, r−SFNs. These
operators aim to effectively integrate different preferences
and develop methods for making decisions in scenarios
involving p, q, r−SF sets.
This article motivated by three key points:
a) To define Einstein operations for p, q, r−spherical

fuzzy numbers.
b) To propose some AOs based on these operational laws

such as p, q, r−spherical fuzzy Einstein weighted aver-
aging (p, q, r−SFEWA) and p, q, r−spherical fuzzy
Einstein weighted geometric (p, q, r−SFEWG) oper-
ators to aggregate p, q, r−spherical fuzzy information.

c) To construct MCDM approach based on the proposed
AOs and applied to product development project
selection problem.

D. CONTRIBUTIONS OF THE PROPOSED STUDY
The paper aims to enhance the resolution of product
development project selection by addressing the evaluation
of five different product developments projects as Quan-
tumTech Xperience, EcoHarmony Solutions, StellarGrowth
Innovations, Precision Craft Dynamics, EliteVista Creations.
The key objectives include formulating Einstein operational
laws for p, q, r−spherical fuzzy Einstein numbers, including
addition, multiplication, and scalar multiplication. The devel-
opment of p, q, r−SFEWA and p, q, r−SFEWG operators
is proposed to effectively aggregate p, q, r−spherical fuzzy
information, considering inter−attribute relationships. The
paper analyzes properties of these AOs and presents some
numerical examples of these operators. We constructed
a novel MADM approach based on p, q, r−SFEWA and
p, q, r−SFEWG to deal with real-life complex decision-
making problems. The application of the proposed approach
to product development project selection is proposed to
validate its effectiveness and superiority against alternative
methods. The proposed p, q, r−spherical fuzzy Einstein
numbers of algorithms offer completeness and simplicity
compared to existing rules. Significantly, the novel MADM

method extends beyond product selection, proving versatile
for product development teams aiming to enhance their
decision-making process and maximize the likelihood of a
successful product launch.

E. PAPER OUTLINE
The article is organized as follows:

In Section II, we presented some basic definitions related
to the proposed work. In Section III, we defined some opera-
tional laws for p, q, r−SFSs using Einstein sum and Einstein
product. Also, a series of AOs and their properties are
presented to aggregate p, q, r−SF information. Section IV
outlines a novel approach built on the proposed AOs.
Demonstrating the efficacy and flexibility of our approach
through a practical example, Section V provides empirical
evidence. Finally, Section VI, serves as the conclusion of our
proposed work.

II. PRELIMINARIES
In this section we have address the fundamental concept.

A. IFSS
Definition 1: [19] Let B be a universal set. An IFS over

an element ∈ B can be expressed as follows:

=
{

, ⟨ ( ) , ( )⟩| ∈ B
}

(1)

where ( ), ( ) ∈ [0, 1] represent the MD and NMD
of an element ∈ B such that ( ) + ( ) ≼ 1. The
degree of hesitancy between them is calculated as:

5 ( ) = 1 − ( ( ) + 2 ( )) (2)

Definition 2: [44] Let 1 =
(

1 , 1

)
, Q2 =(

2 , 2

)
and =

(
,

)
be any three IFNs. Then, the

operational laws between these IFNs are defined as follows:
C

=
(

,
)
,

1 ⊆ 2 if and only if 1 ≼ 2 and 1 ≽ 2 ,
1 = 2 if 1 ⊆ 2 and 2 ⊆ 1,
1 ⊕ 2 =

(
1 + 2 − 1 2 , 1 2

)
,

1 ⊗ 2 =
(

1 2 , 1 + 2 − 1 2

)
,

ζ =

(
1 −

(
1 −

)ζ
,

ζ
)
,

ζ
=

(
ζ
, 1 −

(
1 −

)ζ).
Where C represent the complement of IFN and ζ is any

positive real number.
Definition 3: [44] Let =

(
,

)
be an IFN. The score

function of is defined as follows:

Sco ( ) = − (3)

where −1 ≼ Sco ( ) ≼ 1.
Definition 4: [44] Let =

(
,

)
be an IFN. The

accuracy function of is defined as follows:

Acc ( ) = + (4)

where 0 ≼ Acc ( ) ≼ 1.
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Definition 5: [44] Let 1 =
(

1 , 1

)
and 2 =(

2 , 2

)
are two IFN, then

If Sco ( 1) ≺ Sco (J1) then 1 ≺ 2,
If Sco ( 1) ≻ Sco ( 1) then 1 ≻ 2,
If Sco ( 1) = Sco ( 1)and,
If Acc ( 1) ≺ Acc ( 1) then 1 ≺ 2,
If Acc ( 1) ≻ Acc ( 1) then 1 ≻ 2,
If Acc ( 1) = Acc ( 1) then 1 ∼ 2.

B. PIFSS
Definition 6: [22] For any universal set B, a PiFS can

be defined as follows:

=
{

, ⟨ ( ) , ( ) , ( )⟩| ∈ B
}

where ( ) , ( ) and (x), represent positive, neutral
and negative membership grade respectively, in element

∈ B such that ( ) , ( ) , ( ) ∈ [0, 1] and
( ) + ( ) + ( ) ≼ 1. The triplet ( , , ) is

called picture fuzzy number (PiFN).
Definition 7: [22] Let = ( , , ) be PiFN then score

function of can be defined as:

Sco( ) = − − ,

where −1 ≼ Sco ( ) ≼ 1. The accuracy function of PiFN
is defined as follows:

Acc( ) = + + , 0 ≼ Acc ( ) ≼ 1.

C. SFSS
Definition 8: [23] Let B be a universal set, a SFS S can

be symbolized as follows:

S = { , ⟨ S ( ) , S ( ) , S ( )⟩| ∈ B} (5)

In this context, S : B → [0, 1] is theMD, S : B → [0, 1]
is the NEMD, S : B → [0, 1] is the NMD,
which satisfies the condition S ( )2 + S ( )2 +

S ( )2 ≤ 1, for all ∈ B. The triplet is said to be
( , , ) is called spherical fuzzy number (SFN).
Definition 9: [23] Let S = ( , , ) be a SFN then the

score function of S defined as:

Sco(S) =
1 +

2
−

2
−

2

2
(6)

where −1 ≼ Sco (S) ≼ 1. The accuracy function of SFN
is defined as follows: Acc(S) =

2
+

2
+

2 such that
0 ≼ Acc (S) ≼ 1.

D. T-SFSS
Definition 10: [24] Let B be a universal set, a T-SFN

can be symbolized as follows:

=
{

, ⟨ ( ) , ( ) , ( )⟩| ∈ B
}

(7)

In this context, : B → [0, 1] is the MD, :

B → [0, 1] is the NEMD, : B → [0, 1] is the
NMD of for an element and satisfies the condition that

( )t , ( )t , ( )t ≼ 1, for all ∈ B. The triplet
is said to be ( , , ) is called T-spherical fuzzy number
(T-SFN).
Definition 11: [24] Let 1 =

(
1 , 1 , 1

)
, T2 =(

2 , 2 , 2

)
and =

(
, ,

)
be any three T-SFN.

Then, the operational laws between these T-SFNs are defined
as follows:

1. 1 ⊕ 2 =

 t
√

t
1 +

t
2 −

t
1

t
2 ,

t
√

t
1 +

t
2 −

t
1
t
2 , 1n 2

,

2. 1 ⊗ 2 =

(
1 2 , 1 2 ,

t
√

t
1 +

t
2 − nt 1n

t
2

)
,

3. ζ =

 t
√
1 −

(
1 −

t )ζ ,
t
√
1 −

(
1 −

t )ζ , ζ

,

4. ζ
=

(
ζ
,

ζ
,

t
√
1 −

(
1 −

t )ζ ,

)
.

Definition 12: [24] Let =
(

, ,
)
be a T-SFN

then score function is defined as:

Sc(T ) =
1 +

t
S −

t
S −

t
S

2
(8)

In this context −1 ≼ Sco ( ) ≼ 1. The accuracy function of
spherical fuzzy number is defined as follows:

Ac( ) =
t

+
t

+
t such that 0 ≼ Acc ( ) ≼ 1.

E. p, q, r− SFSS
Definition 13: [25] Let B be a universal set, a

p, q, r−SFS 9 can be symbolized as follows:

9 = { , ⟨ 9 ( ) , 9 ( ) , 9 ( )⟩| ∈ B} (9)

where 9 : B → [0, 1] is the MD, 9 : B → [0, 1]
is the NEMD, 9 : B → [0, 1] is the NMD, which
satisfies the condition 9 ( )p + 9 ( )r + 9 ( )q 1, for
all ∈ B. The triplet is said to be ( 9 , 9 , 9 ) is called
p, q, r−spherical fuzzy number (p, q, r−SFN). Where p and
q are any positive integers such that

• p = q, p < q or p > q,
• r = max (p, q).
Definition 14: [25] Let 91 =

(
91 , 91 , 91

)
, 92 =(

92 , 92 , 92

)
and 9 = ( 9 , 9 , 9) be any three

p, q, r−SFNs. Then

2. 91 ⊕ 92 =

 p
√

9
p
91

+ 9
p
92

− 9
p
91

9
p
92

,

r
√

9r
91

+ 9r
92

− 9r
91

9r
92

, ϕ91ϕ92

,

3. 91 ⊗ 92 =

(
991992 , 991992 ,

q
√

ϕ
q
91

+ ϕ
q
92

− ϕ
q
91

ϕ
q
92

)
,

4. ζ9 =

 p
√
1 −

(
1 − 9

p
9

)ζ
,

r
√
1 −

(
1 − 9r

9

)ζ
, ϕ

ζ
9

,

d) 9ζ
=

(
9

ζ
9 , 9

ζ
9 ,

q
√
1 −

(
1 − ϕ

q
9

)ζ
,

)
.
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Definition 15: [25] Let 9 = ( 9 , 9 , 9) be a
p, q, r−SFN then score function is defined as:

Sc(9) =
1 +

p
9 −

r
9 −

q
9

2
(10)

where 0 ≼ Sco (9) ≼ 1. The accuracy function of
p, q, r−SFN is defined as follows:

Acc(9) =
p
9 +

r
9 +

q
9 (0 ≼ Acc (9) ≼ 1) (11)

Definition 16: [45] Einstein product θ and sum ϑ are
defined as follows:

φ (θ, ϑ) =
θ.ϑ

1 + (1 − θ )(1 − ϑ)
, for all θ, ϑ ∈ [0, 1]2

ϕ (θ, ϑ) =
θ + ϑ

1 + θϑ
, for all θ, ϑ ∈ [0, 1]2

III. PROPOSED p, q, r-SPHERICAL FUZZY EINSTEIN
OPERATIONS
Definition 17: Let 91 =

(
91 , 91 , 91

)
, 92 =(

92 , 92 , 92

)
and 9 = ( 9 , 9 , 9) are three p, q, r-

SFNs, and ζ ≻ 0, then we have Einstein operations for these
p, q, r-SFNs are defined as follows:

1. 91 ⊕ε 92 =


⟨
p

√ p
91

+
p
92

1+ p
91

p
92

, r

√
r
91

+
r
92

1+ r
91

r
92

,

91 92

q
√
1+
(
1− q

91

)(
1− q

92

) ⟩

,

2. 91 ⊗ 92 =


⟨

91 92

p
√
1+
(
1− p

91

)(
1− p

92

) ,

91 92

r
√
1+
(
1− r

91

)(
1− r

92

) , q

√ q
91

+
q
92

1+ q
91

+
q
92

, ⟩

,

3. ζε9 =


⟨
p

√
(1+ p

9
)
ζ
−(1− p

9
)
ζ

(1+ p
9
)
ζ
+(1− p

9
)
ζ ,

r

√
(1+ r

9
)ζ −(1− r

9
)ζ

(1+ r
9
)ζ +(1− r

9
)ζ

,
q√2( 9 )ζ

q
√(

2− q
9

)ζ
+

(
q
9

)ζ
⟩

,

4. 9ζ
=


⟨

p√2( 9 )ζ

p
√(

2− p
9

)ζ
+

(
p
9

)ζ
,

r√2(
9
)ζ

r
√(

2− r
9

)ζ
+
( r

9

)ζ ,

q

√
(1+ q

9
)
ζ
−(1− q

9
)
ζ

(1+ q
9
)
ζ
+(1− q

9
)
ζ ⟩

.

Definition 18: Let 91 =
(

91 , 91 , 91

)
and 92 =(

92 , 92 , 92

)
two p, q, r−SFNs, then Einstein union and

Einstein intersection can be defined as follows:
1. 91

⋃
92 =

(
max

(
91 , 92

)
,max

(
91 , 92

)
,min

(
91 , 92

) )
,

2. 91
⋂

92 =

(
min

(
91 , 92

)
,min

(
91 , 92

)
,

max
(

91 , 92

) )
.

Theorem 1: For any three ζ , ζ1, ζ3 real numbers . Then
for two p, q, r−SFNs 91 =

(
91 , 91 , 91

)
, and 92 =(

92 , 92 , 92

)
, Einstein sum and product are defined as

follows:
1. 91 ⊕E 92 = 92 ⊕E 91,
2. 91 ⊗E 92 = 92 ⊗E 91,
3. ζ (91 ⊕E 92) = ζ91 ⊕E ζ92,
4. (91 ⊗E 92)

ζ
= 9

ζ
1 ⊗E 9

ζ
2 ,

5. ζ19 ⊕E ζ29 = 9 (ζ1 + ζ2),
6. 9ζ1 ⊗E 9ζ2 = 9ζ1+ζ 2 .

Proof: Let us consider part (1), we have

91 ⊕ 92 =


⟨
p

√
9
p
91

+9
p
92

1+9
p
91

9
p
92

, r

√
ϕr91

+ϕr92
1+ϕr91

ϕr92
,

291292

q
√
1+
(
1−2

q
91

)(
1−2

q
92

) ⟩



=


⟨
p

√
p
92

+
p
91

1+ p
92

p
91

, r

√
r
92

+
r
91

1+ r
92

r
91

,

92 91

q
√
1+
(
1− q

92

)(
1− q

91

) ⟩

 = 92 ⊕ 91.

Similarly,

91 ⊗ 92 =


⟨

91 92

p
√
1+
(
1− p

91

)(
1− p

92

) ,
91 92

r
√
1+
(
1− r

91

)(
1− r

92

) , q

√
q
91

+
q
92

1+ q
91

q
92

, ⟩



=


⟨

92 91

p
√
1+
(
1− p

92

)(
1− p

91

) ,
92 91

r
√
1+
(
1− r

92

)(
1− r

91

) , q

√
p
92

+
p
91

1+ p
92

p
91

, ⟩


= 92 ⊗ 91.

By Einstein operational laws, we have

ζ (91 ⊕ 92)

= ζ

(
⟨
p

√
a− b
a+ b

, r

√
e− f
e+ f

,

q
√
2c

q
√
d + c

⟩

)

=



⟨
p

√√√√(
1+ a−b

a+b

)ζ
−

(
1− a−b

a+b

)ζ

(
1+ a−b

a+b

)ζ
+

(
1− a−b

a+b

)ζ ,

r

√√√√(
1+ e−f

e+f

)ζ
−

(
1− e−f

e+f

)ζ

(
1+ e−f

e+f

)ζ
+

(
1− e−f

e+f

)ζ ,

q√2
( q√2c
q√d+c

)
q

√((
2− 2c

d+c

)
+

(
2c
d+c

) ) ⟩


=

⟨
p

√
aζ − bζ

aζ + bζ
,

r

√
eζ − f ζ

eζ + f ζ
,

q
√
2cζ

q
√(

dζ + cζ
) ⟩


=



⟨
p

√√√√(
1+ p

91

)ζ (
1+ p

91

)ζ
−

(
1− p

92

)ζ (
1− p

92

)ζ

(
1+ p

91

)ζ (
1+ p

91

)ζ
+

(
1− p

92

)ζ (
1− p

92

)ζ ,

r

√√√√(
1+ r

91

)ζ (
1+ r

91

)ζ
−

(
1− r

92

)ζ (
1− r

92

)ζ

(
1+ r

91

)ζ (
1+ r

91

)ζ
+

(
1− r

92

)ζ (
1− r

92

)ζ ,

q√2 ζ
91

ζ
92

q
√(

2− q
91

)ζ (
1− q

92

)ζ
+

ζ
91

ζ
92

⟩


.
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In other hand, we examine that

ζ91 =



⟨
p

√√√√(
1+ p

91

)ζ
−

(
1− p

91

)ζ

(
1+ p

91

)ζ
+

(
1− p

91

)ζ ,

r

√√√√(
1+ r

91

)ζ
−

(
1− r

91

)ζ

(
1+ r

91

)ζ
+

(
1− r

91

)ζ ,

q√2 ζ
91

q
√(

2− q
91

)ζ
+

ζ
91

⟩


=

(
⟨
p

√
a1 − b1
a1 + b1

, r

√
e1 − f1
e1 + f1

,

(
q
√
2c1
)

q
√
d1 + c1

⟩

)

ζ92 =



⟨
p

√√√√(
1+ p

92

)ζ
−

(
1− p

92

)ζ

(
1+ p

92

)ζ
+

(
1− p

92

)ζ ,

r

√√√√(
1+ r

92

)ζ
−

(
1− r

92

)ζ

(
1+ r

92

)ζ
+

(
1− r

92

)ζ ,

q√2 ζ
92

q
√(

2− q
92

)ζ
+

ζ
92

⟩


=

⟨
p

√
a2 − b2
a2 + b2

, r

√
e2 − f2
e2 + f2

,

(
q
√
2c2
)

q
√
d2 + c2

⟩



where a1 =

(
1 +

p
91

)ζ

, b1 =

(
1 −

p
91

)ζ

,

e1 =

(
1 +

r
91

)ζ

, f1 =

(
1 −

r
91

)ζ

, c1 =
(

91

)ζ ,
d1 =

(
2 − 91

)ζ , c2 =
(

92

)ζ , a2 =

(
1 +

p
92

)ζ

,

b2 =

(
1 −

p
92

)ζ

, e2 =

(
1 +

r
92

)ζ

, f2 =

(
1 −

r
92

)ζ

.

ζ91 ⊕ ζ92

=

〈 p

√
a1 − b1
a1 + b1

, r

√
e1 − f1
e1 + f1

,

(
q
√
2c1
)

q
√
d1 + c1

〉
⊕

⟨
p

√
a2 − b2
a2 + b2

, r

√
e2 − f2
e2 + f2

,

(
q
√
2c2
)

q
√
d2 + c2

⟩



=



⟨ p

√
a2−b2
a2+b2

+
a2−b2
a2+b2

1+
(
a1−b1
a1+b1

)(
a−b
a+b

) ,
r

√
e2−f2
e2+f2

+
e2−f2
e2+f2

1+
(
e1−f1
e1+f1

)(
e−f
e+f

) ,
2 q
√ c1c2

(d1+c1)(d2+c2)

q
√(

1+
(
1− 2c1

d1+c1

)(
1− 2c2

d2+c2

)) ⟩


=

(
⟨
p

√
a1a2 − b1b2
a1a2 + b1b2

, r

√
e1e2 − f1f 2
e1e2 + f1f 2

,

q
√
2c1c2

q
√

(d1d2 + c1c2)
⟩

)

=



⟨
p

√√√√(
1+ p

91

)ζ (
1+ p

92

)ζ
−

(
1− p

91

)ζ (
1− p

92

)ζ

(
1+ p

91

)ζ (
1+ p

92

)ζ
+

(
1− p

91

)ζ (
1− p

92

)ζ ,

r

√√√√(
1+ r

91

)ζ (
1+ r

92

)ζ
−

(
1− r

91

)ζ (
1− r

92

)ζ

(
1+ r

91

)ζ (
1+ r

92

)ζ
+

(
1− r

91

)ζ (
1− r

92

)ζ ,

q√2
(

91

)ζ (
92

)ζ
q
√((

2− 91

)ζ (2− 92

)ζ
+
(

91

)ζ (
92

)ζ ) ⟩


Hence ζ (91 ⊕ 92) = ζ91 ⊕ ζ92.
The proof of part (4) is obvious. Let us consider part (5),

we have

ζ19 =



⟨
p

√
(1+

p
9)

ζ1−(1−
p
9)

ζ1

(1+
p
9)

ζ1+(1−
p
9)

ζ1
,

r

√
(1+ r

9)
ζ1−(1− r

9)
ζ1

(1+ r
9)

ζ1+(1− r
9)

ζ1
,(

q√2
)

ζ1
9

q
√
(2−

q
9)

⟨1+
ζ1
9

⟩



ζ29 =



⟨
p

√
(1+

p
R)

ζ2−(1−
p
R)

ζ2

(1+
p
R)

ζ2+(1−
p
R)

ζ2
,

r

√
(1+ r

R)
ζ2−(1− r

R)
ζ2

(1+ r
R)

ζ2+(1− r
R)

ζ2
,(

q√2
)

ζ2
R

q
√
(2−

q
R)

ζ2+
ζ2
R

⟩



ζ19 ⊕ ζ29 =



⟨
p

√
(1+

p
9)

ζ1−(1−
p
9)

ζ1

(1+
p
9)

ζ1+(1−
p
9)

ζ1
,

r

√
(1+ r

R)
ζ1−(1− r

R)
ζ1

(1+ r
9)

ζ1+(1− r
9)

ζ1
,(

q√2
)

ζ1
9

q
√
(2−

q
9)

ζ1+
ζ1
9

⟩



⊕


⟨
p

√
(1+

p
9)

ζ2−(1−
p
9)

ζ2

(1+
p
9)

ζ2+(1−
p
9)

ζ2
,

r

√
(1+ r

9)
ζ2−(1− r

9)
ζ2

(1+ r
9)

ζ2+(1− r
9)

ζ2
,

q√2
ζ2
9

q
√
(2−

q
9)

ζ2+
ζ2
9

⟩



=


⟨
p

√
(1+

p
9)

ζ1+ζ2−(1−
p
9)

ζ1+ζ2

(1+
p
9)

ζ1+ζ2+(1−
p
9)

ζ1+ζ2
,

r

√
(1+ r

9)
ζ1+ζ2−(1− r

9)
ζ1+ζ2

(1+ r
9)

ζ1+ζ2+(1− r
9)

ζ1+ζ2
,

q√2( 9 )ζ1+ζ2

q
√(

(2− 9 )ζ1+ζ2 ,+( 9 )ζ1+ζ2
) ⟩


= (ζ 1 + ζ2)9. Therefore ζ19 ⊕ ζ29

= (ζ 1 + ζ2)9.

Let us consider part (6), we have as shown in the equation at
the bottom of the next page.

A. p, q, r -SF EINSTEIN AVERAGING OPERATORS
We present a variety of AOs in this section that use the rules
from Section III. These operators can effectively combine
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and simplify information, which facilitates data analysis and
decision making.
Definition 19: Let 9i =

(
9i , 9i , 9i

)
(i = 1, 2, . . . k)

be a set of p, q, r−SFNs with their corresponding weight
vector ζi (i = 1, 2, . . . , k) such that

∑k
i=1 ζi = 1 and ζi ∈

[0, 1]. Then the operator p, q, r −SFEWA(91, 92, . . . , 9k ) :

3k
→ 3 is defined as

p, q, r − SFEWA (91, 92, . . . , 9k) = ⊕
k
i=1ζi9i (12)

Theorem 2: The aggregated value obtained by p, q, r −

SFEWA operator of p, q, r−SFNs is still a p, q, r-SFNs, and
can be expressed as:

p, q, r − SFEWA
(
91, 92, . . . , 9

)
= ⊕

k
i=1ζi9i

=



⟨
p

√√√√∏k
i=1

(
1+ p

9i

)ζi
−
∏k
i=1

(
1− p

9i

)ζi

∏k
i=1

(
1+ p

9i

)ζi
+
∏k
i=1

(
1− p

9i

)ζi
,

r

√√√√∏k
i=1

(
1+ r

9i

)ζi
−
∏k
i=1

(
1− r

9i

)ζi

∏k
i=1

(
1+ r

9i

)ζi
+
∏k
i=1

(
1− r

9i

)ζi
,

(
q√2
)∏k

i=1
ζi
9i∏k

i=1
q
√(

2− q
9i

)ζi
+
∏k
i=1

ζi
9i

⟩


(13)

Proof: This theorem is established by using mathematical
induction.

Step 1. For k = 2, we have

p, q, r − SFFWA (91, 92)

= ⊕
2
i=1ζi9i = ζ191 ⊕ ζ292

ζ191 =



⟨
p

√√√√(
1+ p

91

)ζ1
−

(
1− p

91

)ζ1(
1+ p

91

)ζ1
+

(
1− p

91

)ζ1
,

r

√√√√(
1+ r

91

)ζ1
−

(
1− r

91

)ζ1(
1+ r

91

)ζ1
+

(
1− r

91

)ζ1
,

(
q√2
)

ζ1
91

q
√(

2− q
91

)ζ1
+

ζ1
91

⟩


,

ζ292 =



⟨
p

√√√√(
1+ p

92

)ζ2
−

(
1− p

92

)ζ2(
1+ p

92

)ζ2
+

(
1− p

92

)ζ2
,

r

√√√√ (
1+ r

92

)ζ2
−

(
1− r

⟨2

)ζ2(
1+ r

92

)ζ2
+

(
1− r

92

)ζ2
,

(
q√2
)

ζ2
92

q
√(

2− q
92

)ζ2
+

ζ2
92

⟩


ζ191 ⊕ ζ292

×



⟨
p

√√√√(
1+ p

91

)ζ1
−

(
1− p

91

)ζ1(
1+ p

91

)ζ1
+

(
1− p

91

)ζ1
,

r

√√√√(
1+ r

91

)ζ1
−

(
1− r

91

)ζ1(
1+ r

91

)ζ1
+

(
1− r

91

)ζ1
,

(
q√2
)

ζ1
91

q
√(

2− q
91

)ζ1
+

ζ1
91

⟩



⊕



⟨
p

√√√√(
1+ p

92

)ζ2
−

(
1− p

92

)ζ2(
1+ p

92

)ζ2
+

(
1− p

92

)ζ2
,

r

√√√√(
1+ r

92

)ζ2
−

(
1− r

92

)ζ2(
1+ r

92

)ζ2
+

(
1− r

92

)ζ2
,

(
q√2
)

ζ2
92

q
√(

2− q
92

)ζ2
+

ζ2
92

⟩



=



⟨
p

√√√√(
1+ p

91

)ζ1
(
1+ p

92

)ζ2
−

(
1− p

91

)ζ1
(
1− p

92

)ζ2(
1+ p

91

)ζ1
(
1+ p

92

)ζ2
+

(
1− p

91

)ζ1
(
1− p

92

)ζ2
,

r

√√√√(
1+ r

91

)ζ1
(
1+ r

92

)ζ2
−

(
1− r

91

)ζ1
(
1− r

92

)ζ2(
1+ r

91

)ζ1
(
1+ r

92

)ζ2
+

(
1− r

91

)ζ1
(
1− r

92

)ζ2
,

(
q√2
)

ζ1
91

(
q√2
)

ζ2
92

q
√(

2− q
91

)ζ1
+

ζ1
91

q
√(

2− q
92

)ζ2
+

ζ2
92

⟩


where

∑2
i=1 ζi = 1. Therefore, for k = 2, the result is true.

9ζ1 ⊗ 9ζ2 = 9ζ1+ζ 2 .

9ζ1 ⊗ 9ζ2 =

 ( 9)ζ1(
p
√
1 +

(
1− p

9

))ζ1
,

( 9)ζ1(
r
√
1 +

(
1− r

9

))ζ1
, q

√√√√ ( q
9

)ζ1(
1 +

q
9

)ζ1


⊗

 ( 9)ζ2(
p
√
1 +

(
1− p

9

))ζ2
,

( 9)ζ2(
r
√
1 +

(
1− r

9

))ζ2
, q

√√√√ ( q
9

)ζ2(
1 +

q
9

)ζ2


=


( 9 )ζ1+ζ2(

p
√
1+(1−

p
9)

)ζ1+ζ2
,

( 9 )ζ1+ζ2(
r
√

1+(1− r
9)
)ζ1+ζ2

, q

√
(

q
9)

ζ1+ζ2

(1+
q
9)

ζ1+ζ2

 = 9ζ1+ζ 2 .
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Step 2. Suppose the result is valid for k = l i.e.,

p, q, r − SFEWA (91, 92, . . . , 9l)

= ⊕
l
i=1ζi9i

=



⟨
p

√√√√∏l
i=1

(
1+ p

9i

)ζi
−
∏l
i=1

(
1− p

9i

)ζi

∏l
i=1

(
1+ p

9i

)ζi
+
∏l
i=1

(
1− p

9i

)ζi
,

r

√√√√∏l
i=1

(
1+ r

9i

)ζi
−
∏l
i=1

(
1− r

9i

)ζi

∏l
i=1

(
1+ r

9i

)ζi
+
∏l
i=1

(
1− r

9i

)ζi
,

(
q√2
)∏l

i=1
ζi
9i∏l

i=1
q
√(

2− q
9i

)ζi
+
∏l
i=1

ζi
9i

⟩


(14)

Step 3. To prove that Equation (13) is true for k = l+1 i.e.,

p, q, r − SFEWA (91, 92, . . . , 9l+1)

= ⊕
l+1
i=1ζi9i = ⊕

l
i=1ζi9i ⊕ ζi+19i+1

=



⟨
p

√√√√∏l
i=1

(
1+ p

9i

)ζi
−
∏l
i=1

(
1− p

9

)ζi

∏l
i=1

(
1+ p

9i

)ζi
+
∏l
i=1

(
1− p

9i

)ζi
,

r

√√√√∏l
i=1

(
1+ r

9i

)ζi
−
∏l
i=1

(
1− r

9i

)ζi

∏l
i=1

(
1+ r

9i

)ζi
+
∏l
i=1

(
1− r

9i

)ζi
,

(
q√2
)∏l

i=1
ζi
9i∏l

i=1
q
√(

2− q
9i

)ζi
+
∏l
i=1

ζi
9i

⟩



⊕



⟨
p

√√√√(
1+ p

9l+1

)ζl+1
−

(
1− p

9l+1

)ζl+1(
1+ p

9l+1

)ζl+1
+

(
1− p

9l+1

)ζl+1
,

r

√√√√(
1+ r

9l+1

)ζl+1
−

(
1− r

9l+1

)ζl+1(
1+ r

9l+1

)ζl+1
+

(
1− r

9l+1

)ζl+1
,

(
q√2
)

ζl+1
9l+1

q
√(

2− q
9l+1

)ζl+1
+

ζl+1
9l+1

⟩



=



⟨
p

√√√√∏l+1
i=1

(
1+ p

9i

)ζi
−
∏l+1
i=1

(
1− p

9

)ζi

∏l+1
i=1

(
1+ p

9i

)ζi
+
∏l+1
i=1

(
1− p

9i

)ζi
,

r

√√√√∏l+1
i=1

(
1+ r

9i

)ζi
−
∏l+1
i=1

(
1− r

9i

)ζi

∏l+1
i=1

(
1+ r

9i

)ζi
+
∏l+1
i=1

(
1− r

9i

)ζi
,

(
q√2
)∏l+1

i=1
ζi
9i∏l+1

i=1
q
√(

2− q
9i

)ζi
+
∏l+1
i=1

ζi
9i

⟩


where

∑l+1
i=1 ζi = 1.

Thus, Equation (13) hold for l + 1. By mathematical
induction we conclude that the result is true for all values
of k .
Theorem 3: If the p, q, r-SFNs 9i =

(
9i , 9i , 9i

)
(i

= 1, 2, . . . , k) are identical, i.e., be a 9i = 9

for all i, where 9 = ( 9 , 9 , 9), then p, q, r −

SFEWA (91, 92, . . . , 9k) = 9.

Proof. As 9i = 9, for all i, then we obtain

p, q, r − SFEWA (91, 92, . . . , 9k)

=



⟨
p

√√√√∏k
i=1

(
1+ p

9i

)ζi
−
∏k
i=1

(
1− p

9i

)ζi

∏k
i=1

(
1+ p

9i

)ζi
+
∏k
i=1

(
1− p

9i

)ζi
,

r

√√√√ ∏k
i=1

(
1+ r

9i

)ζi
−
∏k
i=1

(
1− r

9i

)ζi

∏
=1

(
1+ r

9i

)ζi
+
∏k
i=1

(
1− r

9i

)ζi
,

(
q√2
)∏k

i=1
ζi
9i∏k

i=1
q
√(

2− q
9i

)ζi
+
∏k
i=1

ζi
9i

⟩



=



⟨
p

√√√√√(
1+ p

9i

)∑k
i=1 ζi

−

(
1− p

9i

)∑k
i=1 ζi

(
1+ p

9i

)∑k
i=1 ζi

+

(
1− p

9i

)∑k
i=1 ζi

,

r

√√√√√(
1+ r

9i

)∑k
i=1 ζi

−

(
1− r

9i

)∑k
i=1 ζi

(
1+ r

9i

)∑k
i=1 ζi

+

(
1− r

9i

)∑k
i=1 ζi

,

(
q√2
) ∑k

i=1 ζi
9i

q

√(
2− q

9i

)∑k
i=1 ζi

+

∑k
i=1 ζi

9i

⟩



=



⟨
p

√(
1+ p

9i

)
−

(
1− p

9i

)
(
1+ p

9i

)
+

(
1− p

9i

) ,
r

√(
1+ r

9i

)
−

(
1− r

9i

)
(
1+ r

9i

)
+

(
1− r

9i

) ,(
q√2
)

9i

q
√(

2− q
9i

)
+ 9i

⟩


=
(

9 , 9,, 9

)
= 9

Therefore, the result can be derived from the information
provided.
Theorem 4: Let 9i =

(
9i , 9i , 9i

)
(i = 1, 2, . . . , k)

be a collection of p, q, r−SFNs. If 9−
= min {91, 92, . . . ,

9
}
and 9+

= max {91, 92, . . . , 9k}, then 9−p, q, r −

SFEWA (91, 92, . . . , 9K ) ≼ 9+.
Proof. Straightforward.
Theorem 5: Let � be a positive real number. Then,

we have p, q, r − SFEWA (�91, �92, . . . , �9m) =

�(p, q, r − SFEWA (91, 92, . . . , 9m)

Proof. It is simple to demonstrate.
Theorem 6: Let {9i|i = 1, 2, . . . , k} and

{
9 ′

i|i = 1, 2,
. . . , k} be two sets of p, q, r−SFNs, where of 9i =(

9i , 9i , 9i

)
and 9 ′

i =

(
′
9i ,

′
9i ,

′
9i

)
for i =

1, 2, . . . , k . If 9i ≼ ′
9i
, 9i ≼ ′

9i and 9i ≽ ′
9i

for all i, then

p, q, r − SFEWA (91, 92, . . . , 9k)

≼ p, q, r − SFEWA
(
9 ′

1, 9
′

2, . . . , 9
′
k
)

(15)
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Proof.Given that 9i ≼ ′
9i

, 9i ≼ ′
9iand 9i ≼ ′

9i

for all i = 1, 2, . . . , k then we have,

⟨
p

√√√√∏k
i=1

(
1+ p

9i

)ζi
−
∏k
i=1

(
1− p

9i

)ζi

∏k
i=1

(
1+ p

9i

)ζi
+
∏k
i=1

(
1− p

9i

)ζi
,

r

√√√√√∏k
i=1

(
1+ r

9

)ζi
−
∏k

=1

(
1− r

9

)ζi

∏k
i=1

(
1+ r

9i

)ζi
+
∏k
i=1

(
1− r

9i

)ζi
,

(
q√2
)∏k

i=1
ζi
9i∏k

i=1
q
√(

2− q
9i

)ζi
+
∏k
i=1

ζi
9i

⟩


(
1 +

p
9i

)ζi

≼
(
1 −

′
9i

)ζi
⇒

∏k
i=1

(
1 +

p
9i

)ζi

∏k
i=1

(
1 +

p
9i

)ζi

≼

∏k
i=1

(
1 −

′
9i

)ζi∏k
i=1

(
1 − ′

9i

)ζi
⇒

p

√√√√√√
∏k

i=1

(
1 +

p
9i

)ζi

∏k
i=1

(
1 +

p
9i

)ζi
≼ p

√√√√∏k
i=1

(
1 − ′

9i

)ζi∏k
i=1

(
1 − ′

9i

)ζi ,
×
(
1 +

r
9i

)ζi
≼
(
1 −

′
9i

)ζi
⇒

∏k
i=1

(
1 +

r
9i

)ζi

∏k
i=1

(
1 +

r
9i

)ζi

∏k
i=1

(
1 −

′
9i

)ζi∏k
i=1

(
1 − ′

9i

)ζi
⇒

r

√√√√√√
∏k

i=1

(
1 +

r
9i

)ζi

∏k
i=1

(
1 +

r
9i

)ζi
≼ r

√√√√∏k
i=1

(
1 − ′

9i

)ζi∏k
i=1

(
1 − ′

9i

)ζi .
Similarly, we can prove(

q
√
2
)∏k

i=1
ζi
9i∏k

i=1
q

√(
2− q

9i

)ζi
+
∏k

i=1
ζi
9i

≼

(
q
√
2
)∏k

i=1
′ζi
9i∏k

i=1
q

√(
2− ′q

9i

)ζi
+
∏k

i=1
′ζi
9i

.

Thus,

p

√√√√√√
∏k

i=1

(
1 +

p
9i

)ζi

∏k
i=1

(
1 +

p
9i

)ζi
−

r

√√√√√√
∏k

i=1

(
1 +

r
9i

)ζi

∏k
i=1

(
1 +

r
9i

)ζi

−


(

q
√
2
)∏k

i=1
ζi
9i∏k

i=1
q

√(
2− q

9i

)ζi
+
∏k

i=1
ζi
9i


q

≼

 p

√√√√√√
∏k

i=1

(
1 −

′
9i

)ζi

∏k
i=1

(
1 −

′
9i

)ζi


p

−

 r

√√√√√√
∏k

i=1

(
1 −

′
9i

)ζi

∏k
i=1

(
1 −

′
9i

)ζi


r

−


(

q
√
2
)∏k

i=1
′ζi
9i∏k

i=1
q

√(
2− ′q

9i

)
+
∏k

i=1
′ζi
9i


q

Let θ = p, q, r − SFEWA (91, 92, . . . , 9k) and θ ′
=

p, q, r − SFEWA
(
9 ′

1, 9
′

2, . . . , 9
′
k

)
. Then by Definition 11,

we have S (θ) ≤ S
(
θ ′
)
.

If Scc (9i) ≼ Scc
(
9 ′
i

)
then we have, θ ≼ θ ′,

i.e., p, q, r − SFEWA (91, 92, . . . , 9k) ≼ p, q −

SFEWA
(
9 ′

1, 9
′

2, . . . , 9
′
k

)
.

Scc (9i) = Scc
(
9 ′
i
)
then, we get,

p

√√√√√√
∏k

i=1

(
1 +

p
9i

)ζi

∏k
i=1

(
1 +

p
9i

)ζi
−

r

√√√√√√
∏k

i=1

(
1 +

r
9i

)ζi

∏k
i=1

(
1 +

r
9i

)ζi

−


(

q
√
2
)∏k

i=1
ζi
9i∏k

i=1
q

√(
2− q

9i

)ζi
+
∏k

i=1
ζi
9i


q

=

 p

√√√√√√
∏k

i=1

(
1 −

′
9i

)ζi

∏k
i=1

(
1 −

′
9i

)ζi


p

−

 r

√√√√√√
∏k

i=1

(
1 −

′
9

)ζi

∏k
i=1

(
1 −

′
9

)ζi


r

−


(

q
√
2
)∏k

i=1
′ζi
9i∏k

i=1
q

√(
2− ′q

9i

)ζi
+
∏k

=1
′ζi
9i


q

then, by condition 99i ≼ 9 ′
9i , ϕ9i ≼ ϕ′

9i and 29i ≼ 2′
9i

for all i = 1, 2, . . . , k we have p

√√√√√√
∏k

i=1

(
1 +

p
9i

)ζi

∏k
i=1

(
1 +

p
9i

)ζi


p

=

 p

√√√√∏k
i=1

(
1 − ′

9i

)ζi∏k
i=1

(
1 − ′

9i

)ζi
p

,

 r

√√√√√√
∏k

i=1

(
1 +

p
9i

)ζi

∏k
i=1

(
1 +

p
9i

)ζi


r

=

 r

√√√√∏k
i=1

(
1 − ′

9i

)ζi∏k
i=1

(
1 − ′

9i

)ζi
r

and 
(

q
√
2
)∏k

i=1
ζi
9i∏k

i=1
q

√(
2− q

9i

)ζi
+
∏k

i=1
ζi
9i


q
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=


(

q
√
2
)∏k

i=1
′ζi
9i∏k

i=1
q

√(
2− ′q

9i

)
+
∏k

i=1
′ζi
9i


q

Therefore, from Equation (10), we have

p

√√√√√√
∏k

i=1

(
1 +

p
9i

)ζi

∏k
i=1

(
1 +

p
9i

)ζi
−

r

√√√√√√
∏k

i=1

(
1 +

r
9i

)ζi

∏k
i=1

(
1 +

r
9i

)ζi

−


(

q
√
2
)∏k

i=1
ζi
9i∏k

i=1
q

√(
2− q

9i

)ζi
+
∏k

i=1
ζi
9i


q

=

 p

√√√√√√
∏k

i=1

(
1 −

′
9i

)ζi

∏k
i=1

(
1 −

′
9i

)ζi


p

+

 r

√√√√√√
∏k

i=1

(
1 −

′
9i

)ζi

∏k
i=1

(
1 −

′
9i

)ζi


r

+


(

q
√
2
)∏k

i=1
′ζi
9i∏k

i=1
q

√(
2− ′q

9i

)ζi
+
∏k

i=1
′ζi
9i


q

=

 p

√√√√√√
∏k

i=1

(
1 −

′
9i

)ζi

∏k
i=1

(
1 −

′
9i

)ζi


p

+

 r

√√√√√√
∏k

i=1

(
1 −

′
9i

)ζi

∏k
i=1

(
1 −

′
9i

)ζi


r

+


(

q
√
2
)∏k

i=1
′ζi
9i∏k

i=1
q

√(
2− ′q

9i

)ζi
+
∏k

i=1
′ζi
9i


q

(16)

And hence p, q, r − SFEWA (91, 92, . . . , 9k) p, q, r −

SFEWA
(
9 ′

1, 9
′

2, . . . , 9
′
k

)
.

B. p, q, r− SF EINSTEIN GEOMETRIC OPERATOR
Definition 20: Let 9i =

(
9i , 9i , 9i

)
(i = 1, 2, . . . ,

k) be a family of p, q, r-SFNs with weight vector
ζi (i = 1, 2, . . . , k) such that

∑k
i=1 ζi = 1 and ζi ∈ [0, 1].

Then the geometric operator for p, q, r−SF numbers is a
mapping 3k

→ 3 and can be defined as follows:

p, q, r − SFEWG (91, 92, . . . , 9k) = ⊗
k
i=1 (9i)

ζi (17)

Theorem 7: The aggregated value of a collection of
p, q, r−SFNs 9i =

(
9i , 9i , 9i

)
(i = 1, 2, . . . , k)

utilizing p, q, r − SFEWG operator is still a p, q−SFN, and
can be defined as follows:

p, q, r − SFFWG (91, 92, . . . , 9k) = ⊗
k
i=1 (9i)

ζi

=



⟨

(
p√2
)∏k

i=1
ζi
9i∏k

i=1
p
√(

2− p
9i

)ζi
+
∏k
i=1

ζi
9i

,

⟨

(
r√2
)∏k

i=1
ζi
9i∏k

i=1
r
√(

2− r
9i

)ζi
+
∏k
i=1

ζi
9i

,

q

√√√√∏k
i=1

(
1+ q

9i

)ζi
−
∏k
i=1

(
1− q

9i

)ζi

∏k
i=1

(
1+ q

9i

)ζi
+
∏k
i=1

(
1− q

9i

)ζi
, ⟩


(18)

Proof. Straightforward.
Theorem 8: If the p, q, r−SFNs 9i =

(
9i , 9i , 9i

)
(i = 1, 2, . . . , k) are identical, i.e., be a 9i = 9

for all i, where 9 = ( 9 , 9 , 9), then p, q, r −

SFEWG (91, 92, . . . , 9k) = 9.
Theorem 9: Let 9i =

(
9i , 9i , 9i

)
(i = 1, 2, .., k) be

a collection of p, q−SFNs. If 9−
= min {91, 92, . . . , 9k}

and 9+
= max {91, 92, . . . , 9k}, then 9−p, q, r −

SFEWG
(
91, 92, . . . , 9

)
9+.

Theorem 10: Let {9i|i = 1, 2, . . . , k} and
{
9 ′

i|i = 1, 2,
. . . , i} be two sets of p, q, r−SFNs, where of 9i =(

9i , 9i , 9i

)
and 9 ′

i =
(

′
9i ,

′
9i ,

′
9i

)
for i =

1, 2, . . . , k . If 9i ≼ ′
9i , 9i ≼ ′

9i and 9i ≼ ′
9i

for all i, then p, q, r − SFEWG (91, 92, . . . , 9k) ≼ p, q, r −

SFEWG
(
9 ′

1, 9
′

2, . . . , 9
′
k

)
.

IV. APPLICATION
To tackle the MADM problem, we can use the proposed
AOs, which consider the weight of unknown attributes and
attribute values in the form of p, q, r−SFNs. Consider the set
of distinct alternatives denoted as 1 = {11, 12, . . . ,1S},
which require analysis concerning precise criteria, implied
as 2 = {21, 22, . . . ,2t }. The first step is determining the
weights for the various attributes using the entropy technique,
which compares attributes and measures uncertainty in the
decision matrix. This gives each attribute a weight vector.
Let the weight vector corresponding to the attribute 2j(j =

1, 2, . . . , t) be j where j ≻ 0 and
∑t

j=1 j =

1. The decision matrix is then built using the evaluation
values of every alternative with respect to each attribute.
The preference values can be represented as p, q, r−SFNs.
Equation (19) represent the decision matrix which contain the
information provided by the decision maker in the form of
p, q, r−SFNs.

ε =


11 12 · · · 1t

21

...

22

...

· · ·

. . .

2t

...

s s2 · · · st

 (19)

In this matrix, the rows represent the possibilities, while
the columns represent the criteria that are considered by
the decision-makers. In this context, the term ij =(

ij
,

ij
,

ij

)
represent a p, q, r−SFN such that(

ij

)q
+

(
ij

)r
+

(
ij

)q
1 for all p, q and r0.
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A. ALGORITHM
Step 1. Construct a decision matrix E as presented in
Equation (19). Where all the data provided by the decision-
makers are in the form of p, q, r−SFNs.
Step 2. The relative importance of criteria for p, q, r−

spherical fuzzy information may be determined using a
variety of approaches, one of which is the Analytic Hierarchy
Process (AHP) [46]. AHP offers a systematic approach to
calculating weights based on pairwise comparisons. In this
paper we used AHP to determine the weights of criteria.

Step 3. Cost (C) and benefit (B) considerations are
essential to decision-making processes across industries.
In business, project management, and government, cost-
benefit assessments guide choices by evaluating overall costs
against projected benefits, guaranteeing financial viability
and optimizing resource allocation. Healthcare decisions are
based on health economic evaluations, which balance treat-
ment costs and expected outcomes. Environmental impact
assessments balance costs and benefits to guide legislation
and promote sustainability. Businesses consider expenses
as well as possible market rewards when developing and
selling products. Technology adoption decisions weigh early
investment against long-term rewards. Risk management
performs cost-benefit calculations to evaluate risk mitigation
techniques. When a decision matrix includes both cost and
benefit criteria, it is important to normalize the information
contained inside the matrix using the methodology described
in Equation (20). If all attributes in the decision matrix E are
of the benefit type, then this step can be skipped to normalize.

R =

{ (
yij , yij , yij

)
forj ∈ B(

yij , yij , yij
)
forj ∈ C

(20)

Step 4. Use the p, q, r − SFEWAor p, q, r − SFEWG
operator to calculate the integrated values of each alternative.

p, q, r − SFEWA (91, 92, . . . , 9k)

=



⟨
p

√√√√∏k
i=1

(
1+ p

9i

)ζi
−
∏k
i=1

(
1− p

9i

)ζi

∏
i=1

(
1+ p

9i

)ζi
+
∏k
i=1

(
1− p

9i

)ζi
,

r

√√√√∏k
i=1

(
1+ r

9i

)ζi
−
∏k
i=1

(
1− r

9i

)ζi

∏k
i=1

(
1+ r

9i

)ζi
+
∏k
i=1

(
1− r

9i

)ζi
,

(
q√2
)∏k

i=1
ζi
9i∏k

i=1
q
√(

2− q
9i

)ζi
+
∏k
i=1

ζi
9i

⟩


p, q, r − SFEWG (91, 92, . . . , 9k)

=



⟨

(
p√2
)∏k

i=1
ζi
9i∏k

i=1
p
√(

2− p
9i

)ζi
+
∏k
i=1

ζi
9i

,

(
r√2
)∏k

i=1
ζi
9i∏k

i=1
r
√(

2− r
9i

)ζi
+
∏k
i=1

ζi
9i

,

q

√√√√∏k
i=1

(
1+ q

9i

)ζi
−
∏k
i=1

(
1− q

9i

)ζi

∏k
i=1

(
1+ q

9i

)ζi
+
∏k
i=1

(
1− q

9i

)ζi
, ⟩



Step 5. Calculate the score value for each aggregated value
using Equation (10).

Step 6. Determine the best alternative using the following
steps:

i The alternative that possesses the highest score value
would be regarded as the best choice.

ii If there are multiple alternatives with the same score
values, use Equation (11) to evaluate the accuracy
function and compare these alternatives.

iii If multiple alternatives have equal scores and accuracy
values, any of them can be selected as the best option.

V. ILLUSTRATIVE EXAMPLE
We are dealing with a case where some experts give their
opinion on several product development projects on several
attributes. To obtain a complete assessment, we apply the
suggested mathematical method to merge the experts’ points
of view while considering their relative expertise. The
flowchart of the proposed model is presented in Figure 3.

FIGURE 3. Design of the projected MCDM scheme.

A. CASE STUDY
Suppose a scenario where a team of three designers, denoted
as X (1), X (2), and X (3), is responsible for forming five
different logo designs as follows:

• Sparky Energy (11)
• Flora Beauty (12)
• Pluto Space (12)
• Artify Studio (12)
• Brainy Education (12)
These designers are expected to create these logos based

on four criteria:
• Creativity (CR) Evaluating the originality and unique-
ness of the logo design.

• Relevance (RE) Assessing the suitability and alignment
of the logo design with the brand identity and message.

• Aesthetics (AE) Judging the visual appeal and attractive-
ness of the logo design.

• Usability (US) Measuring the adaptability and versa-
tility of the logo design across different platforms and
contexts.

To account for the preferences of each designer, a vector
of weights ω = (0.25, 0.4, 0.35) is assigned to X (1), X (2),
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and X (3), respectively. The evaluation matrices R(1), R(2),
and R(3), generated using experts evaluation method with
parameters p = 2 and q = 3 are presented in Tables 1-3.
Themain goal in this scenario is tomake a rational decision

regarding the best logo design for each brand. To achieve this,
a MAGDM framework is proposed. The main objective of
MAGDM approach is to enable a comprehensive comparison
of the various alternatives based on the criteria important
to logo design decision making. These criteria include
creativity, relevance, aesthetics, and usability. By following a
systematic approach, logo design teams aim to improve their
decision-making process and increase the satisfaction of their
clients.

TABLE 1. Decision matrix provided expert R(1).

TABLE 2. Decision matrix provided expert R(2).

TABLE 3. Decision matrix provided expert R(3).

The data do not need to be standardized since each of the
four characteristics belongs to similar categories. This means
that the values can be compared directly without the need
for normalization or scaling methods. By not standardizing
the data, it is easier to analyze and compare the attributes
since they are already in the same range and the same units.
However, it is essential to mention that if the attributes were
not similar in nature, standardization would be necessary to
ensure that each attribute has equal weight in the decision-
making process. However, in this case, the absence of the
need for standardization facilitates the MAGDM process and
speeds up the decision-making procedure.

The weight vector for the attributes calculated by AHP is
given by: = (0.2515, 0.2017, 0.1996, 0.1627, 0.1845).
It can be observed that the total of j(j = 1, 2, 3, 4, 5) is
equal to one.

B. BY USING p, q, r− SFEWA OPERATOR FOR p = 2 AND
q = 3
Table 4 presents the aggregated values of alternatives by uti-
lizing the p, q, r−SFEWAoperator and assuming the weights
of attributes is (0.2515, 0.2017, 0.1996, 0.1627, 0.1845).

TABLE 4. The aggregated values of experts by using p, q, r−SFEWA
operator.

Again using p, q, r−SFEWA operator to calculate the
overall integrating values of each alternative and summarized
in Table 5.

TABLE 5. Overall rating values of alternatives.

Table 5 makes it clear that the ranking is determined by
the score values and goes like this: a1 is clearly the most
advantageous choice out of the options that are offered since
11 ≻ 15 ≻ 12 ≻ 13 ≻ 14. This rating highlights option
11’S (Sparky Energy) beneficial position inside the decision
framework and emphasizes how much better it is than the
other options. The graphical representation of score values
is presented in Figure 4.

C. BY USING p, q, r− SFEWG OPERATOR FOR p = 2 AND
q = 3
Using the p, q, r−SFEWG operator and to aggregate the
rating values of each alternative. We used the attribute
weight vector (0.2515, 0.2017, 0.1996, 0.1627, 0.1845). The
aggregated values are listed in Table 6.

The assembled data in Table 6 is subjected to another
round of aggregation, with the results given simply in Table 7.
By applying Equation (11) to calculate the score values of
alternatives.

Table 1 analysis shows that option 11 continuously retains
the highest score in all scenarios. However, it is remarkable
that the score values of alternatives 13 and 14 overlap for
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FIGURE 4. Score values of available alternatives.

TABLE 6. The aggregated values of alternative by using p, q, r−SFEWG
operator.

TABLE 7. Aggregated values and score values of alternatives.

p = 2, q = 3, and r = 3. As a result, the
accuracy values of these alternatives can be determined
using Equation (12), resulting in Acc (13) = 0.2490 and
Acc (14) = 0.2816. Therefore, the overall ranking order of
the available alternatives is 11 ≻ 15 ≻ 12 ≻ 14 ≻ 13.

D. THE IMPACT OF PARAMETERS p, q AND r OVER SCORE
VALUES AND RANKING ORDER
As the proposed AOs retain symmetry with respect to the
parameters p, q and r , an investigation of the influence of
these factors on the final ranking of alternatives is carried
out. This study uses simultaneous variations of p and q, and

the associated score values, as well as the resulting ranking
order, are shown in Tables 8 and 9. Examining these tables
reveals that providing different sets of parameters p and
q yields varied score values for the aggregated numbers.
Notably, despite these adjustments, the alternate rankings
remain intact. Note that for this investigation we used
p, q, r−SFEWA operator.

TABLE 8. The impact of p over decision results.

This feature of the suggested operators is more important
in real decision-making situations. For instance, observations
show that when the parameters grow, so do the score values
of the alternatives, providing decision-makers with a more
positive outlook. Therefore, it would be appropriate to give
these parameters greater values throughout the aggregation
process when decision-makers have an optimistic view. The
influence of parameter p is shown in Figure 5.

FIGURE 5. The influence of parameter p.

TABLE 9. The impact of q over score values.

On the other hand, lower values might be assigned to these
criteria when decision-makers have a gloomy perspective,
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which will reduce the overall rating values. However, it is
significant that the optimal option remains stable, suggesting
that the results are unbiased and unaffected by the optimism
or pessimism of those making the decisions. As such, the
ranking results are considered to be trustworthy.

E. VALIDITY TEST
To highlight the adaptability of our proposed approach in
various scenarios, we applied evaluation protocols developed
by Wang et al. [26] as follows:

Step 1. ‘‘Assuming constant relative weights of criteria,
substituting lower rated values for suboptimal options should
not impact the identification of the optimal alternative. Thus,
the top ranked alternative would remain unchanged.

Step 2. The procedure should be transitive.
Step 3. If a specific issue is divided into smaller problems,

applying the same decision-making method should maintain
the overall order of options as the original ranking.’’

Validity test using criterion 1. The ranking order obtained
by our proposed approach is

11 ≻ 15 ≻ 12 ≻ 13 ≻ 14. To test
criterion 1, we replaced the non-optimal alternative 14 with
the worst alternative 1∗

4, assuming rating values of 1∗

4 to be
(0.20, 0.15, 0.50), (0.10, 0.10, 0.60), (0.15, 0.10, 0.40) and
(0.30, 0.15, 0.80). Following the observation, our approach
yielded aggregated values are Sco

(
1∗

4

)
= 0.4128,

Sco (11) = 0.5696, Sco (12) = 0.5341, Sco (13) = 0.5101,
Sco (13) = 0.5101 and Sco (15) = 0.5446 where we used
the parametric values p = 2 and q = 3. The ranking order
remained 11 ≻ 15 ≻ 12 ≻ 13 ≻ 14, with the best
alternative remaining consistent. Thus, our approach provides
consistent findings with respect to criterion 1.

F. COMPARATIVE STUDIES
The suggested MAGDM approach is compared against
a number of current operators in this section, including
T-spherical fuzzy aggregation operators [47], [48], [49],
p, q, r−spherical fuzzy aggregation operators [25], [50], and
spherical fuzzy aggregation operators [51], [52]. Table 10
combines the ideal score values with the options’ order of
ranking. This table’ analysis shows that the best option
is consistent with the results of the suggested strategy,
demonstrating the method’ resilience when compared
against cutting-edge techniques.

TABLE 10. Comparison.

Thus, the p, q, r−spherical fuzzy set framework’s sug-
gested generalized Einstein aggregation operators provide

a new and adaptable approach to dealing with uncertainty
in decision-making issues. Due to their design for the
p, q, r−SP environment, these operators provide a more
flexible and effective means of determining the best choice
in real-world scenarios. The graphical view of score values
obtained by different existing approaches is presented in
Figure 6.

FIGURE 6. Score values of available alternative obtained by existing
approaches.

G. ADVANTAGES
In compared to preceding methodologies, the suggested
approach to decision-making allows for more flexibility. This
is the outcome of its widespread application in a variety
of scenarios and issue areas. The approach extends beyond
both flexible systems and constraints. This flexibility enables
decision-makers to adjust and personalize the decision-
making process based on their needs and preferences.
The suggested decision-making method clearly allows for
more flexibility. By using parameters like p, q, and r ,
this enhancement is made possible. Decision-makers may
customize and modify the decision-making process to suit
their own requirements and preferences thanks to these
features. Consequently, the proposed technique yields a
personalized and adaptable foundation. The widespread use
of this framework results in a strong, adaptable framework
that can manage a variety of decision-making scenarios. This
resilience ensures dependable and accurate outcomes under a
range of conditions.

H. LIMITATIONS
• Using p, q, r−SF Einstein AOs with parameterized
parameters (p, q and r) might complicate procedures for
making decisions.

• Implementing p, q, r−SF Einstein AOs and algorithms
for multi-criteria DM may be time-consuming and
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computationally challenging, particularly in substantial
scenarios with multiple choices.

VI. CONCLUSION
In this paper, we defined novel p, q, r−SF operation laws
using Einstein sum and Einstein product, which are more
elastic and adjustable than the existing ones. Based on
these operational laws a series AOs such as p, q, r−SFEWA
and p, q, r−SFEWG are defined to integrate p, q, r−SF
information. Furthermore, some properties and special cases
of the proposed AOs are discussed in detail. By using these
AOs, we constructed a MAGDM approach to deal to real-life
DMproblems. To illustrate the applicability and effectiveness
of the technique we presented a real-life example, where we
use the proposed operators to evaluate logo design, which
is a vital part of product development. The outcomes of the
proposed method are compared with some existing approach
to validation. It the end some advantages and limitations of
the proposed approach are discussed.
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