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ABSTRACT A river tries to maintain a dynamic equilibrium state by adjusting different controlling factors.
A significant change in one of the controlling factors will dictate modifications in the others to re-establish
the equilibrium in a river system. A river basin may indicate active tectonic movements more precisely than
the best space-based geodetic techniques. Morphometric analyses, with the help of DEM and GIS often
generates insights into the tectonic activities of an area. The Dhansiri (North) River basin lies on the north
bank of the Brahmaputra and on the northern part of the Dhansiri-Kopili fault, which is tectonically active at
different times. This paper analyses the impact of relative tectonics on drainage pattern development in the
basin based on various morphometric parameters of linear (stream length ratio, bifurcation ratio), areal (form
factor, basin elongation ratio), and relief (relief ratio, ruggedness number) aspects. Eleven well-known ML
algorithms,namely, Logistic Regression (LR), K Nearest Neighbors (KNN), Random Forest (RF), Support
Vector Machine (SVM), Decision Tree (DT), Gaussian Naive Bayes (GNB) classifier, Neural Network
(NN), Extra Tree Classifier (ET), Ada Boost Classifier (AB), Gradient Boosting Classifier (GB), XG Boost
Classifier (XGB) is used to model the spatial distribution of relative tectonic activity.These algorithms
were executed in Python to assess prediction accuracy using standard metrics like accuracy, precision,
recall, and F1 score. The assessment utilized widely used libraries such as sci-kit-learn and TensorFlow to
implement and test the algorithms, benefiting from their comprehensive model evaluation and performance
assessment tools. The SVM, ET,DT, andGNB techniques had the best performance, achieving an accuracy of
82.60 percent as per the modeling results.The Dhansiri (North) is a sixth-seven-ordered basin characterized
by a dendritic drainage pattern. Notably,the spatial prediction of morphometric parameters with ML is
potentially competent for regional analyses of neotectonics.

INDEX TERMS Morphometric parameters, index of relative tectonic activity, tectonics, Dhansiri (North)
river basin, machine learning algorithms.
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I. INTRODUCTION
A River that strives to maintain a dynamic equilibrium state
is known as a graded river, which exhibits a characteristic
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feature where any change to one of its regulating variables
leads to a corresponding alteration in another variable to
restore equilibrium. The evolution of landforms and drainage
networks is believed to be controlled by a specific region’s
tectonic evolution and structural deformation, supported by
numerous theoretical models and field observations. In low-
relief areas, the assessment of tectonic activity can be
achieved through a comprehensive analysis of the dynamics
of alluvial rivers, as suggested by [1]. Geomorphometry, in its
simplest form, is the extraction of (land) surface attributes
(morphometric, hydrological, climatic, etc.) and objects
(watersheds, stream networks, landforms, etc.) [2], [3].
Since the publication of historical studies on drainage basin
morphometry by [4], [5], and [6] the morphometry-based
method has gained popularity in geomorphology. Following
this well-accepted approach, a large number of studies
were conducted in the last decade [7], [8], [9]. They
have demonstrated that morphometry-based indicators may
be used to identify the presence of active tectonics [10],
[11], [12], [13], [14], [15]. Morphometric analysis has
become a popular method in geological research worldwide,
with numerous studies conducted in countries such as the
USA [16], Spain [17], Italy [18] Pakistan and Afghanistan
[19], Iran [20], [21], Slovakia [22], Poland [23], Turkey [24],
Greece [25] but also in India [26], [27], [28]. Morphometry
refers to the measurement and mathematical analysis of the
shape, configuration, and dimension of landforms on the
surface of the earth [29]. The morphometric characteristics
of a drainage basin can provide valuable insights into
the underlying geology, climate, relief, and tectonics of a
watershed. In the field of geomorphology, there has been a
significant focus on developing quantitative physiographic
methods to study the evolution and behavior of surface
drainage networks [5]. Rivers aim to maintain a dynamic
equilibrium, wherein any changes to one of their controlling
factors result in corresponding adjustments to restore balance.
The fluvial landscape is influenced by various factors such
as lithology, climate, and tectonics, and alterations in any
of these can significantly impact the system. Mountainous
regions are particularly vulnerable to natural disasters like
landslides, earthquakes, and flash floods, which can result
in substantial economic and property damage. To mitigate
these risks, various predictive models have been developed
for landslide susceptibility mapping using statistical [30],
[31], [32], [33], and probabilistic techniques [34], [35], [36].
As river geometry and fluvial sediments are sensitive

indicators of neotectonic activity, their response to tec-
tonic forces can be relatively rapid and readily visible in
the landscape. Deciphering a river basin’s morphometric
characteristics is the most reliable proxy for tectonics and
their impact on basin areas [37]. Both quantitative and
qualitative approaches are used to study these proxies,
and GIS technology is an effective tool for examining
different drainage morphometric features [38]. Despite the
availability of advanced space-based geodetic techniques,

detecting changes in river basins can be more precise for
identifying neotectonics. On the other hand, there might
be more significant difficulties in detecting active tectonic
movements. Different empirical techniques for predicting
spatial changes in river basins can be challenging to imple-
ment due to their high computational time, complexity, and
efficacy requirements, leading to increased costs.Spatial data
such as geology, geomorphology, and morphometric data are
potentially beneficial to explain the generated maps based on
the value of the variable and spatial dependence. In contrast,
machine learning (ML) algorithms have gained prominence
in spatial prediction studies [39].Among the advantages of
ML are the possibility of testing various statistical algorithms,
working with non-linear data without spatial dependence,
and include auxiliary factors in the prediction [30], [40].
In the natural environment, non-linearity and higher-order
interactions make traditional statistical models unsuitable.
However, Artificial Intelligence (AI), specifically Machine
Learning (ML), has the potential to address these issues
by identifying strong links in data and learning complex
nonlinear mappings from high-dimensional eigenvectors
to the desired output using a standard training dataset.
Numerous studies have established the capability of ML
to discriminate geomorphic and land cover classes; using
multi or hyper-spectral reflectance data ( [41], [42], [43],
[44], [45]). Several of the classification studies established
the potential of Support Vector Machine (SVM) for the
discrimination of lithological units ( [46], [45], [47], [48],
[49]).

Despite being widely accepted in other fields, there has
been limited adoption ofML applications in the Earth science
community. This study aims to systematically analyze the
drainage morphometry and reconstruct the evidence of
neotectonic control on the Dhansiri(North) River Basin
using geographical information systems, remote sensing
techniques, and Logistic Regression (LR), K nearest neigh-
bors (KNN), Random Forest (RF), Support Vector Machine
(SVM), Decision Tree (DT), Gaussian Naive Bayes classifier
(GNB), Neural Network (NN), Extra Tree Classifier (ET),
Ada Boost Classifier (AB), Gradient Boosting Classifier
(GB), XG Boost Classifier (XGB) ML models.Logistic
Regression (LR) is a statistical method used for binary
classification tasks,predicting the probability of an instance
belonging to a particular class using a logistic function.LR
is particularly suitable for scenarios where the outcome is
binary, such as predicting whether the value of IRTA is low
or high. On the other hand, KNN operates by classifying data
points based on the majority class of its nearest neighbors.
It doesn’t construct explicit models but rather stores training
data instances and classifies new cases based on their
similarity to existing data points.K Nearest Neighbors (KNN)
is effective for both simple and complex classification tasks
because it’s non-parametric and does not assumptions about
the underlying data distribution. Random Forest(RF) is an
ensemble learning method that builds multiple decision trees
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during training and outputs the class,which is the mode of
the classes of the individual trees. This ensemble approach
helps reduce overfitting and improves the model’s perfor-
mance, while Support Vector Machine (SVM) is a powerful
supervised learning algorithm used for classification tasks.
SVM finds the hyperplane that best separates classes in
the feature space, making it suitable for both linear and
non-linear problems through kernel functions.Decision Tree
(DT) creates a tree-like structure by recursively splitting data
based on features. Each internal node represents a ‘‘test’’
on an attribute, each branch represents the outcome of the
test, and each leaf node represents a class label. Gaussian
Naive Bayes(GNB) Classifier is a probabilistic classifier
that assumes feature independence, making it particularly
effective for text classification tasks where each feature
(word) is treated independently. Neural Networks(NN) are
computational models inspired by the human brain’s structure
and function. They consist of interconnected layers of
nodes (neurons) that transmit signals between each other.
Neural networks can learn hierarchical representations of
data, making them suitable for complex tasks like image
recognition and natural language processing. An Extra Tree
Classifier(ET) is an extension of the RF algorithm that
introduces randomness at the splitting point, further reducing
variance and potentially increasing bias. Ada Boost(AB)
and Gradient Boosting(GB) are boosting algorithms that
sequentially combine weak learners to create a strong learner.
Ada Boost assigns weights to misclassified instances, while
Gradient Boosting builds trees sequentially, correcting errors
made by previous models.The XG Boost Classifier(XGB) is
an optimized implementation of Gradient Boosting known
for its efficiency and accuracy. It features parallel processing
and regularization techniques to improve performance and
prevent overfitting. While previous studies have explored
morphometric parameters about neotectonics, there has yet
to be an exploration of using ML to predict these parameters.
The study focuses on the Dhansiri (North) river basin,
located on the north bank of the Brahmaputra valley in
the lower section of Assam. This area is considered one of
the world’s most complex geological and tectonic regions.
The basin’s drainage characteristics are susceptible to any
changes in the geological activity of the region, making it an
ideal location for examining the effects of geomorphological
and geological processes on the development of drainage
patterns. To achieve this, the study uses variousmorphometric
parameters, including linear and areal parameters and relief
parameters.

The primary objective is identifying evidence of neotec-
tonic control in the river basin using various morphometric
parameters and predictive approaches based on machine
learning algorithms.We used eleven different ML algorithms
to compare and assess the efficiency of these algorithms
to establish the criteria choice in terms of input parameters
and classifiers for IRTA mapping. It should be noted that
while many studies have focused on neotectonics and mor-
phometric parameters, more research is needed on predicting

these parameters using machine learning algorithms.So, the
main goal of this study is to fill the observational gap in
neotectonic studies in an area,which is not covered by most
of the neotectonic investigations in northeast India.

II. STUDY AREA
A. GEOLOGY, STRUCTURE, AND TECTONICS
The geological and tectonic zones in the northeastern region
of India, including the Himalayan fold belt, the Naga-patkai
Ranges, the Shillong plateau, and the Brahmaputra Valley
in Assam, are very complex and diverse. The study region,
Dhansiri (North) river basin area is located above the active
Kopili fault in Brahmaputra valley region. This basin area
consists of various metamorphic and sedimentary sequences
belonging to different period, ranging from Neogene to
Quaternary(Figure1). The predominant rock types in this
region are gneiss, conglomerate, pebbly sandstone and
oxidized dark brown to red-brown loamy sand, unstabilized,
unoxidized sand, silt, and clay(Table 1).Due to the different
characteristics of the lithologies, their effect on the drainage
patterns, including the deformations, can also differ.The
Dhansiri-kopili fault and the Atherkhet fault are two major
tectonic features in the study area (Figure 2), and they are
primarily neotectonic faults.When a river enters an alluvial
plain in a tectonically active region, it may accumulate a
thick sequence of poorly sorted sediments, including gravel,
sand and silt. According to geological age, the basin area
sequentially consists of lithological properties from the early
Pleistocene to the Meghalayan period after crossing the main
boundary thrust. However, in the river’s middle reaches, the
figure1 shows unstabilized sand, silt, clay in the deposition of
quaternary sediments, possibly during the Meghalayan(Last
4200 years BP) period. These quaternary sediments provide
Stratigraphic evidence for delineating the significant phases
of neotectonic activity near the Main Frontal Thrust, The
Atherket fault, and The Dhansiri-Kopili fault. The basin area
is a primarily aseismic region, characterized by earthquakes
from 1963 to 2022 with different magnitudes. The lithology
and structure of these geological formations significantly
impact the geomorphology of the basin.

TABLE 1. Lithological characteristics.

B. REGIONAL SETTINGS
The One of the tributary basins of the Lower Assam area of
India’s Brahmaputra river is the Dhansiri(North)river basin.
This region (Figure 3) is bordered to the north by Bhutan
and the West Kameng district of the Arunachal Pradesh state,
to the east by Sonitpur district, to the south by Darrang
district, and to the west by Baksa district. The 2404 km2

Dhansiri(North) basin (26◦29′11′′ to 27◦18′30′′N , 91◦47′15′′
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FIGURE 1. Lithological characteristics.

FIGURE 2. Seismotectonic map.

to 92◦27′45′′E) resides on the northern portion of the Kopili
fault and the north bank of the Brahmaputra, both of which
are tectonically active at different times.

TheDhansiri(North) river is almost 103 km long originated
fromTrashigang and Samdrupjongkhar district border region,
Bhutan and meets river Brahmaputra near dalgaon town of
Darrang district, Assam.

III. MATERIALS AND METHODS
This section thoroughly explains the study’s data collecting,
analysis, and research design methods.

A. DATA: COLLECTION AND PROCESSING
The current study is based on Survey of India (SOI)
topographic maps (https://surveyofindia.gov.in/) with the

FIGURE 3. Location of the study area.

TABLE 2. Meterials used.

numbers 78M/15, 78M/16, 78N/13, 83A/3, 83A/4, 83A/8,
83B/1, 83B/2, 83B/5, and 83B/6 on the scales 1:63360 and
1:50,000 from 1913 and 2009, respectively. A spatial scale
of 1:63,360 means 1 inch on the map represents 1mile on the
ground. On the other hand,1 centimeter on the map represents
50,000 centimeters (or 500 meters) on the ground, then it is
considered as 1:50,000 scale map. With the aid of the Geo-
matica 2012 software and the Global/World Geodetic System
(WGS), which dates back to 1984 and was last amended in
2004, topographical maps were referenced geographically,
mosaiced, and the whole research region was outlined in
a GIS environment. Geological, lithological, lineaments,
faults, andseismic data were obtained from Bhukosh-
GSI (https://bhukosh.gsi.gov.in/Bhukosh/MapViewer.aspx)
to better comprehend the tectonic effect on the research
region. Lithological map has been prepared by field
traverse which supports the Bhukosh-GSI data and different
geological investigations. The digital data base for the
drainage layer of the basin was created using a variety of
characteristics that were derived from an SRTM DEM with
a spatial resolution of 90m (https://earthexplorer.usgs.gov/)
(Table 2).

The morphometric study of a drainage basin is next
presented. The drainage basinwas digitised formorphometric
analysis in a GIS utilising Arc GIS 10.3.1 and TNT Mips
2021 software, and it calls for the delineation of all the
already existing streams. By employing a stream ordering
approach [6], the basin is made up of subbasins with stream
orders ranging from first to seventh. The study area is
divided into 115 sub basins of 3rd or 4th order streams.
Highest number of first-order streams is observed near the
basins, which are falling close to segment of faults. Eleven
distinct ML algorithms’ prediction accuracy was calculated
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FIGURE 4. Work flow on neotectonic studies along with ML.

TABLE 3. Mathematical derivation and description of morphometric
parameters along with the classification using previous literatures.

using Python programming (python 3.8) in Jupiter Notebook
(notebook version 6.5.2). Later field evidences were collected
to identify the evidences of tectonic activities. A flowchart
(Figure 4) on data processing applied for the work is shown
below-

B. MORPHOMETRIC ANALYSIS
The present study evaluates the landforms of the basin area,
through morphometric analysis to identify the presence of
any evidences of neotectonics. The total river system in the
area is extracted from SRTM-DEM. The DEM data was
used to measure the (1) Linear, (2) Areal, and (3) Relief
aspects for the analysis are necessary for the systematic study
of drainage basin features as well as tectonically derived
features. The description of morphometric parameters are
explained (Table 3).

The research design is to analyze different parameters in
sub basins of the Dhansiri(North) River basin, then break
them into tectonic classes based on the values of individual
parameters. We divide the various indices into two classes
based on a threshold value, with one being high tectonic
activity and another class being low activity (Table 4). Here,
the threshold values are the average values of each parameter.
Then, the class of these parameters is summed, averaged, and
divided into Index of Relative Tectonic Activity classes over
the study area(Table 5).

C. EXPERIMENTAL SETUP
In this survey, six independent morphometric parameters
from different aspects such as Bifurcation Ratio (Rb), Stream

FIGURE 5. An architecture of a multi-layer feed-forward neural network
consisting of an input layer, three hidden layers, and one output layer,
along with the Six input features and three bias nodes.

Length Ratio (RL), Form Factor (Ff ), Elongation Ratio
(Re), Relief Ratio (Rh), and Ruggedness Number (Rn) were
used to predict the Index of Relative Tectonic Activity
(IRTA) using eleven well-known ML algorithms, namely,
(1) Logistic Regression (LR), (2) K Nearest Neighbors
(KNN), (3) Random Forest (RF), (4) Support VectorMachine
(SVM), (5) Decision Tree (DT), (6) Gaussian Naive Bayes
classifier (GNB), (7) Neural Network classifier, (8) Extra
Tree classifier (ET), (9) Ada Boost classifier (AB), (10)
Gradient Boosting classifier (GB), (11) XG Boost classifier
(XGB). In the study evaluating eleven machine learning
algorithms in Python, the criteria used to assess prediction
accuracy included standard metrics such as accuracy, preci-
sion, recall, and F1 score. The evaluation process leveraged
popular libraries such as sci-kit-learn and TensorFlow for
implementing and testing the ML algorithms. These libraries
provided robust tools for model evaluation and performance
measurement. Based on the IRTA class, a dataset comprising
115 different data was divided into three categories; low,
medium, and high, according to their ranks (Figure 5).By
dividing the parameters into these classes, researchers can
discern patterns and correlations between the geological
characteristics of the sub-basins and the tectonic activity
levels. The ranks were assigned based on the highest
relative closeness value to the lowest value with the help
of linear, areal and relief morphometric parameters. This
approach helps understand how tectonic activity influences
the hydrological and geomorphological features of the river
basin, which is crucial for various applications such as
land use planning, hazard assessment, and environmental
management.The entire dataset was then divided into two
categories: training and testing. 80 percent of the total dataset,
that is, 92 data, were chosen arbitrarily for training, and the
remaining 20 percent, or 23 data, were retained for testing.

IV. RESULTS AND DISCUSSION
A. MORPHOMETRIC PARAMETERS
In tectonic geomorphology, morphometric parameters refer
to measurements and characteristics used to quantify the
shape, form, and relief of landscapes and landforms that
have been influenced by tectonic processes. Morphometric
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FIGURE 6. Bifurcation ratio.

parameters detect anomalies in the fluvial system. These
anomalies may be produced by local changes from tectonic
activity resulting from uplift or subsidence. The main goal of
this study is to evaluate and quantify the role of neotectonics
in the lesser Himalayan zone. The investigation of the
present study is to decipher the role of neotectonics in the
2404 km2 area on 115 basins using Linear, Areal and Relief
parameters with ML algorithms.

1) LINEAR PARAMETERS
The linear parameters have been evaluated using Stream
characteristics, including the number and length of streams
of various orders, total stream length, mean stream length,
and level of dissection, have an impact on the hydrological
characteristics of a basin. This analysis aims to define the
basin’s evolution as one-dimensional characteristics using the
bifurcation ratio and stream length ratio as parameters for
evolution. The main channel-Dhansiri(North) River, belongs
to seventh order stream.According to [4], basic variables such
as stream length and stream count are geometrically linked to
stream order.

a: BIFURCATION RATIO (Rb)
(Rb) is the proportion between the total numbers of drainages
of one sort to that of the next upper order in a drainage basin
and so on.The (Rb) varies depending on the characteristics
of the drainage basin. The bifurcation Ratio varies between
3 and 5 for natural drainage system in which geologic
formations modify the drainage pattern. (Rb) typically has
a minimum value of 2 for flat or rolling drainage basins

FIGURE 7. Steam length ratio.

[5], suggesting a more straightforward and less branching
structure. In contrast, (Rb) in mountainous or highly dissected
drainage basins can vary from 3 to 4, suggesting a more
complicated and branching drainage pattern caused by the
rough terrain and variable topography.

Rb =
NU

NU + 1

where, Nu is total number of stream segments of a particular
order and Nu+1 are the number of segments of the next
higher order. The mean values of all these ratios lead to
the bifurcation ratio. The average bifurcation ratio of the
river basin is- 3.615. High mean bifurcation ratio indicate
area influenced by structural disturbances, represented by
fault system, tectonic activity, and rejuvenation phases. The
higher values of (Rb) represent youth stage while lower
values represent a mature stage of basin development.
The 115 subbasins in the research region had (Rb) values
ranging from 1 to 20.26. According to the values for this
parameter, the basin area was divided into two classes:
class-1 included sub-basins with Rb ≤ 1.821 and class-2
included sub-basins with Rb ≥ 1.821. (1.821 is the mean
value of the total of the 115 sub-basins). The geographical
distribution of this variable is depicted in (Figure 6).Overall
Rb values indicate that 26% of the basin area influenced
by structural disturbances, represented by fault system, high
tectonic activities. 74% of the area related to the class
1(except basin no:6,11,21,22,29,31,32,38,39,41,44,55,56,
58,61,70,78,79,90,93,96,97,99,100,110,112,113,115),with
low tectonic activities. Here, the mentioned basins are under
the area of high tectonic controls.
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b: STREAM LENGTH RATIO (Rl )
Following [5]’s method, the average stream length segments
of each of the successive orders of a basin follow a direct
geometric series with LU , which increases towards a higher
order of streams. The (RL) value between streams of different
order reveals that there are variations in slope and topography.

RL =
LU

LU − 1

where, Lu is the total stream length of the order ‘u’ and Lu-1
is total stream length of its next lower order. Here (Figure 7),
values vary from 0.406 to 53.546 and the mean value is
2.859. The value categorized into two classes to determine
the tectonically active basin. Class 1 having basins with RL ≤

2.859, suggest that basins are tectonically controlled. On the
other hand, class 2 is related to the basins having RL ≥ 2.859.
Basin no 1,6,11,16,21,29,32,41,44,45,50,56,59,68,70,79,83,
85,86,89,90,91,99,103,105,109,112 associate with class
2 with low tectonic controls, rest of the basins are associated
with high tectonic controls(class 1).
Mean Stream Length Ratio (RLM ): The (RLM ) of the

Dhansiri river basin is 5.674. The overall value of ‘(RL)’
shows the area is below the (RLM ) value, a decreasing trend
in ‘(RL)’ from higher order to lower order. This indicates the
youth stage of geomorphic development of river and affected
by the tectonic activity.

2) AREAL PARAMETERS
The areal parameters include Form factor, Elongation ratio
are evaluated to interpret the erosional activity of the basin.
The shape of the drainage basin is characterized by elongation
ratio and form factor. The lower value of the elongation ratio
and form factor indicate elongated basins,which suggest the
basins are tectonically active.

a: FORM FACTOR (Ff )
It is defined as the ratio of basin area to the square of the basin
length [4]. The watershed with high form factor values have
the high peak flows for shorter duration, whereas elongated
watershed with low form factor values will have a flatter peak
of flow for later duration. Thus, it can be expressed as

Ff =
A

L2b

where (Ff ): Form factor, A: Watershed Area, and Lb: length
of the watershed. The mean form factor of the 115 sub-basins
of Dhansiri river basin is 0.0557sq. km, which indicates
that the basin is more elongated in shape, which claimed to
develop in tectonically more active areas. Here (Figure 8),
values range from 0.006 to 0.432. Mean value is 0.0281. The
mean value is the theshold value for classifying the data into
two classes-high and low tectonically active areas. Basin no
1,2,5,6,12,19,20 31,32,33,34, 35,37,38,39,40,75,76,77,78,79
belongs to class 2 (Ff ≤ 0.028), which indicate the elongated
basins are moderate tectonically active. 81% area of the basin

FIGURE 8. Form ratio.

is associated with Class 1,which indicate the more elongated
basins are under high tectonically active zone.

b: ELONGATION RATIO (Re)
Re represents the watershed shape of any river. [50] defined
Re as the ratio of the diameter of a circle having the same area
as the watershed and the maximum watershed length (Lb).
It may be obtained by using the formula

Re = 2
(
A
π

)0.5

/Lb

where ‘Re’ is the elongation ratio, ‘2’ is a constant, ‘A’ is the
area, and ‘Lb’ is the maximum watershed length. The value
of Re varies from 0 (highly elongated shape) to unity i.e.
1.0 (circular shape). The mean‘Re’ value of 115 sub-basins
is 0.26, which means the more elongated basin area indicate
high tectonic activity. Values range from 0.03-0.74 and the
values are grouped into two classes including class 1 having
sub-basins have values Re ≤ 0.23 and class 2 consist of sub-
basins haveRe ≥ 0.23 (0.23 isMean value). Basin no. 1, 2, 31,
32, 33, 34, 35, 37, 40,75,76,77 linkwith class 2withmoderate
tectonic activity. (Figure 9). 88% basins are associated with
class 1, structurally and tectonically controlled.

3) RELIEF PARAMETERS
Relief ratio, Ruggedness number are interpreted parameters
of the study area to evaluate the denudation characteristics of
the basin. The relief ratio defined as the ratio of basin relief
to the length of the basin. The lower value of relief ratio is
characteristic feature of less resistant rocks and vice verse.
The lower value of Ruggedness number implies the basin area
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FIGURE 9. Elongation ratio.

is less prone to soil erosion and disposed to intrinsic structural
complexity.

a: RUGGEDNESS NUMBER (Rn)
Ruggedness number (Rn) is the product of drainage density
and maximum relief (difference between the highest and
lowest) of the basin [50]. It is defined as:

Rn = R ∗ Dd

R is the basin relief, Dd is Drainage density of the basin.
Its higher values occur when the slope of the basin are not
only steep but also long as well. The mean Rn value of
the sub-basins of Dhansiri basin is 5.571276, which means
high (Rn) values correspond to this basin with rough relief
possibly affected by tectonic uplift, whereas low values
usually indicate tectonic stability or slow rates of uplift. The
range of Rn for this research region is 0.01 to 73.95, with
the mean values of the basins being 2.807. According to
the values of these parameters, the basins in the research
region were divided into two classes: class 1 included
basins with Rn ≤ 2.807 and class 2 included basins with
Rn ≥ 2.807. Basins related to class 2 are(basin no 10, 11,
31,32,42,44,59,60,72,114 and 115) are influenced by high
tectonic activity. (Figure 10).

b: RELIEF RATIO (Rh)
The difference between the highest height and lowest height
in any basin is known as Relief (H). According to [50], the Rh
is the ratio of total basin relief to the longest dimension (Lb)
of the basin, which tends to parallel themain drainage. TheRh
computes the overall steepness of any watershed to analyze

FIGURE 10. Ruggedness number.

the effectiveness of degradational processes that operate on
basin slopes and are proportional to the surface run-off and
intensity of erosion.

Rh =
H
Lb

The average value of the 115 sub-basins is 0.05, which
considered as higher value for this basin which explains
steeper slope and high relief, as indicators of higher tectonic
activity. The 115 sub-basins are divided into two classes
based on their Rh values: class 1 includes basins with
Rh ≤ 0.03 and class 2 includes basins with Rh ≥ 0.03
(0.03 is the mean value of the sub-basins). Rh values range
from 0 to 0.38. The geographical distribution of the Rh
values for the river basin region is shown in (Figure 11).
High values from class-2 are displayed in basins 9,10,
11, 31,50,56,72,79,90,99,100,101,102,104,105,107,110,114,
and 115. Moreover, overall Rh values point to increased
tectonic activity.

B. INDEX OF RELATIVE TECTONIC ACTIVITY (IRTA)
The six calculated morphometric parameters are combined
and the average of their class number (1 or 2) revealed a new
integrated index named the Index of relative tectonic activity
(Irta), which results from formula. This method is used to
improve the accuracy of the evaluation of the relative tectonic
activity in the study area:

IRTA = (RL + Rb + Ff + Re + Rn + Rh)/n

The drainage basinwas divided into three groups of relative
tectonic activity: low (1), moderate (2), and high (3) based on
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FIGURE 11. Relief ratio.

the revised index values. In order to make inferences about
the tectonic structure of the research region, a map depicting
the geographical distribution of the values of this index was
created. Irta values were categorised into three groups based
on the level of relative tectonic activity: basins with low
tectonic activity are classified as Class 1 (1 ≤ IRTA ≤ 1.25),
catchments with moderate tectonic activity are classified as
Class 2 (1.26 ≤ IRTA ≤ 1.50), and basins with high tectonic
activity are classified as Class 3 (1.51 ≤ IRTA ≤ 2). The
outcomes of the drainage basins’ categorization discussed
above are shown in (Figure 12). Analysis of the study area’s
2404 km2 has revealed that roughly 68% of it is under Class 1,
about 23% falls under Class 2, and about 9% falls under Class
3. The geological structure of the research region appears to
be reflected in how this new index’s values are distributed
spatially. High relative tectonic activity has an impact on the
river morphology of both the Dhansiri-kopili fault and the
Atherkhet fault segment areas.

C. PREDICTION OF CLASSIFIED IRTA
The model’s accuracy validations and the number of true and
false predictions made by a classifier can be summarised by
a confusion matrix, as shown in Figure 13. It can be clearly
seen from Image, that the accurately predicted regions of the
matrix are matrix cell (0 × 0) for High IRTA, (1 × 1) for
Medium IRTA and (2 × 2) for Low IRTA. So, High IRTA
= 0 (0 × 0), Medium IRTA = 12 (1 × 1), and Low IRTA
= 6 (2 × 2). So, out of the total 23 test data, the accurately
predicted data was (0+12+6)23, resulting in a GNB accuracy
of (18/23) 78.26 percent.

FIGURE 12. Spatial distribution of relative tectonic activity index.

For the selected database SVM algorithm shows the
highest accuracy of 82.60% percent for the prediction of the
class of IRTA. Additionally, it should be noted that the DT,
NB, and ETC showed the similar highest accuracy as SVM;
however, the measured F1 score value is not ideal except
for SVM. Despite the fact that this work produced greater
precision and an excellent F1 score, the proposed SVM-based
model has certain drawbacks. One of the major constraints
was observed that the dataset contains imbalanced data, such
as the difference between the minority class (High IRTA)
and majority class (Low IRTA) is very high, which somehow
limits the accuracy level of the model.

The primary objective of this research is to examine,
assess, and measure the significance of active tectonic
processes within the lesser Himalayan zone. Previous evalua-
tions of past tectonic activity have relied on a constrained set
of morphometric characteristics [12], [51], [52]. The current
study aims to unravel ongoing tectonic activities across
a 2404 km2 area encompassing 115 sub-basins, utilizing
linear, areal, and relief-based parameters. The drainage basin
delineation utilized the [6] method for stream ordering. The
study area’s 115 sub-basins exhibit a range of stream orders,
from first-order to fifth-order river basins. The count of
streams tends to be higher in first-order basins, gradually
decreasing as stream order increases. Sub-basins with higher
Rb values traverse geological fault lines such as MCT (Main
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FIGURE 13. Confusion matrix of GNB classifier for predictions the class of
IRTA.

Central Thrust), ST (Shurma Thrust), MBT (Main Boundary
Thrust), MFT (Main Frontal Thrust), AF (Atherkhet Fault),
andKF (Kopili Fault). All computed parameters are classified
to discern regions displaying active tectonics. The bifurcation
and stream length ratios, two key parameters, are divided into
distinct classes. Most of the basins fall within the moderate
to highly active tectonics zone. Areal parameters have been
assessed, identifying basins within a high activity zone. The
evaluation of relief parameters considers relief ratio and
ruggedness number. Relief parameters indicating tectonic
activity align with the Kopili Fault. Most of the area falls
within a low to high active zone regarding relief parameters’
tectonic significance.

The key findings of the current study include the following:
Subsurface geological features and active subsurface pro-
cesses have regulated the river’s path (Figure 14). According
to morphometric results, the drainage network of the basin
region was affected by North-West to South-East trending
faults. Geomorphic parameter calculations can provide signs
of tectonic effect on the development of the terrain. The
morphometric analysis of the Dhansiri(North) river basins
of the north branch of the Brahmaputra in Assam has
demonstrated that specific indices, such as the bifurcation
ratio (Rb), stream length ratio (RL), form factor (Ff ),
elongation ratio (Re), relief ratio (Rh), and ruggedness number
(Rn), can provide significant information. The co-evaluation
of the indices using an integrated index, referred to as the
IRTA (Index of Relative Tectonic Activity), might provide
insightful information about the relative tectonic activity. The
research region was divided into sub-areas of low, moderate,
and high relative tectonic activity based on the categorization
of the drainage basins into three classifications. Around 68%
of the research region is categorised as having low, 23% as
having moderate, and 9% as having high tectonic activity.
The tectonic structure of the studied region appears to be
reflected in the spatial distribution of the values of this new
index. In comparison to other drainage systems, the basins of
the kopili-dhansiri fault drainage systems exhibit high values
of the calculated morphometric indices. This method proved

FIGURE 14. Dhansiri(North) river active channel along with the high IRTA
zone.

FIGURE 15. Field evidences of Neo-tectonic activities in the part of
Dhansiri(North) river basin.

that the estimated values clearly demonstrated the tectonic
effect on the drainage systems of the Dhansiri(North) river
basin and that themorphometry of the drainage basins formed
on the rising block of the major faults is indicative of tectonic
activity. The morphometric study done as part of this research
did not support the assertion by earlier studies that there was
an active fault along the Dhansiri-Kopili Straits. It must be
highlighted that the methodology and classification of the
relative tectonic activity only reveal relative differences and
at a local level since the study as a whole, i.e., the selection of
the parameters and the categorization of the drainage basins,
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FIGURE 16. Field photos of areas with high relative tectonic activity index.

reflects the local conditions. The accuracy of the IRTAmap is
evaluated using an existing tectonic map and ML algorithms.
Additionally, Field investigations have confirmed the IRTA
findings’ interpretation that neotectonic activity caused slope
failure, the activation of landslides, earthquakes, and other
natural hazards (Figures 15 and 16).

V. CONCLUSION
The role of neotectonics in the part of the Dhansiri(North)
river basin is evident from the evaluated morphometric
parameters (Linear, Areal, and Relief parameters). These
parameters act as a significant tool for determining Index
for Relative Tectonic Activity (IRTA). This approach helps
in identification of tectonically active zones,where more
detailed field studies will identify active structures and
calculate rates of active tectonic processes. Based on the
IRTA class, the region was divided into three sub-areas with
varying levels of tectonic activity. The low, moderate, and
high tectonic activity areas were determined by categorizing
the drainage basins into three classes. 68% area of the region
classified as low, 23% as moderate, and 9% as high tectonic
activity. The results of the parameters have a profound
role in the neo-tectonics, as major faults like Atherket
fault and Dhansiri-kopili fault pass through the basins. The
modeling results showed that the SVM algorithm achieved
the highest accuracy of 82.60%.It indicates a relatively
high level of predictive performance, and also suggesting
that the SVM model can effectively distinguish between
different classes or categories.The significance of the 82.60%
accuracy with the SVM algorithm lies in its ability to
provide valuable insights into the predictive capabilities of
the model within the specific constraints and requirements
of the study.This accuracy rate surpasses the baseline and
may be considered satisfactory based on the complexity
of the problem under investigation.The implications of this
accuracy level extend in two distinct directions. Firstly,
it underscores the SVM algorithm’s proficiency within
the study’s context, showcasing its capability to make
precise predictions. It suggests a high degree of competence
in handling the intricacies of the dataset. Secondly, it’s
equally important to contextualize this achievement within
the broader landscape of the problem domain. Although
the achieved accuracy is commendable, it’s important to

TABLE 4. Rank assigned based on morphometric parameters.

recognize that it’s not a definitive measure of success. Rather,
it provides valuable insights into the predictive abilities of the
SVM model under the specific constraints and requirements
outlined in the study.Evaluating accuracy within the broader
problem context facilitates a deeper understanding of the
model’s performance and potential implications for real-
world applications. Therefore, the significance of achieving
an 82.60 percent accuracy with the SVM algorithm lies
not only in its immediate predictive prowess but also in
its capacity to provide nuanced insights into the broader
predictive landscape of the problem domain. A comparison
of field observations for understanding the imprints of active
tectonics on the basin area coincides with the values and
classes of morphometric indices and the overall IRTA index.
This area with moderate to high relative tectonic activity
index corresponds with areas where prominent fault scarps,
triangular facets, unpaired terraces, and deformed alluvial
fan deposits are shown. Additional in-depth analysis of the
Quaternary chronology and significant displacements will
be effective in the future.Our results cover the vital gap in
neotectonics, showing evidence in unstudied sectors of the
northern part of the Brahmaputra basin area in the lower
Assam region. Morphometric analysis, combined with the
Index of Relative Tectonic Activity (IRTA) and machine
learning techniques, plays a crucial role in identifying the
underlying causes of major disasters such as earthquakes,
floods, and landslides and identifying hazard-prone areas.
This knowledge can then suggest suitable remedial mea-
sures for disaster mitigation, such as land use planning,
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TABLE 5. Classification of IRTA(Index of Relative Tectonic Activity) in the
Sub basins of Dhansiri(North) river basin.

infrastructure development, and early warning systems,
ultimately reducing disaster risk and protecting vulnerable
communities.This study holds promise for enhancing our

ability to mitigate the impacts of natural disasters and protect
vulnerable communities and infrastructure.
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