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ABSTRACT Few-shot font generation (FFG) stands as a pivotal technique in Chinese character generation,
enabling the creation of new fonts by leveraging a limited set of available font images. Despite the remarkable
success of existing cross-language font generation methods, they tend to ignore some domain-specific
characteristics. In addition, they cannot achieve one-to-many language conversion, that is, they cannot give
the same style to texts in different languages. Therefore, this paper introduces a novel end-to-end method for
Chinese character generation that aims to achieve cross-language font generation. This method incorporates
three pivotal modules: the content self-adaptation module, the multi-Head attention module, and the
co-adaptation module. The content self-adaptation module preserves the semantic structure of the content
image by capturing spatial similarities in arbitrary positions in the content feature map. The multi-head
attention module is used to capture local and global features of the style reference images. Finally, the
co-adaptation module reorganizes the captured style features based on the semantic structure of the content
image to generate new features. In comparative experiments, our model demonstrates superior overall
performance compared to existing cross-lingual font generation methods.

INDEX TERMS Font generation, self-attention, multi-adaptation, few-shot font generation, style transfer,
image-to-image translation.

I. INTRODUCTION
Chinese characters, as the most widely used script in
East Asia, serve as a carrier for the transmission of
Chinese culture, possessing intricate character structures and
semantics. When designing a novel typeface, the primary
concern is ensuring that humans can accurately recognize
the characters, followed by the pursuit of artistic appeal in
the typeface design. Due to the complex structure and vast
quantity of Chinese characters, constructing a commercial
typeface library is expensive and labor-intensive. Designing
a complete typeface library with only a few character forms
is nearly impossible for someone without artistic knowledge.

In recent years, with the development of deep learning, pio-
neers have made significant progress in font generation using
convolutional neural networks [1] and generative adversarial
networks (GANs) [2], generating satisfactory fonts. Inspired
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by deep neural networks, Tian et al. proposed ‘‘Rewrite’’
[3], a model that utilizes the structure of a CNN to generate
fonts similar to the target font. Subsequently, Zi2zi [4]
was introduced, which incorporates font category embedding
conditions based on pix2pix [5] to model one-to-many
relationships. In [6], the author uses a component encoder
to extract the structural information of Chinese characters
and adds these component information to the model. In [7],
the author designs a self-attentive refined attention module to
extract the skeleton information of calligraphy. These models
require large numbers of paired samples, but collection of
paired samples is labor-intensive and expensive. Especially
in some Chinese character generation tasks, such as the
generation of Chinese calligraphy fonts andMongolian fonts.

Some Chinese character generation techniques [8], [9],
[10], [11] attempt to improve the results of Chinese character
generation using image-to-image translation (I2I) methods.
For example, HCCG-CycleGAN [12] and StrokeGAN [13]
both utilize the CycleGAN [14] as the main framework for
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Chinese character generation tasks. The former employs an
encoder-decoder structure for the generator and incorporates
DenseNet [15] to capture the high-frequency information of
fonts, while the latter introduces a one-hot stroke encoding
to capture the key information of Chinese characters.
In subsequent developments, the author of StrokeGAN
introduces two notable extensions, namely SGCE-Font [16]
and StrokeGAN+ [17], building upon the foundation laid
by the original StrokeGAN framework. SGCE-Font [16]
introduces the Skeleton Guided Channel Expansion (SGCE)
module, a novel addition to the generator architecture.
StrokeGAN+ [17] integrates a ‘‘few-sample semi-supervised
scheme’’ to improve font generation performance by utilizing
limited labeled data. However, these methods still suffer from
missing stroke and redundancy issues.

Style and content representation are essential for few-shot
font generation. Some methods [18], [19], [20], [21] focus on
disentangling the representation of content and style. These
methods can effectively transform the style of content images
to match the style of characters in the source domain or
to achieve the target style for known or unknown fonts.
Typically, these methods employ two separate encoders to
learn content and style features.

However, all described methods cannot transfer styles
between different languages. In most cases, having multi-
lingual fonts with the same style is very important, but also
more challenging. For example, when signing a cross-border
business contract, it is necessary to ensure that texts in
different languages have the same style. Therefore, it is
necessary to achieve cross-language style transfer. In addi-
tion, the differences in character structures between different
languages bring great challenges to the cross-language
font generation task. For example, the structure of some
Chinese characters is very complex, while the structure of
Latin letters is relatively simple. Recently, a work [22]
attempted to resolve the character differences of different
languages to achieve cross-language font generation. These
works ignore some specific domain features, resulting in
insensitivity to local details of some specific fonts, such as
handwriting. In addition, these works cannot achieve one-to-
many language conversion, that is, they cannot give the same
style to texts in different languages.

Therefore, this paper proposes a novel end-to-end Chinese
character style transfer model called MA-Font for cross-
language font style transfer. This model preserves the
structural information of characters in the source domain
while transferring the style of the reference font to the
generated results.

Fig.1 shows an example application of MA-Font. The
proposed method generates a famous poem, ‘‘Prelude to
Water Melody.’’ On the left side are the style reference image
and the character image, while on the right side are the
generated result and the Ground Truth.

Our contributions can be summarized as follows:
1. This paper proposes a novel end-to-end Chinese charac-

ter style transfer model called MA-Font for cross-language

FIGURE 1. The proposed method generates a famous poem, ‘‘Prelude to
Water Melody.’’ On the left side are the style reference image and the
character image, while on the right side are the generated result and the
Ground Truth.

font style transfer. Specifically, this paper calculates the
correlation between the content and style features of fonts,
and then rearranges the style features according to the content
feature distribution.

2. This paper introduces three novel modules: a content
self-adaptation module, multi-head attention module, and co-
adaptation module, to enhance the representation of content
features and style features.

3. In this work, we conduct multiple experiments using
a multi-language glyph image dataset containing 847 fonts.
Additionally, we demonstrate the performance of the pro-
posed model in Chinese character generation tasks through
visual quality analysis and quantitative evaluation.

The structure of the remaining parts of this paper is
as follows: Section II describes related work, providing
a brief introduction to existing methods for image-to-
image translation and few-shot font generation. Section III
presents the proposed model in detail. Section IV provides a
comprehensive overview of the experimental setup, results,
and comparative data. The conclusion of this paper is
presented in Section V.

II. RELATED WORKS
A. IMAGE-TO-IMAGE TRANSLATION
The task of image-to-image translation (I2I) is to translate the
style of a source domain into the style of a reference image.
Since the introduction of a method by Gatys et al. [24] that
utilizes CNNs for style transfer, many efforts are being made
to improve the efficiency and quality of image translation.
For example, CycleGAN [14] uses mapping between two
domains to achieve style transfer, but these methods require
expensive data.

Later, some works achieve style transfer between images
by separating content features from style features, and
this approach gains widespread application. SC-GAN [25]
proposes a new unsupervised algorithm to learn disentangled
style and content representations of the data. One work [26]
achieves artistic style transfer by separating style and content
with two new loss functions. DMIT [27] decomposes the
input image into latent representations and then achieves
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multi-domain translation by manipulating different parts of
the latent representations.

FUNIT [28] proposes an unsupervised image-to-image
translation framework with a few-shot samples, using two
encoders to extract features from the content and style
images. Inspired by DaNet [29], Deng et al. [30] design
a flexible and efficient style transfer model that uses a
novel disentanglement loss function to extract style and
content information from images. Huang et al. [31] introduce
adaptive instance normalization (AdaIN), which adjusts the
mean and variance of the content to adapt to the style image.
Kitov et al. [32] directly control the intensity of stylization by
using a network of transformers.

Although there are many similarities between image-to-
image translation and font style transfer, image-to-image
translation cannot be directly applied to font style transfer.
The former primarily focuses on the color and texture of
style images, while the latter requires preserving the struc-
tural information of characters. The methods of image-to-
image translation bring substantial inspiration to researchers.
Through image-to-image translation, researchers can delve
into the intrinsic feature representation and transfer methods
of Chinese character glyphs, leading to the design of more
effective methods for generating Chinese characters.

B. ATTENTION MECHANISM
In this article, the self-attention mechanism is the key
technology of MF-Font, so some related work on the
self-attention mechanism is selectively introduced in this
section.

The attention mechanism [33], [34] is an important
component of deep learning and is widely used in many
tasks. It plays an important role in the field of natural
language processing, allowing models to dynamically focus
on different parts of input text to handle relationships and
context between texts. Later, Yang et al. [35] apply the
attention mechanism to text classification tasks, allowing the
model to distinguish and focus on different text contents
when building document representations. Yu et al. [36]
design a multi-level attention network based on the attention
mechanism, which can obtain semantic information from a
single image and reduce the semantic gap through semantic
attention.

Recently, the work [37] proposes the self-attention mech-
anism for the first time and achieves a breakthrough in the
field of natural language processing. SAGAN [38] applies
self-attention to generative adversarial networks for the first
time, significantly improving the image generation task.
At the same time, self-attention mechanisms are increasingly
used in image generation tasks. SAnet [39] proposes a
feed-forward network to match similar style features to
content features. DAnet [29] uses a position attention module
and a channel attention module to build a dual attention
network. MCCNet [40] uses a self-attention mechanism
to integrate content features and style features. Here, the

proposed method uses the self-attention mechanism to build
three modules.

C. FONT GENERATION
Chinese character generation is a challenging task that can
be viewed as transferring the style of one font to another.
In a sense, Chinese character style transfer is a special case
of image-to-image translation. Some existing font generation
methods are based on the framework of image-to-image
translation, which can be broadly classified into many-shot
font generation methods and few-shot generation methods.

Many-shot font generation methods require a large number
of paired datasets, but creating such datasets involves high
costs, as seen in approaches like Zi2zi [4], DC-Font [41]
and SC-Font [42]. zi2zi is not published in the form of a
paper, but it has a significant impact on font generation.
DC-Font expands upon zi2zi by utilizing a VGG network
for pretraining on a diverse set of 100 font types, effectively
extracting distinctive style features from each. Ultimately,
it combines the font style categories with the output of the
encoder to achieve its desired results. SC-Font builds upon
DC-Font by incorporating a specialized stroke extraction
algorithm to extract stroke features, which are utilized to
guide style transformation.

Existing few-shot font generation methods [43], [44], [45],
[46], [47] take as input the content and style images, and
generate results that resemble the target font. EMD [48]
and AGISNet [19] simply combine style vectors and content
vectors as input to the decoder for generating the target
characters. MX-Font [49] utilizes multiple experts to extract
style features. DG-Font [50] introduces variability blocks to
improve the results of Chinese character generation. LF-Font
[51] designs a style encoder with component conditions
to capture style features. However, the described methods
demonstrate the effectiveness of generating new characters
using several style reference characters, but they can only
perform style transfer between the same languages.

Both the proposed MA-Font and the aforementioned
methods are GAN-based approaches. However, MA-Font has
two notable distinctions. Firstly, MA-Font rearranges style
features while preserving specific domain characteristics.
Secondly, MA-Font can be applied to cross-language font
generation.

III. METHOD
This section mainly introduces the method of MA-Font to
generate multi-language fonts. In simple terms, the typical
task of generating glyph images can be seen as mapping
a given content image Ic and a set of style images Is that
maintain different styles but with the same content to the
target font image. In this process, the content encoder Ec
and the style encoder Es extract corresponding feature maps
Zc = Ec(Ic) and Zs = Es(Is), respectively. Then, the extracted
feature information is fed into the decoder to generate the
target glyph image.
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FIGURE 2. Overview of MA-Font. The style (content) encoder extracts corresponding feature maps from the style (content) image. Then, the
multi-adaptation module rearranges the style features based on the distribution of content features. Finally, it generates high-quality stylized images.

This task can be represented by the following equation:

G(Ic, Is) → Fgt (1)

where Ic represents the given content image, Is represents the
style images, and Fgt represents the Ground Truth.
However, considering the domain discrepancy between the

content images and style images, using a generic encoder can
only capture a limited amount of content and style features.
To address this, this paper introduces a multi-adaptation
module that can rearrange the style features according to
the distribution of content features through an adaptive
process. This enables us to obtain glyph images with stylized
effects.

A. NETWORK OVERVIEW
Given a content image Ic, where the content C comes from
a set of standard fonts X = {Ic}Nc=1 , and a set of style
images Is = {yi}ki=1, our model aims to generate stylized
images ỹc using the generator G, where ỹc should combine
the content C and style S. Considering that it is difficult to
extract a common style from a single style reference image,
the proposed method requires randomly selecting 6 style
reference images as style input.

The process can be defined as follows:

ỹc = G(Ic, Is) (2)

The proposed Chinese character generation model,
as shown in Fig.2, adopts a Generative Adversarial Network
(GAN) framework that includes a generator and two
discriminators. The two discriminators are the content
discriminator Dc and the style discriminator Ds. The
main task of the generator G is to generate target glyph
images through extensive training. On the other hand, the

discriminators Dc and Ds serve to differentiate between
the generated font images and real images. The generator
continuously optimizes the generated font images to deceive
the discriminators, while the discriminators continuously
optimize themselves to prevent the generator from producing
fake images that can pass through them. This adversarial
relationship between the generator and discriminators drives
the model to improve the quality of generated images over
time.

In order to better integrate intermediate and high-level
semantic features, the generator adopts an encoder-decoder
structure, which helps capture style images at different scales
during context fusion. The generator consists of a content
encoder Ec, a style encoder Es, a multi-adaptation module
Fs, and a decoder Fx . The content encoder Ec consists
of three convolutional blocks, with kernel sizes 7, 3, and
3 respectively. BatchNorm and ReLU activation functions are
applied after each convolutional block. The content encoder
maps the input content image Ic to latent codes Zc. Similarly,
the style encoder Es has a similar structure to the content
encoder and it will extract the feature mapping Zs for k
style images. Subsequently, the latent codes Zc and feature
maps Zs are input into the multi-adaptation module Fs, which
reorganizes the style features based on the content feature
distribution to generate new style features Zcs. For more
details, please refer to Section III-B.
The decoder Fx consists of six Resnet blocks and

three transpose convolutional layers, similar to the encoder.
BatchNorm and RelU activations follow each convolutional
layer. Tanh activation is used as the final layer activation in
the decoder.

The architecture and layer specifications of the encoders,
decoder and discriminator can be observed in Table 1.
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FIGURE 3. Multi-adaptation Module. The multi-adaptation module consists of the multi-head attention module, content self-adaptation module, and
co-adaptation module. Additionally, we set the background of the multi-head attention module to red, the background of the content self-adaptation
module to green, and the background of the co-adaptation module to blue.

TABLE 1. The layer specifications for encoders, decoder and
discriminator.

The following formulas express the operations of Ec, Es,
Fs and Fx :

ỹc = Fx(Fs(Zc,Zs)) = Fx(Fs(Ec(Ic),Es(Is))) (3)

where ỹc represents the stylized images, Zs and Zc denote
the outputs of the style encoder Es and content encoder Ec,
respectively.

B. MULTI-ADAPTATION MODULE
One of the key aspects in Chinese character generation is
that the generated glyph images should contain the structural

information of the content characters for proper font recogni-
tion, while also incorporating the stylistic information from
the style images to fulfill the aesthetic requirements of human
observers. Inspired by DaNet [29], we design a module that
not only aggregates styles appropriately but also focuses on
the stylistic expressiveness of the style reference image’s
local details. Instead of directly concatenating the features
extracted by the encoder and feeding them to the decoder,
this module enables effective integration of style while
considering the nuanced and localized style expressions.

Fig.3 displays the details of the multi-adaptation module.
The module primarily consists of three parts: the multi-head
attention module in red, the content self-adaptation module
in green, and the co-adaptation module in blue. The
multi-adaptation module takes the feature maps from the last
convolutional layer of the content encoder and style encoder
as input. Through the multi-head attention module and
content self-adaptation module, the respective style features
Zs and content features Zc can be represented as Zss and Zcc.
Subsequently, the co-adaptation module recombines Zss and
Zcc to generate stylized feature Zcs.

1) MULTI-HEAD ATTENTION MODULE
To effectively establish the contextual relationship between
local features and global features in the font style task,
we draw inspiration from FTransGAN [52] and MF-Net
[53], and evolve it into an adaptive multi-level attention
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mechanism. The multi-head attention module consists of
three context-aware attention modules and a layer attention
module, which can map the style images Is = {yi}ki=1 to
intermediate feature vectors. Subsequently, the final style
feature vector Zss is obtained by calulating the average of
these intermediate feature vectors.

The feature map Zs of the last convolutional layer of
the style encoder is used as the input to the context-aware
module, enabling the preservation of contextual information
for each region. Therefore, the feature map Zs can be
expressed as {Vr , r = 1, 2, · · · ,H ×W }, where r represents
the feature vector of the r-th region, and H and W represent
the height and width, respectively.

When encoding the region feature vector Vr , the
self-attention layer takes into account the contextual
relationships between adjacent regions and incorporates
relevant contextual information into the new region feature
vector hr .

hr = SA(Vr ) (4)

where SA represents the self-attention layer, hr represents the
new feature vector after merging contextual information. hr
includes the contextual information around the r-th region,
but primarily focuses on the r-th region.

Furthermore, in order to reward the inclusion of accu-
rate contextual information in each region, an attention
mechanism and context vector us are used to measure
the contribution of each region in terms of contextual
information.

The feature vector hr adjusts attention weights by optimiz-
ing the parameters of the single-layer MLP.

ur = tanh(wshr + bs) (5)

where ws and bs is the parameter of the single-layer MLP.

αr =
exp(uTr us)∑

H×W exp(uTr us)
(6)

where αr is a normalized attention weight.
Finally, f is obtained by performing a weighted summation

of these regions, which f encompasses the contextual
information of all regions. The context vector us is randomly
initialized during training and jointly trained with the model.

f =

∑
H×W

αrVr (7)

Since the multi-head attention module has three parallel
contextual attention modules, three feature vectors f1, f2, f3
can be obtain.

A layer attention module is added after three parallel
context-aware attention modules. The input to the layer
attention module includes the feature map Zs from the last
convolutional layer of the style encoder and the feature
vectors f1, f2, f3 from the three parallel context-aware
attention modules. Similarly, we feed the feature map Zs
into a single-layer MLP, followed by applying the softmax
function to obtain three normalized scores ϕ1, ϕ2, ϕ3. These

normalized scores can be used to establish the relationship
between regions and questions, indicating which region’s
features the model should focus on more.

ϕ1, ϕ2, ϕ3 = softmax(tanh(wlZs + bl)) (8)

where wl and bl is the parameter of full connected layer.

Z =

3∑
i=1

ϕifi (9)

where Z is the weighted sum of the three feature vectors.
Since the style encoder takes k style images as input, the
feature vector Z needs to be averaged to get Zss.

Zss =
1
k

∑
k

Z k (10)

2) CONTENT SELF-ADAPTATION MODULE
It is essential to preserve the semantic structure of the content
image for the Chinese character generation task. To achieve
this, this paper introduces a content self-adaptation module.
The content self-adaptation module encodes the contextual
information of the content image into local features and
establishes corresponding contextual relationships on these
local features to enhance the representational capacity of the
semantic structure of the content image. In the following,
we provide a detailed description of the structure of the
content self-adaptation module.

As shown in Fig.3, the green parts represent the content
self-adaptation module. Given a content feature map Zc ∈

RC×H×W , whitening transformation [23] can remove irrele-
vant style and texture information from the content feature
map, resulting in a new feature map Z̃c. Subsequently, the
whitened feature map Z̃c is passed through two convolutional
layers to generate two new features Z̃c1 and Z̃c2, which are
reshaped to RC×N , where N = H ×W . Then, the transpose
of Z̃c1 is matrix multiplied with Z̃c2.

Finally, the softmax function is used to compute the spatial
attention map S ∈ RC×N .

Sji = softmax(Z̃Tic1 ⊗ Z̃jc2) (11)

where the symbol ⊗ presents matrix multiplication, and Sji
measures the mutual influence between the i-th position and
the j-th position. The closer the features of two positions
are, the stronger their correlation. This means that if two
positions have similar features, it indicates a higher degree
of correlation between them.

Meanwhile, the content feature map Zc ∈ RC×H×W is fed
into another convolutional layer to obtain a new feature map
Z̃c3, which is reshaped to R ∈ RC×N . The transpose of Z̃c3
and Sji performs matrix multiplication, and then Zc is used
for element-wise addition.

Zcc = Z̃c3 ⊗ STji + Zc (12)
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3) CO-ADAPTATION MODULE
Through the multi-head attention module and the content
self-adaptation module, we obtain the respective style and
content features. Then, a co-adaptation module is used
to calculate the correlation between the style and content
features and recombine them into stylized new features.

As shown in Fig.3, the blue part represents the
co-adaptation module, which has a similar structure to
the content self-adaptation module. To fully utilize the
long-range information captured by the multi-head atten-
tion module and the content self-adaptation module, the
co-adaptation module fuse the features obtained from both
modules. First, the features Zcc and Zss are converted into
Z̃cc and Z̃ss through the whitening operation. Then, Z̃cc and
Z̃ss are input into two convolutional layers respectively to
obtain two new features Z̃cc1 and Z̃ss2. Similarly, Z̃cc1 is
matrix-multiplied with the transpose of Z̃ss2, and then the
softmax function is applied to calculate the spatial mapping
Acs ∈ RN×N between them.

Acs = softmax(Z̃cc1 ⊗ Z̃Tss2) (13)

At the same time, Zss is passed through an additional
convolutional layer to obtain Zss3. Subsequently, a matrix
multiplication is performed between Zss3 and the transpose
of Acs. Finally, the result of the matrix operation is added
element-wise to the content feature map Zcc to obtain the final
output Zcs.

This process can be defined as:

Zcs = ATcs ⊗ Zss3 + Zcc (14)

Then, Zcs is concatenated with the style feature map Zss
and fed into the decoder. The decoder generates a font image
of size 64 × 64 from Zcs and style feature map Zss.

C. DISCRIMINATOR
The discriminator distinguishes whether a font image is
the ground truth or a fake font generated by the gen-
erator. To generate more realistic font images, a patch-
level discriminator consisting of 3 convolutional layers
is used in the discriminator. Simultaneously, the Adam
optimizer [54] is used to update the parameters of the
generator and discriminator. Our discriminator consists of
a style discriminator and a content discriminator. The style
discriminator assesses the stylistic similarity between the
generated images and the real images, while the content
discriminator determines whether the generated images from
the generator have the same content as the real images.
Similar to CycleGAN and DualGAN [55], our discriminator
adopts the patchGAN [5] structure. The traditional GAN
discriminator outputs a single True or False value, providing
an overall evaluation of the generated images. In contrast,
the patchGAN is inherently a fully convolutional network
architecture that partitions the input image into multiple
N ∗ N regions and makes discriminations for each region
individually. The discriminator’s output is the average of

these patch-wise evaluations. By utilizing the patchGAN
discriminator, we can reduce the size of the input image,
decrease computational complexity, and better focus on local
features.

D. LOSS FUNCTION
Up to this point, our model is essentially constructed.
It is based on the Generative Adversarial Network (GAN)
framework and is referred to as the generatorG. Additionally,
our model incorporates two types of loss functions during
training: (1) Adversarial loss [56], which is used to train our
model by solving a minimax problem, enabling Chinese font
style transfer. (2) L1 loss, which is employed to stabilize the
training of the model.

1) ADVERSARIAL LOSS
This work uses a standard adversarial game to train the
generatorG and the discriminatorD of our Chinese character
generation task. The generator G generates realistic but
fake images in an attempt to deceive the discriminator.
When both the generated fake images and real images are
fed into the discriminator, the adversarial loss penalizes
incorrect judgments, thereby enhancing the model’s ability
to generate convincing font images. Our adversarial loss
consists of two components: one from the loss between
the generator G and the style discriminator, and the
other from the loss between the generator G and the
content discriminator. Here, EIc∈Pc,Is∈Ps [log (1 − Ds(x̃))] and
EIc∈Pc,Is∈Ps [log (1 − Dc(x̃))] are used to update the generator
G, and EIc∈Pc,Is∈Ps [logDs(Is)] is used to update the style
discriminator. EIc∈Pc,Is∈Ps [logDc(Ic)] is used to update the
content discriminator.

In summary, our model generates convincing font images
through a minimax optimization process.

Ladvs = max
Ds

min
G
EIc∈Pc,Is∈Ps

[
logDs(Is) + log (1 − Ds(x̃))

]
(15)

Ladvc = max
Dc

min
G
EIc∈Pc,Is∈Ps

[
logDc(Ic) + log (1 − Dc(x̃))

]
(16)

Ladv = Ladvc + Ladvs (17)

where Ds(∗) and Dc(∗) represent the outputs of the style
discriminator and the content discriminator, respectively. x̃
is the real image, Ic is the content image, and Is is the style
image.

2) L1 LOSS
To ensure stable training of the model and encourage the
generator G to generate output images that are similar to the
real images, this article uses L1 loss to constrain the training
of the model. The final generated images by the generator G
should preserve both content C and style S.

L1 = Ex,x̃∈P(x,x̃)∥x − x̃∥1 (18)
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3) FULL OBJECTIVE
Finally, we train the model using the following overall loss
function:

L = λadvLadv + λ1L1 (19)

where λadv and λ1 are hyperparameters that can be adjusted
during training to control the weights of the respective losses.

IV. EXPERIMENTAL RESULTS AND COMPARISON
This section introduces the dataset, experimental setup, and
evaluation metrics. Then, the performance of the model is
evaluated through a series of evaluations, and the experi-
mental results are quantitatively and qualitatively analyzed.
Ablation experiments were also performed simultaneously.
Finally, the effectiveness of the proposed model in generating
unknown language fonts is verified.

A. DATASETS AND EVALUATION METRICS
1) DATASETS
We choose Chinese and Latin alphabets with significant
structural differences as language pairs to train our font
generation model and validate our Chinese character gen-
eration method. Figure 5 shows a few examples of the
dataset. The dataset consists of 847 grayscale fonts, each
with about 1000 Chinese characters of the same style and 52
Latin letters of the same style. To maintain consistency, all
glyph images are resized to 64 × 64 pixels and binarized.
We used Microsoft Yahei as input for the content images
and kept it fixed throughout the training and testing process.
The content image is only used to index the class of the
synthesized characters, so it can be replaced by other font
styles. The style image, on the other hand, is used as input
for 6 randomly selected letters from the 52 Latin letters.
The training set consists of 818 fonts, which is expanded
from FTransGAN [52], and is denoted as the Seen Fonts
Seen Characters (SFSC) set. In order to validate the proposed
method, we evaluated the generative power of the model
on two test set: one with 29 unseen fonts and 1000 seen
characters each, denoted as Unseen Fonts Seen Characters
(UFSC), and the other with 818 seen fonts and 29 unseen
characters each, denoted as Unseen Characters Seen Fonts
(UCSF). Where unseen content and unseen fonts do not
appear during training.

In order to verify the performance of the model in one-to-
many languages, we also constructed a multi-language test
set. The multilingual test set contains 10 fonts in 5 languages
including Japanese, Korean, Greek, Chinese and Cyrillic,
recorded as unseen fonts unseen characters (UFUC).

2) EVALUATION METRICS
Font styles are defined by local fine-grained shapes (e.g.,
strokes, sizes, etc.), leading to the possibility of multiple
glyph variants similar to the target font in the generated
fonts. Therefore it is challenging to use a unified metric to
evaluate the performance of the Chinese character generation

task. To address this problem, this paper uses a variety
of pixel-level evaluation metrics (e.g., L1 loss, SSIM,
MS-SSIM, etc.) to evaluate the similarity between generated
fonts and ground truth fonts. In order to comprehensively
evaluate the performance of the model, this paper uses the
Fréchet Inception Distance (FID) and accuracy to evaluate
the proposed method from the perspective of feature distance.
Specifically, this paper trained two ResNet-50 networks [57]
to assess the content and style of fonts, including content
accuracy, style accuracy, the Fréchet Inception Distance
(FID) scores for content, and the Fréchet Inception Distance
(FID scores) for style.

B. EXPERIMENTAL DETAILS
Our model is implemented in PyTorch and is trained using
an Nvidia RTX 3090 Ti GPU. The proposed model was built
on pix2pix, thus some of the basic settings for the experiment
follow those of pix2pix [5]. We set the values of λadv and λ1
in the total loss function to 1 and 100, respectively.We use the
Adam optimizer with a batch size of 256 to train the Chinese
character generation model for 20 epochs. The learning rate
is set to 0.0002 for the first 10 epochs and gradually decays
to 0 for the remaining 10 epochs.

To mitigate the potential issue of overfitting, the model
undergoes preprocessing during training, including opera-
tions such as rotation, scaling, and translation. These mea-
sures aim to enhance the model’s generalization capability.
Secondly, dropout is used in the generator to reduce the
model’s dependence on specific neurons, thereby preventing
the model from overfitting. Finally we add some slight
random noise in the style code Zs.

C. EXPERIMENTAL RESULT AND COMPARISON METHODS
This section shows the experimental results of this work
and analyzes them qualitatively and quantitatively with other
models.

1) EXPERIMENTAL RESULT
This experiment uses the dataset mentioned in Section IV(A)
and trains the model following the experimental details
described in Section IV-B. Subsequently, we randomly
select three different fonts from the generated results for
demonstration. As shown in Fig.4, the first, fifth, and ninth
rows represent the style reference images. Rows 3, 7 and
11 are our results. The fourth row, eighth row and twelfth row
represent the ground truth.

From Fig.4, the generated images exhibit clear stroke
structures and showcase detailed nuances at the ends of the
strokes similar to the ground truth. Moreover, the generated
results successfully retain the structural integrity of the
characters while effectively incorporating stylistic features.
The results show that the proposed model has a good learning
ability.

The loss function curve of the proposed method are shown
in Fig.7. It is not difficult to find from (b) that the loss value
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FIGURE 4. Partial presentation of experimental results. We present generated results with significant style variations, including printed fonts,
handwritten fonts, and artistic fonts.

TABLE 2. Quantitative evaluation of the test set. Bold indicates the best, while underline indicates the second best.

FIGURE 5. Sample example of data set. (a) are several style images from
different styles,

(
b
)

are several content images from Microsoft Yahei,
(c) are ground truth images.

of L1 first decreases and finally converges in the range of 26.
In the adversarial loss function Ladv, the generator fluctuates

in a relatively large range and finally converges in the range
of 1.5, while the style discriminator and content discriminator
also gradually become stable.

2) COMPARISON METHODS
In this section, we compare our model with existing
cross-lingual font generation methods: (1) FTransGAN [52]
introduces contextaware modules and hierarchical attention
modules to capture local and global features. (2) MF-Net
is built upon the FTransGAN framework and incorporates
a language complexity-aware skip connection to adjust
character clarity. (3) DFS [58] stylizes the target font by
decodingweighted deep features.All threemodels employ the
idea of disentangling content and style and accomplish the
task of cross-lingual font generation.

VOLUME 12, 2024 60773



Y. Qiu et al.: MA-Font: Few-Shot Font Generation by Multi-Adaptation Method

FIGURE 6. Qualitative comparison with other existing cross-language conversion models. In the experiments, We have selected several different
fonts for display, including printing font, artistic font, and handwritten font.

a: QUANTITATIVE COMPARISON
Table 2 presents the performance comparison of our model
with other few-shot font generation methods. To ensure
fairness, we train all models using the dataset mentioned
in Section IV(A) and evaluate them on both the Unseen
Font Seen Characters and Unseen Characters Seen Font
test sets. From Table 2, it can be observed that our model
achieves the best overall performance, indicating its strong
competitiveness compared to other models, particularly in
predicting unknown styles. This implies that our model is
capable of generating high-quality and diverse results for
stylized font generation tasks on unseen fonts.

In addition, the accuracy of the classification results and
the FID score are also visually displayed in the form of
histograms. Two ResNet-50 networks are trained as classi-
fication models to evaluate different font generation methods
by considering their ability to preserve content structure
and style transfer. We use the various cross-language font
generation methods mentioned earlier to generate stylized
images. Subsequently, these stylized images generated by
different methods are input into the pre-trained content and

style classification network to obtain classification accuracy.
The content classifier is used to distinguish which character
the generated image belongs to, while the style classifier
is used to distinguish which font style the generated image
belongs to. A high accuracy in style classification indicates
that the model can effectively capture meaningful style
features from the stylized images. Similarly, a high accuracy
in content classification suggests that the model can maintain
the original character structure.

It can be concluded from Fig.9 that MF-Net and DFS have
the worst accuracy in content and style, and cannot generate
attractive fonts. Our method shows high accuracy in both
content and style, which shows that our network establishes
a balance between content and style. The content accuracy
and style accuracy of the proposed method in unknown fonts
are 99.87% and 12.35%, respectively. The content accuracy
and style accuracy in unknown characters are 97.26% and
59.07%, respectively. This shows that our model has better
overall performance in content and style classification.

The Fréchet Inception Distance (FID) is used to assess
the distance between real images and generated images,
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FIGURE 7. The loss function curve of the discriminator and generator
during the training process. (a) shows all the loss function curves, (b) is
the L1 loss function curve, (c) is the Ladv adversarial loss function curve.

FIGURE 8. Visualization results of different methods. RMSE is a
quantitative evaluation of each example in terms of content. Red color
indicates the best RMSE.

FIGURE 9. Comparison of classification accuracy of different font
generation methods.

with smaller values indicating better model performance.
We also use two classifiers as feature extractors and calculate
Fréchet Inception Distance. As can be seen from Fig.10,
the performance of our model is the best among several
cross-language font generation methods.

b: QUALITATIVE COMPARISON
Fig.6 illustrates the results of qualitative comparison with the
baseline methods. To evaluate the performance of our model

FIGURE 10. Comparison of FID Among different methods.

FIGURE 11. Validation experiments. (a) Effectiveness of Style Variables.
Three different Chinese characters are used as reference content to
generate fonts with unknown styles. Unknown style means that the
image content is known during training, while unknown style is used for
testing. (b) Validity of character variables. Generate fonts for unknown
characters using three known style fonts as reference style. Unknown
character refers to fonts whose style is known during training but
unknown characters are used during testing.

in Chinese character generation tasks, Both the proposed
method and the comparedmethods generate different samples
on the datasets of unknown fonts and unknown characters.
Twelve fonts with significant stylistic variations, including
printed, handwritten, and artistic fonts, are selected for
comparison with results generated by other methods. From
the examples shown in Fig.6, it can be observed that
our model produces realistic images that largely maintain
consistency with the content images in terms of glyph
structures while resembling the style reference fonts in font
styles. However, for some fonts with shallow strokes, the
DFS model can result in blurry effects. Similarly, when
dealing with challenging artistic fonts and handwritten fonts,
the results produced by the DFS model are relatively
poorer. MF-Net designs a language complexity-aware skip
connection to adjust the clarity of characters, but it often leads
to blurry effects in the generated results. FTransGAN appears
to capture detailed style nuances and generate complete
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FIGURE 12. Visual samples of objective functions analysis. Our model shows the best overall performance.

TABLE 3. Ablation results for different modules. Bold indicates the best, while underline indicates the second best.We use C, N and S to denote the
content self-adaptation module, the co-adaptation module, and the multi-head attention module, respectively. The model containing the three modules
has the best combined performance. w/o means without.

TABLE 4. Impact of objective functions. We report the effects of the adversarial loss and the L1 loss on the model, as well as analyzing the effects of
different hyper-parameters λ. Our model is in the bottom row and it shows the best overall performance.

FIGURE 13. The qualitative results of the ablation experiments. C, N, and
S represent the Content Self-adaptation Module, Co-adaptation Module,
and Multi-Head Attention Module, respectively. The local details of the
font are highlighted with red circles. As we sequentially added different
modules, the generated font images became closer to the target font.

characters but overlooks fine-grained local styles such as
handwritten fonts.

Fig.8 shows some of the visualization results of the
different approaches, as well as the results of the RMSE
evaluation for each example. Red color indicates the best
RMSE.Ourmodel shows the best RMSE, which indicates that
the proposed method is closer to the ground truth images in
terms of stroke structure.

D. VALIDATION EXPERIMENTS
In experiments, fonts with known characters or known styles
are used to generate fonts with unknown styles or unknown
characters (e.g., the first column in Figure 11 (a) or the second
and third rows in Figure 11 (b)). The validation of these
characters can strongly demonstrate the effectiveness of style
variables and content variables.

1) EFFECTIVENESS OF STYLE VARIABLES
In the experiment, three known characters were randomly
selected as content references, and then these three char-
acters were used to generate fonts of 11 unknown styles.
The final generated results are shown in Figure 11 (a),
where the first column represents known characters, and
the rest are fonts generated with unknown styles. From
the generated results, it can be observed that fonts of
unknown style can be generated convincingly with three
different known characters. This indicates that the model
possesses a strong capability to generate fonts with unknown
styles.
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FIGURE 14. Generated results from the English-to-Japenese experiment. The picture shows 7 different styles, each with 25 characters.

FIGURE 15. Visualization of multi-adaptation modules. The brighter areas
are the style features that contribute more.

2) EFFECTIVENESS OF CONTENT VARIABLES
In the experiments, three different known styles of fonts are
selected as style references. Initially, 11 unknown characters
are input into the content encoder to obtain content features,
which are then combined with the style references to generate
the final results. From Fig.11 (b), it can be observed that the
generated characters closely match the input characters.
The content encoder is capable of extracting content image
features comprehensively, unaffected by the stroke layout
of characters. This indicates that content images are merely
used to index the category of the characters one wishes to
synthesize.

E. ABLATION STUDY
In order to verify the effectiveness of each module, this
paper conducts ablation experiments on the proposedmethod.
Specifically, we name the three modules C, S, and N,
respectively. We first separate these modules and then add
these modules to the model sequentially while keeping other
settings unchanged. Table 3 reports the results of ablation
experiments with multiple adaptation modules. The first row
is the quantified result of the feature embedding that directly
connects the two encoders, the second row is the quantified
result of adding the content self-adaptation module, the
third row is the quantified result of adding the content
self-adaptationmodule and the co-adaptationmodule, and the
The fourth rows are quantitative results for the full model.
After adding modules in sequence, the values of SSIM,
MS-SSIM and accuracy gradually increase, and the values
of L1 loss and FID gradually decrease. Among them, the
model containing three modules performs best. This shows
that these modules can further improve the performance of
the model.

Fig.13 shows the results of ablation study for these three
modules. The local detail changes of each character are
marked with red circles. As we add different modules
sequentially, the generated font images become closer to the
target font. The results show that the method is able to capture
the local details of fonts and generate high-quality images
similar to the target font.

In addition, the loss function is analyzed in this paper.
Table 4 reports the relevant evaluation metrics for L1 loss
and adversarial loss, and a partial visualization of the results
is shown in Fig.12. From Table 4, it can be seen that when
there is no adversarial loss, the model does not show the
best performance. When there is no L1 loss, the worse the
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FIGURE 16. Generated results from the Chinese-to-English experiment. The picture shows 6 different styles, each with 20 characters.

evaluation value of the model, the very low quality of the
generated images. The performance of the model gradually
improves when increasing the value of the λ1. The model
which contains both adversarial loss and L1 loss shows the
best performance.

F. ANALYSIS FOR MULTI-ADAPTATION MODULE
To demonstrate the effectiveness of the multi-adaptation
module, we visualize the feature mappings generated by the
multi-adaptation module. Fig.15 shows the visualized image
of the multi-adaptation module. From the figure, we can
observe that the feature mappings Zcs retain the semantic
information of the content images well, which helps to
generate well-structured characters. On the other hand, the
style features can be reorganized based on the semantic
information of the content features, and the brighter points
in the figure are the reorganized style features.

The brighter regions in the figure indicate the style
features that contribute more, and the co-adaptation module
redistributes the style features to some localized regions that
are easy to be ignored according to the distribution of the
content features.

G. EXTENSION TO OTHER LANGUAGES
To further verify the validity and generalization ability
of the model in other languages, we conducted one-to-
one language and one-to-many language experiments. The
unknown language test set is collected from free websites.

1) ONE-TO-ONE LANGUAGE
To verify the effectiveness of our proposed method on
unknown languages, we use a test set consisting of 30

FIGURE 17. The generated fonts are the outcomes of Chinese-to-Chinese
font generation. In Chinese-to-Chinese font generation experiments,
using Chinese as input for content images and style images.

Japanese fonts. The proposed model requires random input
of a fixed number of style images during the training phase.
However, during the testing phase, the input for style images
is unrestricted. Therefore, when synthesizing fonts for an
unknown language during the testing phase, there is no need
to retrain the model. This experiment evaluates the robustness
of the model by introducing an unknown language as a
distractor. Initially, the model is trained for style transfer
from English to Chinese. Subsequently, Japanese font is
employed as the unknown language test set. As can be seen
from Fig.14, even if the model cannot see all fonts, it can
learn the structural information of characters and the style
information of style images very well. This indicates that the
model possesses strong robustness.

In addition, to demonstrate the model’s capability for style
transfer across languages, we also implement two exper-
iments: ‘‘chinese2english’’ and ‘‘chinese2chinese’’. In the
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FIGURE 18. Experimental results generated by one-to-many languages. Generating four languages with the same style using the Latin alphabet as a
style reference.

FIGURE 19. Failure case. The model does not perform well for complex
characters with highly artistic and compact layouts.

‘‘chinese2chinese’’ experiment, Chinese is used as input for
content and style images. As seen in Fig.17, the synthesized
font maintains the same style as Ground Truth, and the
structure of the characters is clearly visible.

In the ‘‘chinese2english’’ experiment, we re-split the
dataset to facilitate training and testing for ‘‘chinese2english’’.
In this case, 818 fonts are utilized for training, 29 fonts
are designated as unknown styles, and 6 letters are
employed as unknown content. The experimental results for
‘‘chinese2english’’ are visible in Fig.16.

Our model can achieve style transfer from Chinese to
English and from Chinese to Chinese. This shows that the
model can be applied to font style migration in different
situations.

2) ONE-TO-MANY LANGUAGES
It is challenging to only learn the style information of
one language to generate fonts for two or more languages.
Previous work mainly implemented one-to-many font style
migration in the same language, so this paper collects a
multi-language test set (UFUC) for one-to-many language
style migration. Among them, Korean, Japanese and Cyrillic
are unknown languages and they did not appear during the
training process. Figure.18 reports the experimental results
of one-to-many language conversion, the first column is
the style image, and the remaining four columns are the
generation results. It can be observed from the figure that
the generated character structure is complete and conforms
to human visual perception. However, there are some
shortcomings in one-to-multi-language font style transfer.
For example, the generated Japanese is unnatural.

H. FAILURE CASES AND LIMITATION
Figure 19 shows complex characters with highly artistic and
compact layouts. The first and third characters have complete

structures, but they ignore some highly artistic subtle patterns.
The second image has very compact strokes that result in poor
model performance.

V. CONCLUSION
This paper proposes an effective Chinese character generation
model, and a large number of font generation experiments
verify the effectiveness of the model. The 7 indicators
measured on the unknown content known font test set and
the unknown font known content test set are sufficient
to illustrate the superiority of the model. Compared with
existing cross-language fonts, our model achieves better
results both qualitatively and quantitatively. An important
role is played by the multi-adaptation module, which
readjusts the distribution of style features. This shows that
our model considers global content structure and local style
features to generate high quality images.

In addition, we conducted visualization and ablation
experiments on the multi-adaptation module to analyze its
role in depth. The visualization results illustrate that the
multi-adaptation module can distribute the style features in
some local regions that are easily neglected, enhance the
style migration effect of the model, and improve the model
generation capability. The data from the ablation experiments
illustrate that the multi-adaptation module is effective and
it improves the model generation performance. We also
analyzed the effect of the objective function on the model.
The results show that the adversarial loss function and the
L1 loss function are beneficial to stabilize the training of
the model and improve the image quality. Then we analyze
the effect of content variables and style variables on image
quality. Finally we try to extend to style migration for one-to-
many languages.

However, our model still has some shortcomings. We show
several failure cases in Figure 19. The model cannot achieve
style transfer for some highly artistic patterns and fonts with
compact stroke distribution. Second, the model can only
output fixed-size images. In the future, we should continue to
improve the model’s generation capabilities so that the model
can adapt to highly artistic patterns and compact font styles.
Secondly, the generated results are converted into vector font
files, which is more convenient for practical applications.
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