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ABSTRACT Opver the past decade, an abundance of research has been conducted in the area of agricultural
technology and innovations. The Internet of Things (IoT) has demonstrated its ability to connect numerous
agricultural equipment, sensors, and specialists, boosting agricultural procedures in off-the-grid regions.
Agriculture has experienced considerable improvements in production, cost reductions, service accessibility,
and operational efficiency. With an emphasis on security, developments and trends in the sector, and
technological implementation, this research paper offers an up-to-date analysis of existing and projected
IoT applications in agriculture. In this article, enabling technologies, agricultural applications based on
cutting-edge machine learning models, and services are all examined in relation to the development of
IoT deployment in tackling diverse agricultural concerns. In the IoT-based agriculture system, potential
challenges and limitations are also addressed. In its conclusion, this research provides an extensive review
of the various aspects of IoT in agriculture, with the goal of empowering future researchers enthusiastic to
make contributions to and advancement in their quest for a more in-depth comprehension of this field of
study. A total of 96 papers were chosen for the selection from 2018 to 2023, and each was categorized using
predetermined standards. The research’s results have been thoroughly examined, providing an overview of
IoT in agriculture.

INDEX TERMS Systematic literature review (SLR), IoT, smart agriculture, crop disease identifications,
sensors, communication technologies, applications, machine learning, deep learning, security, blockchain.

I. INTRODUCTION

The Internet of Things (IoT) has been implemented in
a variety of applications, including smart agriculture [1],
smart factories [2], personal gadgets [3], smart cities and
homes [4], [5], smart health systems [6], connected trans-
portation [7], and smart unmanned aircraft [8]. The Internet
of Things enables real-world objects to interact with one
another, exchange data, and make decisions collaboratively.
Using its underlying technologies, such as communication
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technologies, Internet protocols, applications, and sensor
networks, the IoT transforms conventional objects into
intelligent ones.

Agriculture serves as the backbone of survival for mankind
since it is the primary source of grains for food and other
basic resources. The development of the nation’s economy is
significantly impacted by it. Additionally, it offers individuals
numerous and plentiful opportunities for employment. The
long-term stability of the country’s economy depends on
the expansion of the agriculture sector. However, a lot of
farmers keep cultivating their land using outdated techniques,
which causes an insufficient yield of agricultural products.
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Even when technology was employed and human labor
was substituted by automatic machinery, the yield increased
[9]. Significant developments have been achieved over the
evolution of humanity to maximize agricultural productivity
with minimal assets and worker demands. Nonetheless, the
rapid increase in population has never enabled both supply
and demand to be equated during all of these eras.The
rapidly expanding global population is projected to reach
approximately 10 billion by 2060, a 25% increase from
today’s figure, according to the united nations survey [10].
Nonetheless, due to population growth, consumer demand
for edible grains has increased dramatically in recent
years. Unluckily, the consumption of grain is indirectly
linked to population expansion. Consequently, the worldwide
production of food will need to be increased in the
forthcoming years.To satisfy the demands of this larger, more
urban, and wealthier population, agricultural production
needs to quadruple by 2050 [11]. More specifically, the
present annual wheat output of 2.2 billion tons should
be increased as needs grow to almost 3.0 billion tons,
and yearly livestock production should increase by over
225 million tons in order to meet the consumption of
500 million tons [12].The IoT has currently established a
big influence on the agricultural sector, with an enormous
variety of sensors employed to accomplish different smart
agriculture purposes. A significant amount of research has
been conducted in the agricultural field with Internet of
Things technologies for implementing smart agricultural
solutions. Every year, the number of IoT applications rises
dramatically. By investigating numerous challenges and
obstacles in farming, the IoT has contributed to a big shift in
the field of agriculture [13]. With the advent of technological
advances, it is now predicted that farmers and technological
experts will leverage IoT to overcome challenges that
farmers face, such as water shortages, managing costs, and
productivity challenges. All of these concerns have been
addressed by cutting-edge IoT technologies, which have
provided solutions to boost production while decreasing
costs [14].The worldwide smart farming sector is predicted
to grow to $21 billion by 2030, up from $6.5 billion in 2019
[15]. Smart agriculture is expected to become a significant
internet of things domain in countries that export agricultural
products. Internet of Things applications for smart agriculture
have recently been introduced employing wireless sensor
networks (WSNs), including irrigation sensor networks [16],
soil farming precision [17], frost event prediction [18], smart
agriculture precision [19].Research carried out on wireless
sensors Networks allow users to gather data from sensors
and transmit it to central servers [20]. Data received by
sensors provides insight into various environmental variables,
allowing the entire system to be effectively monitored.
Monitoring weather conditions or yields of crops is not just
one consideration for crop evaluation; instead, it includes
numerous additional factors that impact crop productivity,
such as land and field management, crop and soil monitoring,
motion of a not-wanted object, attacks by wild creatures, and
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thefts, among others [21], [22]. Furthermore, IoT enables a
well-planned use of limited resources, ensuring that optimal
utilization of IoT increases productivity.

There are six significant challenges to developing an
environmentally friendly IoT-based agriculture system: hard-
ware, analytics of data, repair and maintenance, connectivity,
infrastructure, security of data, and privacy. The most
significant hardware issues are around the selection of sensors
and distance for IoT devices. As a result, there are several
sensor categories that may be utilized in [oT applications (for
example, pressure sensors, temperature sensors, chemical
sensors,proximity sensors, humidity sensors, water quality
sensors, gas sensors, and so on) [23]. The analytics of data
issue entails applying predictive algorithms and machine
learning (e.g., deep learning methods) to IoT data in order
to achieve a nutritional solution for smart agriculture [24].
The repair and maintenance issue requires frequent sensor
checks for each IoT device, which can be easily harmed in
the agricultural field.The connectivity issues are related to
the variety of wireless technologies (e.g., 4G, 5G, Zigbee,
WiFi, LoRa, and 6LowPan) that are capable of connecting
sensors spread across a vast region in agriculture [25].
The infrastructure issues are related to the setting up
and implementation of IoT network architecture employing
cutting-edge technologies such as fog computing, cloud
computing, virtualization of networks, and more [26]. The
key challenge in the development of environmentally friendly
IoT-based agriculture is not physical backing; it’s more about
ensuring both security and privacy. Through the widespread
implementation of IoT-based agriculture, an attacker might
notice new ways to breach the system (for example, through
a fake data injection attack), generating significant security
and privacy concerns and advocating for secure sharing of
information in the smart agricultural field [27].The taxonomy
of the IoT based agriculture system is depicted in Fig.1.

The aim of the proposed study is to publish the results
of a systematic literature review (SLR) in the field of IoT
in agriculture. On this subject, numerous research studies
have recently been published. The state-of-the-art research is
gathered, examined, and summarized in this SLR. This SLR
has been carried out to gather and integrate recent practical
studies with scientific panoramas so that other scientists and
practitioners can find directions for implementing IoT in
agriculture. This SLR research is the most comprehensive that
has been carried out based on the potential of IoT applications
in agricultural systems. The major contributions of this study
are outlined below:

o According to our research investigation, this is the
first survey that offers extensive comparisons of the
IoT-based applications for agriculture based on research
that has been previously published.

o The foreseeable future of smart agriculture is addressed
in this study, along with its magnificent potential to
change people’s lifestyles by delivering food with high
yields. Analyzing the most recent global state-of-the-
art developments in IoT-based agriculture and also
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FIGURE 1. Taxonomy internet of things based agriculture system.

highlighting the requirements for effectively implement-
ing these innovative technologies.

o The paper discusses commercially available agriculture-
based IoT sensors and devices, communication tech-
nologies, and infrastructure for the agriculture-based
Internet of Things.

o The paper highlights risk models, security and privacy
challenges, and blockchain-based Agriculture IoT secu-
rity solutions in depth, focusing on IoT-based agriculture
applications as well as future research directions for
smart agriculture systems.

Overall, these contributions offer a comprehensive and
forward-looking analysis of IoT-based applications in agri-
culture, covering technological advancements, implementa-
tion requirements, security challenges, and future research
directions. This holistic perspective distinguishes it from
existing surveys by providing novel insights and addressing
key aspects that may have been overlooked in previous
literature. This paper is organised as follows: Section II
discusses research methodology with relevant research
questions, search strategy, inclusion and exclusion cri-
teria, screening and selection, and quality assessment.
Section III highlights the recent developments and trends in
IoT-based smart agriculture systems. Section IV describes
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the architecture of an IoT based agriculture system.
Section IV-B describes the communication technologies
of an IoT based agriculture system. Section V discusses
security and privacy challenges and solutions for smart
agriculture. Section VI discusses state of the art machine
learning models for smart agriculture systems applications.
Section VII discusses Research open challenges and future
research directions Finally, Section VIII concludes the

paper.

Il. RESEARCH METHODOLOGY

A systematic literature review (SLR) is a methodical and
structured way of finding, assessing, and interpreting prior
research that is pertinent to a certain research question
in software engineering, according to [28] and [29]. The
literature has suggested a number of strategies for conducting
an SLR. This systematic review was carried out in accordance
with the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses reporting checklist [30]. The research
includes the development of Research Objectives, Research
Questions with motivation, a detailed Search String strategy,
screening of the searched results, Data extraction, and
evaluation, as illustrated in Fig.2
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FIGURE 2. Key steps for systematical literature review [28].

A. RESEARCH OBIJECTIVE

The main objective of this SLR is to examine and summarise
the state of the art in the subject of smart agriculture. In order
to accomplish this, prominent research objectives (ROs) have
been established to direct the review procedure and serve
a well-structured framework for analysis and interpretation.
To address important elements of smart agriculture, the
following research goals have been established that have been
listed in Table 1:

TABLE 1. Table of research objectives for loT based agriculture SLR.

Number Objectives

RO1 To assess the effectiveness and utilisation of IoT
sensors in smart agriculture

RO2 To evaluate the communication technologies em-
ployed in IoT-based smart agriculture systems.

RO3 To investigate the security and privacy considerations
in IoT-based smart agriculture.

RO4 To analyse the applications and Deep learning mod-

els widely used in smart agriculture.

B. RESEARCH QUESTIONS

Creating research questions is essential to carrying out
a systematic literature review. Research questions provide
the review with a distinct and focused direction, directing
everything from study selection to data analysis. Reviewers
can limit the scope of the review and make sure that only
relevant articles are included by developing clearly stated
research questions. The following Table 2 shows the research
questions (RQs) that have been created for the study. These
research topics allow for the categorization of current IoT
research in agriculture and the identification of potential
future study fields.

C. SEARCH STRING

The second phase of the SLR focuses on the primary
goal of finding relevant research related to the research
topics. This is achieved by gathering published papers that
align with the specific research areas using a carefully
designed search string. During the initial search, keywords
were used to narrow down the focus to IoT applications
in agriculture. However, the pilot search also included
IoT communication protocols, agricultural sensors, and IoT
security and privacy measures to ensure comprehensive
coverage. To gather information, a thorough internet research
approach was adopted, utilizing various search engines and
digital libraries, as mentioned in Table 3. In the search
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FIGURE 3. Count of articles as per time line.

for relevant and representative papers, a unified searching
methodology was employed. The main databases of scientific
publications, including IEEE, Scopus, and MDPI, were
utilized for the search. The selected time-frame for inclusion
of publications in this SLR spanned from May 2018 to May
2023. By employing this comprehensive search strategy, the
aim is to capture the most up-to-date and relevant literature
in the field.

D. IDENTIFYING RELEVANT ARTICLES
Once the initial search was complete, it became clear
that not all of the papers returned were directly related
to the research’s objectives. It was required to carefully
evaluate their actual importance as a result. The first round
of screening consisted of choosing articles based on their
titles, which allowed us to omit papers that were considered
irrelevant to the research topic, as mentioned in Table 4.
After the initial search, screenings were carried out in four
stages. First, duplicate research papers are discarded. There
were 1776 papers after that stage. The duplicate and unrelated
papers were eliminated based on their titles. After the process,
241 papers remained. Thirdly, papers were screened based on
abstracts that contained an extensive amount of information
relevant to the paper and were retained for further analysis.
After this stage, there were still 124 articles on the list.
Finally, during the full-text search stage, papers that did not
address the research topics were discarded. The research
was carefully evaluated to establish whether or not it was
experimentally validated. The 96 papers reached a conclusion
after this stage was completed, as presented in Table 5. Fig. 3
shows the results of a particular search string for publications
published between 2018 and 2023, and Fig.4 shows the ratio
of papers published in conferences and journals, while Fig.5
displays the number of publications published by each search
domain.

E. QUALITY ASSESSMENT

Quality assessment plays a pivotal role in the systematic
literature review process, and thus, a questionnaire was
developed to evaluate the quality of the chosen papers. The
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TABLE 2. Table of research questions for loT based agriculture SLR.

Number Research Questions Motivation
RQ1 What are the most recent developments and trends  To keep up with the most recent innovations and trends in
in IoT-based smart agriculture systems? IoT-based smart agriculture systems to guide your fieldwork
and research.
RQ2 What are the different layers of the Internet of Things  Recognize the various IoT architecture layers that smart agri-
architecture used in smart agriculture systems? culture systems utilize to improve data sharing and decision-
making.
RQ3 What are the leading sensor technologies used for  Identify the most appropriate sensor technologies for data
data collection and monitoring in agricultural fields?  collection and monitoring in agricultural fields in order to
direct sensor choice and application.
RQ4 What communication protocols and application layer =~ To Assess the most popular application layers and communi-
protocols are frequently used in IoT-based smart cation protocols in IoT-based smart agriculture.
agriculture?
RQ5 What are the major security & privacy concerns in  Enhance the security of IoT-driven agricultural environments
IoT architecture based on smart agriculture? to handle privacy threats and guarantee efficient privacy
protection measures by gaining knowledge about commonly
used security methods in smart agriculture.
RQ6 What are the state-of-the-art ML models and tech- To Investigate cutting-edge machine learning models and

niques in smart agriculture applications?

methods in smart agriculture applications to guide improve-
ments in agricultural performance and decision-making.

TABLE 3. Selection of search strings for different libraries.

Databases Search String
IEEE, MDPI,  (Agriculture Internet of Things OR IoT) AND
Scopus (Smart Agriculture OR Precision Agriculture )

OR ( IoT agricultural devices OR IoT agricul-
ture sensors ) OR (loT agricultural protocols
OR IoT Communication Protocols ) OR ( IoT
agricultural infrastructure ) OR ( IloT based
agriculture applications OR smart agriculture
applications OR Machine learning models for
smart agriculture applications )OR( loT based
agricultural security & Privacy challenges OR
IoT security concerns ) OR (Blockchain based
secured smart agriculture)

TABLE 4. Result of search strings from different libraries.

Databases IEEE MDPI Scopus Total

Count
Paper 336 202 1273 1811
Count

TABLE 5. Count of articles after screening resuilts.

Result of Screening Stages

Paper Count

Remove Duplicates 1776
Title based Search 241
Abstract based search 124
Full text based search 96
Finalized 96

questionnaire comprises several questions designed to assign
scores for quality assessment. These inquiries encompass:

(a) Assessing the study’s contribution regarding the explo-

Journal

FIGURE 4. Ratio of articles: Journals vs. Conferences.

Papers Count

Communication
Technologies

Infrastructure

loT Sensors

Applications

Agriculture-based loT Domains

FIGURE 5. Count of articles from agriculture-based loT domain.

Conference

Security & Privacy

ration of IoT’s potential in agriculture A score of 1 is
allotted for “Yes™ responses and O for “No” responses.
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(b)

()

(d)

Evaluating whether the study offers a clear solution to
agricultural challenges using IoT The scoring system
incorporates 1 for “Yes,” 0.5 for “Partially,” and O for
“No.”

Examining whether the study’s outcomes are empir-
ically validated A score of 1 is assigned to “Yes”
responses and 0 to ““No”” responses.

Examining whether the study effectively bridge the
domains of agriculture, IoT technology, and relevant
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disciplines The scoring system incorporates 1 for ““Yes,”
0.5 for “Partially,” and O for “No
By scoring these questions, the selected papers’ qual-
ity assessment is classified, ensuring the inclusion of
high-quality studies in the SLR analysis.

Ill. RECENT DEVELOPMENTS AND TRENDS IN IOT-BASED
SMART AGRICULTURE SYSTEMS

By incorporating cutting-edge technology like the IoT, data
analytics, and automation with conventional agricultural
practices, smart agriculture, sometimes called precision
agriculture, has completely transformed the farming sector.
Smart agriculture systems based on the IoT have been
increasingly popular in recent years because of their potential
to increase productivity, cut down on resource waste, and
increase crop yields [31]. The most recent innovations
and trends in JoT-based smart agriculture systems will
be examined in this SLR, emphasizing six major ones:
water management/irrigation management, soil management,
weather management, nutrient management, waste manage-
ment, and crop management,as illustrated in Fig.6.

Water Management/
Irrigation Management

Nutrient Management Soil Management

Applications of
Smart Agriculture

Waste Management Weather Management

Crop Management

FIGURE 6. Applications of loT based smart agriculture.

o Water Management /Irrigation Management: Agri-
culture is becoming increasingly concerned about the
limited supply of water. Therefore, effective water
management is essential. Smart irrigation systems that
are loT-based have become a significant solution.
These systems optimize irrigation schedules using sen-
sors, weather predictions, and data analytics, lowering
water use and boosting agricultural yields. Recent
innovations include incorporating artificial intelligence
(AI) algorithms to forecast soil moisture levels, real-
time water quality monitoring, and automated control
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systems that modify irrigation based on plant needs [32].
Farmers may now manage irrigation from anywhere
thanks to standard features like remote monitoring and
management via mobile application.

Soil Management: Agriculture depends heavily on
maintaining healthy soil. Real-time soil monitoring
using IoT technologies makes measuring variables,
including moisture content, pH levels, and nutrient
levels possible [33]. Data is gathered by soil sensors,
which are then analyzed to produce valuable insights.
A recent trend is combining loT-based soil manage-
ment systems with machine learning algorithms to
provide individualized suggestions for soil adaptation
and fertilization. These systems encourage sustainable
farming practices by maximizing nutrient utilization and
lowering the chance of over fertilization.

Weather Management: The weather is crucial to
agriculture, and IoT has improved the accuracy and
accessibility of weather monitoring. Real-time informa-
tion on temperature, humidity, wind speed, and rainfall
is provided by IoT-based weather stations that are
equipped with a variety of sensors [34]. Through mobile
apps and online platforms, farmers have access to this
data, enabling them to make educated choices regarding
pest management, planting, and harvesting. Predictive
analytics and meteorological data have recently been
combined to assess climate threats and predict weather
trends. This allows farmers to adjust to shifting weather
patterns and reduce crop losses.

Nutrient Management: Crop health and production
improvement depend on effective nutrient management.
The Internet of things may continuously monitor
nutrient levels in the soil and plants. Farmers may
improve their fertilization plans while minimizing waste
and environmental effects with sensors and data analyt-
ics [35]. Smart drones and autonomous vehicles are two
recent advancements in loT-based fertilizer management
that allow exact fertilizer application. These technolo-
gies help reduce resource waste and environmental
damage by enabling site-specific fertilizer delivery.
Waste Management: Keeping agricultural waste to
a minimum benefits both the environment and the
economy. Smart agriculture technologies driven by the
Internet of Things aid farmers in maximizing resource
use and minimizing waste. [oT sensors have been used
recently to track waste produced during manufacturing
and keep an eye on post-harvest storage conditions.
Systems for intelligent sorting and recycling have also
been created to effectively handle agricultural trash [36].
These developments lessen agriculture’s environmental
impact and support sustainable farming methods.

Crop Management: Smart agriculture is leading the
way with IoT-based crop management systems. These
systems use sensors to monitor crop health, develop-
ment, and pest infestations. The use of multi-spectral
cameras on drones to take high-resolution photos of
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crops is a recent discovery [37]. Then, preemptive
interventions are made possible by Al-powered picture
analysis algorithms that spot early indications of illness
or stress [38]. IoT-based agricultural management sys-
tems also frequently connect to equipment for automated
harvesting and precise planting. These developments
save labor expenses while improving crop quality and
output overall.

IoT-based smart agriculture systems are constantly chang-
ing due to new trends and advancements in many areas of
agricultural management. With the help of IoT technology,
farmers can now make data-driven decisions, increase
resource efficiency, and implement sustainable farming
methods in water, soil, weather, nutrients, waste, and crop
management. In addition to boosting agricultural output,
these developments are also helping to preserve natural
resources and lessen their harmful effects on the environ-
ment [39]. The future of smart agriculture appears bright,
with even more breakthroughs on the horizon as IoT
technology develops.

IV. DIFFERENT LAYERS OF THE INTERNET OF THINGS

ARCHITECTURE USED IN SMART AGRICULTURE SYSTEMS
To guarantee the highest level of reliability, considering the
extensive variety of agricultural systems, it is essential to
manage numerous pieces of agricultural equipment and sen-
sors that are connected to the Internet in a heterogeneous way.
An adaptive, multilayered framework is therefore essential.
Each framework, which builds on IoT protocol stacks ranging
from three to five layers, provides various advantages.
Although the three-layer (perception, network, and applica-
tion) stack has a simplified structure, the four-layer stack
provides additional services,and the five-layer framework
has the greatest potential for agriculture. Precision farming,
resource optimization, and environmental monitoring depend
on higher levels of data interpretation and interoperability,
which makes the five-layer IoT protocol stack the best
option for agricultural IoT applications given the complexity
of agricultural operations and the wide range of sensors
and devices involved. The five-layer IoT-based agriculture
proposal proposes an organized structure with each of
the layers carrying out a specific task [40]. According to
Fig.7, the five layers include perception, communication
network, platform (processing), application, and business
layers. Hardware such as sensors, actuators, and controllers
are included in the device layer, which is also referred
to as the perception layer. The communication network
layer is in charge of connecting to servers, other smart IoT
sensors and devices, and network equipment. In addition, the
processing and sending of sensor data enables effective use
of its strengths. Networks (such as RFID, Bluetooth, NFC,
WiFi, 5G, and LAN) are used to send sensor data from the
layer of perception to the platform (processing) layer.The
data processing (middle-ware) layer stores, analyzes, and
processes gigabytes of data while also providing service
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FIGURE 7. Five layer architecture for an loT-based agriculture system.

support, formulations, cloud computing, and middle-ware
technologies. It is able to manage and support numerous
lower-layer services, such as alerts, retrieval of data, big
data processing, cloud computing, and data analyses for
IoT-based agriculture applications via cloud platform ser-
vices like Amazon Web Services, Microsoft Azure, Google
Cloud, and others. The application layer is responsible for
offering application-specific services to the user. This layer
includes devices such as monitoring equipment, geolocation
devices, surveillance systems, crop diagnostic systems, and
so on [41].The business layer manages all aspects of the
IoT-based agriculture system, which include apps, security,
business and profit models, and user privacy. Each feature
introduces new security and privacy concerns. As such,
security and privacy issues are classified accordingly based
on their prevalence in each layer [42].

A. LEADING SENSOR TECHNOLOGIES USED FOR DATA
COLLECTION AND MONITORING IN

AGRICULTURAL FIELDS

In agriculture and IoT infrastructure, the perception layer is
the physical layer that collects data from the world using
sensors, imaging devices, and other technological equipment.
These peripherals are in charge of gathering data on moisture
in the soil, relative humidity, temperature, quality of the
air, water levels at ground level, and other parameters
that are essential to monitoring and controlling agricultural
procedures [43]. The perception layer is the fundamental
component of an agricultural IoT system because it acquires
data from the field in real time. The data is then sent to the
higher levels of the system to be processed, evaluated, and
applied to make decisions. Farmers and agricultural experts
may decide alternatives about cultivation, fertilisation, pest
control, and other vital aspects of farming when they have
access to timely and reliable data about the agricultural
environment. The following is a list of some devices and
sensors that are frequently used in the perception layer for
agricultural purposes:
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6)

7

8)

9)

10)

Micro controller ESP8266: The ESP8266 is an
autonomous system on chip (SOC) connected with
TCP and IP that enables the micro-controller to estab-
lish a connection to a Wi-Fi network.The ESP8266 may
enable or block all Wi-Fi network functions from other
application processors.

Micro controller Arduino Mega: The Arduino Mega
is an AT-mega-based micro-controller board with
16 analog pins, 54 digital input and output pins,
a crystal oscillator running at 16 MHZ,a USB port
for communication, an ICSP header, a barrel jack for
power, and a reset push button.

The nRF24L01 radio transceiver module: The
Rf241.01 module is a 2.4 GHz wireless single chip with
a baseband protocol engine. The wide range of In order
to implement smart farming, a 1100 m long transceiver
module that works in the ISM frequency band is
necessary.It is in charge of transmitting agricultural
data to the layer of application. IPv4 and IPv6 versions
are available to offer technological features such as
network layer communication. The IPv6 protocol was
developed in response to the growing number of
addressing devices. In this scenario, the WiFi module
ESP8266 communicates with the network layer using
IPv4 at 2.400 - 2.4835 GHz. A serial peripheral
interface was used to adapt and control this wireless
transceiver module.

Soil moisture sensors: These devices measure the
amount of water that is already present in the ground,
thereby assisting farmers in determining when and how
much water to use for irrigation.

Temperature and humidity sensors:Monitor the
environmental conditions to gain an understanding of
the relationship between climate and the growth of
crops.

Air quality sensors:Detect pollutants or gases that
may impact the health of plants or the air quality in the
surrounding area.

Groundwater level sensors: These devices are used to
measure the levels of groundwater, which is essential
for the management of water resources and the
prevention of over-extraction.

Weather stations: These stations are responsible for
collecting a wide variety of data pertaining to the
weather, such as humidity, wind speed, temperature,
and amount of rainfall.

Remote sensing devices: These are sensors that can
be based on drones or satellites that take images
and multidimensional data. These sensors are used to
evaluate the health of crops and find early indicators of
stress or disease.

Light sensors: These sensor help farmers optimise
planting places by measuring the intensity of sunshine
and regulating artificially generated light in artificial
environments such as greenhouses

VOLUME 12, 2024

1)

12)

13)

14)

15)

16)

17)

18)

19)

20)

21)

22)

23)

Wind sensors: Keep track of the wind’s direction and
speed, which can affect the way crops are pollinated,
how quickly water evaporates, and how far pesticide
spraying drifts.

pH sensors: These devices measure the level of acidity
or alkalinity of the soil and provide information about
how this impacts the amount of nutrients that are
available to plants.

Nutrient sensors: These devices monitor key elements
such as nitrogen, phosphorus, and potassium in the soil,
enabling more exact fertiliser techniques.

Leaf wetness sensors:These sensors identify the
presence of moisture or water retention on plant leaves,
which is crucial for preventing diseases and estimating
the optimal time to spray herbicides on plants.

Crop health sensors: A variety of sensors or imaging
technologies are used to measure the health of crops
by examining chlorophyll stages, leaf colour, or other
environmental stress or disease signs.

Water flow sensors: Track water flow in irrigation sys-
tems to identify leakage and improve the distribution of
water.

Evaporotranspiration (ET): Measure the rate of
water loss from the soil due to evaporation and plant
transpiration. This helps with irrigation schedules.
Tensiometers: Determine the soil moisture tension,
which signifies the force needed by plants to draw
water from the soil and facilitates decisions on
irrigation.

Water level sensors: Ensure that there is sufficient
water for irrigation by monitoring the water level in
reservoirs, tanks, or other sources of water.

Soil compaction sensors: Determine the degree to
which the soil is compacted, which can have an effect
on the growth of plant roots and the overall health of
the crop.

Weather radar or satellite sensors:They should be
used to provide more comprehensive weather data and
forecasts in order to better guide agricultural decision-
making.

Carbon dioxide (CO2) sensors: Optimise plant devel-
opment and photosynthesis by measuring the amounts
of carbon dioxide in greenhouses and other controlled
environments.

NPK sensors: The levels of nitrogen, phosphorus, and
potassium in the soil are measured and monitored with
the assistance of NPK sensors, which are utilized in
the agricultural industry. With this insight, farmers
have the ability to make intelligent choices regarding
fertilization, leading to improved plant growth and
increased agricultural yields.

The data that these sensors and devices receive is often
sent wirelessly to a central data processing system, where it
is analysed, displayed, and used to start automated actions or
make suggestions for farmers. Farmers can use the data from
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l loT-Based Agriculture Communication Protocols I
Network Layer

Physical(Perception) Application Layer

Layer

« WIFI * CoAP

« ZigBee « MQTT
e RFID + LoRaWAN « AMPQ
* Bluetooth + 6LoWPAN * XMPP
« Infrared * NB-loT * HTTP
« Ultra Wideband (UWB) « Sigfox

+ LTE Cat-M1

FIGURE 8. Layer-wise communication protocol taxonomy.

these sensors to make data-driven choices and use precision
agriculture techniques to boost productivity and sustainabil-
ity. Selected publications have been summarized in Table 6
in order to evaluate the essential sensor technologies of IoT
in agriculture.

B. COMMUNICATION PROTOCOLS AND APPLICATION
LAYER PROTOCOLS ARE FREQUENTLY USED IN

IOT-BASED SMART AGRICULTURE

Various protocols have been adopted by the IoT network to
transmit data, and these protocols are essential in deciding
how things communicate during data transmission. These
protocols are a set of syntax and logical principles that control
how the machine’s network operates when exchanging data.
The widespread use of several sensors that are challenging
to transform into the standard addressing format makes
setting up an IoT network complicated, even though common
Internet protocols (IPs) fall short in ensuring efficient
data transmission. This constraint makes it difficult to
set up adequately functional nodes [44]. Since IoT nodes
significantly depend on a continuous power supply, particular
memory characteristics, and channel throughput capacity,
efficient resource management is crucial to overcoming these
difficulties. The addition of a data sink to the network is
required in the setting of WSNs. This procedure entails
gathering data from numerous nodes and sending it to the
sink for additional processing. The significance of opting
for an adequate data transmission technology is highlighted
by the effective placement of sensors and sinks, which can
considerably improve the ability to transmit data and the
efficiency of an IoT network [45].

Security and privacy are two essential characteristics that
such a technique ensures by restricting different sensors from
exchanging the same data [46]. It also requires preserving
energy, which is an essential priority in IoT applications. Pro-
tocols for communicating with the agriculture-based IoT can
be classified into three main classifications that are related to
the perception, network, and application levels of the IoAT
architecture, as presented in Fig.8. Table IV-D summarizes
the properties of the protocols used in IoAT at the perception
and network layers. This research further illustrates the
adaptability and potential advantages of these protocols
across various sectors by providing agriculture-based IoT
indications of how each protocol might be implemented in
the agricultural sector.
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1) PERCEPTION LAYER PROTOCOLS FOR AGRICULTURE IOT
Perception layer protocols typically use the IEEE 802.15.4
standard, which is well-known for its simplicity, low cost,
and low power consumption.This standard enables wireless
communication at a significantly lower data rate and was
designed specifically for Internet of Things devices with little
bandwidth [47]. It specifies the PHY (physical) and MAC
(media access control) layers for an extensive variety of
devices, such as fixed, portable, and mobile devices with low
power consumption. The IEEE 802.15.4 standard implements
a wide-band physical layer using the Direct Sequence
Spread Spectrum (DSSS) approach.Three frequency bands
are used to govern devices operating on the physical layer:
(a) the 915 MHz band, which is licensed in the US;
(b) the 868 MHz band, which is licensed in Europe; and
(c) the 2.4 GHz ISM band, which is an unlicensed but
frequently used band. There are 27 broadcast channels acces-
sible across these three bands. The IEEE 802.15.4 physical
layer covers a variety of low-level functions, such as sending
and receiving data, signal strength, monitoring,channel
energy sensing, clear channel analysis, and more. whereas
the IEEE 802.15.4 data link MAC layer is in charge of
tasks such as establishing the Personal Area Network (PAN),
enabling GTS data transmission,implementing Carrier Sense
Multiple Access with Collision Avoidance (CSMA-CA) for
channel allocation, establishing reliable links between peer
entities, managing control repeater transmissions, and ensur-
ing repeater synchronization. IEEE 802.15.4 is compatible
with and well-suited for several IoT protocols, including
ZigBee, LoRA,Bluetooth, and LowPan [48]. Agriculture
systems frequently use perception layer protocols to reliably

and efficiently acquire data from sensors in the fields.
o Bluetooth: Bluetooth is a form of wireless communi-

cation involving radio signals at ultra-high frequencies
(UHF) to assist in communication over short distances.
Bluetooth enables wireless communication between
numerous agricultural IoT devices [49]. Bluetooth
allows connections between devices up to 100 meters
apart by using the 2.4 GHz radio frequency. It secures
data transfer using authentication and encryption tech-
niques, and its key benefits are its low cost and
power efficiency. Bluetooth is more suited for local
communication within the farm or a particular location
because of its constrained range.

« RFID (Radio-Frequency Identification): RFID is a
technology that grants every object in the data it records
a special identification number. RFID tags can be used in
agriculture IoT to track and monitor a variety of assets,
including livestock, products, and agriculture machin-
ery. RFID tags exist in a variety of sizes and shapes, with
passive tags being less expensive than active tags. These
tags may provide crucial information about the tagged
objects, like moisture content, temperature, humidity,
and other pertinent details. Real-time asset tracking and
environmental monitoring are two areas where RFID
technology is extremely beneficial [50].
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o Infrared: Infrared communication is an inexpensive and
low-cost technique for wirelessly sending small amounts
of data. It appears in agriculture and IoT, such as in
thermometers and cameras that monitor temperature and
ambient conditions [51]. Infrared technology is widely
utilized in remote controls and simple electronics, with
data transmitted using protocols such as NEC and
RCS5. It is appropriate for short-distance communication
within a narrow area.

o Ultra-Wideband (UWB):The wireless protocol known
as ultra-wideband is intended for close-proximity com-
munications between devices. UWB, which operates
at a greater frequency range of 3.1 to 10.6 GHz,
allows for accurate measurements of distance between
transmitters. This high degree of precision is obtained
by transmitting billions of radio pulses over a wide
frequency band. In the IoT for agriculture, UWB can
be employed in applications such as asset tracking and
precision farming that require precise positioning and
location tracking [52].

In conclusion, the perception layer protocols for the
agriculture IoT include Bluetooth for short-range com-
munication, RFID for asset tracking and environmental
monitoring, Infrared for simple data transmission, and
Ultra-Wideband for applications requiring accurate location
and positioning. Each protocol serves a distinct function,
enhancing the effectiveness and automation of agricultural
activities.

2) NETWORK LAYER PROTOCOLS FOR AGRICULTURE 10T

In agriculture 10T, the network layer encompasses essential
technologies such as gateways, networks of access points,
and routing devices that are accountable for internet protocol
(IP) addresses and other networking operations. A variety
of protocols are implemented at this level, including WiFi
and Zigbee, which are becoming the most ubiquitous for
agricultural IoT. Furthermore, LoRaWAN and 6LoWPAN are
employed to simplify communication with sensor networks
that are wireless [53]. Remote data transfer and connectivity
can be accomplished using conventional cellular wireless
technologies such as GPRS or 3/4/5G.

o WiFi: The IEEE 802.11-based WiFi standard spans
a broad spectrum of frequencies, from 5 GHz to
2.2 GHz. WiFi can communicate over a distance of
20 to 100 meters with data transfer speeds ranging
from 1 Mb/s to 7 Gb/s. Since WiFi connects remote
monitoring and control devices efficiently and securely,
it has become commonly used in IoT-based agriculture
systems in order to connect and monitor various
assets such as irrigation systems, weather stations,
and agricultural machines [54]. This enables farmers
to access real-time data, manage equipment from
a distance, and streamline agricultural practices for
increased effectiveness and productivity.
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« LoRaWAN: LoRaWAN is a low-power, long-range

wireless network based on long-range chirp spread
spectrum (CSS) modulation and is optimal for IoT
applications. It is implemented in a variety of sectors,
including agriculture, smart cities, metering, logistics,
and others. LoRaWAN enables efficient as well as
reliable communication, dealing with significant chal-
lenges including energy management, the preservation
of natural resources, and disaster prevention [55].
Zigbee: Zigbee is a well-known standard for transmit-
ting data between agricultural devices. Zigbee, which
operates on the 2.4 GHz frequency band, has a wider
communication range than Bluetooth. It employs a mesh
network topology, comprising components such as end
devices, network routers, and processing gateways. The
numerous advantages of Zigbee include low power
consumption, rapid transfer rates, and high network
throughput [56].

6LoWPAN: 6LoWPAN, also known as IPv6 over
Low-Power Wireless Personal Area Networks, is a low-
power wireless mesh network that gives each node
a distinct IPv6 address. This makes it possible to
connect directly to the internet using open, standard-
ized protocols. With the help of 6LoWPAN, the IoT
ecosystem is accessible to even the smallest devices
with minimal computational power [57]. Standard IPv6
packets are sent through IEEE 802.15.4-based networks
using encapsulation and header compression techniques.
6LoWPAN enables seamless sensor communication
with middleware platforms and network routers for
agricultural sensors, enabling them to connect to IP
networks.

NB-IoT(Narrowband IoT): NB-IoT is a wireless
communication technology intended primarily for low-
power, wide-area IoT applications [58]. It works on
authorized wireless bands, which provide greater con-
nectivity and penetration, making it appropriate for
agriculture internet of things implementations in distant
and rural locations. NB-IoT is employed in applications
such as soil moisture monitoring, precision farming, and
smart drip irrigation systems.

LTE-M (Long-Term Evolution for Machines): LTE-
M is a wireless connection technology intended exclu-
sively for IoT devices. It has faster data rates and lower
latency than NB-IoT, making it suited for real-time
data transfer applications [59]. In agriculture IoT, LTE-
M is used to track livestock, monitor equipment, and
manage storage on enormous farms and plantations for
cultivation [60].

Sigfox: Sigfox is a low-power, wide-area network tech-
nology that allows IoT devices to communicate across
vast distances. It is appropriate for IoT applications
in agriculture that need cheap and energy-efficient
connectivity. Sigfox technology is capable of helping
track assets, monitor conditions in the environment, and
deploy smart drip irrigation systems.
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o LTE Cat-M1: LTE Cat-M1 is a low-power, wide-area
wireless communication technology that improves IoT
device coverage and battery life [115]. It is well-suited
for agriculture IoT applications that require dependable,
long-range communication, such as asset tracking, soil
monitoring, and remote equipment management.

These network communication technologies provide a
diverse set of possibilities for agricultural IoT infrastructure,
adhering to a variety of connectivity requirements, power
consumption, and geographical regions. Each technology has
its own distinct capabilities, allowing farmers and agricultural
enterprises to develop efficient and integrated IoT solutions
for increased production and efficiency.

3) APPLICATION LAYER PROTOCOLS FOR AGRICULTURE 10T
Table 8 comprises fundamental technical characteristics to
accompany the application layer protocols that are frequently
used in IoT-based agriculture applications. These protocols
are essential for ensuring connectivity among agricultural
equipment and enabling effective data exchange and control.
A variety of application communication protocols are being
designed in order to meet the diverse requirements of IoT
applications for agriculture as the IoT keeps evolving [116].

o Constrained Application Protocol (CoAP): CoAP
is intended for IoT communication demands that
are responsive to traffic congestion-induced efficiency
decline. It runs as a low-bit-rate web transport protocol,
making it ideal for devices that have limited compu-
tational capability and memory [117]. User Datagram
Protocol (UDP) is the framework upon which CoAP
has been established for transport, resulting in minimal
overhead and utilization of resources. It leverages a
request-response paradigm, rendering it suitable for a
variety of IoT applications in agriculture. The benefits
of the star topology of this protocol include low power
consumption, low cost, easy deployment, and security.

o Message Queue Telemetry Transport (MQTT): The
publish-subscribe mechanism has been implemented by
the asynchronous MQTT protocol to enable seamless
communication between machines. It integrates embed-
ded network infrastructure into middleware systems and
applications, which makes it appropriate for IoT imple-
mentations with limited resources and low-bandwidth
networked devices. When limited memory use, low
cost, and low-power devices are required, MQTT
performs exceptionally well [118]. It is adequate for
telemetry-style messaging from IoT devices to the server
because it has a high latency or constrained bandwidth
for the transmission of data.

o Extensible Messaging and Presence Protocol
(XMPP): In an IoT context, XMPP is mainly employed
for the exchange of messages. XMPP utilizes the
publish-subscribe technique, which is more suited for
IoT applications than the request-response technique of
CoAP. XMPP has been an endorsed internet protocol

60996

that corresponds to the IETF (Internet Engineering Task
Force) standards for cross-messaging, telepresence, and
video and audio calling, regardless of the existence of
modern protocols such as MQTT. The dependability and
flexibility of XMPP enable the development of further
IoT applications [119].

o Advanced Message Queuing Protocol (AMQP):
AMQP has been developed with the demands of the
industry in mind, offering message routing, queueing,
switching, privacy, security, and trustworthiness. The
publish-subscribe mechanism employed by AMQP,
which is like XMPP, ensures effective message delivery
with at-least-once, at-most-once, or just-once defini-
tions. The store-and-forward aspect of AMQP, which
ensures accuracy and reliability, is one of its most
significant advantages [120]. However, it may cause
network disruptions. Transmission Control Protocol
(TCP) is the backbone feature of AMQP for secure data
transfer and reception.

o Hypertext Transfer Protocol (HTTP): HTTP is a
commonly employed application protocol for browsing
the web, but it is also utilized in IoT for agriculture.
It allows web-based apps and IoT devices to commu-
nicate, enabling farmers to acquire data and operate
machinery for agriculture through internet interfaces.
HTTP is extremely advantageous for handling IoT
gateways, cloud-based data storage, and agricultural
remote monitoring systems [121].

Various usage scenarios, device capacity, and network
constraints all play an essential part in determining the
application layer protocol that is used in the agriculture IoT.
Farmers and agricultural enterprises may develop complex
and effective IoT systems to increase production, optimize
utilization of resources, and boost sustainability overall by
utilizing these communication protocols.

C. DATA PROCESSING LAYER

The Data Processing Layer plays an essential role in
IoT-based agriculture by transforming contemporary farming
techniques. This layer enables the smooth gathering of
significant agricultural data by integrating numerous IoT
devices, such as sensors, drones, and weather stations. The
data gathered includes, among other things, data on soil
moisture, temperature, humidity, crop health, and machinery
condition. The data is preprocessed after gathering to
guarantee correctness and consistency, and then it is stored
in databases [122]. The rapid analysis enabled by real-time
data processing enables farmers to make decisions quickly in
response to rapidly altering environmental circumstances.In
order to extract useful insights from the gathered data, data
analytics is a crucial part of this layer. By using statistical
analysis and machine learning algorithms, patterns and trends
may be identified. These patterns and trends can then be uti-
lized to build prediction models for better agricultural yields,
disease detection, and irrigation plan optimization [123].
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TABLE 6. loT-based agriculture technologies classification and quality assessment.

Classification Quality Assessment
Sr. Ref. Years "> Research Meth- g cors Protocols- Major Focus a b ¢ d Score
Source ods Network
Integrated soil sensor data
Pronosed Frame- ZIGBEE, and machine learning for
1. 2023 Journal P Soil sensors wireless sensor  an automated system pre- 1 05 1 05 3
[61] work . .
network dicting strawberry quality
based on soil conditions
Soil, temperature, NPK, RPL (Routing Used cluster-tree strucj‘ture
water content, photosyn- and dragonfly algorithm
Proposed Proto- - . . Protocol for Low .
2. 2023 Journal thetic radiation, soil wa- for energy-efficient, se- 1 05 1 05 3
[62] col L. . Power and Lossy S
ter conditions, soil oxygen cure routing protocol en-
Networks) . .
level hancing network longevity
Investigated the feasibility
Temperature sensor, of constructing a repeat-
soil pH sensor, nitrogen able, predictive, and ver-
3. (63] 2023 Journal Study Sensor, phosphorus ~ MQTT ified growth factor model 1 05 I 1 35
sensor, potassium sensor, for plants using edge com-
and camera puting and machine learn-
ing
Finding the optimal num-
ber and position of gate-
4. 2023 Journal  Method LoRaWAN end-devices ~ Lorawan, LoRa "o dided [LoRaWAN ", =5 5 5
[64] networks in performing
better and using less en-
ergy.
Developed a two-tiered
TinyML-based  decision
S. 65] 2023 Journal Scheme Ground sensors LoRa support system suitable 1 05 0 05 2
for the requirements of
every plantation zone
Demonstrated a  three-
Air temperature sensor, tiered smart agricultural
air humidity sensor, so- framework  based on
6. 2023 Conference Proposed frame- lar radiation sensor, S'Oll LoRa LoRa that makes gse 1 05 0 05 2
[66] work temperature sensor, wind of cloud computing
speed sensor, rainfall sen- and fog technology for
sor data  aggregation  and
decision-making
Devised an effective sys-
Soil  moisture  sensors, tem for managing and co-
7. 2023 Journal Solution temperature sensors, MQTT ordinating community use 1 1 1 05 35
[67] L . .
humidity sensors of high-quality seeds and
water resources
Created a model demon-
Optical sensors, Electro- strating how Al algo-
3 2022 Conference Model chemical sensors, Mois- WiFi rithms in decision Y- 1 0 05 1 25
[68] ture sensors, Motion sen- tems can enhance preci-
sors sion farming and boost
agricultural yield
Examined the correlation
between data from air-
MultiSPEC  4c¢, eBee borne and ground sen-
9. (69] 2022 Journal Research Study fixed wing platform, WiFi, Bluetooth sors, and suggestedapho- 1 05 1 05 3
GreenSeeker togrammetric framework
for effective multispectral
data processing
Acgustlc, Optical, Ultra- ZigBee, Outlined the most recent
sonic, Mass flow, Weed-
secker, Wind speed, Li- Bluetooth  Low adva.nct.)men'ts and chal-
10. 2022 Conference Survey ’ . ? Energy (BLE), lenges in wireless sensors 1 0.5 0 05 2
[70] DAR, Telematics, Leaf L.
LoRaWAN, and networks for precision
wetness, pH, and Opto- .
. NB-IoT agriculture
electronic
BH1750, Soil pH Sensor, soluti‘on‘ for smart
11. 2022 Journal Solution ZMPTIOIB AC Voltage WiFi, ESP8266 greenhouse management 1 0.5 0 0.5 2
[71] Sensor Module, SCT- .
. . that can provide farmers
013-030 Non-invasive AC . L
with historical data and
Current Sensor Lo .
real-time information
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TABLE 6. (Continued.) 1oT-based agriculture technologies classification and quality assessment.

Humidity, Soil Humdity

Established a cutting-edge
solution capable of man-
aging the collection, anal-

12. 2022 Journal Platform with Hygromemter, HD LORA, Wifi . . 1 05 1 35
[72] ysis, forecasting, and de-
USB camera .
tection of heterogeneous
data in strawberry farming
A smart Edge-IoT plat-
. form was developed to
Temperature and humid-
13. 2022 Journal Framework ity Sensor, Soil Moisture, MQTT. . IPES,  collect, process, store, and I 05 05 2
[73] Blockchain secure data from cameras
RFID, Cameras X
and sensors in a smart
agriculture system
Provided a comprehen-
sive review of the chal-
. Zigbee, LPWA, lenges and trends in using
14. [74] 2022 Conference Review WSNs , RFID Bluetooth, Wi-Fi cloud computing for ToT 1 0.5 05 2
in climate-smart agricul-
ture
. . Enhanced agriculture in
Soil moisture sensor, Tem- M d 1 4 middle-i
. erature sensor, Wind ve- orse code,  low- and midde-income
15. 2022 Conference Solution perz ’, GSM, Cloud countries with the use of 1 0.5 05 2
[75] locity sensor, Soil gas sen- . .
. service cloud computing and IoT
sor, Sunshine sensor .
technologies
.. . . Developed an edge com-
Capacitive Soil Moisture utine model using hy-
Proposed Frame- V20, DSI8B20 Temp Erid l%/IL for real-tin%e sgil
16. 2022 Journal POs Probe, DHT11 Temp & MQTT X . ) 1 05 05 2
[57] work O moisture estimation and
Humidity, GYML8511 rain-based water manage
UV Light Module - e
ment
Created a platform and
c . . . put into use a flexible
apacitive soil moisture X
Sensor V1.2, DSI8B20. I}(:T—based Tlnflrastructure
17. 76] 2022 Journal Platform BME280. SW-18010-P. LoRaWAN that can offer large-scale 1 0.5 0.5 3
agriculture farms real-
GYMLS511 . .
time data collecting and
analytics
Suggested a revolutionary
smart IoT node that gath-
Soil moisture sensors,  Bluetooth Wi-Fi ili.;lasltig:s’ d:;alt):s:s’sn?:r(:
18. 2022 Journal Solution DHT11, Water meter (ThingSpeak) . L . 1 05 05 2
[77] farming applications using
sensor HTTP :
a mobile phone and a ba-
sic embedded device con-
nected through Bluetooth
Build an affordable, prac-
tical storage space that
. Temperature sensor  Bluetooth (HC-  farmers can use to keep
19. (78] 2022 Conference Solution (W1209) 05) their crops in the field 0.5 0.5 05 1.5
while having smartphone
control over it
Illustrated the sensor plat-
s A photovoltaic transducer,  Bluetooth Low  form’s usability and de-
2079y 2022 Conference Platform HTS221 Energy (BLE) pendability in a rural set- . 0 0.5 3
ting with vines
Used a unique routing and
N 6LOWPAN with encryption technique to
Proposed frame- Temperature,  humidity, Jow-power  and enhance the performance
21. 2022 Conference PH, acoustic, soil X and lifetime of energy 1 0.5 05 2
[80] work 1 lossy routing . . i
moisture sensors (LPLR) harvesting wireless sensor
networks (EHWSNSs) for
smart agriculture
Established an integrated
network of sensors for
soil, plants, and the atmo-
ATMOS 41, BME680, sphere that communicate
. PYTOS 31, SIL 411, wirelessly using the Lo-
22. [81] 2022 Journal Solution FloraPulse, TEROS 12, Lorawan RaWAN protocol, as well 1 05 1 3.5

TEROS 21, Soilwatch 10

as a platform for real-
time data collection to as-
sess the water condition of
vines
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TABLE 6. (Continued.) 1oT-based agriculture technologies classification and quality assessment.

Suggested a clever, inex-
pensive, and secure design
that can interface with a

23. (82] 2022 Journal Proposed Design RFID tags, RFID readers MQTT cloud server enabling data 1 050 052
analysis and collect data
from harvesting
Proposed an all-
encompassing and cost-
Soil sensor, DHT11 sen- effective smart agriculture
. sor , PIR sensor, Fire sen-  ZigBee, Wi-Fi, solution that makes use
24. [83] 2021 Journal Solution sor, Ultrasonic HC-SR04 MéTT of solar energy, a cloud- 1 1 1 1 4
sensor, AC sensor based IoT platform, fuzzy
logic control, and wireless
sensors and actuators
Validated a model for as-
Proposed Frame- sessing IoT sensor data
25. [84] 2021 Journal work» LM35 temperature sensor  ThingSpeak quality to control uncer- 1 05 1 05 3
tainties in smart agricul-
ture
Atmospheric pressure A low-cost smart agricul-
sensor (MPX4115A). ture system was designed
) . Humidity sensor,  ZigBee, 802.15.4  and tested to provide use-
26. [85] 2021 Journal Framework temperature sensor, IEEE ful knowledge and solu- R 1 35
SOil  Moisture, GPS tions for increasing crop
MAPIR productivity and quality
802.15.4,
ZigBee,
6LowPAN, An overview of the bene-
EC-5, STE, Hydro Probe2, ;SLAElOO.lla, ﬁts and chal!engf:s of us-
MP406, GreenTag, PXRF, " ing smart sensing with
biosensors aptamers LoRa/LoRaWAN, edge computing in preci-
27. 2021 Journal Review I 7 WiFi,GSM, sion agriculture for heavy 1 05 05 1 3
[86] graphene electrodes, GPRS EDGE cal . d soil
MIKROE gas  sensors, s ,  metal monitoring and soi
Pogo 11 VWC HSDPA/HSUPA, assessment was offered, as
LTE, WRAN,  well as some potential so-
Z-wave, RFID, lutions
NFC, ANTH+,
Sigfox
GreenDaP was presented
as a system that was es-
Phenocams, Weather sta- - tablished and set up to
28. [87] 2021 Conference Platform tion, External sensors WiFi track the developmerll)t of 1 1 105 35
ripening and weather con-
ditions in the Aosta Valley
In rural areas, edge com-
puting has been inves-
29. 2021 Journal  Evaluation Hydro climatological sen-  zppq 1 Ry tigated using an LSTM 5y 5 3
[88] sors model for frost prediction
to bridge the gap between
Al and IoT
Offered an  effective
mutual authentication
Terrestrial wireless sensor ?rrlledchani]:fr}ll for aaggz:f:;?gt
30. 2021 Journal ~ Authentication - nodes (TWSN), wireless g sensor data in a muli. 1 05 1 05 3
[89] Scheme underground sensor nodes .
(WUSN) gateway environment -by
agriculture experts using
smart cards, passwords,
and biometrics
A thorough review of
. the computing environ-
Soil Sensors, Water WSN,LoRaWAN,NBment forp IoT%based ap-
31. 2021 Conference Review sensors, Weather sensors, IoT, SigFox, plications in smart agri- 1 05 0 05 2
[90] Plant sensors, Animal
Sensors Cellular networks c_ulture and recommenda-
tions for future research
avenues
Proposed a time-sensitive
Humidity, Soil Moisture, cloud/fog computing
. Temperature, UV Ra . architecture that is
32. [91] 2021 Journal Architecture Inter?tsity, Arduino Ung ZigBee Jow-cost, scalable, and 1 05 05 1 3
nodes latency-adjustable for

olive grove applications
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TABLE 6. (Continued.) 1oT-based agriculture technologies classification and quality assessment.

IEEE 802.15.4
g;lgtl)gei, Proposed and assessed the
(Blliet(;oth) concept of Flying Edge
3. 2021 Journal ~ hovel DHT!1, LEDs, buzz IEEE  go2.11 computing, a UAV-based 5 o 5 5
[92] Mechanism (Wi-Fi) platform that serves as an
IEEE ’ 802.16 edge node for remote IoT
(WiIMAX) ' applications
cellular
Developed and
implemented an IoT-
Pronosed Frame- Soil sensor, Humidity sen- based EF that can gather
34, 93] 2021 Conference worIl)< sor, Temperature sensor, NA real-time data from 05 0 05 05 1.5
Leaf wetness sensor sensors and  produce
management suggestions
for cotton crops
Developed a  WSAN
architecture ~ combining
Soil temperature, soil smart IoT base stations
35. 2021 Journal System Architec- moisture, air temperature ~LPWAN with localised processing - g5 o 05 2
[94] ture sensors that can function under
the particular restrictions
of rural farms in Southeast
Asia
Used a residual energy
Proposed mecha-  Air temperature sensors, and rgnk—based dynamic
36. [95] 2021 Conference nism licht intensity sensors 6LoWPAN, RPL  clustering strategy to ex- 1 05 1 05 3
g y tend the lifetime of 6LoW-
PAN networks
Investigated on how to
set up the drone’s flight
Theoretical path and the separation
37. 96] 2021 Journal model and NA LoRa between the sensors and 1 1 I 1 4
analysis the drone to ensure a spe-
cific chance of gathering
sensor data
Ilgi)eccattrlc?é]l;:rﬁiil zzgzgiz’ Investigated the possible
Temperature and humidity ~ Bluetooth Smart Zgzagi[?gf{jitigeéiq;éSllz)es_’
38. [97] 2021 Journal Survey sensors, Optical sensors, or Bluetooth Low ine UAVs e ‘ui N dpwifh 1 050 052
Bluetooth ~ Smart  or  Energy (BLE) J quipp
Bluctooth Low Energy Bluetooth Smart te.chnol-
(BLE) sensors ogy for smart farming
RFID, NFC, Offered a critical assess-
LTE, LoRa, ment of the technologi-
Z-Wave, ZigBee, cal requirements, benefits,
. Bluetooth, BLE, and drawbacks of vari-
39. [49] 2021 Conference Review NA SigFox, NBIoT, ous wireless communica- 1 05 0 05 2
CoAP, MQTT, tion technologies for IoT
AMQP, HTTP, and their applicability to
REST2 precision agriculture
Serial A solution and put into
communication practise an embedded In-
Plant height sensor, Soil 4G data  teroet of Things system
40. 98] 2021 Conference Solution moisture sensor, Fertilizer communication that links sensors and Ar- 0.5 0.5 0 05 1.5
distribution sensor WSN duino devices in a peer-to-
(thingspeak) peer network for agricul-
25p tural data
Provided an effective and
Bluetooth, scalable framework for
Temperature sensor, gas ZigBee, WIFI, UAV-based and genetic
4l [99] 2021 Journal Framework sensor, IoT camera and  Universal algorithm-based data ag- 050 052
Serial Bus gregation and distribution
that protects user privacy
IEEE 802.15.4c Created and tested a real-
Soil Moisture sensor, IEEE 902.11ah, (/e AOtomous harering
42. 2020 Journal Proposed System  Temperature, Motion, LoRaWAN, Y 2 1 05 0 052
[100] Humidity.PIR SIGEOX sor networks and IoT to
¥ Cellular’ control and monitor the

farm
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TABLE 6. (Continued.) 1oT-based agriculture technologies classification and quality assessment.

temperature, humidity,

Summarized the ways in
which IoT technology

. . g ZigBee and .
wind, air pressure, soil LoRa3 Wi might help farmers and
43. [101]2020 Conference Survey pH, moisture, chlorophyll, Fi ’Bluetooth the agricultural  sector 0.5 05 2
ZigBee sensors, LoRa ceilular network; improve and raise crop
sensors, wireless cameras harvest  quantity  and
quality
Developed a method for
Soil moisture sensor, Soil assessing the precision
Design and De- temperature sensor, Light ~ESP8266 Wi-Fi  and dependability of data
4. [102]2020 Journal velopment intensity sensor, DHT11  module gathered, transferred, and 0.3 0.5 2
sensor retrieved remotely via an
IoT system
The evaluation of remote
sensing drones’ suitability
to carry out gateway ac-
Temperature and humidity =~ WIFIL IEEE tivities for WSN in PA
4. [103]2020 Journal Proposal Sensor, Soil Moisture 802.11 provided guidance regard- 05 05 2
ing selecting the appropri-
ate drone parameters for
successful data transfer
Developed a  system
for predicting the
DHT 22, GY-GPS6MV2, environment for each
GY-68 Pressure Sensor time using  prototype
46. (10 4]2020 Conference System BMPI180, MQ-2 Gas Sen- LoRaWAN equipment for measuring 0.5 05 2
sor Module the environment and the
installation area’s weather
information
lightweight Build and implement a
Ag/AgCl electrodes, tem-  ZigBee-based lightweight, ZigBee-based
47. [105]2020 Conference Solution perature, humidity, solar  version of the system that is optimised 0.5 05 2
radiation sensors IEEE  802.15.4  for measuring and evaluat-
standard ing plant action potentials
pH, Soil moisture, Air Used heterogeneous, rea-
s temp & humidity, Light sonably priced sensors to
48 110672020 Conference solution luminosity, Gas, RTC MQTT construct a MQTT-based 050 052
module, ESP8266 WiFi smart farming system
Demonstrated a cloud-
based middleware solution
Proposed Frame- LoRaWA, for  intelligent  farm
49. [107]2020 Journal work WSAN DASH7 management using data 03 05 2
from precision farming
facilities
ZigBee IEEE Emphasized the traits and
. ) . ’ ) qualities of the developed
50. 2019 Conference Design and De-  Smart blogensors, Smart  802.15.4,Blue WSNs and their sophisti- 0.5 05 2
[108] velpment sensors, Wireless sensors tooth 5, and .
WSN cated sensors for a variety
of applications
Soil Temperature. NPK Established a cluster-
perature, ’ tree-based routing
Water Content, Photosyn- rotocol (CTSRD) for IoT
SL 2019 Journal Poposed Protocol  thetic Radiation, Soil Wa- ~ RPL p . 0.5 05 2
[109] ter Condition and soil networks that considers
oxveen level Sensors power effectiveness and
e o security
E + E  Elekironik Developed an adaptable
EE160, B&C Electronics Eﬁgfgm thethat demalcfiz
2731312-31/3-017T, B&C  MQTT and of soil less culture
52. [110]2019 Journal Platform Electronics SZ 1093, CoAP, NGSI, in reenhouses  with 1 1 4
Omron K8AK-LS1, REST and JSON & . .
ARAD SF 15. Gems co:jnpletfi re | c1rc:1.la‘tlog
i and moderately salinize
FT110 G3/8, SP110 water
Created and tested a
portable LoRaWAN
s3. 2019 Conference Solution DHT11 LoRa, GPRS gateway  that  can 05 05 2
[111] enhance the precision

and effectiveness of smart
agriculture systems

VOLUME 12, 2024

61001



IEEE Access

A. Naseer et al.: Systematic Literature Review of the loT in Agriculture

TABLE 6. (Continued.) 1oT-based agriculture technologies classification and quality assessment.

Light Detecting Resistor
(LDR), Soil Moisture Sen-

Developed a smart agri-
cultural system that can
advise farmers about cor-

4. [1 12]2019 Conference solution sor by Spark Fun, CC3200 MQTT rect field management and 0.5 052
by Texas Instrument maintain an ideal environ-
ment for crop growth
Communications-  Describe the agricultural
enabled devices, IoT ecosystem, how IoT
location sensors, optical  Bluetooth, applications are classified,
SEnsors, mechanical ~ ZigBee, Z-Wave, the importance of IoT
sensors, electrochemical assive and and DA in agriculture, as
35. [113]2018 Journal Survay sensors, airflow sensors, gctive RFID  well as the geneﬁts, lim- 05 1 25
RFID systems, and UAV ~ systems, LoRa, itations, unresolved chal-
Sensors Sigfox, NB-IoT, lenges, and probable fu-
Wi-Fi, cellular ture directions of IoT in
networks agriculture
Soil moisture, water sup- Offered new technological
ply temperature, ambient NEC. BLE. Zio- advancements and
56. (11 4]2018 Conference IoT node temperature and humidity, Bee ’ » A8 commercial assistance for 0.5 1 35

wind speed, wind direc-

China’s  next-generation

tion sensors

smart agriculture system

The transformed data is then utilized to create decision
support systems that provide farmers with actionable advice,
enabling more effective resource management and crop man-
agement.Automation and control of agricultural activities
also become possible through the data processing layer [41].
Farmers are able to manage irrigation, track the behavior of
livestock, and improve the efficiency of machinery by feeding
the findings back into IoT devices and control systems.
However, data security and privacy have become crucial
because of the rise in the processing of sensitive agricultural
data. In order to ensure that the potential advantages
of IoT-based agriculture are achieved while preserving
farmers’ sensitive data, the implementation of strong security
measures provides safety from unauthorized access and data
breaches.

D. APPLICATION LAYER

The data and insights from the Data Processing Layer
are converted into useful and approachable applications in
IoT-based agriculture at the Application Layer. This layer
entails developing of software solutions that provide farmers
and agricultural stakeholders with useful information, real-
time monitoring capabilities, and decision-making tools to
help them maximize farm operations. These programs are
accessible to farmers on a variety of devices since they may
be accessed through web interfaces, mobile apps, or specific
platforms. Renowned IoT-based farm apps encompass an
enormous range of features [124]. Several applications are
focused on precision farming, offering farmers specific
information about soil conditions, weather forecasts, and crop
health. These programs frequently provide functions like crop
disease monitoring, automatic irrigation scheduling, and cus-
tomized fertilization advice depending on the requirements of
each crop. Applications for precision farming seek to increase
yields while reducing resource waste, helping to promote
environmentally friendly and sustainable agriculture [125].
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Monitoring and managing livestock is a different group
of applications that is quite common. Farmers can monitor
the health and behavior of their animals, spot sickness early,
and improve feeding and breeding procedures thanks to IoT-
based solutions. These programs boost livestock agricultural
production overall, lower veterinary expenses, and improve
animal wellbeing.

E. BUSINESS LAYER

The effective integration and application of the internet of
things in the farming and agricultural sectors is greatly
impacted by the Business layer of IoT in agriculture. It entails
developing strong business models, generating distinct value
propositions, and carrying out in-depth market research to
comprehend the requirements of farmers and stakeholders.
The Business Layer promotes the adoption of IoT solutions in
agriculture by creating the appropriate business models, such
as pay-per-use or subscription-based pricing, and delivering
attractive value propositions that highlight enhanced crop
yields, resource efficiency, and cost savings [126]. The
development of a strong IoT ecosystem for agriculture is
further enabled by creating strong connections and estab-
lishing partnerships with technology providers, data analytics
companies, and equipment manufacturers. To make sure that
IoT solutions adhere to standard practices and data protection
rules, the Business Layer also handles significant regulatory
and compliance aspects [127]. Farmers may successfully
install IoT technology on their farms by engaging individuals
and providing them with the technical support and continuous
help they need. IoT solutions could adapt to changing
market needs and evolving technology by developing a
scalable and adaptable business strategy, permitting the
agricultural sector to take advantage of IoT’s opportunities for
expansion, sustainability, and increased efficiency in farming
methods.
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Low LAN Low

1m

14.4 Kbps

850-900 nm

Not Standardized

Infrared

Perception-
Network

Medium

Bluetooth 802.15.1 2.4 GHz 1-24 Mbps 8-10 m Low Star

Perception-
Network

Low

Star, Tree, Mesh

10-20 m Low

20-250 Kbps

MHz,

802.15.4 868/915

ZigBee

Perception-
Network
Network
Network
Network

2.4 GHz
2.4 GHz
2.4 GHz

High
Low

Star

Low

20-100 m

2-54 Mbps
250 kbit/s

802.11a, b, g, n
802.15.4

Wi-Fi

Low Star

10-100 m

3—4 km

6LoWPAN

Very Low

Star

Low

0.3-50 Kbps

133/868/915

MHz
LTE

802.15.4¢

LoRaWAN

Star Very Low

Low

up to 10 km

50 Kbps

Licensed

3GPP standard-
ized

NB-IoT

Network

band
LTE

Moderate

Star

Kbps-1  more than 10 km  Low

300

Licensed

3GPP standard-
ized

LTE-M

Network

Mbps

band

Very Low

100 bps - 1000 1-3 km Low Star
bps

868/915 MHz

Not Standardized

Sigfox

Network

Moderate

Star

Low

standard- LTE  Licensed 200 Kbps-1  5-10 km

3GPP
ized

LTE-Cat-M1

Network

Mbps

band

TABLE 8. Summary of characteristics of loT application layer protocols.

Protocols Architecture Standards Header/Message Encoding

For-
mat
MQTT  Client- IETF, 4-Byte/Small Binary
Server, Eclipse
Broker founda-
tions
AMQP Publishers- OASIS Undefined, primitive,
Subscribers, AMQP large or a de-
Broker TC scribed
format
code
COAP Client- OASIS,  2-Byte/Small Binary
Broker Eclipse
founda-
tions
XMPP Client- IETF, 1023-Bytes Binary
Server open
stan-
dard
HTTP Client- IETF, 4-Kbytes to 8- UTE-8,
Server with Kbytes Base64
HTTP/1.1, and
HTTP/2 Gzip
and
HTTP/3

V. MAJOR SECURITY & PRIVACY CONCERNS IN IOT
ARCHITECTURE BASED ON SMART AGRICULTURE
According to modern agricultural studies, more than 90%
of the total IoT sensor communications throughout the field
of agriculture are carried out without adequate encryption.
According to this concerning estimate, around 57% of smart
devices deployed in agriculture are affected by vulnerabilities
in security that might expose confidential data [128]. The
disruption of agricultural systems caused by these breaches
of security goes beyond that; there is also an imminent threat
to the security of individuals.In the agricultural environment,
cyberattacks may have broad implications, especially for
the lives of individuals. A cybersecurity breach has a
tendency to become devastating, particularly in instances
endangering individuals. The swift development and broader
implementation of the Internet of Things in agriculture,
especially in emergency situations such as infectious dis-
eases, has heightened security and ethical issues. Ensuring
the confidentiality of crucial and sensitive data related to
agriculture transforms into a harder challenge. Several differ-
ent kinds of attacks, hazards, and threats might be targeting
multi-layers of the [oT framework, demanding tight security
and privacy standards in the field of agriculture [129].
It is essential to apply techniques like cryptographic and
non-cryptographic algorithms to efficiently identify and
prevent invasions. There are also plenty of malware attacks
that can threaten the security of data, authenticity, reliability,
and accessibility that have been identified as consequences
for IoT systems. In accordance with the aforementioned
security-related issues, the agricultural operation emphasizes
key management, detection of intrusions, authenticating
measures, and controlling access in its existing security
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strategy. This preventive approach is critical for guaranteeing
the confidentiality of agricultural data and the continuous
trustworthiness of IoT devices in the agricultural sector. The
Table 9 highlights the latest research on IoT-based agriculture
security challenges and effective solutions.

A. MULTI-LAYERED SECURITY THREATS / ATTACKS

An IoT-based agriculture system has plenty of security
challenges, including data collection, storage, processing,
and transmission via Internet access, as well as malicious
application and business data activity [130]. In a multi-
layered framework, Fig.9 depicts vulnerabilities in security
in the IoT-based agricultural system. Security flaws are
often inadvertently or unexpectedly detected. Agriculture
surroundings may be accessed by animals, farm workers,
and machine equipment, all of which might generate
issues. A significant number of security risks are extremely
widespread; however, several are specific to individuals
who work in challenging environments such as IoT-based
agriculture.

1) PERCEPTION LAYER THREATS

This is mostly around tangible devices, including sensors and
actuators. Physical equipment may malfunction as a result
of malicious or unintentional actions by people, computer
viruses, malware, or cyberattacks. IoT-based agriculture
applications employ a diverse set of sensors and technology,
which introduces a number of security threats, such as the
ones listed below:

« Signal Jamming/Radio Jamming: Signal jamming,
mainly radio jamming, causes an enormous risk to
agriculture by halting critical systems that include
remote imagery for monitoring crops,GPS for precision
agriculture, and communication devices for cooperation.
As a result of this disruption, location may not be
precise, data gathering may be interrupted, communi-
cation may be disrupted, and there may even be the
possibility of damage or loss [131]. Signal jamming
may result in financial consequences, inefficiency in
operation, and security risks in the agricultural sector,
which is more dependent on cutting-edge technology
such as unmanned agricultural machinery. To pro-
tect agricultural operations and sustain production,
mitigation solutions include reliability in navigation
and communication systems, signal monitoring, adher-
ence to regulations, and precautions for physical
security.

o Spooling: Spooling, which stands for *“Simultaneous
Peripheral Operations On-Line,” is a crucial procedure
in the field of agriculture that facilitates the seamless
control of information exchange and jobs. Spooling
is the temporary storage of data within a queue or
buffer until it is processed by agricultural equipment
or computer systems, including planting guidelines,
irrigation timetables, or harvest data. This approach
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enables the seamless synchronization of many opera-
tions, eliminating devices from waiting endlessly since
data is processed [132]. It allows tractors, for example,
to keep cultivating or harvesting when data concerning
the soil is investigated and adjusted in the meantime.
Spooling is essential for increasing the efficiency of
contemporary agricultural practices since it helps to
reduce downtime and makes sure that equipment is used
effectively in accordance with real-time data inputs.
Node Capturing/ Node QOutage: Node capture or
node outage is a significant threat in agricultural
networks of sensors and IoT implementations [133].
Numerous sensors or data-gathering sensors scattered
over farming land to track different indicators such as
moisture in the soil, temperature, and the condition of
crops are referred to as nodes. When these nodes are
deliberately manipulated or taken away, data gathering
is disrupted, and the reliability of agricultural tasks and
decision-making processes may be threatened. Node
outage, on the other hand, refers to the temporary or
permanent failure of these nodes owing to technical
faults or environmental variables, resulting in gaps in
data collection and reducing the efficacy of precision
agricultural operations. Both node capture and node
outages can result in inefficient resource management,
lower agricultural yields, and financial losses.

Routing Attacks: An attacker generates network pack-
ets that are used to deceive different devices by altering
or concealing the source address.Agriculture routing
hacks include the malicious modification of networked
data channels. The security of agricultural operations
may be jeopardized as such attacks, which might result
in inaccurate data routing, disrupt vital activities [134].
It is critical to put adequate safety precautions in place
to prevent such attacks.

Threat to NDP Protocol: Numerous attacks may be
attempted against the Network Dynamic Data Exchange
(NDP) protocol, which is frequently employed in
agricultural monitoring networks. Unauthorized parties’
monitoring may threaten the security of essential agri-
cultural data. Implementing robust security methods like
authentication, encryption, and detection of breaches,
as well as frequent monitoring and modifications,
is crucial to guaranteeing the authenticity of the NDP
protocol [135].

Data Transit Attacks: In the agricultural sector, data
transit attacks encompass a wide range of fraudulent
activities aimed at disrupting the reliability, privacy,
or accessibility of data once it is transmitted over
the internet [136]. Monitoring confidential data related
to agriculture during transit is a prime instance of
a breach that could lead to stolen information or
spying. Additionally, interference with data in transit
might cause data to be inaccurate, which could lead to
agricultural alternatives that are inadequately informed.
To ensure the safe and reliable transfer of crucial
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FIGURE 9. Taxonomy of multi-layered security and privacy concerns in loT based agriculture.

data in agriculture, powerful encryption technologies,
secure communication protocols, and extensive network
security measures are required.

o Denial-of-Service (DoS) Attacks: A DoS attack pre-
vents consumers from incorporating devices or other
resources on the network. Through overwhelming
intended devices or resources on the network and
numerous excessive requests, this activity is carried out
in order to make it challenging or unattainable for a
variety of consumers to communicate [137]. An agricul-
tural operation frequently includes a significant number
of interconnected nodes and categories; consequently,
identical kinds of attacks are feasible in the environment
of smart agriculture. Such attacks can merely affect
the routine functioning of various units within a single
farming operation; however, they may also serve to
interfere with legal cyber services across various areas.

2) COMMUNICATION LAYER THREATS

The communication layer security flaws in smart agriculture
are comparable to those discovered in various IoT applica-
tions when taking into account the architecture and usage of
the technology. For instance, compared to other protocols,
WiFi encryption is more susceptible to password cracking.
There are some basic security issues at the communication
layer mentioned below:

3) MIDDLE-WARE LAYER THREATS

The security risks and threats related to the computing and
software solutions that facilitate data transfer and processing
among agricultural devices and sensors and higher-level
applications are referred to as the middle layer of threats in
agriculture. The security and integrity of agricultural oper-
ations may be threatened by these risks, which additionally
comprise hacking of data, control of access flaws, gateway
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discrepancies, and the possibility of data theft. A few of these
are listed here.

o Cross-Site Request Forger: On IoT equipment that
implements RESTful APIs, that sort of attack appears
to be more prevalent. The end-user is deceived by
replying to an insecure application without recognizing
it because of the CSRF method [138]. The web-based
user interface of the IoT layer is at risk of CSRF attacks
if its configurations are not adequate.

o Cross-Site Scripting: An XSS attack potentially attacks
RESTHful applications for the Internet of Things through
inserting side scripting into websites to bypass accessi-
bility restrictions [139]. These kinds of attacks are made
possible through the websites of cloud-connected IoT
apps.

« Session Hijacking: This form of attack is widespread
among RESTful-based Internet of Things technologies.
Since several IoT gadgets retain session connectivity
at the website user interface sessions can be hacked
enabling a hacker to hack into session data [140].

4) APPLICATION LAYER THREATS

According to the increased scalability and adaptation of cloud
computing, application companies are getting increasingly
interested in hosting applications there. This layer serves
as the intuitive interface for IoT-based agricultural devices
connected to users with the middle-ware. The kinds of
potential attacks on this outermost layer include:

¢ SQL Injection: A SQL injection vulnerability has been
identified in an agricultural management system. When
a hacker injects an erroneous SQL query into a web
server database. A resilient SQL injection attack might
compromise or alter agriculture information, providing
a substantial threat to IoT devices, notably those used in
agriculture [141].
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o Account Hijacking: Various IoT products employ
inadequate security or transmit data in plain text over the
Internet. When a packet gets captured once a consumer
has been verified authorized, a hacker is capable of
hijacking an account [142]. The most significant cause
of this attack’s starting point, as reported in various
cases, is outdated operating systems with insecure
patches.

« Malicious Hijacking:Installing malicious software that
conducts unlawful operations with the intent to trigger
network disruption [142].

« Ransomware:Encrypts significant data and intends to
make a significant payment to retrieve it. This threat
has the potential to initially appear on one machine and
spread across the network [143]. Hackers can encrypt
sensitive data and hold the code for decryption as a token
for cash.

5) BUSINESS LAYER THREATS

This layer fosters the agricultural services supplier’s enter-
prise logic and facilitates every aspect of the organization’s
process, comprising surveillance, supervisors, and growth.
It is also in charge of processing data related to agriculture
for findings. Threats on this layer are currently being
investigated, but the damage they cause is more significant
as they include critical agricultural information. Potential
violations include disclosure of data, deception, disruption,
and usurpation.

« Information Disclosure: Unauthorized manipulation of
confidential information, such as production records,
threatens the security of the IoT-based agriculture
system. A hacker might use previously described
techniques, for example, session hijacking and CSREF,
to obtain illegal access to confidential data [144].

o Deception: Disrupted data threatens the integrity of
data, which may result in serious consequences. Sink-
holes and attackers in the middle can both issue
deceptive data. Nearly fifty-eight percent of companies
do not have a system in place to rectify erroneous
information [145].

« Disruption: When accurate functions or accessibility to
agriculture information are disrupted, the reliability of
the system endures, which can have fatal repercussions
[145]. A denial-of-service (DoS) attack is a kind of
cyberattack that attempts to destroy data.

o Usurpation: Unauthorized entrance to particular sec-
tions of the system via attacks such as sinkhole, replay,
and code injection threatens the integrity of agricultural
IoT equipment [146].

6) CYBER ATTACKS

Considering the increasing popularity of next-generation
smart agriculture, attackers may attack equipment that
interconnects both physical and digital environments to
access confidential data online. IoT-connected devices offer
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especially susceptible access points for attackers, and agri-
cultural data might be stolen. A recent analysis of IoT-based
agricultural devices found that 83% of them are using
insecure operating systems [147]. Farmers who use these
devices might be more vulnerable to attackers who leak
critical agricultural data. As demonstrated in Fig.10, 98% of
all communications between IoT devices are not encrypted,
making 57% of these devices vulnerable to attackers and
revealing sensitive data on the network. With the proliferation
of connected devices, cyberattacks are expected to become
more frequent and severe [148].

B. BLOCKCHAIN-BASED AGRICULTURE

10T SECURITY SOLUTIONS

In the IoT-based agriculture system, security threats depend
on the vulnerabilities that are available at several levels,
including applications and interfaces, network components,
software, firmware, and physical equipment. In order to
achieve a certain security level, mitigation strategies for secu-
rity threats address the vulnerabilities of this interaction at
several layers. These countermeasures are more complicated
as a result of the various deployment protocols.Blockchain
technology is anticipated to have a significant impact on how
agriculture-based IoT systems are managed, controlled, and,
most critically, secured. The expectation has been made by
both the business and scientific communities. This section
explains how blockchain can be a crucial enabling technology
for offering realistic security solutions to the complex IoT
security issues that exist today.

A blockchain is a distributed, decentralized, and unchange-
able ledger that keeps track of assets and transactions over
a network of peer-to-peer devices. It is composed of a
series of time-stamped and authorized data blocks that are
encrypted by elliptic curve encryption (ECC) and SHA-256
hashing. This innovation improves trust and transparency
by cutting out the requirement for centralized authorities
and empowering users to directly share and verify data.
The block data basically consists of a hash of the previous
block and a list of all transactions. The blockchain offers
a cross-border decentralized trust around the world and
maintains an extensive record of all transactions. Centralized
authority and services, as well as trusted third parties (TTP),
are susceptible to disruption, compromise, and hacking [149].
Even if they are trustworthy right now, they might act
inappropriately or have corrupt tendencies in the future. Each
transaction in the shared public ledger of the blockchain is
confirmed by an overall consensus of mining nodes that play
arole in verifying and validating transactions. Miners on the
bitcoin network [150] verify the block by computing a hash
with leading zeros to reach the desired level of difficulty.
Block data is immutable, which means that it can never be
deleted or changed once transactions have been authenticated
and approved by consensus. Blockchain networks can be built
in two different ways: (1) permission-ed (or private) networks
that are only accessible to a select number of users, or (2)
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permission-less (or public) networks that allow anybody to
join. Block chains with permissions offer greater privacy and
improved access control.

A generic blockchain architecture framework is shown in
the Fig.11. The architectural framework is mostly made up of
the header of the block and the block body, which comprises a
collection of transactions. One feature in the block header that
can be utilized for tracking software and protocol updates is
the version code. Time stamps, block sizes, and transaction
counts are also included in the header. The hash value of
the most recent block appears in the Merkle root field. For
effective data verification, Merkle tree hashing is frequently
employed in distributed systems and P2P networks. The first
counter value generates the hash with leading zeros, and
the nonce field is utilized for the proof-of-work procedure.
In order to maintain a block time of around 10 minutes
for Bitcoin [151] and 17.5 seconds for Ethereum [152], the
difficulty target, which defines the number of leading zeros,
is employed. The level of difficulty is modified frequently
and improves (with additional leading zeros) as computer
processing power advances with time. The block time is
predetermined by design to take into consideration how long
it takes for blocks to propagate to all miners and for each
to agree on a block.Bitcoin is one of the first programs
created using blockchain technology, which has subsequently
evolved into the basis for several modern cryptocurrencies.
With the unveiling of smart contracts in July 2015, Ethereum
broadened the possibilities for blockchain technology. These
programmable agreements, first proposed by Nick Szabo in
1994, comprise self-executing contracts that can be written in
Solidity, a programming language identical to JavaScript, and
carried out on the blockchain of Ethereum using Ethereum
Virtual Machines (EVM) [153]. In addition to having its
own cryptocurrency, Ether, Ethereum also uses a blockchain
state to facilitate the execution of smart contracts. Accounts,
addresses, codes, and electronic balances are all attributes of
smart contracts.

Ethereum’s EVM storage can be expensive; however, for
large-scale storage requirements, decentralized data stores
like IPFS, BitTorrent, or Swarm may be employed for main-
taining pertinent data hashes. The management, control, and
security of IoT-based agriculture devices are all anticipated
to benefit significantly from blockchain technology that is
based on smart contracts. The core features of blockchain
technology that are listed below can be very advantageous
for IoT primarily and IoT security specifically.

e Address Space: Blockchain uses a 160-bit address
space, as compared to IPv6, which uses a 128-bit address
space [169]. A public key obtained using the ECDSA
(Elliptic Curve Digital Signature Algorithm) is hashed
into a 20-byte (160-bit) address on the blockchain. With
a very low probability of address collision and a 160-bit
address space, blockchain can generate addresses for
roughly 1.46 s 10*® IoT devices, ensuring secure
and globally unique identifiers without the need for
centralized oversight like IANA’s management of IPv4
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and IPv6 addresses. In addition, blockchain provides
4.3 billion more addresses than IPv6, resulting in a better
option for the Internet of Things, especially for devices
with restricted resources that cannot support an IPv6
stack [170].

Data Integrity and Authentication: Data commu-
nicated by IoT devices connected to the blockchain
network will always be cryptographically proofed and
signed by the authentic sender, who has a unique public
key and GUID, ensuring the security and authenticity of
the data that is transmitted. The blockchain distributed
ledger also records all transactions performed on or by
an IoT device and enables their secure tracking [171].
Authorization, Authentication, and Privacy:
Blockchain smart contracts provide decentralized
authentication logic and rules for IoT device single-party
and multi-party authentication. Additionally, blockchain
offers a more efficient way of authorizing access
rules for connected IoT devices than more traditional
authorization protocols like OAuth 2.0, Role-Based
Access Management (RBAC), OpenlD, LWM2M, and
OMA DM, which are frequently used in IoT device
authorization, authentication, and management. Smart
contracts also guarantee data privacy by defining access
guidelines, constraints, and time limits, enabling certain
people, organizations, and even devices to own, control,
or access data both while it is in use and while it is in
transfer [172]. Additionally, these smart contracts can
specify who has the power to reset IoT devices, create
new key pairs, initiate updates, upgrade IoT software or
hardware, and patch IoT software or hardware.

Secure Communications: Conventional IoT network-
ing and communication protocols, including HTTP,
CoAP, MQTT,RPL, and 6LoWPAN, have security
features that are integrated and demand the use of
additional, complicated protocols like DTLS, TLS,
and IPSec. These resource-intensive security tech-
niques depend on centralized authority over keys.
While omitting centralized authentication processes
and streamlining security strategies, blockchain offers
distinct GUIDs and pairs of keys for IoT devices. This
makes it possible to apply security methods that are less
intrusive and better suited for IoT devices [173].

Administration and Identification of Things: The
implementation of identity and access management
(IAM) for IoT offers a variety of technical issues
that require effective, secure solutions. The fluctuating
ownership and identification relationships between IoT
devices are a major concern. Ownership of the device
changes over its lifespan, from the company that
makes it to the vendor, reseller, and ultimately the
end user [174]. End-user ownership may alter due
to selling, retirement, or negotiation. Maintaining the
characteristics and interconnections of IoT devices adds
a further layer of complexity. These characteristics
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TABLE 9. Security challenges and solutions in loT-based agriculture.

1 [154] 2023 Journal Physical Physical layer Enhancing the security and privacy
data capture, of data shared among IoT devices
Spoofing, for precision agriculture by imple-
session menting elliptic curve cryptogra-
hijacking phy.

2 [155] 2023 Journal Information Physical,Network, A blockchain-fog computing-SDN
security Application layers system improves security and ef-

fectiveness in data collecting, pro-
cessing, and transmission.

3 [156] 2023 Conference Authentication Application layer Precision farming using blockchain
and secure and IoT requires safe, immutable,
communica- and accurate crop and environmen-
tion tal data.

4. [157] 2023 Conference Data In- Physical, Network Implement strong security mea-
tegrity,Device  layers sures to protect data, maintain in-
Authentica- tegrity, and deter illegal access
tion, Data while reducing resource usage.
Security

5. [158] 2022 Journal Optimize fog Network, This framework improves precision
computing Application layer agriculture using fog systems, ML,
system and secure IoT resource manage-
routing ment with intelligent routing. .

6. [159] 2022 Conference Privacy, Application layer An ToT and Blockchain solution is
authorization proposed for improved security and
and productivity in smart agriculture.
authentication

7.  [160] 2022 Journal Insecure Transport Network, Cluster key management, deep
interfaces, Application layer learning, and a web interface im-
DDos prove precision agricultural secu-
attacks , and rity and usefulness.

Cyberattacks

8. [143] 2022 Journal Cyber-attacks  Application Layer In IoT-based agriculture, a three-
and malware phase DMD-DWT-GAN system in-
attacks tegrating DWT and a tiny CNN

provides precise malware identifi-
cation.

9. [161] 2021 Conference Potential vul- Physical, Transport Precision agriculture infrastructure
nerabilities layer threat modeling using STRIDE de-
and threats tects security problems for each

class, improving cybersecurity.

10.  [162] 2021 Conference Duplication Physical, Network To prevent IoAT device duplication
and layer and improve security, hardware se-
unauthorized curity using PUF-based authentica-
access tion is being developed.

11.  [163] 2021 Journal Cyber threats Application layer The study compares CNN, DNN,
and DDoS at- and RNN for Agriculture 4.0
tacks DDoS detection using the CIC-

DDo0S2019 and TON-IoT datasets.

12.  [164] 2021 Conference Cyber threats Communication, Ap- A LoRaWAN soil sensor with

and attacks

plication Layers

HSM and four levels of cyberse-
curity defense provides strong data
security, integrity, and attack re-
silience.
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TABLE 9. (Continued.) Security challenges and solutions in loT-based agriculture.

13.  [165] 2020 Journal Malicious Network, Implement trust-based cloud IoAT
nodes Application layers detection and prevention technolo-
identification gies to provide security and pri-

vacy.

14. [166] 2020 Journal Malicious ad- Communication Improve IoT agricultural sensor se-
versaries layer curity with cluster heads, SNR-

based efficiency, and data security
via a linear congruent generator.

15. [167] 2020 Journal Data privacy Physical,

Farmers’ data is protected from

and security Application layers leaks and variations with blind fac-

tors and ElGamal Cryptosystem
privacy-preserving data mining.

16. [168] 2019 Conference Data integrity, Application layer IoT blockchain improves agri-tech

confidential-
ity, and
authenticity

by protecting sensor data and en-
abling automated policy checks
using smart contracts for trans-
parency.

loT- based Agriculture System Traffic
Encryption

Encrypted
® Unencrypted

FIGURE 10. Cyber attacks in loT based agriculture system.
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FIGURE 11. Chained blockchain architectural framework with header and
body fields.

include information on the maker, make, classification,
model number, location, and location GPS coordinates.
In addition, IoT devices have complex linkages that

loT- based Agriculture System
Vulnerabilities

m Vulenerable 43%
Unencrypted

Blockchain technology provides a strong, secure, and
cost-effective solution to these problems. It is frequently
used to establish reliable and authorized identification
enrollment, keep track of possessions, and retrieve valu-
ables. Blockchain-based technologies like TrustChain
have been put out to enable trustworthy transactions
while maintaining transaction security inside a decen-
tralized system [175]. The capabilities of blockchain
are also advantageous for IoT devices. Blockchain
technology can be utilized to authorize and give
identification to interconnected IoT devices, featuring
a wide range of qualities and complex interconnections
that may be securely recorded and maintained on the
decentralized ledger of the blockchain.

range from links between devices and people to connec-
tions between devices and services. These connections
involve a variety of activities, including installation, use,
logistics, distributing, upgrading, repairing, and more.
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VI. THE STATE-OF-THE-ART ML MODELS AND
TECHNIQUES IN SMART AGRICULTURE APPLICATIONS
The world is presently dealing with an unprecedented
converge of problems related to food items and agricultural

61009



IEEE Access

A. Naseer et al.: Systematic Literature Review of the loT in Agriculture

sustainability. Given the continual rise in global population
and the introduction of unknown factors due to climate
change into conventional farming methods, the demand for
innovative and effective agricultural solutions has never been
greater. The fusion of cutting-edge technology, notably the
IoT and deep learning, has ushered in a new era of agriculture
named as ‘“‘smart agriculture”.

It is a difficult challenge to turn raw data into knowledge
that can help farmers and agricultural professionals in real-
time decision-making. The development of the IoT has
completely changed how data is collected in the agricultural
sector. A plethora of data on soil moisture levels, temperature,
weather patterns, and crop health is continually gathered by
IoT sensors implanted in soil, rainfall stations, drones, and
cutting-edge agricultural equipment [176]. This constant flow
of data has the potential to reveal invaluable information
about how the agricultural environment functions.

Smart agriculture, which represents a paradigm shift from
conventional agricultural practices, is built around precision
agriculture. The key to optimising resource use, improving
agricultural productivity, and reducing environmental impact
is automation and data-driven decision-making. For analysis
and decision-making, deep learning models are utilised in
smart agriculture, and the Internet of Things is used for
real-time data collection. Deep learning techniques, for
instance, may be used to estimate productivity, manage
disease and insects, and perform accurate irrigation [177].

The importance of deep learning models in smart agri-
culture will only increase as we continue to tackle major
issues like climate change and food security [178]. Deep
learning models provide incomparable levels of accuracy and
efficiency, revolutionising the way we address agricultural
processes. CNNs,RCNN, ResNet-18 and many more are the
few examples of deep learning models that have shown to be
particularly effective in tasks like fruit counting, weed/crop
discrimination, and land cover classification. These models
can analyse enormous volumes of data gathered from
several sources, such as IoT devices, drones, and weather
stations, and turn this unprocessed data into insights that
can be put to use. As a result, crop yields have increased,
resource waste has decreased, and agricultural sustainability
has increased [179]. This can offer useful information
for managing fields and planning crops.As part of our
examination of the many dimensions of smart agriculture,
we pinpointed particular uses for DL models. The Table 10
provides a concise summary of our findings

A. CONVOLUTIONAL NEURAL NETWORKS
Convolutional Neural Networks (CNNs) have become an
effective tool for smart agriculture, offering answers to a
range of problems. CNNs are proficient at identifying and
classifying plant diseases, differentiating weeds and crops,
counting fruits, and classifying land cover [180].

These models can analyze enormous volumes of data
gathered from several sources, such as [oT devices, drones,
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and weather stations, and turn this raw data into valuable
insights.

CNNs are a specific kind of deep learning model that is
particularly effective for processing grid-like data, such as
picture data. They are made to automatically and dynamically
learn spatial relationships of features from massive datasets.
They are, therefore, beneficial for image analysis jobs, which
are frequent in smart agriculture.

For instance, CNNs may be applied to crop image analysis
to quickly identify diseases. This enables farmers to take
immediate measures to stop the disease’s spread and reduce
crop loss [181]. Similarly, CNNs can distinguish between
crops and weeds based on photos collected in the field. This
can aid in creating efficient weeding systems that focus on
weeds while ignoring crops [182]. These models may also
be used to count the quantity of fruits based on photos
captured in fields. This can offer an accurately calculated
yield estimate, which is essential for supply chain and
logistics planning [183]. The categorization of land cover
based on satellite photos may also be done using CNNss [184].

Various agricultural issues, from disease diagnosis to
plant recognition, may be addressed using CNN’s ability to
precisely recognize and localize objects in pictures. However,
To fully realize the promise of CNNs in smart agriculture,
issues with data collecting and computing resources must be
resolved.

B. REGION-BASED CONVOLUTIONAL

NEURAL NETWORKS

In smart agriculture, region-based convolutional neural
networks (RCNNs) have been used to locate and identify
leaf diseases. These models can pinpoint the precise areas
in images where a disease is present, which is important
in determining the severity of the condition and selecting
the best course of treatment. By utilizing RCNNSs in smart
agriculture, manually monitoring big fields is no longer
necessary. This technology also makes it possible to identify
illnesses early, reducing the degradation of plant growth.

A typical RCNN starts by producing a list of region
proposals, which could include an object of interest. These
areas are suggestions based on the features that CNN has
learned. The model then assigns each region suggestion to
a backdrop or one of the object classes [185]. In the case of
smart agriculture, the backdrop may be healthy plant tissue,
while the object classes could be various kinds of plant
diseases. The flexibility of RCNNs to accommodate different
object sizes is one of its main features.

This is significant in smart agriculture, where the extent
of the infected region might fluctuate dramatically. RCNNs
do this by employing area suggestions with various aspect
ratios and sizes, which enables them to recognize objects of
various sizes and forms. Plant disease detection is one of
the main areas where RCNNs are used in smart agriculture.
Early disease detection is essential for successful disease
management since plant diseases can have a significant
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TABLE 10. Deep learning model’s application in smart agriculture.

ER Ref. DL Model Dataset Pre-Processing Results Major Focus
Removing outliers and out-of- . . .
Data obtained from range values, normalizing and RMSE:0.6173, ;l‘gnsel:/;lu;fn ﬂ(l)i z(fiﬁcele:;?n dunt(ijn 3 OSWZI:
1. LSTM the developed IoT rescaling the data in the range = MAE:0.4136, P ge computing sy
[88] . . tems for a deep learning model that
system of [0, 1], and using a moving  R2:0.9936 .
forecasts crop frost using IoT datal
average
Provide a comprehensive overview of
CNN, FCN, EPR-based data, Image Segmentation, Feature the performance of machine learning
5 RCNN, CORINE Land-  Extraction, Background Re- NA and deep learning models for agricul-
’ [180] SVM, RF, Cover 2006 dataset, moval, Noise Reduction, Data tural operations implemented through
ANN ImageNet dataset Augmentation robotic platforms, and to identify the
research gaps and future directions
Developed a framework that can auto-
3 CNN PlantVillage dataset Besmng, Cropping, Augment- Fl-score:0.987 matically detect a'nd classify crop dis-
[181] ing eases and pests using deep learning and
IoT
plfferent 'datasets; A novel CNN-based modular spot
images of nine weed L
3 . . .. . sprayer was developed after reviewing
species in maize, Image Resizing, Cropping, A . . )
. P ccuracy: 77%—  several technologies and prototypes for
4. CNN potato and sunflower, ~ Augmentation, Normalization, L .
[182] X . 98% precision chemical weed management
and images of four Labeling . . . .
. . techniques, particularly patch spraying
weed  species in and spot spravin
tomato P praymg
5 FRCNN, Fruits 360 collected  Resizing, Cropping, Normaliz- Fl-score:99.2% Developed an accurate, quick and reli-
) [183] CNN from Kaggle ing the images el able fruit detection system using CNN
Collection of 64 x
64 pixels images Cropping the satellite images global ~accuracy ..
. . X of 98% and 91%  Used CNN to divide the Eastern Eco-
representing the into smaller images of the . . . X 5
. for the binary- nomic Corridor (EEC) of Thailand’s
6. CNN four land cover same size as the dataset, nor- R . A
[184] . .. X and three-class land cover into four categories: city,
classes, obtained  malizing the pixel values to the )
. CNN model  crop, forest, and water
from Sentinel-2  range [0, 1] .
o respectively
satellite images
Resizing the image, Normaliz- Thoroughly describe the region-based
PASCAL VOC 2012  ing, Data Augmentation, Gen- ghly g
- . . . convolutional neural network (R-CNN)
dataset, the Microsoft  erating Region Proposals us- .
7. RCNN . ; . NA and its most recent advancements and
[185] COCO dataset, and ing Selective search, Region R X
. to compare their performance in terms
the ImageNet dataset ~ Proposal Network, or default
. of accuracy and speed
bounding boxes
Hlstogram p}xel, Loca!lzatlon Acct}rg cy: 98%, Developed an integrated system incor-
technique with a median fil-  precision: 97.7%, . ; .
CRNN- . K porating enhanced image processing al-
8. Banana leaf dataset ter for image enhancement and  recall: 97.7%, . X : .
[186] RCNN . . [ gorithms for quicker disease detection
region-based edge normaliza-  sensitivity: s
. . . in banana leaves
tion for image segmentation 98.69%
Evaluated the effectiveness of Faster
9 Faster FT BRC Resizing, Cropping, Augment- mAP: 0.555 (at RCNN models with various extracted
’ [187] RCNN = ing TIoU = 0.5) features for weed detection in difficult
field situations
According to
Time series data researchers, the
collected from 10 method improves
DHT11 sensors harvest  output LSTM model, cloud computing, and
attached to 10 Removine missine values and by about 20%, sensor technology were used to track
10. (188] LSTM Arduino Unos, s arating the sen{ior data reduces water and forecast environmental and soil
which measure the P g use by almost characteristics, which enhanced the
temperature and 20%, and lowers  agricultural process
humidity  of  the labour costs
atmosphere by roughly
55%—60%
Data from humidity L . . LSTM: 0.08  Examined how well LSTM and back-
Normalization using the Min . X . .
sensor collected by L RMSE, back-  propagation performed in predicting air
11. LSTM . Max method and splitting the . .
[189] the smart agriculture . ) . propagation: 0.10  pressure data from the smart agriculture
data into time series form
system RMSE dataset
Using a CNN-LSTM classifier, which
12, CNN:LSTM PlantVillage dataset Besmng, Cropping, Normaliz- Fl-score:99.17% is a sugggsted hybrlfi model for p.lant
[190] classifier ing disease diagnosis using deep learning,
illnesses of plants were discovered
?IIICWO;] ztzseetuggzsls(; Developed a technique to estimate
) g ot @ seq average RMSE:  wheat crop production in India using
satellite images and 143.1 kgs/hectare  satellite pictures using a deep neural
13. [191] CNN-LSTM - the exact crop yield  NA across all the network model that operates directly on

for the years 2001-
2011 covering a total
of 948 tehsils

states

raw images without hand-crafted fea-
tures
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TABLE 10. (Continued.) Deep learning model’s application in smart agriculture.

Set of UAV images
obtained from a win-

Cropping 201 x 201 px im-
age patches from the anno-

Used an embedded system, high-

14 lfg sNertI-lo del. T wheat field, anno-  tated images, augmenting the accuracy: 949% resolution weed maps were created
' [192] > tated with six classes:  patches by rotating and mirror- ¥ 7 from UAV photos in a computationally
DCNN . : . .
soil, wheat, and four ing them, and converting the efficient manner
weed species model to 16-bit precision
Soybean yield dataset
collected from Iowa Examined the effectiveness of decen-
- . lowest RMSE of . -
State University Ex-  Data cleaning, Data normal- tralised deep residual network-based re-
ResNet-16, X . . 3.78 bushels/acre N .
15. [193] ResNet-28 tension and Outreach  ization, Data partitioning, Data and the hichest Sression models for soybean yield pre-
and USDA National augmentation £ diction, such as ResNet-16 and ResNet-
. L R2 of 0.92
Agricultural Statistics 28
Service
K-means, Image segmentation, feature Provided an in-depth analysis of the
SVM, GA,  Datasets are extraction, feature selection IoT in popular farming applications
16. RE, DCNN, developed by the ¢ ’ : ’ NA . popular jarming app :
[194] image augmentation, and data wireless communication protocols, and
INAR-SSD, researchers normalization the role of sensors in precision farmin:
FRCNN P &
GitHub dataset, Resizing, Noise removal, Proposed a crop monitoring system that
which consists  Data Cleaning, Image can employ deep learning models to
17 DRNN- of orthomosaic ~ Enhancement, Edge F-1 score:64.5% classify the crop status, find weeds,
' [195] FCNN images of different Normalization, Smoothening, e and detect anomalies while updating the
crop growth stages and Multi-Resolution database in real time with data from
captured by UAVs Segmentation UAV and IoT sensors
Resizing. Cropping. Gravscal- Utilising convolutional neural networks
18. CNN PlantVillage Dataset . &, ropping, y F1-score:0.95 and IoT, the paper’s primary goal is to
[196] ing, Normalizing . .
categorise leaf diseases
Resm%ng the images to 512. X AP:0.87 for  Presented a thorough analysis of the
512 pixels, Data Augmentation . . .
Custom dataset cre- techniques such as rotation.  PESt detection, usage of unmanned aerial vehicles
CNN with a  ated which is com- fhi inq scaling and croppin > accuracy:0.94 (UAVs) for agricultural operations and
19. U-Net archi-  posed of 10,000 UAV ppng, & and PPINg, g0 pest to emphasise the significance of si-
[197] . Normalizing the pixel values . . L .
tecture images of soybean to the range [0, 1], Splitting the classification, F1 =~ multaneous localization and mapping
crops d nge 19, 1, sputing | score: 090 for (SLAM) for a UAV solution in the
ataset 1nto training, validation N
pest localization greenhouse
and test sets
A total - of 1000 Labehpg the images  with accuracy:80.4%, Created and demonstrated a full IoT-
photos of tomato and  bounding boxes and class
. . .. . mAP (IoU = based Smart Greenhouse system that
Faster maize leaves with names, resizing the images, X . . f
20. . . . 0.50:0.95):0.414, combines monitoring, alerting, cloud
[198] RCNN various diseases were  generating CSV files for . . .
. . . .. . mAR (IoU @  storage, automation, and disease predic-
utilised in the training  training, creating label maps, .
. N . 0.5:0.95):0.6016 tion
of the model creating configuration files
Resizing, Normalization, RGB  accuracy: Developed and deployed CROPCARE,
MobileNet- to grayscale conversion, back-  96.12%, a real-time smart system that combines
21. (199] V2 with  PlantVillage dataset ground removal, image inter-  validation loss:  mobile vision, IoT, and cloud services
SRCNN polation, and data augmenta- 0.1607, training for crop disease diagnosis and preven-
tion loss: 0.1007 tion
Developed a smart soil and plant mon-
2 ICNN Leaf dataset Resizing, CIELAB conversion, gy e 99 1% itoring  system that l.everages IoT to
[200] segmentation increase agricultural yield and lessen its
negative effects on the environment
YOLOV3-
SPP for fruit .. . Presented a complete smart harvest-
. Resizing the images, correct- . . .
detection . e . . . o10 ing solution that can count fruits from
23 d NA ing the detections using thresh-  accuracy : 91%- d link them ¢ hical dat
. an . : videos, link them to geographical data,
[201] olding, and extracting the 95% . .
ResNet18 ; . and arrange containers in the best pos-
bounding boxes of the fruits . . X
for feature sible harvesting locations
extraction
A hybrid convolutional neural network
. . . - . model with feature reduction increased
24 [202] Hybrid CNN  PlantVillage dataset Resizing, Normalizing F1 score: 0.975 the precision and effectiveness of grape

leaf disease detection and classification

impact on crop production and quality. Farmers now have a
powerful tool for early disease diagnosis thanks to RCNNS,
which can be trained to recognize disease signs from photos
of plant leaves or stems [186].Identification of crops and
weeds is another crucial field for RCNN applications in
smart agriculture. Precision farming techniques, such as the
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focused application of herbicides, may be guided by precise
identification and differentiation of crops and weeds. RCNNs
may be applied to field image analysis to locate and identify
crops and weeds precisely [187]. Another research [203]
proposed ML and DL methods for weed detection and
classification in crops, which achieved 90% accuracy with
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Random Forest and ConvNeXt on the CottonWeedID15
dataset and 99.5% accuracy with SVM on the early crop weed
dataset.

However, RCNNs demand training data and are computa-
tionally expensive. This can be difficult in smart agriculture
since data collecting can be costly and time-consuming.
Despite these difficulties, RCNNs have demonstrated excel-
lent potential in smart agriculture. In the upcoming years,
it is anticipated that RCNNs will play a more significant part
in smart agriculture due to continued developments in deep
learning and the expansion of high-quality agricultural data.
They can assist farmers in taking prompt action to reduce crop
loss and maintain food security by making it possible to detect
illnesses early and accurately. Techniques like Fast R-CNN
and Faster RCNN have enhanced the original RCNN. The
importance of RCNNs in smart agriculture will only increase
as we continue to face major issues like climate change and
food security.

C. LONG SHORT-TERM MEMORY

Long Short-Term Memory (LSTM) networks, a recurrent
neural network, have shown promise in smart agriculture.
Because LSTMs can characterize temporal sequences and
their long-range interactions, they are particularly well
suited for tasks requiring time-series data, typically seen in
agricultural applications. LSTM networks may be used To
make wise judgments about irrigation, fertilization, and pest
management, for example, to anticipate the environmental
conditions of plants based on past data. Additionally, because
LSTM networks can process lengthy data sequences, they
are appropriate for examining the constant stream of data
produced by IoT sensors in smart agriculture [188]

Environmental condition monitoring is one of the main
uses of LSTMs in smart agriculture. Data on the envi-
ronmental circumstances of plants are continually tracked
in a smart agriculture system. This time-series data may
be analyzed using LSTMs to forecast future environmental
conditions [189]. For instance, they may be used to forecast
temperature, humidity, and other environmental variables,
which are essential for plant development.

In smart agriculture, the domain of pest detection is a
crucial application of LSTMs combined with CNNs [190].
The frequency of pests can change over time and is
frequently influenced by environmental factors. LSTMs may
be utilized to analyze environmental and historical data on
pest occurrences to forecast future pest occurrences. This
can make it possible for farmers to minimize crop loss and
take preventative measures. Crop yield prediction may also
be done with LSTMs. Environmental conditions, agricultural
methods, and crop variety are only a few variables that might
affect crop yield. When combined with other relevant data,
LSTMs may be used to analyze past yield data to produce
precise predictions [191]. Farmers may be able to organize
their marketing and harvesting operations better, increasing
their profitability. Their capacity to create complex temporal
correlations in data can help with yield prediction, precise
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pest identification, and better environmental condition mon-
itoring. Issues with data collecting and computing resources
must be resolved to fully grasp the potential of LSTMs.

D. RESIDUAL NETWORKS

A type of CNN called residual networks (ResNets) invented
the idea of ““skip connections,” which enables the gradient to
be directly back propagated to older layers. The fundamental
advantage of a ResNet is its capacity to train 1004 layer
networks with impressive accuracy over a wide range
of datasets (such as ImageNet). ResNets are particularly
helpful in addressing challenging agricultural tasks that need
high-level feature extraction and abstraction because they can
efficiently train deep networks.

A single residual block in a ResNet comprises a ReLU
activation function, batch normalization, and numerous
layers of convolutions. ResNets apply to smart agriculture in
a variety of contexts. Precision agriculture can also benefit
from the usage of ResNets. Utilizing cutting-edge technology
to handle agricultural tasks more precisely and effectively
is known as precision agriculture. This involves accurate
fertilizer and pesticide application, variable rate irrigation,
and the best planting and harvesting techniques. To generate
insights that help direct precision agricultural practices,
ResNets can analyze large amounts of data on weather, soil
quality, crop trends, and satellite images.

Plant disease and pest detection is one of the most popular
uses of this technology [192]. Plant diseases and pests
significantly influence the productivity and quality of crops.
By prompting response and minimizing crop loss, early
and precise identification of various diseases and pests can
increase production. With its deep architectures and skip
connections, ResNets can accurately identify numerous plant
diseases and pests by extracting detailed information from
photos of plant leaves and stems.

Predicting crop yield is another area in which ResNets
is used in smart agriculture. An essential component of
agricultural planning and management is crop production
prediction [193]. For precise yield estimates, ResNets may be
used to analyze various data sources, such as meteorological
data, soil quality data, and crop patterns.

ResNets have a lot of potential for the subject of smart
agriculture. Their capacity to simulate highly complex
patterns and correlations in data can result in more accurate
production predictions, better disease and pest detection, and
effective agricultural management techniques.

VII. RESEARCH OPEN CHALLENGES AND

FUTURE RESEARCH DIRECTIONS

There are a number of open research problems and potential
areas for further investigation in the field of IoT-based
agricultural applications; some of these open challenges and
potential areas are mentioned in this section.

1) Implementation and maintenance: A notable chal-
lenge can be caused by the deployment and continuous
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maintenance of loT-based agricultural systems span-
ning significant agricultural regions. To make sure
that everything runs smoothly and effectively, this
challenge requires tackling a variety of technological,
logistical, and resource-related challenges. To fully
utilize IoT in agriculture, solutions to these challenges
must be identified that are realistic.

Cost: Numerous monetary factors, including pre-
liminary setup costs and continuing operating costs,
must be taken into account when deploying IoT in
agriculture. Hardware expenses such as IoT devices,
sensors, base station infrastructure, and gateways are
all included in the setup costs. On the other hand,
continuing payments for subscriptions for services like
centralized data collection, data interchange, and IoT
device management are included in the running costs.
Security: There is presently no unified benchmark to
determine the security resilience of suggested solutions
in the environment of IoT-based agriculture systems.
In order to examine the level of security in their
individual research initiatives, several research groups
separately undertake security evaluations, frequently
utilizing adversarial analyses. Because of varying
underlying assumptions and guiding concepts, these
evaluations frequently lack uniformity. The devel-
opment of a system for estimating the level of
security in research activities has become crucial for
the ToT-based agriculture security community [128].
For example, a web-based application that delivers
findings according to user input may be implemented
to establish an agricultural IoT security evaluation
system. However, it’s crucial to highlight that neither
the security analysis of recent agricultural studies nor
the use of cryptography techniques in cryptanalysis are
included in this work. To accurately gauge the security
level of IoT-based agricultural systems, more research
must be conducted.

Advancement of communication & network tech-
nologies:Considering the advantages provided by
developing cutting-edge communication technologies,
potential consumers have agreed to endorse smart
agriculture systems [44]. The requirement for rapid and
efficient network connections in order to ensure system
coordination has been demonstrated by contemporary
advances in technology that have led to immense
advances in the processing of data. The advancement
of 6G networks has been driven by this demand.
It is projected that 6G and IoT technologies will
combine to establish a panorama of smart agriculture
networks in the future, improving device integration,
increasing network efficiency, and addressing security
issues. Key 6G technology advancements, such as
Software-Defined Networking (SDN), Massive Multi-
ple Input, Multiple Output (MIMO), Network Function
Virtualization (NFV), Machine-to-Machine (M2M)
communication, and millimeter-wave communication,

5)

6)

7)

are essential for addressing the aforementioned chal-
lenges in order to deliver highly effective smart
IoT-based agriculture solutions.

Big data: The efficient processing of an extensive
amount of agricultural data is critical in IoT-based
agriculture systems. This data is collected by IoT
sensors placed in the agricultural environment, where
scenarios and factors fluctuate constantly. Furthermore,
as the demand for accurate and reliable assessment
of crop conditions advances, sensors and connection
points produce an extensive amount of agricultural
data in a variety of formats [122]. Processing various
and large data quantities can be difficult, potentially
impeding timely access, even though continuous access
is critical. Any disruptions in accessing data might
result in serious effects in major instances, including
those impacting vital crops or livestock. Substantial
drifts in the capacity of data are expected to decline
as algorithms for prediction become more capable of
predicting such occurrences. Organizations are likely
to participate in both inside and outside education to
train young scientists with the ability to overcome
these difficulties, according to the Global Institute for
Analytics. Businesses will prioritize data updates and
shift their focus from managing system procedures to
acquiring computations. Furthermore, more firms are
likely to investigate the possibility of exploiting their
agricultural data resources. There will certainly be sig-
nificant growth for well-known services and suppliers
like Kaggle, Algorithmia, and DataXu, leading to the
emergence of booming algorithm economies in the
agriculture sector.

Artificial intelligence: Network security is one of
the areas where machine learning and deep learning
have become research hotspots. For instance, machine
learning-based networks, especially detection of intru-
sion techniques, are increasing in prevalence and
have conceivable applications in IoT-based agriculture
systems. In the area of agriculture IoT, deep learning
networks, as discussed in the previous section, have
been used to evaluate the provision of data, such as
crop disease identification, throughout multiple layers
of IoT systems for quick identification of potential
problems [187]. Considering the growing popularity
of deep learning techniques on agricultural servers for
tasks such as identifying diseases, it is essential to
investigate their effectiveness in guaranteeing system
privacy and the security of data.

Blockchain: The primary focus of blockchain
researchers is the optimization of blockchain-based
solutions for IoT devices with limited resources.
These advancements aim to ensure data integrity
and transparency throughout the agricultural process.
The study specifically explores the implementation of
smart contract technology to streamline agricultural
transactions, address interoperability issues, increase
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data privacy and ownership rights for landowners
and stakeholders, and develop adaptable blockchain
frameworks. These strategies are designed to capi-
talize on the potential advantages of blockchain by
addressing the distinctive challenges offered in the
agricultural environment, thus improving the security,
efficiency, and dependability of IoT applications in
agriculture [172].

8) Agriculture robotic system: The growing importance
of agricultural productivity and effectiveness has drawn
attention to the importance of robotics in agriculture,
notably in activities such as robot crop cutting,drone-
based field monitoring, spray quadcopters, and robot-
detecting diseases, where innovations in robotics
technology have transformed conventional agricultural
practices. Fundamental, flexible, simple, and afford-
able technological solutions must be prioritized in
the forthcoming generations of agricultural automated
machines and systems engineering. switching from
outdated electrical control devices, sensors, and net-
working systems to their digital versions may assist
these innovations become more prevalent. In contrast
to traditional electric motors, which can be complex,
large, and expensive, the agriculture robotics market
requires simplified and logic-driven technology solu-
tions. The emerging phenomenon of the IoT has the
potential to effortlessly incorporate with agricultural
technology and equipment in the future years, boosting
the efficiency and precision of numerous fields of
agriculture.

9) Unmanned Aerial Vehicles (UAVs) and AI Tech-
nologies in Agriculture: With the expansion of IoT
and the advent of communication technologies, the use
of drones in agriculture has accelerated significantly.
In the future, Al offers a viable way to improve the
potential and effectiveness of UAVs in agricultural
operations. Al has the potential to transform drone
capabilities by empowering them to perform a wide
range of essential functions that enhance agricultural
practices. A few examples are soil analysis, automated
planting, targeted crop spraying, real-time crop health
monitoring, precision irrigation, and extensive crop
inspection. Furthermore, drones equipped with a vari-
ety of sensors, including 3D cameras, thermal imaging,
multi-spectral imaging, and optical cameras, make
it easier to monitor various crop conditions, disease
outbreaks, vegetation density, and soil parameters.
Al has the potential to analyze the data collected from
these sensors and provide valuable insights such as the
need for pesticides, fertilizer distribution, canopy cover
mapping, yield forecasts, plant counting, and plant
height measurement. It demonstrates the various uses
of UAVs in agriculture, including mapping, spraying,
harvesting, and sensing, and opens up opportunities
for potential advances in this field with the use of Al
technology.
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10) Eco-sustainable Technologies: The primary focus of
research in eco-sustainable technologies is assessing
the mineral balance of agricultural treatments and
examining any potential effects on cutting-edge IoT-
based agricultural systems. Furthermore, nanotechnol-
ogy can be crucial in enhancing the intelligence and
adaptability of smart agricultural systems, particularly
for IoT devices. To build intelligent and environmen-
tally conscious agricultural systems that rely on IoT
sensors for monitoring and improvement purposes, this
area presents an immense research gap that has to be
addressed.

VIIl. CONCLUSION

This review article provides an extensive and systematic
analysis of IoT-based agriculture systems, spanning technical
advancements, sector developments, device sustainability,
applications, communication standards, gaps in research,
significant privacy and security concerns, and solutions that
are distinctive to [oT in agriculture, as well as state-of-the-art
ML models and techniques in smart agriculture applications.
It presents an in-depth explanation of IoT technologies and
how they might be used in different sectors of agriculture.
The report evaluates key findings from previous research
and emphasizes the particular security concerns of IoT in
agriculture, considering its broad spectrum of applications.
Additionally, it emphasizes significant application fields and
research opportunities, offering valuable data to researchers
and industry experts. The importance of IoT security,
including technological developments like blockchain for
risk mitigation, is also emphasized in the article.In order
to improve the effectiveness and accuracy of automation,
modeling, and forecasting systems in agriculture, the debate
predicts the rise of hybrid technologies that combine big data
analytics, data mining, artificial intelligence, and the Internet
of Things.
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