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ABSTRACT Unlicensed cellular networks and spectrum-sharing standards assist operators in meeting the
ever-increasing demand for mobile data. However, several incumbents are already operational in these
frequencies, rendering the wireless environment extremely dynamic and unpredictable. The challenges
associated with unlicensed Licensed Assisted Access (LAA) operations in the 5 GHz band and New
Radio in Unlicensed (NR-U) in the 6 GHz band are best addressed through a data-driven approach.
This requires operator data from current cellular deployments. Further, from an operator’s perspective,
the precision and reliability of predictive models must be analyzed before deployment. Counterfactual
machine learning is ideal for quantifying causal impact in a dynamic, unlicensed cellular environment.
However, the literature lacks a framework that combines data-driven solutions, counterfactual analysis,
and conventional optimization. This work contributes a dataset from the LAA networks of three major
cellular operators in Chicago consisting of 15 features and 9676 samples. Additionally, it proposes a
framework for analyzing the performance of unlicensed networks that leverages machine learning for
predictive modeling, employs counterfactual analysis for model explainability and network performance
enhancement, and utilizes optimization for validation. We show that operator data is necessary to build
reliable prediction models for network throughput, and signal strength, among others. Further, the impact
of network parameters is shown to differ in unlicensed and licensed cellular network models. Next,
a counterfactual machine learning framework is proposed to explain and analyze the predictive models. The
framework proposes counterfactual policies to enhance unlicensed cellular network performance. Finally,
we validate the suggested counterfactual policies through joint network optimization.

INDEX TERMS Unlicensed spectrum, NR-U, cellular networks, operator data, machine learning,
counterfactual analysis, explainable AI, optimization.

I. INTRODUCTION
Licensed spectrum is a limited and expensive resource.
Thus, there has been a consistent push from industry
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and standardization bodies such as 3GPP and ETSI for
greater utilization of the unlicensed spectrum by Long-Term
Evolution (LTE) cellular networks. Consequently, Cellular
operators have deployed Licensed Assisted Access (LAA)
services – the first public unlicensed cellular deployments
in the 5 GHz band. However, a deeper understanding of the
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existing spectrum utilization is crucial for fair sharing and
facilitating the coexistence of multiple radio technologies
in the unlicensed band. For example, Federal operations
are the primary incumbent in the Wi-Fi 5 GHz UNII-2
band. Soon, Wi-Fi 6E will coexist with NR in unlicensed
(NR-U) in the 6 GHz unlicensed band, andWi-Fi 7 and 8 will
enhance these capabilities by a factor of 40x with multi-link
aggregation [1], [2]. Thus, the performance of unlicensed
cellular networks in the shared spectrum must be studied
with respect to parameters such as bandwidth, signal quality,
density, and resource allocation, among others [3], [4], [5].

However, the model-based optimization approach is
unsuitable for the analysis and management of unlicensed
network performance. The presence of currently operational
incumbents in these frequencies, such as military, radar, and
navy systems, renders the wireless environment extremely
dynamic and unpredictable. Consequently, greater probabili-
ties of transmission conflicts and differing quality-of-service
(QoS) requirements present new challenges in harmonious
coexistence and spectrum sharing. Despite their versatility,
the classical network optimization models seem ill-equipped
to offer solutions in real-time in unlicensed systems due to
(a) a large number of constraints from coexisting incumbents
and (b) much longer computational times required for
the non-linear models to converge than licensed cellular
systems.

Thus, the typical unlicensed band problems such as
fair coexistence, performance prediction, and resource allo-
cation are best solved through a data-driven approach.
Machine learning (ML) has emerged as a powerful tool
for harnessing data, which makes it suitable for network
analysis, performance prediction, and anomaly detection.
ML algorithms derive insights from raw data gathered
through measurements and are better suited for comparing
cellular network scenarios and contexts [6]. For example, two
cell selection scenarios were identified in current unlicensed
networks, which was not evident from the measurement-
based analysis [7]. Network performance optimization can
also benefit from data-driven inputs. A hybrid approach
that combines AI/ML with a theoretical constraint-based
optimization formulation can significantly enhance network
performance. For example, feature relationship equations,
learned from network data for response variables such as
SINR or Throughput, can serve as constraints in an optimiza-
tion model [8], [9]. Thus, the publicly available LAA dataset
will pave the way for new research on data-driven network
optimization.

Furthermore, network operators already employ AI/ML to
optimize their processes, such as cell selection [10]. However,
AI/ML models can often act as a black box, and operators
must understand how network data shapes the performance
of prediction and classification models. Thus, model explain-
ability is becoming essential to analyze the parameters
most significantly affecting network performance. Creating
data-driven policies to configure these parameters enables
operators to achieve optimal performance.

This work employs counterfactual machine learning
(CFML) to analyze network performance prediction models.
Counterfactual analysis is a great machine learning paradigm
for an under-the-hood understanding of AI/ML models as
it offers causal inference through ‘‘what-if’’ scenarios [11],
[12]. The proposed counterfactual framework explains the
role of critical network Quality of Service (QoS) indicators
in performance prediction, offers alternative network policies
that will enhance network performance, and validates these
policies through joint network optimization.

II. MOTIVATION AND CONTRIBUTIONS
Developing machine learning systems for network analysis
and optimization requires data from network deployments.

A. MOTIVATION AND RESEARCH PROBLEMS
Without access to operator data, it is difficult to investigate
how efficiently the spectrum is being used and to identify
the practical challenges to fair coexistence. Thus, access
to cellular network data is vital for the research commu-
nity. Unfortunately, the democratization of data access is
constrained by geographical proximity to state-of-the-art
networks and the high cost of network monitoring tools and
applications.

Moreover, researchers face typical challenges in data shar-
ing, including but not limited to data management, data
security, and regulatory constraints. The challenges in data
management include collation, sanitization, and making it
readily available for analysis. Data security is important
as there may be a concern that network data may hint at
the strategic business side operations of cellular operators.
For example, number of active subscribers can be estimated
through RB allocation. Therefore, it may be necessary
to anonymize operator data. Finally, data from primary
incumbents may be subject to restrictions by authorities.

Furthermore, although cellular operators and industry
professionals have access to their own network data, this
creates data silos that reduce the benefits of collaborative
research. Overcoming these barriers to democratic and
universal access to cellular network data requires low-cost
gathering, accurate extraction, and periodic release of data.

As machine learning systems are being deployed to inform
decisions that have a real-world impact, it is imperative
to not only understand their decision-making process but
also be able to provide satisfactory explanations to the
people affected by the decision. To provide a more com-
prehensive understanding of how captured data features can
affect the decision-making process, we apply interpretabil-
ity mechanisms to elucidate the black-box models using
counterfactuals [13]. This section describes how we leverage
counterfactual explanations for the classification problems
defined on our dataset.

Counterfactual explanations simplify the understanding
of complex machine learning models by showing ‘feature-
perturbed versions’ of a sample that would result in a different
(opposite, or targeted) outcome. Counterfactuals explain the
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model output by providing ‘‘what-if’’ explanations. Our
study utilizes counterfactuals due to their independence from
classifier decision boundaries and their capacity to directly
reflect model predictions following feature adjustments. This
makes counterfactual examples more human-interpretable
than other explanation methods. CFML has been applied
by researchers as an optimization technique for wireless
power control [14], agreement violations [15] and cellular
responses [16].

B. CONTRIBUTIONS
This work aims to solve the above problems through the
following contributions. The first major contribution of this
work is the gathering and extraction of cellular network
data for three operators and the release of a public dataset
of close to ten thousand samples on LAA networks [17].
It then utilizes several ML algorithms to analyze and predict
the network performance of unlicensed cellular networks
through reliable prediction models for network throughput,
resource allocation, signal strength, and more. Further,
it shows that system parameters such as the number of
carriers, modulation coding scheme, and channel quality
indicator can also be determined with high confidence.
Through feature importance techniques, we demonstrate that
important parameters with the highest impact on a cellular
network QoS differ in different network environments, such
as LTE-only, Licensed LTE-LAA, or LAA. It also shows that
the network environment can be predicted with near-perfect
accuracy, which is particularly useful for device-initiated
cell selection. This paper then presents a counterfactual
machine learning framework that introduces an element
of explainability to the ML models utilized for predictive
analyses. The CFML framework offers potential network
configurations that can enhance network performance and
end-user QoS. Finally, the counterfactual outcomes are
validated through a joint optimization model proposed in
this work that maximizes resource allocation with specific
constraints. To the best of our knowledge, this is the first study
on unlicensed cellular networks to propose a counterfactual
framework that uses real-world network data and is validated
through well-known techniques such as optimization.

Please note that cellular operators have limited access
to network data of coexisting systems (Wi-Fi and other
incumbents), and even less control over them to optimize
performance. Thus this work focuses on collecting and
analyzing unlicensed cellular (LAA) data. The objective is to
find actionable insights that operators can benefit from while
deploying 5G NR-U networks.

C. PAPER ORGANIZATION
The rest of the paper is organized as follows. Section III,
presents the recent developments and opportunities in the
unlicensed band focusing on allocation and technologies.
Thereafter, Section IV outlines the relevance and need for an
LAA dataset and the challenges in creating such a dataset.

FIGURE 1. Opportunities in the Unlicensed Spectrum.

Section V discusses the methodology of the paper in stepwise
detail. Section VI presents the cellular data collection and
extraction process in great detail. The extracted cellular data
is then used for network analysis and performance prediction
in Section VII. Next, a counterfactual framework is proposed
in Section VIII that analyzes prediction models and suggests
alternate policies for performance enhancement. Outcomes of
the proposed counterfactual framework are validated through
conventional network optimization model in Section IX.
Finally, Section X summarizes the major contributions and
findings of this work.

III. THE UNLICENSED BAND
The opportunities in the unlicensed band are presented in
Figure 1. Unlicensed cellular networks and spectrum sharing
are two paradigms that can help operators tap into this
unharnessed potential.

A. UNLICENSED CELLULAR NETWORKS
To ensure the fair coexistence of existing incumbents with
unlicensed cellular operations, two LTE-WiFi coexistence
standards were prescribed and adopted: LTE license assisted
access (LTE-LAA) proposed by 3GPP and LTE in unlicensed
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spectrum (LTE-U) proposed by industry forum. The Fed-
eral Communications Commission of the United States of
America (FCC) deregulated 500 MHz spectrum in the 5 GHz
band for unlicensed cellular operation in coexistence with
Wi-Fi. After a prolonged LTE-U vs. LAA debate, cellular
operators globally backed LAA. LAA was hailed as a 3GPP
benchmark for the fair coexistence of LTE with existing
incumbents, such as Wi-Fi networks in the unlicensed bands.
It also became a successful technological precursor to the
5G New Radio-Unlicensed (5G NRU) [18]. Encouraged by
these outcomes, toward the end of 2018, the FCC issued an
NRPM for unlicensed operation in the ‘‘greenfield’’ 6 GHz
band (5925-7125 MHz) [1], [19]. It prescribed guidelines for
the unlicensed coexistence of cellular services with existing
incumbents, such as Wi-Fi access points (APs) in the 6 GHz
band (5925-7125 MHz). These prescriptions were adopted
in April 2020. Likewise, the European Commission allo-
cated 480 MHz (5925- 6725 MHz) of spectrum in the 6 GHz
band to harmonize the unlicensed coexistence of cellular
and Wi-Fi systems. Industry leaders such as Qualcomm
expect more unlicensed bands, shared spectrum standards,
and technologies like mmWave to be available [19]. Thus,
researchers in both industry and academia are investigating
deployment scenarios far more complex than the current
5 GHz unlicensed operation. These include:

• Carrier aggregation between licensed band NR Primary
Cell (P-cell) and NR-U Secondary Cell (S-cell). This
includes (i) Downlink (DL) and Uplink (UL) on NR-U
S-cell (ii) Only DL on NR-U S-cell.

• Dual connectivity between licensed LTE P-cell and
NR-U P-cell/S-cell.

• Dual connectivity between licensed band NR P-cell and
NR-U P-cell/S-cell.

• Unlicensed band DL and licensed band UL within the
same NR cell.

• NR-U standalone operation.

B. SPECTRUM SHARING
Traditionally, regulators have allocated spectrum to mobile
operators only after clearing out the incumbent users.
However, in addition to coexistence, the unlicensed bands
can also be utilized through spectrum sharing where the
primary incumbent(s) or primary user(s) can be mili-
tary communications, radar or satellite transmissions, and
Broadcast Auxiliary Services (BAS). During times or in
areas where the primary incumbent is inactive, secondary
incumbents/users can operate in the medium. Examples of
secondary incumbents include Wi-Fi in 5 GHz UNII-2 or
Citizens Broadband Radio Service in 3.5 GHz (3550 MHz to
3700). Three spectrum-sharing mechanisms are operational
or under consideration [5], [20]. The most prominent is
the Citizens Broadband Radio Service (CBRS) approach,
currently operational in the 3.5 GHz in the US. The other two
are Licensed Shared Access and Concurrent Shared Access,
such as club licensing [20].

CBRS uses dynamic sharing to support three tiers
of prioritized or controlled access to the spectrum. The
highest-priority tier with the most protection comprises the
incumbents such as radars and satellite services. Prioritized
Access License (PAL) holders form the secondary tier. PALs
purchase the rights to use the available spectrum (up to a
maximum of 40 MHz) when the top-tier incumbent is not
using it. The lowest tier offers General Authorized Access
(GAA) to any service willing to use the spectrum when
available with the least protections. In areas where the top-tier
incumbent is not utilizing the spectrum, PAL and GAA tiers
get access to reserved portions of the spectrum. Further, the
FCC has mandated all tiers to look up the Spectrum Access
System (SAS) databasewhich facilitates the spectrum sharing
model by regulating and managing access. In case a band is
not registered as being used in the SAS database, PAL and
GAA tiers can access each other’s reserved portions in the
band.

Second, is the Licensed Shared Access [20]. It has a
two-tiered structure where primary incumbent(s) are licence
holders who can sub-license the spectrum to secondary
service providers such as mobile operators. The secondary
tier can use the shared spectrum when not in use by
the incumbent. The first such spectrum-sharing model was
operational in Europe in the 2.3 GHz band and more
sophisticated models are under development.

The third spectrum sharing mechanism is the Concurrent
Shared Access such as club licensing [20]. Unlike the first
two mechanisms, this approach considers a single tier of
users and permits them to coordinate and share the spectrum.
Thus, mobile operators can share spectrum to enhance
the quality of services (QoS) and overall spectrum-usage
efficiency.

C. OPPORTUNITIES IN THE UNLICENSED BAND
The successful initial implementations of the above two
paradigms have encouraged regulators, standardization bod-
ies, and industry organizations to initiate discussions on
opening other underutilized frequencies for coexistence and
sharing. A detailed overview of ongoing discussions with
band-specific highlights is presented in Figure 1.
Although high-band terahertz range frequencies such as

mmWave have fewer incumbents and offer high band-
widths, the midband frequencies offer a more balanced
combination of transmission range and bandwidth. Conse-
quently, most potential bands under consideration are in
the 1 GHz – 12 GHz range, essentially making the mid-band
the primary driver of coexistence and spectrum-sharing
systems. However, it will also make it the most crowded,
exacerbating the challenges and bottlenecks observed in the
5 GHz unlicensed operation. The Federal Communications
Commission (FCC) in the U.S. recently created rules for the
6 GHz band that would allow unlicensed services to coexist
with existing incumbents in the band, mainly high-power
fixed microwave links and low-power broadcast auxiliary
services. It is expected that in addition to WiFi, this band will
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TABLE 1. Cellular networking monitoring tools used by researchers.

also be used by cellular systems deploying 5G NR-U, similar
to the 5 GHz band by LAA.

Let us consider the recently deregulated 1200 MHz
spectrum (5925 MHz–7125 MHz) in the UNII bands 5, 6,
7, and 8 in the US. In the 6 GHz band, apart from Wi-Fi
6E, the unlicensed cellular services will coexist with other
existing incumbents, primarily the high-power fixed point-
to-point microwave services and lower-power BAS. Despite
these additional constraints, reliable and improved QoS is
expected from the unlicensed services. To that end, IEEE and
3GPP organized a workshop on coexistence networks in 2019
to discuss existing challenges and propose feasible solutions
for the next generation of standards covering Wi-Fi 6E and
5G NRU operation in the 6 GHz band.

Thus, the current deployments in the 5 GHz band serve
as the best training ground for improved 6 GHz unlicensed
and spectrum-sharing operations. Lessons learned from LAA
deployments will pave the way for robust and low-friction
spectrum-sharing systems enabling NR-U operation in 6 GHz
and beyond. However, these lessons can be learned only
through collaborative research, for which access to network
data is of utmost importance. Likewise, without LAA
network data analysis, empirical ground truth regarding the
efficiency of various network mechanisms will be hard to
ascertain. Findings such as the type of services coexisting in
the unlicensed band or the impact of cell selection on LAA
performance [8], [26] would not have been possible without
access to network data.

IV. LAA DATASET: RELEVANCE AND CHALLENGES
A. RELEVANCE AND VALUE-ADD
The released LAA deployment data [17] was collected
from different areas of Chicago. This includes the three
University campuses viz., the University of Chicago, the
University of Illinois at Chicago, and the Illinois Institute of
Technology. Further, data was also gathered from downtown
areas such as the Loop, South Loop, and River North.
Chicago is considered for the data collection exercise, as all
three major operators, viz., AT&T, Verizon, and T-Mobile,
had deployed their LAA networks, which allows for a
comprehensive sample space. A diverse sample space from
multiple operators allows for a comprehensive evaluation
of unlicensed band processes such as cell selection and
handover. The dataset consists of LAA with LTE, and
LTE-only datasets with variations in the number of available
carriers for all three operators. It will add much value

by helping the broader research community (a) Identify
new challenges in unlicensed coexistence and spectrum
sharing and (b) Propose data-driven solutions for existing
and future unlicensed networks. Innovative AI/ML-based
solutions may also be included in future specifications by
standardization bodies. The LAA network dataset we are
releasingmay potentially complement the primary incumbent
network database. This seems necessary according to the
report of the Global System for Mobile Communications
Association, the international body that represents the
interests of cellular operators. GSMA states, ‘‘(Spectrum)
Sharing will only be useful for operators if the proposed
band is harmonized for mobile use.‘‘ [20]. It also calls upon
the regulators for simple and investment-friendly coexistence
and sharing frameworks that (a) Support reliable and high
cellular QoS (b) Allow operators to voluntarily share their
spectrum, and (c) Incentivise incumbents to share unused
bands with high demand from other users [20]. To achieve
these objectives, regulators and primary incumbents can
use the released dataset. It will help develop a more
comprehensive understanding of spectrum sharing, vis-a-vis
other operational wireless technologies. Further, the gathered
data is from multiple operators, mitigating the problem of
data silos. It may also encourage government entities to
release their data in the unlicensed or shared spectrum in
the spirit of collaborative research. Open-source applications
like Sigcap, CellInfo, and FCC APP offer some Phy layer
information such as RSRP, RSRQ, EARFCN, and PCI.
However, for AI/ML-based network analysis, detailed and
accurate network information (e.g., Resource Block (RB),
SINR, Throughput) is required, which is difficult to get at
scale. Thus, creating such a dataset is a non-trivial exercise.

B. CHALLENGE: EXPENSIVE NETWORK MONITORING
APPLICATIONS
To determine the efficiency of spectrum usage by an
operator through AI/ML models, values of essential network
parameters (features) are required, e.g., SINR, Throughput,
RB, Channel Quality Indicator (CQI), and Modulation
Coding Scheme (MCS). Only a handful of applications can
extract features such as RB, Channel Quality Indicator (CQI),
and Modulation Coding Scheme (MCS) on mobile devices
with the latest chipsets that need to be rooted. Thus creating
an LAA dataset at scale is a non-trivial exercise. A list of
subscription-based and open-source tools, along with their
features, is presented in Table 1. Paid applications generally
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FIGURE 2. Relevant Data screen-types of NSG App.

FIGURE 3. Data gathering and extraction for AI/ML Analysis.

offer tiered freemium subscriptions for monitoring and
exporting network data. The free versions have limited utility,
e.g., Network Signal Guru (NSG) does not currently allow
5G-NR monitoring in the free tier. The basic subscriptions
come with monitoring capabilities, ranging from tens to
hundreds of dollars per month. However, for AI/ML analysis
and modelling, network data is required at scale, typically
in multiple thousands of samples. To be able to export the
gathered data into a format suitable and sufficient for AI/ML
analysis these applications charge up to tens of thousands
of dollars every year. A plausible reason for the high cost
is that cellular operators are secretive about their data as it
could be leveraged to draw inferences on their proprietary
technology and strategic processes [26]. There may also be a
concern that network data may hint at their strategic business
side operations, e.g., number of active subscribers through
RB allocation, or cell density through SINR or RSRP.

Most chipset vendors, such as Qualcomm and cellular
operators themselves, are often equipped with state-of-the-
art network monitoring tools such as QCAT, QXDM, and
other applications. On the other hand, academic researchers,
especially from the developing world, are denied access
to data from the latest unlicensed deployments due to
the exorbitant cost of the applications. It is noteworthy
that Mobile Insight [27] and SigCap [18] are very useful
open-source applications. SigCap, in particular, is easy
to install, displays real-time network information on the
mobile device, and allows passive network monitoring [18].
We chose NSG, as it delivers precise information on a

FIGURE 4. Methdology of the study.

larger set of PHY layer parameters and has an overall better
interface. Thus, NSG offers a better user experience and
functionality for LAA data collection at scale. It also allows
for capturing mobility data within the background mode
with high stability. Nevertheless, expensive subscriptions to
NSG and other applications make it virtually impossible
for the wider research community to have access to LAA
deployment datasets. Our innovative computer-vision-based
solution makes it possible to overcome this obstacle by
extracting data from NSG screens (even in the free tier) and
releasing it to the broader community for AI/ML analysis.

V. METHODOLOGY
This study introduces a novel Counterfactual Framework
designed to enhance cellular network performance through
advanced explainable machine learning techniques. The
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methodology encompasses four primary components: data
collection, the establishment of a machine learning model,
the generation of initial predictions, and the application
of counterfactual analysis to identify potential performance
improvements. The detailed process followed in the method-
ology is presented in Figure 4 and explained below.

The cellular network data is collected across downtown
Chicago, focusing on LAA deployments from three major
operators: AT&T, T-Mobile, and Verizon. Data collection
is conducted using both stationary and mobile devices to
capture a wide array of network conditions. The Network
Signal Guru (NSG) application, recognized for its compre-
hensive coverage of cellular standards, such as LTE, LAA,
and 5G-NR, is the primary data collection tool. Following
collection, we perform a meticulous extraction process.
A computer vision and optical character recognition (OCR)
based system is developed to process encrypted logs into
a structured format suitable for analysis. This innovative
approach allows for the extraction of detailed network
parameters, including bandwidth, signal strength, Physical
Cell ID (PCI), allocated resource blocks (RB), throughput,
Modulation Coding Scheme (MCS), and Rank among others,
thereby overcoming the limitations of NSG’s subscription
model for data export.

We perform exploratory analyses on the extracted data
and after a thorough cleaning and preprocessing phase,
we utilize it for machine learning prediction models. The
dataset is divided based on different network environments
to examine the effect of network parameters on performance
metrics through a data-driven approach. The models utilize
the Number of Carriers, Antenna Configuration (ANT),
Transmission Rank (TRANS), Channel Quality Indicator
(CQI), Modulation and Coding Scheme (MCS), Signal-to-
Noise Ratio (SINR), Resource Blocks (RB), Block Error Rate
(BLER), and Throughput. In our research, we have employed
a suite of low-cost machine learning algorithms that are
well-suited for our data characteristics and the objectives of
the study. These include regression and classification algo-
rithms, such as Ordinary Least Squares Linear Regression,
Ridge Regression, Kernel Ridge Regression, Polynomial
Regression, K-nearest neighbours (KNN), Random Forests
(RF), Decision Trees (DT) and Support Vector Machines
(SVM). We train and evaluate these models on segmented
data Our dataset is segmented into various subsets reflecting
different network scenarios, which helps in understanding
the model’s performance under varied conditions- Combined
(entire dataset), LTE (Standalone LTE network data), LAA-L
(LTE coexisting with LAA), LAA-U (Unlicensed LAA),
and LAA (LAA-L and LAA-U combined). Each model is
trained on 80% of the data from each segment, ensuring that
it learns to predict or classify based on a comprehensive
set of examples, and then tested on the remaining 20%.
We also explore the impact of different features in the
decision-making process through a feature importance study.

The next step of our analysis is the application of counter-
factual analysis to explore potential network configurations

that could lead to performance enhancement. This process
involves generating counterfactual instances for each data
point in the dataset, evaluating their validity, and assessing
their feasibility and proximity to original instances. The
counterfactual framework utilizes binary classification and
empirically estimated means as the threshold, simplifying the
prediction of SINR and throughput as network performance
prediction metrics. This data-driven counterfactual approach
offers a deep understanding of the impact of network
parameters on performance. Classified samples are input to
the counterfactual generator model, using multiple classifiers
to generate policies and scenarios for maximal signal strength
and throughput. The proposed framework uses the DiCE
CF generator to incorporate diversity and proximity into the
synthesized counterfactual instances through a unified loss
function. It also learns the interrelationships between network
parameters and performance metrics suggesting potential
improvements in signal strength and reduction in error rates
that could boost overall throughput. We also cross-validate
our findings with the feature importance results generated
from the classifiers.

The final step is to validate our findings from the
counterfactual analysis using a joint optimization model.
The joint optimization model presented in the documents
aims to maximize radio resource allocation efficiency in a
multi-point network comprising LTE (Long-Term Evolution)
and NR (New Radio) technologies. The objective of the
model is to maximize the sum of the rewards for all devices
in the network by allocating radio resources effectively.
This validation step demonstrates that the counterfactual
generation and selection step leads to policies for network
parameter configuration that will yield optimal network
performance and end-user experience.

VI. DATA COLLECTION, EXTRACTION, AND
EXPLORATORY ANALYSIS
The data was collected in different areas of downtown

Chicago. LAA deployments of three major cellular operators,
viz., AT&T, T-Mobile, and Verizon, were considered. Data
were collected with both stationary and mobile devices. The
overview of the data gathering and extraction process is
shown in Figure 3. The initial observations were made using
multiple tools, some are presented in Table 1. Network Signal
Guru (NSG) application developed by Qtrun Technologies
was selected as the primary data gathering tool for this
dataset [23]. The ‘‘Data Log’’ in Figure 3, shows one of
the many screens of the NSG app, which is discussed
in detail ahead. NSG supports multiple cellular standards
such as LTE, LAA, and 5G-NR. Some of the relevant data
screens for LTE-only, LTE-LAA, and 5G-NR are presented
in Figure 2. It’s discernible that NSG provides more detailed
information than open-source alternatives such as SigCap or
FCC Speed Test. This includes information on bandwidth,
signal strength, Physical Cell ID (PCI), resource blocks
allocated (RB), throughput, Modulation Coding Scheme
(MCS), Rank, and others. While it may suffice to make a
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FIGURE 5. Schema of the data extraction process.

note of the observed data manually for network monitoring
purposes, data-driven network solutions require thousands
of samples for reliable modelling and prediction of network
performance. Unfortunately, NSG doesn’t permit extracting
this data in the free tier of its freemium model. In the
basic subscription tier, NSG allows capturing the monitoring
session as an encrypted log in DLF format which can only
be decoded by the NSG application on another device with a
basic subscription. However, retrieving data in a file format
desirable for data analysis, such as ‘‘.CSV’’ or ‘‘.txt,’’ is only
possible with a more expensive subscription. This prevents
easy and affordable access to PHY layer data for AI/ML
modelling and analysis.

To extract LAA data at scale for research and make it
available to the broader research community, we engineered
a solution based on computer vision and optical character
recognition. The high-level schema of the data extraction
system is shown in Figure 5. The rendering of the encrypted
log was converted into a video and then into individual
frames. Next, duplicate and undesirable frames were filtered
out to speed up the extraction process. Unique frames were
processed through the extractor using multiple pipelines ded-
icated to the number of carriers. Thereafter, the frames were
pre-processed and subjected to various image processing
techniques for better extraction performance. Finally, values
for several network parameters on each frame were captured
through computer vision and a deep-learning-based Tesseract
OCR engine. Two OCR pipelines were considered with
different image processing techniques for verification, and
a field-specific comparison was made. Finally, the extracted
data was exported into a format such as CSV or Excel that
can serve as input to the data processing pipeline of an AI/ML
model.

Building the extraction system was a difficult task for
several reasons. The constant change in network parameters
causes frequent toggling of the NSG screen. Likewise, the
constant fluctuations in parameter values drastically alter the
user interface making the frame too dynamic for a generic
solution to process accurately. Our LTE-LAA monitoring
logs consist of seven different frame screens/layouts with
similar fields. Thus network context, such as LTE or
LTE-LAA or 5G-NR, number of carriers, needs to be

FIGURE 6. Challenges in data extraction.

learned on the fly and data must be extracted based on
the context. Further, most parameter fields on the NSG
frame are unique entities from the perspective of image
processing and OCR pipelines, requiring specific techniques
for near-perfect accuracy. A sample frame highlighting the
major challenges to high extraction accuracy, numbered
from one to six, is presented in Figure 6. The challenges
include (1) Different background colours with varying levels
of overlap for a single field requiring fine-tuned image
processing and contour detection (2) Different text colours
requiring different image-processing pipelines (3) Elements
of UI overlapping parameter values requiring custom-tailored
denoising (4) Identifying narrow strips of data fields in
a toggling frame (5) Partial or cut-off fields (6) Multiple
problems in the same field: missing data, different colours,
varying background overlaps over values and noise.

The data extractor shown in Figure 5, was designed to
overcome these constraints, ensure high accuracy, reduce data
wastage, work across network types and frame types, and
allow extraction at scale. Despite the multiple challenges, the
extraction system works remarkably well with close to 100%
accuracy. It also weeds out irrelevant and duplicate frames,
speeding up the extraction process. A total of 9676 samples
are extracted with the following twelve network parameters,
viz., network type, number of carriers, the band, SINR,
Ant. eNB Tx, Trans. Mode, BLER, RANK, Throughput
Cwd0/Cwd1, RB, CQI Cwd0/Cwd1, and MCS [17]. A small
subset of the dataset has helped identify performance
bottlenecks in existing LAA deployments and prescribe
potential solutions [8], [26]. The dataset in its current form
includes seven additional network parameters and has a much
larger sample size [17].

A. EXPLORATORY DATA ANALYSIS
This section presents an analysis of several important network
parameters in different types of cellular networks. The
distributions of nine important network variables viz., SINR,
RB, BLER, Throughput, Throughput (CWD0 and CWD1),
Number of carriers, and CQI (CWD0 and CWD1) are
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FIGURE 7. Distribution of important network variables.

presented in Figure 7. Below, the performance of LTE,
LAAU , and LAAL is analyzed in terms of SINR, RB, BLER,
and Throughput.

1) SINR
Only in the LTE scenario, all transmissions are in the licensed
spectrum. As the specific operator exclusively controls a
licensed band, they are carefully used in the RF planning,
reducing the co-channel interference. Hence, a higher SINR
can be observed for LTE in Figure 7 (a). However, for
LAAL , where Licensed (LTE) exists with Unlicensed (LAA)
carriers, the SINR is slightly lower. The reason is that the
unlicensed spectrum is non-exclusive i.e., not clean. Every
Wi-Fi AP and LAA small cell of other operators is free
to transmit in the same spectrum. This invariably leads to

more co-channel interference and lower SINR for LAAL .
Further, for pure LAA (LAAU ), the impact of co-channel
interference is much higher than LAAL , resulting in even
lower SINR for LAAU . Since SINR is a critical determinant
for the channel quality (CQI), a similar trend can be observed
for CQI on both antenna ports CWD0 and CWD11 as shown
in Figure 7 (h) & (i).

2) RESOURCE BLOCK ALLOCATION
Typically, there is no relation between SINR and RB. The RB
allocation entirely depends upon the bandwidth available per
radio or base station. In LTE, obtaining a greater chunk of
the licensed spectrum is difficult as the mid-band frequencies
are scarce, and the licenses are costly. This is the primary

1The average of CWD0 and CWD1 will resemble the SINR plot.
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FIGURE 8. Spectral efficiency of LTE, LAA-L and LAA-U.

reason that operators rely on the LAA unlicensed spectrum.
It is relatively much less expensive to operate but is not
a clean spectrum like the licensed band. Hence, operators
optimize the network performance by diverting certain traffic
transmissions on the LAA network. Thus, it is unsurprising
that there is a higher RB allocation in LAAU and LAAL
than in LTE, as observed in Figure 7 (b). A much higher
allocation in LAAU than LAAL could be attributed to fewer
LAA devices being connected to the small cells and a higher
number of carriers in LAAU as can be seen in Figure 7 (g).

3) BLER
The high BLER in the network leads to more packet
drops and, eventually, to more re-transmissions. This mainly
depends on the same RB allocation on the same frequency
or the same channel nearby. The impact will be higher in
the LTE scenario because these transmissions are possible
on the high-power Macro network, where the transmission
can reach several miles or kilometres. The adverse impact of
the same channel interference affects the nearby transmitter,
which eventually increases the BLER on the system, as shown
in Figure 7 (c). On the other hand, in LAAU than LAAL ,
the LAA operations are low-power small cells, and the
contribution from the neighbouring cell transmission may be
lesser compared to the LTE scenario.

4) THROUGHPUT
The throughput performance depends upon the number of
RBs allocated and the SINR. Data shows that fewer RBs
are allocated in LAAL as compared to LAAU . However, the
SINR is high for LAAL compared to LAAU . This in turn
increases the modulation coding scheme (MCS), i.e., which
helps the base station to push more bits. This will increase
the overall system performance i.e., throughput as shown in
Figure 7 (d). Though the SINR is good in the LTE scenario,
the RB allocation is less for the LTE, so the throughput is low
compared to LAAL and LAAU . Figure 7 (e) and Figure 7 (f)
show the throughput allocation on each antenna port i.e.,

CWD0 and CWD1. Figure 7 (d) shows the average allocation
from Figure 7 (e) and Figure 7 (f).

5) SPECTRAL EFFICIENCY
We determine the spectral efficiency based on the through-
put observed with respect to channel bandwidth in Hz.
Figure 8 (a) shows the average spectral efficiency for LTE,
LAAL and LAAU . Small cells like LAA have different and
often lower coverage than the LTE Macro cell. Further,
depending on the number of users connected to the base
station, the throughput received by the user will vary over
time. We notice that LTE has low spectral efficiency, which
is due to the urban deployment setting where we can expect
more users to connect to the base stations. Typically, it is
difficult to determine the user density through real-time
measurement. For LAA, during the time of the experiment,
there were only a few LAA-capable devices and most of the
time our devices were the only user devices connected to
the LAA base station (this can be verified by looking at the
max RB allocation on the rooted NSG device). Hence, for
LAAL and LAAU scenarios, the spectral efficiency is higher
compared to the LTE.Also, the range of cells is comparatively
smaller in LAA, which is a contributing factor to the users in
that range transmitting with higher MCS. This, in turn, leads
to high throughput and spectral efficiency.

Careful RF planning with good SINR and optimal resource
block allocation can significantly improve the spectral effi-
ciency of the network bymaximizing the throughput. Adverse
impacts of channel impairment, such as noise, fading, and
attenuation, can be mitigated by optimal placement of the
radios, focused beam or MIMO transmission, power control,
and electric tilt adjustment of the radio antennas.

6) BIT ERROR RATE (BER)
Figure 8 (b) shows the average BER based on the SINR
thresholds. The number of bit errors is calculated depending
on the SINR range experienced by mobile devices. A higher
SINR represents the UE is within a good signal range to
effectively decode the symbols or bits transmitted, which
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FIGURE 9. Prediction Accuracy of Support Vector (SVC) and Decision Tree (DT) Classifiers for various network prameters.

FIGURE 10. Network performance prediction using random forests.

results in a lower bit error rate. We do not observe much
difference in the BER of LTE, LAAL and LAAU . The
potential reason is that LTE is the underlying technol-
ogy (protocol stack) for LAA, and it is possible that
the traffic from both cellular standards utilizes the same
decoder.

The reduction in interference can improve the SINR signal,
which can drastically improve the BER of the particular
network. In general, this can be achieved by proper RF
planning with different frequencies and channels assigned
to nearby radios or base stations to minimize co-channel
interference. In addition, intelligent RB allocation based
on coordination or Physical Resource Block (PRB) muting
during the silence period further minimizes the impact of
co-channel interference. Both these approaches reduce the
BER at the receiver by improving the SINR.

VII. UTILIZING OPERATOR DATA FOR NETWORK
PERFORMANCE ANALYSIS AND PREDICTION
A primary objective of this work is to offer a data-driven
performance analysis of unlicensed networks by going
beyond the classical measurement-based analysis. Machine
learning algorithmsmake it possible to formulate the problem
of estimating unlicensed band performance as a classification
or a regression (prediction) problem.

A. DATA-DRIVEN INSIGHTS FROM LAA NETWORKS
We now leverage AI/ML to analyze the LAA operator dataset
and answer various questions on network performance (e.g.,
expected network Throughput) with high accuracy. We con-
sider 15 features, including several Phy layer parameters
such as SINR, Block Error Rate (BLER), ANT eNB T/Rx,
Transmission Mode, Rank, Resource Blocks (RB), Channel
Quality Indicator (CQI), and Modulation Coding Scheme
(MCS). We also consider feature importance so that network
bottlenecks can be easily identified. For instance, we find
that it is challenging to predict network throughput by
looking at SINR or RB allocation alone. Further, for different
locations, small cells, or operators, the importance of SINR
or RB in determining network capacity differs (sometimes
operators aggregate more than one channel with different
bandwidths). For example, the feature importance of SINR
in predicting network capacity is far higher for Unlicensed
networks than for Licensed networks. The reason is that
LAA networks were characterized by high resource block
allocation and lower user density, making device throughput
more dependent on the signal quality it received. Another
problem of interest is to predict the expected throughput
or SINR with high confidence for a given set of network
features. This is modelled as a regression problem. Further,
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we build classification models to solve various significant
problems such as identifying the carrier (LTE or LAA),
determining the number of carriers aggregated, detecting the
modulation coding scheme, and predicting channel quality.

The solutions utilize low-cost ML algorithms from the
family of regression algorithms viz., Ordinary Least Squares
Linear Regression, Ridge Regression, Kernel Ridge Regres-
sion, Polynomial Regression, K-nearest neighbours (KNN),
and Random Forest (RF). For classification, we considered
Decision Trees (DT) and Support Vector Machines (SVM).
Further, multiple categories of the LAA dataset are consid-
ered. They are denoted by, Combined (entire dataset), LTE
(Only standalone LTE network data), LAAL (LTE coexisting
with LAA), LAAU (Unlicensed LAA), and LAA (LAAL
and LAAU combined). Data categorization helps understand
how existing licensed networks perform standalone and when
they coexist with Unlicensed networks. This is particularly
important for future unlicensed operations as the number of
incumbents will increase.

The discussion is categorized into network performance
analysis, prediction of relevant network parameters, and
identification of the critical network variables influencing
performance.

B. EXPECTED NETWORK PERFORMANCE PREDICTION
Data-driven cellular network performance analysis entails
evaluating the reliability of machine learning models in
predicting critical performance metrics that affect the
end-user quality of experience. These include the total
device throughput (THTotal), SINR at the device (SINR),
and resource blocks allocated to the device (RB). Multiple
ML algorithms are run for all five data categories, and the
prediction performance of models is analyzed in terms of
R-sq and the root mean squared error (RMSE). The results
are presented in Figure 10.

We observe that for a given input of network variables (e.g.,
SINR, RB, BLER, CQI, number of carriers, transmission
mode) the total network throughput can be predicted with
moderate to high reliability (≈ 0.8). THTotal is most
accurately predicted in LTE with an R-sq of 0.8 and an error
of 7.69. Surprisingly enough, predicting total throughput is
the most challenging for LAAL (LTE coexisting with LAA),
with the lowest R-sq and highest error. Further, throughput
prediction in LAAU is almost as reliable as LTE (R-sq of
0.79), although the mean error is twice as much. This implies
a higher dispersion of values from the fit line, which in turn
means more fluctuation in network performance. Estimating
expected SINR when the total throughput and other network
variables are known is more challenging, with prediction
model R-sq in the 47%–68% range. SINR Prediction models
SINR are more reliable in the unlicensed band (LAAU ), and
least reliable for LTE coexistingwith LAA (LAAL), with LTE
in the middle (R-sq of 60%). Predicting the RB allocated to
the UE can be done most accurately for LTE (R-sq of 87%)
and a low mean error of 4.19. Estimating RB allocation in the

unlicensed band is relatively challenging (R-sq of 72%), and
there is a higher variability in RB allocation (mean error =
10.51). LAAL models are again the least reliable.
An interesting conclusion from these findings is that

licensed cellular network characteristics performance in
standalone deployments (licensed only) and coexistence
deployments (LTE-LAA) differs substantially. The network
environment and performance prediction for the licensed
carriers of an LTE-LAA system are the most challenging.

To further understand this phenomenon, we analyze
network performance at the granularity of aggregated traffic
streams. These are represented by ‘Codewords’, which
combine the network metrics from individual data streams.
In uplink or downlink, a codeword-to-layer mapping is
performed in spatial multiplexing. In LTE-Advanced and
5G-NR (as monitored on NSG), these aggregated streams are
represented by ‘Cwd0’ and ‘Cwd1’ values of metrics such as
throughput, modulation coding scheme (MCS), and channel
quality indicator (CQI). We first compare the performance
of codeword-specific models in predicting the two aggregate
throughputs, viz., (TH0 and TH1), with the total throughput
estimation models. Further, the impact of codeword-specific
parameters such as MCS on the aggregate throughputs
(THMCS

0 and THMCS
1 ) is studied.

The throughput prediction performance trends change
significantly for the codeword-specificmodels for aggregated
traffic streams. First, the throughput estimation ability
depends on the codeword or stream-aggregate data and varies
by up to 10%. In the LAA dataset, TH0 can be predicted
more reliably than TH1, although with a slightly higher
error. Secondly, while LTE models are the most reliable for
TH0, LAA and LAA TH1 models are most reliable for TH1.
Surprisingly, for TH0, LTE models perform the worst with
an R-sq of 66%. This is in sharp contrast with the total
throughput models, where prediction in LTE networks is the
most accurate and with the lowest error. Thus, traffic-stream
data analysis can yield more significant insights into network
parameter performance.

Further, codeword-specific MCS values improve overall
throughput prediction and reduce error. What is particularly
interesting is that the inclusion of MCS makes LAAL
throughput estimation remarkably accurate, with 90% and
87% R-sq for THMCS

0 and THMCS
1 prediction, respectively.

Trends for LAAU remain unchanged when compared to total
throughput models. This further underscores our inference
earlier that LTE in coexistence with unlicensed cellular
networks is characteristically different from standalone LTE.
Analysis and performance prediction in the coexistence
environment is highly contextual for LTE. Further, context-
specific variables such as MCS only slightly improve LAAU
or unlicensed cellular model performance. The impact of LTE
on unlicensed cellular operation is not as pronounced as the
impact of LAAU on the licensed operation. This finding is
crucial for 5G, 6G, and other cellular standards that coexist
with unlicensed band networks like 5G-NRU.
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C. NETWORK PARAMETER PREDICTION
Now, we consider the challenge of accurately determining
four network parameters, viz., the number of carriers aggre-
gated, channel quality indicator, modulation coding scheme,
and network environment or network type. These prediction
problems were considered for both total throughput and
stream-aggregated throughput data for all five data categories
as before. The results are presented in Figures 9(a) and 9(b)
for CQI, Figures 9(c) and 9(d) for MCS, Figures 9(e) and 9(f)
for Number of Carriers, and Figure 9(g) for cellular network
type.

Predicting channel quality through the values of the CQI
metric is challenging (Figures 9(a) and 9(b)). The prediction
accuracy varies from 32% for LAAL to 58% for LTE. LAAU
lies in the middle with 44% and 50% accuracy for the
two aggregated-stream models. A plausible explanation is
that channel quality in LAA depends on the neighbouring
LAA cells and other Wi-Fi APs on the same channel. From
our observations, when a Wi-Fi AP detects LAA on the
same channel, it usually moves to a better channel with less
contention. We also notice that LAA UE stays on the same
channel as it does not currently support dynamic channel
selection. A latent consequence is a more accurate channel
quality or CQI prediction in LAA networks. However,
in LAAL networks, coexistence with unlicensed cellular
networks makes CQI prediction challenging. LTE networks
operating in the licensed spectrum operation try to reuse
the same channel as much as possible to effectively reuse
the spectrum. So, improper RF planning on the cellular
network may pose difficulties in determining CQI by feeding
the network performance metrics as input to the prediction
model.

Another network parameter of interest is the modulation
coding scheme (Figures 9(c) and 9(d)). The transmission
from an LAA base station happens at 23 dBm, so the
operator typically deploys small cells. Consequently, the
users connected to the LAA small cell receive strong signal
strength measured in RSRP and SINR. This translates to a
high MCS, and in turn, a high data rate in LAA. It also makes
it possible to accurately predict MCS in the unlicensed band
for a given feature, including codeword-specific throughput
and other network metrics. This explains the high prediction
accuracy of up to 86%, for LAAU . Further, LTE or licensed
operation requires high transmit power at the Macro base
station to provide greater coverage with robust signal quality.
However, potential scenarios such as a user connected to the
Macro base station at the edge of the cell may lead to low
RSRP and low SINR, which directly translates to a lower
MCS, and in turn, low throughput. We also find a similar
variation in prediction accuracy in LTE (41% to 58%) for
the two codeword-specific traffic streams. The case of LAAL
continues to be peculiar, with prediction accuracy hovering
around 30%. Clearly, it seems extremely challenging to
estimate channel quality by looking at the network data in
LTE when it coexists with LAA.

Determining the number of carriers aggregated at the
UE can be done with a near-perfect accuracy of 98%
(Figures 9(e) and 9(f)). This is true for both a smaller feature
set (6 features) including THTotal or an expanded feature
set (15 features) including aggregated parameters. The
interesting aspect is that the prediction is the most reliable in
LAAL , followed by LTE, and least accurate in LAAU . LTE
is in the licensed spectrum, where only authorized cellular
providers are operational. Hence, the carrier or channel is
‘clean’ with no co-channel interference. On the contrary,
LAAU networks exist in the unlicensed spectrum, where
existing incumbents employ the Listen Before Talk or the
Wi-Fi CSMA protocol to use the spectrum freely and without
restrictions. Thus, external factors (features) other than the
core network metrics influence the accuracy of models
analyzing network data.

Finally, we consider the problem of predicting the network
environment or type at the device (Figure 9(g)). This is
particularly important for use cases such as device-initiated
cell selection or handover. Only two data categories are
considered in this solution, viz., Combined data and LAA.
The models for Combined data are able to distinguish
between the three network types i.e., LTE, LAAL , and
LAAU , with 97% accuracy. In LAA data, the accuracy of
predicting whether the device is transmitting on a licensed
carrier (LAAL) or unlicensed carrier (LAAU ) is 99.3%. It is
encouraging that a high level of accuracy can be achieved
with low-cost ML algorithms which makes delegating the
cell selection and handover decision to the mobile devices
feasible.

D. IDENTIFYING IMPORTANT NETWORK PARAMETERS
Measurement-based cellular network studies provide empir-
ical trends on many network variables. A limitation of this
measurement-focused approach is that it offers little insight
into which variables have the most significant impact on
metrics associated with end-user QOE, such as throughput
or signal quality. From the cellular operator’s perspective,
it is pertinent to identify important network variables so as
to remove performance bottlenecks and manage the network
better.

We employ permutation feature importance to identify
the variables that contribute the most to prediction model
performance for all metrics considered in Section VII-B.
Permutation importance [28] is a technique used to measure
the importance of features in a machine learning model.
It helps understand which features have the most significant
impact on themodel’s performance and predictions. Proposed
as a measure of variable importance in random forests, per-
mutation importance involves randomly shuffling the values
of a single feature in the test set and observing the effect on
the model’s performance. The percentage change in the per-
formance metric is identified as the permutation importance
of that feature. The three most important network variables
that affect network performance are listed in Table 2.
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TABLE 2. Most important features that affect network performance.

An interesting observation is that in models with data
from licensed cellular networks, total throughput is primarily
controlled by RB. However, in LAAU , SINR and BLER are
more important than RB in predicting network throughput.
So, different network variables need to be fine-tuned for
optimal performance in licensed and unlicensed bands for
similar performance metrics. A similar trend can be observed
for RB as well, where THTotal is the most important
predictor in all data types, except for LAAU , where SINR
contributes most to model performance, with THTotal as a
close second. Further, it can also be noticed that the data
type itself is an important feature in aggregated data types,
viz., Combined data and LAA data. This further demonstrates
that network environment or ‘‘context’’ differs in licensed
and unlicensed bands, and performance prediction models
must be trained on network-specific data. These trends
persist for the codeword-specific models too. RB is the
most important predictor of TH0, TH1, THMCS

0 , and THMCS
1 ,

for data-types comprising licensed data. Whereas for purely
unlicensed data, SINR for TH0 and TH1, andMCS for THMCS

0
and THMCS

1 , are the most important network variables to
predict system performance. Further, adding new variables
to the dataset can often help arrive at the specific parameter
with the maximum impact on network performance. For
example, MCS is determined by the radio link quality,
which includes signal strength, BLER, CQI and more. Thus,
the unlicensed system performance is best enhanced by
improving MCS rather than individual variables that have a
high correlation with it. In the case of other data types, RB is
the predominant network variable that governs all types of
throughput. Finally, the impact of incumbents coexisting and
operating in the unlicensed band is clearly visible on LAAU
performance. Variables associated with the link and medium
quality, e.g., SINR, BLER, MCS, and TRANS, significantly
impact unlicensed network performance more than licensed
networks.

VIII. COUNTERFACTUAL FRAMEWORK FOR NETWORK
PERFORMANCE ENHANCEMENT
This work leverages machine learning to demonstrate how
operators can make accurate predictions and decisions for
optimal cellular network performance. However, to present
a more comprehensive understanding of how the features in
network data can affect the operator decision-making process,
causal analysis of network performance prediction models

Algorithm 1 Counterfactual Framework for Cellular Net-
work Performance Analysis
Require:

1. Cellular Network data X
2. Low-cost machine learning modelM
3. Predictions for each input instance Yoriginal
4. Desired prediction D

Ensure:
1: Initialize an empty set Cvalid
2: for each input instance xi in X do
3: Generate a counterfactual instance CFi using the

counterfactual machine learning framework
4: if YCFi ∈ R and YCFi ̸= Yoriginali where R is the

desired range then,
5: Add CFi to Cvalid
6: end if
7: end for
8: Initialize an empty setCfeasible
9: for each valid counterfactual in Cvalid do
10: if FeasibilityCheck(xi,CFi,M ) = True then
11: Add CFi to Cfeasible
12: end if
13: end for
14: for each feasible counterfactual inCfeasible do
15: Initialize two similarity scores for continuous and

categorical features:
16: similaritycontinuous ←

CalculateCosineSimilarity(xi,CFi)
17: similaritycategorical ←

CalculateCategoricalSimilarity(xi,CFi)
18: Calculate the final similarity score:
19: similarity ← (wcontinuous · similaritycontinuous) +

(wcategorical · similaritycategorical)
20: end for
21: Use joint optimization to validate the results of the

counterfactual analysis

is needed. Counterfactual explanations are a great tool for
causal inference. Instead of focusing on existing outcomes,
counterfactual analysis shines light on desirable outcomes by
posing the question, ‘‘What would happen to the outcome if
a specific input were altered?’’. This section describes how
we leverage counterfactual explanations for the classification
problems defined on our dataset. We apply interpretability
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mechanisms to comprehend the black-box models using
counterfactuals [12], [13].

A. PROPOSED FRAMEWORK
Our counterfactual analysis adopts a binary classification
framework, where the positive class threshold aligns with
the mean value of the relevant performance metric, which
is SINR and throughput, for our analysis. The dataset is
divided into three segments based on the different network
environments to study the effect of network parameters
on performance metrics through a data-driven approach.
In the context of each subset, the computational procedure
involves the calculation of the mean scalar for SINR. This
quantification is then utilized to create a novel binary target
attribute, bifurcating samples into those exceeding or falling
short of the statistically computed mean. Concurrently, the
summation of throughput for CWD0 and CWD1 is done
to obtain a comprehensive aggregate throughput magnitude.
We ascertain the mean of this composite throughput value
and introduce an additional binary target feature discerning
whether the cumulative throughput is above or below the
mean. Therefore, by using the empirically estimated average
as the threshold for the binary classifier, we simplify the
prediction problem and set the grounds for further analysis
using counterfactuals. Using a random forest classifier,
we apply this methodology to appraise signal strength and
throughput.

Specific constraints are incorporated into the model’s
architecture to engineer a counterfactual generator explainer
model based on the chosen classifier, thus defining an
acceptable spectrum within which the feature perturba-
tions transpire. Concurrently, attributes limited by their
immutability are identified to ensure their preservation in the
counterfactual generation process. We leverage DiCE [11],
Diverse Counterfactual Explanations, that incorporates diver-
sity and proximity into a unified loss function to synthesize
counterfactual instances. The objective of this analysis can
be illustrated through this hypothetical instance- consider a
specific sample demonstrating inadequate throughput, i.e.,
its throughput falls below the mean of the pertinent network
environment. A counterfactual of this would suggest that to
have more throughput, the error rate can be reduced, and the
signal strength can be improved. This analysis determines
whether the classifier model has learned the interrelations
among the various network parameters and performance
metrics.

A test set of samples is created for subsequent counter-
factual synthesis. The trained explainer model is then made
to generate counterfactual explanations for each individual
sample encompassed within this test set. The objective
of this analysis can be illustrated through this example -
consider a specific sample demonstrating low throughput,
i.e., its throughput falls below the mean of the given network
environment. A counterfactual of this would suggest that to
have more throughput, the error rate can be reduced, and the
signal strength can be improved. This analysis determines

FIGURE 11. High-level Schema of the proposed counterfactual
framework.

whether the classifier model has learned the interrelations
among the various network parameters and performance
metrics. Once we have generated a set of counterfactual
instances for our test set, we evaluate them using the metrics
of validity, feasibility and similarity. These are designed
specifically for this research to gauge the effectiveness
of our analysis and the counterfactual framework. The
validity of a counterfactual instance aims to check whether
the permutations in the features are sufficient to alter the
decision of the prediction model. Feasibility is a parameter
that is rooted in the domain of the research problem and
highlights the model’s understanding of the interrelations
among the features and the target variables. Similarity aims to
measure the distance of the original input from the synthetic
counterfactual instance, which uncovers insights about the
decision boundaries of the classification. These metrics are
discussed in detail in Section VIII-C. The high-level process
flow is depicted in Figure 11.

B. APPLICATION IN CELLULAR NETWORKS
Algorithm 1 presents a Counterfactual Framework designed
to be an advanced explainable machine-learning method for
cellular network data analysis and performance enhancement.
It requires four primary elements: a cellular network dataset
X , a cost-effective machine learning model M , initial
predictions Yoriginal for each data point, and a target prediction
D. The procedure initiates by creating an empty set Cvalid to
accumulate valid counterfactual instances. For every instance
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TABLE 3. Validity and feasible counterfactuals.

xi in X , a corresponding counterfactual instance CFi is
generated using a dedicated counterfactual machine learning
framework. These instances are evaluated to ascertain that
they conform to a specified range R and differ from the
original predictions Yoriginali . Those meeting these criteria are
stored in Cvalid.
In the following stage, the algorithm filters these valid

counterfactuals through a feasibility assessment, ensuring
their practicability in the context of the modelM , and places
feasible ones in a new set Cfeasible. Two types of similarity
scores are computed for each feasible counterfactual: one for
continuous features using cosine similarity and another for
categorical features using a specific method. These scores
are integrated into a final similarity score, achieved by a
weighted sum of the two, thereby balancing the influence
of different feature types. The process culminates with a
joint optimization phase, validating the outcomes of the
counterfactual analysis. This ensures that the generated
counterfactuals are valid and feasible and closely resemble
the original data points, enhancing their practical value and
interpretability in cellular network data analysis.

C. EVALUATION
The generated counterfactuals are now subjected to a
comprehensive assessment of their practical utility, focusing
on three primary aspects: validity, feasibility, and proximity.

The validity of a counterfactual is ascertained through
its impact on the classification outcome, with the pivotal
question centring on its potential to transform the prediction
to the desired class or range of values. The quantification of
validity is interpreted by the computation of the proportion
of valid counterfactuals in the generated set. Studying the
validity provides deeper insights into the interpretability of
the machine learning model. For each network environment,
the fraction of valid counterfactuals for each performance
metric is illustrated in Table 3.

The features in the dataset do not function as independent
entities but exhibit intricate interconnectedness. Given the
intrinsic dependencies among features, altering one feature
could have cascading effects on others. Consequently,
any counterfactual generated should not only achieve the
intended prediction alteration but also ensure that these
intricate interdependencies are preserved. This adds a layer
of complexity to the evaluation process with feasibility

as another desirable property of counterfactuals. They
must not only satisfy individual conditions for prediction
alteration but also align with the real-world interplay of
features. This imposes constraints on their modifications
and simply perturbing each feature individually may lead to
unrealistic examples, suggesting conflicting changes, such
as simultaneously increasing signal strength and error rate
to improve the throughput. Consequently, counterfactual
analysis necessitates comprehensive checks on multiple
feature alterations to ensure that generated counterfactuals
are not only valid in terms of prediction shifts but also
adhere to the nuanced relationships inherent in the dataset.
The feasibility of a generator can be conceptualized as
the proportion of counterfactual instances within the set
that adheres to the inherent relationships not only among
the features themselves but also between the features and
the target variable. To evaluate the feasibility, we utilize a
filtering methodology for generated counterfactual examples
based on causal constraints and present the results in
Table 3. An in-depth analysis of counterfactuals that meet
the validity criteria is conducted, delving into the extent
to which the implicated modifications uphold the intrinsic
interdependencies embedded within the dataset. The altered
feature set is scrutinized to ascertain its fidelity to the
underlying network of realistic and attainable configurations.
Subsequently, we compute the proportion of counterfactual
instances that exhibit the characteristic of feasibility in the
set of valid counterfactuals.

∀i : (Ycf > Yorig) H⇒ (ρ(Xi,T ) > 0 H⇒ 1Xi > 0)

∧ (ρ(Xi,T ) < 0 H⇒ 1Xi < 0)

∀i : (Ycf < Yorig) H⇒ (ρ(Xi,T ) > 0 H⇒ 1Xi < 0)

∧ (ρ(Xi,T ) < 0 H⇒ 1Xi > 0)

Across all three datasets, the observed feasibility rate
demonstrates a significant level of efficacy. This underscores
the classifiers’ capability to discern the intricate interplays
between the target attributes and the determinant features.
The classifier adeptly captures the complex interdepen-
dencies among diverse performance metrics and network
parameters. Consequently, perturbing the data yields out-
comes that align with the intended class assignment, attesting
to the random forest classifier’s comprehensive grasp of
the underlying relationships. This further highlights the
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TABLE 4. Most frequently changed features.

application of counterfactual analysis as an explainability
mechanism for complex machine learning models with
otherwise difficult interpretability and comprehension.

From a logical standpoint, the utility of counterfactual
examples is significantly amplified when they closely
resemble the original input. This is because drastic changes
to alter a prediction to attain a desirable outcome suggest
that the model may have captured a rudimentary data
abstraction, lacking finer-grained comprehension of intricate
feature interactions. Simultaneously, the consideration of
drastic modifications raises the spectre of implementational
impracticability. The very nature of significant changes to
input features demands significant alterations to real-world
circumstances, which may not be operationally tenable or
economically feasible. The cosine similarity index across
the continuous numerical attributes is computed to quantify
the proximity between counterfactual instances and their
corresponding original samples. The aggregate proximity
measure is obtained through the arithmetic mean across all
instances, thereby encapsulating the comprehensive feature
space.

While categorical features are amendable to level encoding
for numerical treatment, such a procedure might not inher-
ently capture the nuanced disparity in altering individual
categorical attributes or the genuine ‘‘distance’’ between
distinct values. To tackle this intricacy, we introduce the
concept of categorical similarity, an evaluative measure
of how closely a counterfactual’s categorical attributes
align with their respective original inputs. This metric
bestows a similarity score of 0 upon any deviation in the
counterfactual’s categorical feature value from the original
input, whereas a score of 1 signifies consistency. In a broader
context, when considering an ensemble of counterfactual
instances, the notion of proximity can be quantified as the
mean similarity value spanning the entire set.

Categorical Feature Similarity =
1
d

d∑
i=1

I (cp = xp) (1)

D. COMPARISON WITH FEATURE IMPORTANCE
Section VII discusses the use of permutation feature impor-
tance to uncover the most valuable features during the
decision-making process. An intuitive assumption might link
feature importance, observed in prior stages, to counterfactual
analysis, where more important features are more prone to
alterations, aligning with their frequency of change. Notably,

permutation importance, akin to counterfactuals, involves
feature variation or shuffling, reinforcing this conjecture. The
most frequently changed features are discussed in Table 4.
We can compare these findings to the results of the feature

importance calculation in Table 4 and notice that among
the top three features, only two overlap for each case. This
divergence is intriguing as it presents valuable insights into
the complexity of the model’s decision-making process.
It also highlights the unique nature of counterfactuals. While
permutation importance quantifies the features’ impact on
the model’s predictive performance, counterfactual analysis
considers the collective perturbation of multiple features
to alter predictions. This discrepancy highlights that while
certain features may be individually pivotal, a more nuanced
interplay of featuresmight be required to effectively influence
the model’s outcomes through counterfactual manipulation.

In the context of SINR analysis, two key parameters that
often change across all three data types are throughput and
Channel Quality Indicator. Specifically, when considering the
LAA_L data type, variations are observed in the Antenna
Configuration (ANT) in 31% of cases, throughput in 26%,
and CQI in 29%. In LAA_U, throughput experiences
alterations in 31% of the test cases and BLER in 15% of
cases, while CQI is subject to variation in 49% of instances.
Meanwhile, the LTE data type is modified in 53% of cases,
CQI in 19%, and throughput in 11% of the generated
counterfactuals. Examining the total throughput in LAA_L,
it becomes evident that RB is changed 61% of the time, CQI
at 24%, and SINR at 11%. In LAA_U, RB is changed in 15%
cases, BLER in 13% cases and CQI in 17% cases. Similarly,
for LTE, RB is varied in 80% cases, ANT in 22%, and SINR
in 11%.

IX. VALIDATING COUNTERFACTUAL POLICIES THROUGH
JOINT OPTIMIZATION MODEL
The final step in the proposed counterfactual frame-

work is to validate the counterfactual outcomes through
well-established techniques such as network optimization.
We devise a joint optimization model, where the goal is
to maximize the radio resource allocation or scheduling
algorithm in the 4G LTE or LAA LTE-U or 5G NR Time
Division Duplexing (TDD) frames with the constraints of
the device signal, application deadline, and user allocation
fairness. The proposed model is one form of replicating
the classical proportional fair scheduling algorithm [29],
which has the QoS and priority as a constraint on the
radio resource allocation. The notation and definition of the
problem formulation are illustrated in Table 5.
Objective: The joint optimization model presented aims

to maximize radio resource allocation in a network that
utilizes both Long-Term Evolution (LTE) and New Radio
(NR) technologies, primarily focusing on Time Division
Duplexing (TDD) frames. The main objective is to maximize
the sum of the weights of the radio resources allocated in each
LTE or NR frame, represented below, ensuring that devices
receive the necessary radio resources to fulfil their service
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TABLE 5. List of notations used in the problem formulations.

requirements.

Max(
|O|∑
o=1

T∑
t=1

Rdt +
|O|∑
o=1

R̄o)

Constraints: It is ensured that each device receives access
to the network exactly once within a given frame, preventing
any device from being overlooked or being given multiple
access within the same frame. There are also penalties for
delays and rewards for timely packet reception. The model
incorporates the Signal-to-Noise Ratio (SNR) as a significant
aspect of resource allocation, ensuring that each device’s
SNR is maintained above a predefined threshold.

The allocation of resources is based on the devices’
observed transmission outcomes in previous frames, deter-
mining if a packet should be sent or withheld (1 for sending,
0 for withholding). A packet can only be sent in the current
frame if it was not sent in the previous frame, ensuring
efficient use of the radio resources and avoiding unnecessary
retransmissions.

The equation below ensures that exactly one LTE or NR
device accesses the channel at each time frame. The con-
straint below can be extended to dual connectivity between
two technologies such as LTE and NR, or coordinated multi-
point (COMP) technologies between the same 4G or 5G NR
base stations.

|O|∑
o=1

xdt ≤ 1 ∀t ∈ [T ] (2)

Based on the SINR signal level at the device, traffic
requirement, and fairness, the MAC scheduling algorithm
determines the modulation coding scheme and the number of
radio resources that need to be allocated in each frame. In this
work, fairness is considered in terms of deadline, reward, and
penalty.

SINRij Threshold: The L.H.S. of Equation (3) is the SINRij
received at the device j due to transmissions from radio or
base station or AP (LTE/LAA/LTE-U) i, and N0t represents
the system noise. To ensure a reliable connection, each device
link’s SINRij is maintained above a predefined threshold λj,
which may vary across mobile nodes.

Inf × (1− Qzij)+ Gijp
z
iP

w
max

Not +
∑
w∈Wk

GwjPimax +
∑
i′∈I\i

Gi′jp
z
i′P

w
max

≥ λj

∀i ∈ I , j ∈ J , z ∈ Z (3)

Here,Wk is the set of all nodes using the spectrum z in a given
LTE or NR frame duration. Similarly, Gwj is the channel gain
from the other near-by LTE or NR node w to j (operating on
the same spectrum chunk), and Gij is the channel gain from i
to j.

The use of Inf × (1 − Qzij) ensures that if Qzij = 0,
then Inf × (1 − Qzij) amounts to a very large value, which
allows for the expression to be conveniently ignored. Through
the virtual infinite value Inf , Equation (3) ensures that
all relay nodes provide a minimum SINRth to a particular
mobile node. The proposed joint optimization model will be
impractical without the SINR consideration through Inf . The
Equation (3) can be rewritten as follows,

SINRij ≤
Inf × (1− Qzij)+ Gijp

z
iP

w
max

Not +
∑
w∈Wk

GwjPimax +
∑
i′∈I\i

Gi′jp
z
i′P

w
max

∀i ∈ I ,∀j ∈ J ,∀z ∈ Z (4)

The below three constraints help in classifying whether a
packet received by device o at time t (xdt = 1) is served before
Ôo then αdt = 1. Based on the LTE or LAA or LTE-U and NR
QCI priority, themaximum allowable delay Ôo is determined.
Suppose if the packet is served after Ôo then βdt = 1.

αdt + βdt = xdt ∀o ∈ [O], t ∈ [T ] (5)

Oo,t−1 ≤ Ôo − 1+ Ō(1− αdt ) ∀o, t

(6)

Ō(1− βdt )+ Oo,t−1 ≥ Ôo ∀o, t (7)

The reward Rdt for device o at time t is calculated only if
the packer is served within Ôo. Otherwise, the penalty −R̂ is
observed in each frame.

Rdt = αdt (
1+ Oo,t−1

Ôo
)+ βdt (−R̂) ∀o ∈ [O], t ∈ [T ]

(8)

Oo,t = (Oo,t−1 + 1)(1− αdt ) ∀o ∈ [O], t ∈ [T ] (9)

Calculate the delay for device d at time t:

Oo,t =

{
Oo,t−1 + 1 if xdt = 0
0 otherwise

64650 VOLUME 12, 2024



S. M. Kala et al.: Cellular Operator Data Meets Counterfactual Machine Learning

FIGURE 12. Model Vs Counterfactual.

To calculate the reward of device d at time t ,

Ro,t =


0 if αdt = βdt = 0
1+ Oo,t−1

Ôo
if αdt = 1

−R̂ otherwise

where R̂ is a large value. This large value ensures that device
d is not scheduled in a frame if the delay exceeds Ôo. Note:
R̂ can be replaced with other functions if we wish to schedule
a device even after its delay exceeds the allowable delay.

M ∗ Po ≥
Oo,T
Ôo − 1

− 1 o ∈ [O] (10)

The above equation ensure that Po = 1 if Oo,T ≥ Ôo and M
is a large value.

R̄d = −Ôo ∗ Po o ∈ [O] (11)

→ Penalty for device d if Po = 1

x ∈ {0, 1}O∗T , α ∈ {0, 1}O∗T , β ∈ {0, 1}O∗T ,P ∈ {0, 1}O

D ∈ RO∗T ,R ∈ RO+∗T , R̄ ∈ RO+

A. LINEARIZING THE ABOVE MODEL
Bilinear product αdtβdt−1 makes the above model non-linear.
Hence, we linearize the model as follows,

Ō(1− αdt )+ ydt ≥ Oo,t−1
ydt ≤ O ∗ αdt

ydt ≤ Oo,t−1

These three constraints together ensure that ydt = αdt ∗

Oo,t−1. Hence, the bi-linear term αdt ∗Oo,t−1 can be replaced
with ydt subject to adding the above set of constraints.
The above linear optimization model can be solved using
commercial solvers such as CPLEX and GUROBI.

B. COMPARING OPTIMAL AND COUNTERFACTUAL
MODELS
We validate counterfactual outcomes through optimal values
generated by the proposed optimization model. Fig. 12
shows the throughput performance comparison between LTE,

LAAL and LTE-U. Two main observations can be made.
First, counterfactual outcomes are comparable to the optimal
values and show similar trends for all three network types.
Thus, theoretical network models support the idea that the
network configuration change proposed by counterfactual
models will lead to enhanced network QoS. Second, the
counterfactual outcomes are higher than the projected values
from the optimization models. This is primarily because
counterfactual models are data-driven and allow greater
flexibility in network configuration change (e.g., in SINR
or MCS), to achieve the maximum potential performance.
In contrast, the theoretical constraint-driven optimization
model doesn’t allow much flexibility in varying the SINR,
MCS, and QCI. The model optimizes resource allocation
based on the MAC scheduling algorithm by considering the
QoS or QCI, fairness, and application deadline. Although
some features, such as the resource block allocation, are
more or less comparable in the optimization model and
counterfactual model, the difference in MCS and SINR,
unlocks a greater potential network performance in the
counterfactual model compared to the optimization model.

The proposed optimization model will help small cells
to allocate radio resources effectively by considering SINR,
QOS and application requirements. The model helps to
formulate policies on SINR, which is a key part of BER and
spectral efficiency. A higher SINR will ensure optimal radio
resource usage by the scheduling algorithm.

X. CONCLUSION AND WAY FORWARD
This paper presents a dataset from the LAA networks of three
major cellular operators in Chicago consisting of 15 features
and 9676 samples. Additionally, we create a novel framework
to analyze and comprehend the complex interplay of features
in a network environment. This work sought to facilitate
greater access to unlicensed network data through data that
was extracted through an innovative low-cost and scalable
solution. A subset of the dataset has led to insightful findings
on LAA network operation and led to data-driven solutions.
This study reports that predicting network throughput in
unlicensed bands, especially in Licensed Assisted Access
(LAA) networks, is more complex compared to licensed
networks. Variables like Signal-to-Noise Ratio (SINR) and
Resource Blocks (RB) allocation have varying importance in
different network environments. Additionally, the importance
of network variables like SINR, BLER, and RB varies
significantly based on the network type (licensed or unli-
censed), emphasizing the need for context-specific modeling
in performance prediction. Models can predict network
parameters like the number of carriers aggregated and
network environment type with high accuracy, demonstrating
the potential of machine learning in network management.

Building on the successes of the ML models, this research
introduces counterfactual explanations as a pivotal tool for
causal analysis in cellular network performance, enhancing
understanding of feature impacts on network operator
decisions. For the same, a novel Counterfactual Framework is
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proposed, tailored for cellular network data analysis, requir-
ing a dataset, a machine learning model, initial predictions,
and a target prediction. This algorithm focuses on generating
valid and feasible counterfactual instances for better decision-
making. Additionally, the paper compares feature importance
(derived through permutation feature importance) with the
frequency of feature alterations in counterfactual analysis,
revealing insights into the model’s decision-making process.
The study highlights how counterfactual analysis can serve as
an effective explainability mechanism for complex machine
learning models, especially in scenarios where traditional
interpretability approaches might fall short. This adds a
new dimension to understanding and improving network
performance prediction models.

The data set in this study is gathered from macro LTE
base stations using 4 × 4 and LTE-LAA small cell 2 ×
2 MIMO antenna configurations. Carrier aggregation was
present in the licensed band, while the unlicensed band
constitutes a combination of frequencies in the mid-band
spectrum, i.e., < 6 GHz spectrum. Based on our observation,
the deployment of radios by all three major operators in
the US (at the time of measurements/experiments) does not
signify a massiveMIMO architecture. However, the proposed
data-driven methodology and counterfactual analysis can be
extended to massive MIMO architecture with ease.

We are currently analyzing the full released dataset through
advanced AI/ML techniques such as multi-task learning
to find solutions for unlicensed coexistence and spectrum
sharing in the 6 GHz band and beyond. We also intend to
periodically release 5G NR and NR-U datasets in the future
to facilitate democratic universal access to data from state-of-
the-art cellular networks.
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