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ABSTRACT In the network structure analysis, we explore an underestimated key metric, the Relative
Size of Largest Connected Component (RSLCC) and demonstrate its importance in post-disaster network
connectivity assessment. RSLCC was first investigated in the study of complex network structures but
remains largely unexplored in terms of analysis within a specific application domain such as scenarios
in transportation networks, wireless networks, communication networks, power networks, etc. Through
the research presented in this paper, we not only prove that this metric is underestimated, but also design
7 methods to predict the value of this metric, with a Deep Neural Network (DNN) prediction accuracy of
more than 99%. This study focuses on the assessment and analysis of post-disaster network connectivity,
by exploring how the RSLCC, a key metric of network connectivity, can be used to efficiently predict and
assess network connectivity in a disaster scenario, specifically, the approximate network connectivity value
can be predicted simply by knowing the number of connected edges in the pre-disaster network and the
number of connected edges in the post-disaster network. To achieve this, firstly, a sufficiently large-scale
100,000 datasets containing the values of attributes related to the network structure is prepared. Secondly,
based on the preprocessing of the data, principal component analysis and variance contribution analysis are
carried out, and the metric with the highest contribution to the principal component is approximated as the
network connectivity. The next step is the prediction process, Network Disruption Degree (NDD) is chosen
as the independent variable. since it is best to choose an extremely simple metric as the independent variable
for prediction, rather than all network structure-related metrics, this paper demonstrates that it is possible
to get satisfactory prediction results with this metric. It is found that NDD prediction methods have the
highest prediction accuracy but take the longest run time and require training data of a sufficiently large
size. If the prediction is done in small-size data, then Random Forest Regression (RFR) is proven to have
the highest prediction accuracy. Although the network connectivity metric proposed in this paper is only an
approximation, it provides good directions for simplifying the network connectivity analysis and the use of
this metric for the study of practical modelling problems is also highly interpretable.

INDEX TERMS Network connectivity metric, network structure analysis, large-scale data, relative size of
largest connected component (RSLCC), network disruption degree (NDD), deep neural network (DNN).

I. INTRODUCTION
In recent years, the frequency and complexity of disaster
events have been on the rise globally, particularly in the
case of natural disasters such as earthquakes, floods, and
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hurricanes. These events have inflicted significant impacts
and threats upon society, economies, and the environment.
To cite a few poignant examples, on December 26, 2004,
an earthquake triggered a tsunami in the Indian Ocean,
affecting 14 countries and regions and resulting in sub-
stantial loss of life and property damage [1]. On May 12,
2008, an 8.0 magnitude earthquake struck Wenchuan in
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China’s Sichuan Province, causing nearly 70,000 fatalities
and affecting a total of 46.256 million people [2]. On March
11, 2011, a magnitude 9.0 earthquake triggered a massive
tsunami that severely impacted Japan’s northeastern region,
also leading to the Fukushima nuclear incident [3]. In late
2019 and early 2020, Australia experienced severe wildfires
that devastated extensive forest areas, causing the loss of flora
and fauna and contributing to deteriorating air quality [4].
According to ABC Australia, In July 2022, the Australian
state of New South Wales was struck by heavy rainfall
and subsequent flooding for the fourth time in 18 months,
compelling approximately 50,000 people to evacuate and
resulting in an estimated economic loss of around 3.5 bil-
lion US dollars. In this context, network connectivity has
become particularly crucial, as networks play essential roles
in post-disaster tasks such as rescue operations, informa-
tion dissemination, and resource allocation. However, due
to the unpredictability and uncertainty of disasters, network
connectivity often faces challenges that can result in disrup-
tions, delayed information flow, and inefficiencies in disaster
response. Hence, understanding the changes in network con-
nectivity is of profound significance for predicting network
robustness, studying network resilience, responding to emer-
gencies, optimizing network design, and analysing network
disaster propagation.

The study of network connectivity problems is part of
network reliability analysis, network reliability research is
concerned with how to make the network maintain stable
functionality and connectivity in the face of a variety of
internal and external disturbances, attacks, failures, etc. [5],
and network connectivity, along with network robustness
and network resilience, are considered to be the three main
components of network reliability research [6], [7]. We give
Figure 1 to reflect the correlation between these three con-
cepts.

Figure 1 illustrates the three key areas of network reliabil-
ity research, whereas we will focus on network connectivity
in this study and will not explore research problems about
network resilience and network robustness. In practice, net-
work connectivity is affected by many factors, such as node
failure, edge disruption, and external interference. Therefore,
understanding the changes in network connectivity under
different scenarios and attacks is of important significance for
analysing network robustness, studying network resilience,
coping with emergencies, optimizing network design, and
exploring network disaster propagation, etc. [8], [9]. How-
ever, it is worth stating that the network connectivity focused
on in this study does not refer to a specific network, such
as a transportation network, power network, energy network,
information network, neural network, etc. Instead, from the
perspective of network structural attributes, using techniques
such as network structural analysis methodology, statistical
analysis methodology, artificial intelligence algorithms, etc.,
we are attempting to find an approximate solution for pre-
dicting the network connectivity, regardless of whether it is
a physical network or a virtual network. More specifically,

FIGURE 1. Relationship between network connectivity, network
robustness, and network resilience. (This figure responds to three
research perspectives on network reliability research and belongs to the
macroscopic knowledge structure combing.)

we provide Figure 2 to explain more clearly the motivation
of this study. It should be further clarified that Figure 2
is representative of our research idea for this study, is not
based on previous research work, and is given only to clearly
interpret our motivation for this study.

We conjecture that when the data of network structural
attributes is large enough, the proximity metrics related to
network connectivity can be found through data analysis to
accomplish the prediction, this idea seems simple, but nothing
has been attempted in academics so far, and we strive to get
some universal insights through the research in this paper. The
challenges of this research are threefold: (1) While network
structure metrics values can be computationally obtained,
there is no exact value for network connectivity, so how can
training and prediction be done in the absence of historical
connectivity values? (2) How to find the metrics that are
close to correlating with network connectivity, is it a network
structure metric or a combination of multiple metrics? (3)
Which prediction approach to choose and how to prove that
approach has high prediction accuracy?

Based on the above introduction, the rest of the paper
is organized as follows. Section II is the literature review,
in which the network connectivity concepts, metrics and
quantitative approaches are reviewed. Section III is exper-
imental design and preparation, which will introduce the
selection of metrics, data preparation and the overall research
framework. Section IV is based on a statistical research
approach to find an approximate network connectivity met-
ric. Section V uses several prediction methods to predict
the approximate network connectivity metric and compare
the prediction accuracy. Section VI replaces the dataset
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FIGURE 2. Clarification chart of the motivation for this study. (Generate network structure graphs using
NetworkX in Python, and set the random seed np.random.seed() makes the structure of the generated network
unique in step 2, and this figure shows the ideas and motivation for our research)

for secondary validation of the prediction methodology.
Section VI is the conclusion of this paper.

II. LITERATURE REVIEW
The concept of network connectivity is not subordinate to
any particular discipline, as the concept has a wide range
of applications, focusing on dozens of research areas such
as neuro medicine [10], information and communication
sciences [11], transport network planning [12], complex net-
work systems [13], etc. Network connectivity has different
definitions in different disciplines. The core issue is that the
research approaches are different due to differentmetrics. The
network connectivity calculation is not based on a specific
mathematical equation or parameter but is generally reflected
through one or a series of metrics. In this section, we organize
the classification of network connectivity metrics in all the
existing disciplines as shown in Figure 3.

Although the RSLCC metric has potential applications
in a variety of fields such as the above, our study focuses
on exploring the network connectivity metric application in

disaster scenarios to enrich the current research insights in
assessing network connectivity after a disaster.

The existing literature exploring network connectivity in
disaster scenarios covers a wide range of research areas
including disaster management, network science, and emer-
gency response. Barabási et al. [14] explored the topology
of worldwide networks, and their proposed scale-free net-
work model is an important insight for understanding and
analysing network connectivity under the influence of disas-
ters. Little [15] investigated how to control cascading failures
and understand the vulnerability of interconnected infras-
tructures. Their important contribution is to provide support
for proposing strategies to maintain network connectivity
in disaster scenarios. Bruneau et al. [16] provided a frame-
work to quantitatively assess and enhance the resilience of
communities after earthquakes, which includes network con-
nectivity as one of the key factors in assessing community
resilience. Boccaletti et al. [17] conducted a review study
to introduce the structural properties of complex networks
with several key network metrics, including network connec-
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FIGURE 3. Different network connectivity metrics in different disciplines. (This figure gives a metrics perspective on network
connectivity across disciplines and research areas)
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tivity metrics, pointing out the potential value of studying
network connectivity metrics in network disaster scenar-
ios. Cimellaro et al. [18] also developed a framework for
analytically quantifying disaster resilience that focuses on
assessing and improving the ability of infrastructure net-
works to recover after a disaster, in particular providing
insights into how network connectivity metrics affect net-
work resilience. Vugrin et al. [19] provided a framework
for resilience assessment of infrastructures and economic
systems, analysed a case study of a supply chain under the
impact of a hurricane, and discussed the assessment of net-
work connectivity and recovery strategies. Simonovic and
Peck [20] focused on assessing the dynamic resilience of cli-
mate change-induced natural disasters on coastal megacities
across multiple dimensions including network connectivity,
network modality, network clustering coefficients, and so
on. Gao et al. [21] investigated the impact of a single net-
work structure change on network connectivity, in particular
the vulnerability and resilience analysis of network systems
under the influence of disasters. Panteli and Mancarella [22]
explored the impact of extreme weather and climate change
on power system resilience and discussed possible mitigation
strategies by maintaining a post-disaster network connectiv-
ity perspective. Bhatia et al. [23] discussed the example of the
Indian railway network involving how to assess and improve
the resilience of the system through network connectivity in
the event of extreme weather events. Hazra et al. [24] pointed
out how to improve communication network connectivity
after a disaster through multi-information source infrastruc-
ture restoration, as well as maximizing network restoration
using the resources of existing communication facilities.
Kameshwar et al. [25] analysed the impact of disaster inten-
sity, duration, and bridge damage on network connectivity,
suggesting that multi-disaster and multi-infrastructure analy-
ses are necessary to understand disaster network connectivity.
Chang et al. [26] innovatively utilized an interdisciplinary
approach to propose a data-driven measure of network con-
nectivity using percolation theory, and gave simulation results
of network connectivity changes under earthquakes. Li and
Yan [27] developed a framework for improving network
resilience with polycentricity, hierarchical networks, and
modular collaboration, which was based on the integration
of population, residential areas, critical facilities, and road
network connectivity.

Network connectivity in disaster scenarios has been the
focus of an interdisciplinary research field for more than
20 years. Starting from the scale-free network model pro-
posed by Barabási et al. [14], researchers have gradually
explored in depth the structural properties, resilience, and
vulnerability of networks under the impact of natural or man-
made disasters, as well as how network connectivity can
be maintained or restored through various strategies. These
studies have not only covered critical infrastructure networks
such as power systems, transportation networks and supply
chains but also focused on the long-term impact of climate
change on urban network connectivity, reflecting the cen-

trality of network connectivity in disaster management and
emergency response. Building on the existing literature, our
study proposes a new perspective and methodology focusing
on predicting the values of the metrics that are approximately
correlated with network connectivity in a disaster situation,
i.e., RSLCC. Unlike previous studies that mainly started from
qualitative descriptions or case studies, this study utilizes a
data-driven approach using machine learning algorithms that
have been developed to provide a new quantitative tool for
disaster response and recovery decision-making and a new
research focus.

To support our research work in this study, it is crucial
to know about network connectivity metrics, and in fact,
the most important aspect of network connectivity research
is the network connectivity quantification. We will sort out
the research content and measurement approaches of net-
work connectivity in existing studies, as shown in Table 1.
Most of the existing studies on network connectivity quan-
tification tend to measure from the perspective of network
structure analysis metrics, and some quantify connectiv-
ity through self-defined coefficients. The metrics used in
existing studies mainly include network centrality metrics,
network efficiency, network clustering coefficient, isolated
node ratio, the relative size of largest connected component,
etc. We also noticed that in real physical networks, such
as transport networks, ecological landscape networks, and
power networks, centrality metrics, especially betweenness
centrality and proximity centrality are commonly used to
quantify the network connectivity. In abstract networks, such
as biological networks, neural networks, and information net-
works, network clustering coefficient, isolated node ratio, and
network efficiency are commonly used to quantify network
connectivity.

Table 1 summarizes several key indicators of network con-
nectivity metrics, focusing on network centrality, clustering
coefficients, network efficiency, and other metrics, especially
since almost all the network connectivity metrics proposed
by existing studies are combinations or improvements of
these indicators, which also supports the selection of metrics
for this study. We summarize the following three metrics
that reflect the structural characteristics and functional per-
formance of the network from different perspectives. (1)
Network Centrality (Degree Centrality, Closeness Centrality,
Betweenness Centrality): reveals the importance of nodes in
the network in network connectivity and information transfer.
Degree centrality focuses on the number of direct connections
of a node, proximity centrality considers the length of paths to
reach other nodes in the network, and betweenness centrality
emphasizes the frequency of a node in acting as a path medi-
ator. (2) Clustering Coefficient: measures how densely the
neighbours of a node are connected, reflecting the presence
of cliques or tightly connected subgroups in the network. (3)
Network Efficiency: evaluates the efficiency of information
transfer in a network, in particular the network’s ability to
respond and adapt quickly in the face of node or link failure.
By fully applying these metrics, they can provide a scientific
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TABLE 1. Research literature on quantification of network connectivity metrics.
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TABLE 1. (Continued.) Research literature on quantification of network connectivity metrics.
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TABLE 1. (Continued.) Research literature on quantification of network connectivity metrics.

basis and decision support for network design, optimization,
and disaster recovery planning.

A. SUMMARY OF LITERATURE REVIEW
The existing metrics design and quantification approaches
on network connectivity can be drawn on for this study to
explore network connectivity quantification. However, unlike
the existing studies, this study does not analyse a specific
discipline area, nor does it use real network data, but only tries
to find an approximate network connectivity index from the
perspective of structural analysis and achieve a high accuracy
of prediction.

The main contributions of this paper are summarized as
follows:

(1) A data-driven statistical approach is used to find an
approximate network connectivity metric, which is mainly
obtained through principal component analysis and explains
variance contribution analysis.

(2) Seven prediction methods are designed to predict the
value of the approximate metric, and a comparative analysis
of prediction accuracy is also conducted, The Deep Neural
Network (DNN) prediction method is proved to have higher
prediction accuracy.

(3) Accurate prediction of 1 independent variable for
1 dependent variable is achieved, and the independent vari-
able data is easy to obtain, i.e., network disruption degree,
which is determined by the ratio of the number of edges after
an attack to the number of edges before the attack, and the
approximate network connectivity metric can be predicted
using only this independent variable.

III. EXPERIMENT DESIGN AND PREPARATION
The approach studied in this paper is to first select some
metrics related to network connectivity based on the network
structure analysis, which can be calculated by specific for-
mulas. Then, 100,000 datasets are randomly generated using
NetworkX in Python, and the data are cleaned, including
removing duplicate values and outliers, as well as multiple
covariance checking. Next, 80% of these datasets are set as
training data, and 20% of them are set as test data to find

an approximate network connectivity metric based on the
metrics’ weight contribution in principal component analysis.
Finally, seven prediction methods are designed to predict the
metric and analyse the prediction accuracy.

A. WHAT POTENTIAL METRICS ARE CHOSEN TO PREDICT
NETWORK CONNECTIVITY (NC) AND WHY?
1) CLUSTERING COEFFICIENT (CC)
CC measures the degree of node clustering in the network,
i.e., the degree to which nodes form dense triangular relation-
ships with each other. A high clustering coefficient indicates
that nodes are more tightly connected to each other, forming
more local communities or clusters. Thus, higher clustering
coefficients are usually associated with better network con-
nectivity.

2) RELATIVE SIZE OF LARGEST CONNECTED COMPONENT
(RSLCC)
RSLCC indicates the proportion of the largest connected
subgraph in the network to the overall network. A larger
maximum connected component implies the presence of a
larger population of interconnected nodes in the network,
which is important for the overall connectivity of the network.
Therefore, a higher proportion of maximum connected com-
ponents is associated with better network connectivity.

3) ISOLATED NODE RATIO (INR)
INR indicates the percentage of nodes in the network that are
isolated and have no connected edges. Isolated nodes usu-
ally indicate disconnected or separated parts of the network,
which can reduce the connectivity of the network. Therefore,
a lower percentage of isolated nodes is associated with better
network connectivity.

4) NETWORK EFFICIENCY (NE)
NE measures the efficiency of information transmission
between nodes in a network. High network efficiency implies
that information is transferred between nodes more rapidly
and efficiently. Therefore, higher network efficiency is asso-
ciated with better network connectivity.
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5) NETWORK DISRUPTION DEGREE (NDD)
NDD is a measure of the degree of disruption of a network
for a given removal ratio. A lower NDD value means that
the connectivity of the network is less affected for a given
percentage of edge removal, i.e., the network is still able to
maintain relatively good connectivity. This implies that the
network has a high degree of resilience and toughness and
that the network can remain connected and functional even in
the face of a certain degree of edge removal or failure.

The reason for choosing the above five potential metrics in
this paper is that the existing studies on network connectivity
quantification have already used these five metrics, but it is
worth stating that we do not choose network centrality as a
potential metric in this study, for three reasons:(1) This study
focuses on the connectivity of the network as a whole, rather
than node importance or influence. (2) Network centrality
metrics require more information about node attributes and
relationships, which are less accessible or not applicable in
this study. (3) This study needs to avoid the interference of
node importance on the findings and enhance the generaliz-
ability of the research insights.

B. EXPRESSIONS FOR 5 POTENTIAL METRICS
(1) CC- -C

Cluster coefficient of a node i

Ci =
2Mi

ki (ki − 1)
, i = 1, 2, . . . ,N (1)

where Mi is the number of edges that exist between the
neighbouring nodes of the node i. ki is the node degree of
the node i.
The clustering coefficient of the network

C =
1
N

N∑
i=1

Ci (2)

where Ci is the value of the clustering coefficient of the node
i, N is the total number of nodes in the original network.
(2) RSLCC- -G

G =
N "

N
(3)

where N " is the total number of nodes in the maximum
connected subgraph after an attack on the network.

(3) INR- -1N

1N =

(
1 −

N ∗

N

)
× 100% (4)

where N ∗ is the total number of nodes in the network after an
attack.

(4) NE- -E

E =
1

N (N − 1)

N∑
i=1

N∑
j=1

hij, i = 1, 2, . . . ,N , i ̸= j (5)

where hij is the average of the inverse shortest path lengths
between pairs of nodes,hij = 1/d ij. d ij is the Euclidean
distance between any pair of nodes ij.

FIGURE 4. Change process diagram of the 5 metrics. (This figure shows
the trend in the values of the metrics when the network edge is removed
randomly)

(5) NDD- -D

Network Disruption Degree in this study simply means
Edge Removal Ratio p.

D = p =

(
1 −

S∗

S

)
× 100% (6)

where S is the total number of edges in the original network,
S∗ is the total number of edges in the network after the attack.

C. OBSERVING CHANGES IN 5 METRICS AFTER
RANDOMLY REMOVING EDGES
A network structure graph with 200 nodes and 1200 edges is
randomly generated using NetworkX, and the changes in the
fivemetrics are observed as shown inFigure 4 after gradually
removing edges according to a certain percentage.

Figure 4 displays how the different network metrics
change with the removal ratio or removal ratio after removing
the edges from the network. The following are explanations
and observations for each metric.

(1) CC: indicates the degree of node clustering in the
network. The blue line represents the relationship between the
removal ratio and the clustering coefficient. As the removal
ratio increases, the clustering coefficient decreases, indicat-
ing that the nodes in the network are less clustered.

(2) RSLCC: indicates the relative size of the largest con-
nected component. The green line represents the relationship
between the removal ratio and the RSLCC. As the removal
ratio increases, the RSLCC decreases, and the connectivity
of the network becomes weaker.

(3) INR: indicates the ratio of isolated nodes. The red line
represents the relationship between the removal ratio and
the isolated node ratio. As the removal ratio increases, the
isolated node ratio gradually increases, indicating that there
are more and more isolated nodes in the network.

(4) NE: indicates the efficiency of the network. The purple
line represents the relationship between the removal ratio
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TABLE 2. Table showing a small portion of the data set.
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TABLE 2. (Continued.) Table showing a small portion of the data set.

FIGURE 5. Overall framework diagram for experimental implementation. (This figure shows our technical
framework for carrying out predictions of network connectivity)

and the network efficiency. As the removal ratio increases,
the network efficiency gradually decreases, indicating that
the efficiency of information transmission in the network
decreases.

(5) NDD: indicates the degree of network disruption. The
orange line represents the relationship between the removal
ratio and the network disruption degree. The relationship
between the removal ratio and the network disruption degree
is linear, and as the removal ratio increases, the network
disruption degree gradually increases.

D. DATA PREPARATION
NetworkX for Python is utilized to generate 100,000 data
sets, each containing the number of nodes, number of edges,
number of post-disaster edges (after being attacked), CC val-

ues, RSLCC values, INR values, NE values, and NDD values.
Data can be obtained from:

https://github.com/JUNXIANGXU666/connectivity. Some
of the data in the dataset are presented as shown in Table 2.

E. EXPERIMENTAL FRAMEWORK
Based on the above description of the experimental design,
the subsection provides a general framework for the experi-
ment implementation, as shown in Figure 5.

IV. MINING APPROXIMATE METRICS RELATED TO
NETWORK CONNECTIVITY
A. DATA CLEANING
1) MISSING AND DUPLICATE VALUE CHECK
The missing value check was first carried out and the results
are shown in Table 3.
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TABLE 3. Missing value check results.

FIGURE 6. Data outlier test box line diagram.

Then the duplicate data check is performed and the result
shows ‘No duplicate data found’.

2) OUTLIER CHECK
Outlier checking is performed next and the results are
obtained as shown in the box-and-line diagram displayed in
Figure 6. The result of the re-check after the outliers are
removed is displayed as shown in Figure 7.

(Figures 6 and 7 show the results of processing the raw
data, visualized using box-and-line diagrams)

After removing the outliers, the training set data became
92,192 data sets instead of 100,000 data sets.

3) CHECKING FOR MULTICOLLINEARITY
a: CORRELATION ANALYSIS
The correlation analysis check of the metrics (variables) is
shown in Figure 8.

b: VARIANCE INFLATION FACTOR (VIF)
The results of the variance inflation factor (VIF) checks are
organized as shown in Table 4.

FIGURE 7. Box line chart after removing outliers.

FIGURE 8. Correlation check for multicollinearity. (By observing these
correlation coefficients, we can infer that there may be a multicollinearity
problem between CC, INR, RSLCC, NE, and NDD because of the strong
correlation between them, which may lead to the existence of redundant
information in the model.)

TABLE 4. VIF check results.

Taken (1) and (2) together, the four variables, RSLCC,
INR, NE, and NDD, have strong multicollinearity problems
with each other, while the co-collinearity between CC and
other variables is relatively weak.
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FIGURE 9. Principal component scatter plot.

FIGURE 10. Cumulative explained variance ratio chart.

TABLE 5. Results of principal component analysis of 5 metrics.

B. PRINCIPAL COMPONENT ANALYSIS
The principal component scatter plot and the cumulative
explained variance ratio chart are in Figure 9 and Figure 10.
The specific results of the principal component analysis are

shown in Table 5.
According to Table 5, it can be cleanly seen that principal

component 1 explains more than 75% of the raw data, so only
principal component 1 can be used to represent the overall
data after dimensionality reduction. Then, the results of the
contribution of metrics (variables) to the principal component
1 in Table 6 are given.

Finally, the absolute values of the contribution of the
variables to the principal components were transformed into

TABLE 6. Summary table of the results of principal component 1 analysis.

TABLE 7. Results of contribution weights of 5 metrics.

weights and the results after normalization are shown in
Table 7.

According to the results shown in Table 7, the weight
contribution of the five metrics to the principal compo-
nent 1 is RSLCC, NE, NDD, CC and INR in descending
order. In other words, network connectivity can be charac-
terized by these five metrics, and there are three research
approaches: (1) According to the results of the weight con-
tribution degree, weights can be assigned to the five metrics
and then combined to characterize network connectivity; (2)
Choose both RSLCC and NE to characterize network con-
nectivity, because these two metrics contribute close to 98%
of the interpretability of network connectivity; (3) Choose
only RSLCC to characterize network connectivity, because
it has the largest weight contribution, treat it as a dependent
variable, and the rest of one or more metrics as independent
variables to be researched by using prediction methods.

The purpose of this paper is to provide an approach for
finding a metric of approximate network connectivity, and for
simplicity, research approach (3) has been chosen, where we
use RSLCC as the approximate network connectivity metric,
and then focus on the prediction methods for the metric and
the analysis of the prediction results.

V. MULTIPLE PREDICTION METHODS FOR PREDICTING
RSLCC METRIC VALUES
A. APPLICABILITY ANALYSIS OF PREDICTING METHODS
This section first analyses the applicability of the eight pre-
diction methods in the case of multicollinearity, and the
results of the analysis are shown in Table 8.
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TABLE 8. Applicability analysis of 8 prediction methods in the face of multicollinearity.

TABLE 9. Comparison of prediction accuracy of 7 prediction methods.

According to Table 8, seven prediction methods DTR,
SVM, RFR, GBR, MLP, KNN and DNN will be selected for
RSLCC metric prediction in this paper.

B. INDEPENDENT AND DEPENDENT VARIABLE
SELECTION
Undoubtedly, this paper has already identified RSLCC as
the predicted metric, which is the dependent variable, while
the choice of the independent variable is considered for the
following reasons:

(1) The remaining metrics are not considered all as inde-
pendent variables because once this is done, the prediction
would be meaningless since the RSLCC can be calculated
directly when the values of all other independent variables
can be determined.

(2) Prioritize one metric as the independent variable, and
the rest of the metric values except RSLCC are used as
training data only, and then add variables one by one if the
prediction accuracy is not high.

(3) This prioritized metric is chosen to be as close as
possible to the practical significance and is not recommended
to be a metric that needs to be calculated by more than
1 variable.

(4) Since the sum of INR and RSLCC is always equal to 1,
INR is not considered an independent variable.

Combining the above reasons for independent vari-
ables selection, we finally select NDD as the indepen-
dent variable, and if the prediction accuracy is not high,
another CC will be added as the independent variable,
and so on.
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FIGURE 11. Predicting the dependent variable RSLCC from the independent variable NDD. (This figure shows a comparison of the
difference between the actual and predicted RSLCC values, and because of the very large amount of data involved, the predicted
differences can only be seen in terms of coverage)

FIGURE 12. Predicting the dependent variable RSLCC from the independent variable NDD. (Reducing the size of the test set,
to more clearly see the accuracy of the results of the comparison between predicted and actual values)

C. COMPARISON OF PREDICTION ACCURACY
OF 7 PREDICTION METHODS
A comparison of the prediction results of the seven prediction
methods is shown in Table 9.

Fortunately, according to Table 9, it can be seen that all
7 prediction methods can achieve 1 independent variable
(NDD) to predict 1 dependent variable (RSLCC), and all of
them have satisfactory prediction accuracy, especially DNN
has as high as 99.65% accuracy in predicting RSLCC values
(According to R2 score in Table 9, R2 score is a measure of
the predictive effectiveness of a regression model, reflecting
the fit degree between the predicted values of the model and

the actual observations. The value of the R2 score ranges
from 0 to 1, and the closer the value is to 1, the better
the predictive ability of the model, and the more variance
it explains.). Intuitively, we use Figure 11 to visualize the
results of the DNN prediction method comparing the actual
and predicted values.

We reduced the test data to 500 and then generated the
predicted results again as shown in Figure 12.

However, although DNN has significant advantages
over other prediction approaches in terms of prediction
performance, the runtime of DNN prediction will take a very
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FIGURE 13. Comparison of the running time of 7 prediction methods. (This figure compares the performance of the seven algorithms
from the perspective of prediction algorithm runtime)

TABLE 10. Test set with the same number of nodes, number of edges and NDD settings.

TABLE 11. DNN prediction accuracy information table. (Set the same number of nodes, number of edges and NDD)

long time compared to other prediction approaches. Simply
can be seen in Figure 13.

D. A POTENTIAL PROBLEM NEEDS TO BE
DEMONSTRATED
According to the code for randomly generating data sets, the
CC, NE, INR, and RSLCC are different in the network data
generated by each run with the same NDD. This is because
the network structure is not determined by these metrics

mentioned in this study alone, but also takes into account
metrics such as node degree, average node degree, average
shortest path length, node strength, etc. Therefore, does this
have an impact on the prediction results? We continue to use
the DNNpredictionmodel under large-scale data training, but
the test data is based on the control variable method, and the
number of nodes, the number of edges, and the NDD are set to
the same for the study, and the specific test data set is shown
in Table 10.
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TABLE 12. Prediction results table in the small-scale datasets (RFR).

The results after prediction using DNN are shown in
Figure 14 and the prediction method accuracy is shown in
Table 11.

The same number of nodes, number of edges, and NDD
values do not have a great impact on the predicted RSLCC
values, and an NDD value can only correspond to the predic-
tion of an identical RSLCC value. This value is compared
with the actual value generated by the control variables
method, and although the R2 is poor, the MSE, RMSE, and
MAE all prove to have high predictive power and accuracy.

It can be demonstrated that although the generated network
attribute values will vary for the same number of nodes,
edges, and NDD values, the DNN prediction model after
large-scale data training still has good accuracy for predicting
RSLCC values.

E. WHAT HAPPENS IF THE EXPERIMENT WITH SMALLER
DATASETS?
This paper next needs to demonstrate that this train-
ing and test data is not coincidental, but that the pre-
dictive tools in this paper can be used in any net-
work structure analysis problem related to these 5 met-
rics. Next, we discard the 100,000 datasets and re-
generate another 363 sets of datasets using NetworkX
(https://github.com/JUNXIANGXU666/connectivity), 18 of

the datasets are used as the test set and the rest of the data
are used as the training data. A comparison of the actual and
predicted value results after the 7 prediction methods are run
is shown in Figure 15a to Figure 15g below.

What can be seen is that DTR, RFR, GBR and KNN can
still maintain good prediction accuracy in small-scale datasets
with the research methods in this paper, indicating that they
do not require a high data training scale and are more flexible
to use. However, SVM, MLP and DNN perform poorly in
small-scale data prediction, especially DNN, which can be
seen that it needs large enough training data to predict with
high accuracy. RFR gives the best results in small-scale data
prediction and the table of results of RFR-based small-scale
data prediction is given here as shown in Table 12.

F. RESEARCH RESULTS DISCUSSION
The finding of this study that the Relative Maximum Con-
nectivity Component Size (RSLCC) has a decisive effect on
network connectivity after a disaster not only confirms our
initial assumptions (Figure 2) but also reveals the importance
of RSLCC in the analysis of network structure. By analysing
100,000 datasets, we demonstrate that deep neural networks
(DNNs) can achieve more than 99% accuracy in predicting
RSLCC values, a finding that underscores the effectiveness
of network connectivity prediction using advanced machine
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FIGURE 14. Predicting the dependent variable RSLCC from the independent variable NDD. (The
purpose of this figure is to see the extent of change in the difference between actual and predicted
values after replacing the dataset)

FIGURE 15. a.Comparison of predicted and actual values (DTR). b. Comparison of predicted and actual values (SVM) c. Comparison
of predicted and actual values (RFR). d. Comparison of predicted and actual values (GBR). e. Comparison of predicted and actual
values (MLP). f. Comparison of predicted and actual values (KNN). g. Comparison of predicted and actual values (DNN).

learning techniques. This echoes the review study of Boc-
caletti et al. [17] on the structural properties of complex

networks, who pointed out the potential value of studying
network connectivity metrics in disaster contexts. In addi-
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tion, Vugrin et al. [19] discussed the assessment of network
connectivity and recovery strategies by analysing the case of
supply chains under the impact of hurricanes, which fit with
our approach of simplified analysis of network connectivity
through NDD metrics. Our findings are further supported by
the study of Hazra et al. [24], who pointed out the impor-
tance of improving communication network connectivity
through multi-information source infrastructure restoration
after a disaster. In summary, our study complements and
extends the existing literature both theoretically and prac-
tically. By deeply exploring the application of RSLCC in
post-disaster network connectivity assessment, we not only
validate the existing theoretical framework but also provide
new analytical tools and perspectives for disaster manage-
ment. Future research can further explore the application of
RSLCC and other network connectivity metrics in different
types of disasters and networks to enhance the effectiveness
of disaster response and recovery strategies.

VI. CONCLUSION
In this study, five metrics related to network connectivity are
given based on the literature review from the perspective of
network structure analysis. The 100,000 datasets generated
by NetworkX based on Python are analysed using statistical
analysis and machine learning prediction algorithms, and we
not only find one metric that is approximately related to
network connectivity, but also use 7 prediction methods to
predict the metrics, and specifically conclusions can be seen
as follows:

(1) The Relative Size of the Largest Connected Component
(RSLCC) is a good representation of network connectivity,
in other words, it can be used as a proximity metric for
measuring network connectivity.

(2) The Deep Neural Network (DNN) model trained by
this study is more than 99% accurate in predicting RSLCC
values and it can be proven to be able to be used for practical
prediction.

(3) The relationship between RSLCC and network con-
nectivity found in this study can be used for any network
mathematical modelling, simulation applications, etc.

(4) Although RSLCC does not characterize 100% of net-
work connectivity, and only comes close, this study provides
a good research direction to continue exploring network con-
nectivity from a data-driven perspective, making pioneering
contributions to both predictionmodel improvement andmet-
rics quantification.

(5) The findings of this study can be applied to trans-
port networks, logistics networks, supply chain networks,
energy networks, power networks, information networks, vir-
tual networks, physical networks, complex networks, social
networks, and other types of networks.

There are still some key issues that need to be addressed
through the research in this paper, firstly, when training deep
neural networks, if the backpropagation algorithm can be
added on top of this, the predicted output of the model is first
calculated through feedforward propagation, and then the

gradient is calculated through backpropagation, the param-
eters are updated, and the model is continuously optimized
iteratively. Feedforward propagation and backpropagation
work closely together, feedforward propagation calculates
the output, backpropagation calculates the gradient, and the
two work together to complete the training process of the
model, which may further improve the prediction accuracy.
Then, there are also some important research techniques and
methods that we should further learn from, for example,
Chiarion et al. [41] introduced how to effectively use EEG
data to understand the interactions and connectivity between
brain regions, which provides us with ideas to learn from
for data-driven network connectivity. In addition, Nave [42]
proposed an improved semi-analytic method for solving the
problem of Ordinary Differential Equation (ODE) systems
can inspire us to explore the quantitative study of network
connectivity under complex network systems. Finally, what
this paper has done so far is just an exploration of the metric
prediction, and whether the prediction result can be used in
practical research and application needs to be further proved,
so in the future, it can be tried combined with modelling to
solve practical problems.
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