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ABSTRACT Lung adenocarcinoma (LUAD), a prevalent histological type of lung cancer and a subtype of
non-small cell lung cancer (NSCLC) accounts for 45–55% of all lung cancer cases. Various factors, including
environmental influences and genetics, have been identified as contributors to the initiation and progression
of LUAD. Recent large-scale analyses have probed into RNASeq, miRNA, and DNAmethylation alterations
in LUAD. In this study, we devised an innovative deep-learning model for lung cancer detection by
integrating markers from mRNA, miRNA, and DNA methylation. The initial phase involved meticulous
data preparation, encompassing multiple steps, followed by a differential analysis aimed at identifying
genes exhibiting differential expression across different lung cancer stages (Stages I, II, III, and IV). The
DESeq2 technique was employed for RNASeq data, while the LIMMA package was utilized for miRNA
and DNA methylation datasets during the differential analysis. Subsequently, integration of all prepared
omics data types was achieved by selecting common samples, resulting in a consolidated dataset comprising
448 samples and 8228 features (genes). To streamline features, principal components analysis (PCA) was
implemented, and the synthetic minority over-sampling technique (SMOTE) algorithmwas applied to ensure
class balance. The integrated and processed data were then input into the PCA-SMOTE-CNN model for the
classification process. The deep learning model, specifically designed for classifying and predicting lung
cancer using an integrated omics dataset, was evaluated using various metrics, including precision, recall,
F1-score, and accuracy. Experimental results emphasized the superior predictive performance of the
proposed model, attaining an accuracy, precision, recall, and F1-score of 0.97 each, surpassing recent
competitive methods.

INDEX TERMS Gene expression, lung cancer, mRNA, miRNA, DNA methylation, differential analysis,
omics data.

I. INTRODUCTION
Non-communicable diseases (NCDs) have characteristics
that make them ailments that are linked to one’s lifestyle.
They are highlighted as the primary factors contributing to
cardiometabolic conditions like metabolic disorders such as
cardiovascular diseases, obesity, and type 2 diabetes. Further-
more, behaviors like smoking and alcohol consumption are
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also associated with NCDs, including several types of cancer.
This emphasis on lifestyle factors implies that these condi-
tions and illnesses can be prevented, and their complications
and associated health issues can bemitigated through individ-
ual behavioral modifications, including adopting a healthier
diet, engaging in physical activity, and managing one’s
weight [1]. Cancer, which is a group of diseases characterized
by the uncontrolled growth and spread of abnormal cells is
increasing due to factors like unwell lifestyles, the aging pop-
ulation, and commercial interests. At present approximately
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one out of every five men and one out of every six women
are diagnosed with cancer. Unfortunately, about one in eight
men and one in ten women will lose their lives to this disease.
Projections suggest that by 2030 around 13 million people
will die from cancer annually with most of these deaths
occurring in middle-income countries [2]. This makes cancer
a leading cause of death which has the potential to hurt a
nation’s productivity. TheWHO aims to reduce NCDs related
deaths by 2030 requires significant advancements, in cancer
treatment and control [3], [4], [5]. While lifestyle and social
aspects play a great part in the growth of NCDs, it is important
to note that each of these conditions also has a significant
genetic component [6].
Lung cancer is ranked as the most common type of cancer

leading to death and the second most commonly diagnosed
cancer in both women and men [7], [8]. The two main
subtypes of lung cancer are small cell carcinoma (SCLC),
which is fast-growing but not common, and non-small cell
carcinoma (NSCLC), the most diagnosed type of cancer,
which grows slowly. Symptoms of lung cancer includeweight
loss, chest pain, shortness of breath, and persistent cough. The
diagnostic methods for lung cancer include physical exami-
nation, different imaging techniques, and molecular testing
to determine exact genetic mutations or biomarkers to help
in selecting the best therapy options [9], [10], [11]. Advances
in genome profiling methods in recent decades have signifi-
cantly improved the comprehension of cancer development at
the molecular level and helped in cancer treatments including
lung cancer by identification of biomarkers [12].

Gene expression profiling has provided valuable informa-
tion about gene activities and describes the current physiol-
ogy of the cell. It has been used effectively to help in the early
diagnosis and prognosis of cancer types [13], [14]. Single-cell
RNA sequencing (scRNA-Seq), which is a powerful tech-
nique used in molecular biology to analyze gene expression
at the single-cell level is a helpful tool for characterizing
gene expression [15]. Gene expression is an approach that
converts the genetic information contained in DNA instruc-
tions to produce proteins and different molecules. DNA
transcription is a fundamental process in molecular biology
where information from a DNA sequence is transcribed into
RNA. This process is a key step in gene expression, during
which the genetic instructions stored in DNA are used to
synthesize ribonucleic acid RNA molecules [14]. RNAs can
be categorized into coding and non-coding RNAs, with the
latter containing small nuclear RNAs (snRNAs), small inter-
fering RNAs (siRNAs), small nucleolar RNAs (snoRNAs),
transfer RNAs (tRNAs), PIWI-interacting RNAs (piRNAs),
ribosomal RNAs (rRNAs), long non-coding RNAs (lncR-
NAs),microRNAs (miRNAs), and circular RNAs (circRNAs)
[16], [17].

Different RNAmodifications have been discovered and the
most recognized among them is methylation modifications.
miRNAs are non-coding single-stranded small RNA. They
are widely located in eukaryotes and play a significant role

in post-transcriptional regulation of gene expression, which
is achieved through translation inhibition and mRNA cleav-
age. The miRNA is an essential biomarker that helps in the
diagnosis and treatment of diseases and the development of
anti-tumor medicines [18], [19]. In addition, DNA methyla-
tion constitutes a fundamental chemical process concerning
the binding and interchange of DNA with a methyl group.
This change modifies the functionality of the DNA, recre-
ating a pivotal part in X-chromosome inactivation, genomic
imprinting, repression of repetitive elements, and the aging
process. Additionally, DNA methylation is associated with
many kinds of cancer [20].
A significant issue in gene expression data is that they

include a high number of gene counts often referred to as the
curse of dimensionality against a few observations that are
referred to as data sparsity. However, high-dimensional data
contains irrelevant or redundant features, class imbalance,
and a high amount of noise in the genes that lead to inaccurate
diagnoses of cancer [13]. For that reason, it is necessary to use
techniques that decrease the dimensionality of the data while
keeping the underlying gene relationships, especially when
dealing with extensive gene expression datasets. Dimension-
ality reduction algorithms enable a summary of the data’s
variability to a smaller set of random variables and help to
visualize datasets with tens to thousands of dimensions in
2D or 3D formats. the most commonly utilized technique
is principal component analysis (PCA), it employs linear
combinations of variables to develop orthogonal axes that
effectively capture the data’s variation utilizing a decreased
number of variables [21].

Class imbalance is a common issue where the distribution
of examples across different classes is not equal. In other
words, some classes have significantly fewer instances or
samples than others. The majority class is the class that has
the highest number of instances while the minority classes
are the classes with fewer data. The imbalance ratio (IR)
is defined as the difference between the number of sam-
ples in the majority class and each of the minority classes.
To handle this issue, it is required to rebalance the classes by
modifying the data itself. This can be achieved by removing
some samples from the majority class (under-sampling) or
by expanding the number of minority class samples (over-
sampling). In Under-sampling, the less important patterns
from the majority class are removed, which may lead to the
loss of essential information. Over-sampling entails copying
or generating new minority class patterns to compensate for
the lack of data, which can lead to overfitting [22], [23], [24].
The SMOTE (Synthetic Minority Over-sampling Technique)
method is an effective resampling technique for imbalanced
data classification by oversampling samples from the minor-
ity class to rebalance the gene expression dataset [25].
Analyzing the gene expression data is still challenging due

to its many characteristics such as high dimensionality, com-
plexity, and heterogeneity. Deep Learning (DL) algorithms
have been applied and proven to be an effective technique
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for handling gene expression data, leading to significant
improvement in the predictions and diagnosis of various types
of cancer [13], [25], [26], [27]. Deep Learning algorithms
extract the features from the original input data. Differ-
ent deep learning approaches, such as Convolutional Neural
Networks (CNN), Feed-Forward Neural Networks (FFN),
Recurrent Neural Networks (RNN), and Autoencoders (AE)
are used to analyze the gene expression datasets. Especially,
CNN is employed to learn multiple layers of kernel fil-
ters and classifier weights [26], [27]. CNN models have
demonstrated outstanding classification performance in gene
expression analysis because of their ability to capture local
spatial relations from the input data. Therefore, CNN mod-
els have consistently classified among the top-performing
deep learning models when applying gene expression data
[14], [28].

In this study, we focused on LUAD, which is the pri-
mary type of lung cancer diagnosis, and introduced a
novel deep-learning model for integrating mRNA, miRNA,
and DNA methylation. In contrast to previous studies, our
approach included a detailed differential analysis across var-
ious lung cancer stages and the meticulous integration of
omics data through sample selection. This paper makes the
following essential contributions:

• Preparing and combining datasets: we combined dif-
ferent kinds of omics data including mRNA, DNA
methylation, and miRNA for lung cancer, this allows
for a deeper exploration into the intricacy of epigenetic
regulation and interaction.

• Learning from diverse data sources: we created pro-
gressive learning techniques that seamlessly integrate
diverse datasets, mitigating potential biases related to
class imbalances.

• Proposing an improved deep learning model: we have
introduced an enhanced deep learning model for pre-
dicting lung cancer stages (I, II, III, and IV) using
meticulously curated multi-omics data. Nevertheless,
constructing the prediction model with integrated
diverse datasets posed significant challenges due to
the high dimensionality of the data and the pres-
ence of imbalanced class characteristics. As a result,
we employed techniques to mitigate dimensionality
and address class imbalance. The synergistic applica-
tion of these methodologies is intended to boost the
predictive performance of the model.

II. RELATED WORK
Many classification models based on gene expression data
have been developed. Ismail et al. [24] proposed a hybrid
stacking ensemble model with a synthetic minority oversam-
pling technique (Stack-SMOTE) to predict the genes related
to autism spectrum disorder (ASD). They proposed an ensem-
ble learning method using a gradient boosting technique
based on random forest (GBBRF). The results of the pro-
posed hybrid Stacking-SMOTE model achieved an accuracy

of 95.5%. Another study by Mulla et al. [29] introduced
a method that combines SMOTE oversampling with PCA.
Three classification algorithms were used namely K-Nearest
Neighbor (KNN), Logistic Regression (LR), and Decision
Tree (DT) based on two datasets. The experimental results
of the PCA+SMOTE method showed an improvement in
the classification results. the KNN model demonstrated high
performance. A study by Sakib et al. [30], used various clas-
sification methods including DT, Support Vector Machine
(SVM), LR, KNN, Random Forest (RF), and Naïve Bayes
(NB) to detect blood cancer using gene expression data. PCA
and SMOTE were applied in the data preprocessing. The
result indicated that NB, LR, and SVM outperformed other
methods with an accuracy of 100%.

Almarzouki [44] proposes a deep-learning approach for
cancer classification using gene expression profiling data.
It introduces feature selection techniques like mutual infor-
mation difference and mutual information quotient used to
reduce the dimensionality of gene expression data and select
important genes. Various classification algorithms like con-
volutional neural networks are then trained on the selected
features to classify cancers like lung, kidney, and brain
tumors. The CNN model achieves up to 96.43% accuracy
on test data using k-fold cross-validation. Overall, the study
presents an effective framework involving feature selection
and deep learning for cancer profiling and classification
from high-dimensional gene expression data, which can help
improve cancer diagnosis and outcomes.

Xu et al. [45] propose a deep flexible neural forest (DFN-
Forest) model for cancer subtype classification based on
gene expression data. It combines the fisher ratio and neigh-
borhood rough set for dimensionality reduction of genes
to select the most informative genes. Fisher ratio is first
used to eliminate invalid genes, then a neighborhood rough
set is applied to reduce redundant genes. DFNForest is
then proposed as an ensemble of flexible neural trees to
solve multi-classification problems. Each forest contains
binary classification problems. The model depth is increased
through a cascade structure without additional parameters.
Experiments on three cancer datasets show the gene selection
method achieves high accuracy with fewer genes compared to
other methods. DFNForest also outperforms other classifica-
tion methods on the gene expression data, demonstrating its
effectiveness for cancer subtype classification.

Dwivedi [46] presents a framework for classifying can-
cers using machine learning techniques on microarray
gene expression data. Specifically, it evaluates six differ-
ent machine learning algorithms (artificial neural network,
support vector machine, logistic regression, k-nearest neigh-
bor, classification tree, naive Bayes) for their ability to
classify acute lymphoblastic leukemia and acute myeloid
leukemia samples based on expression levels of 7,129 genes.
The results show that an artificial neural network approach
achieved the highest classification accuracy of 98%, out-
performing the other methods. Validation on independent
test samples also achieved 100% accurate classification with
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some methods. Therefore, the study demonstrates the poten-
tial of machine learning to effectively classify cancers using
gene expression profiling data.

Tarek et al. [47] propose an ensemble-based gene expres-
sion classification system for cancer diagnosis and analysis.
It introduces an ensemble of 5 classifiers using different fea-
ture selection methods and a 3-NN algorithm. Three datasets
- Colon, Leukemia, and Breast cancer - are used to evaluate
the approach. Their results show that the proposed ensemble
system improves over individual classifiers and a related
baseline approach, achieving higher accuracy and lower error
rates on all three datasets. In particular, the ensemble is able
to perfectly classify the Breast cancer dataset, representing an
improvement over individual techniques. Overall, the study
demonstrates the effectiveness of the ensemble-based gene
expression classification approach for cancer applications.

In previous studies, different datasets such as mRNA data,
miRNA data, and DNA methylation were used. In some
research, different types of datasets were combined to detect
various diseases. Yang et al. [31] identified and validated
key genes during the progression and development of Lung
adenocarcinoma (LUAD). They applied various kinds of
analyses including survival analysis, enrichment analysis,
and protein-protein interaction (PPI) networks. The results
identified nine genes that play essential roles in the devel-
opment of LUAD. Another study by Park et al. [20] proposed
a deep learning-based model to predict Alzheimer’s disease
(AD) based on the combination of gene expression and DNA
methylation data. The results of the proposed model showed
an accuracy of 0.82%. Kutlay and Son [32] used multiple
machine-learning models including RF, SVM, artificial neu-
ral networks (ANN), NB, and AdaBoost to determine the
metastasis by integration of DNA methylation, miRNA, and
mRNA. The proposed method achieved an F1 score of 92%.

A study by Su et al. [33] considered differentially
expressed miRNAs and methylated using molecular and
cellular function analysis. Their results showed that the inter-
action between miRNA and DNAmethylation plays essential
functions in lung cancer. Tomeva et al. [34] examined muta-
tions and methylation in cell-free DNA (cfDNA), as well
as miRNAs, in plasma samples collected from a total of
97 cancer patients. From the results, an accuracy of 95.4%
was achieved by the proposed model. Another study by Shu-
jaat et al. [35] presented a convolution neural network model
called iProm-Sigma54 based on a grid search algorithm to
produce a CNN-based predictor. Their results demonstrated
that the proposed model outperformed previous methods.
Varghese et al. [36] assessed the epigenetic mechanisms of
ethical heterogeneity in hepatocellular carcinoma (HCC) via
integration of miRNA, DNA methylation, and gene expres-
sion by applied mix ANOVA and Pathway analysis. The
experimental results showed that, important differentially
expressed genes in HCC were identified through the integra-
tive analysis.

A study byGuan et al. [37] investigated the combined com-
petitive endogenous RNA (ceRNA) and DNA methylation

in esophageal carcinoma through enrichment analysis using
the Kyoto Encyclopedia of Genes and Genomes (KEGG) and
gene ontology (GO). The results revealed that four key long
non-coding RNAs (lncRNAs) were identified as associated
with esophageal carcinoma. Rong et al. [38] proposed a
CC2DT model combining convolutional autoencoders and
convolutional neural network methods for classification and
early lung cancer diagnosis. They integrated three lung can-
cer gene expression datasets, including miRNAseq, mRNA
expression, and DNAmethylation. Their experimental results
show that an accuracy of 0.824 was obtained by the CC2DT
model. Albaradei et al. [39] introduced a deep learning model
(MetaCancer) to distinguish pan-cancer metastasis status.
They used data from 400 patients including microRNA,
DNA methylation, and RNA. The proposed model obtained
an accuracy of 0.888. Wang et al. [40] developed a
model for lung cancer subtype diagnosis utilizing weakly
paired multi-omics data (LungDWM). According to the
results obtained, the LungDWMmodel achieved an accuracy
of 0.942.

III. MATERIAL AND METHODS
In this section, we introduce the proposed deep learning
model, providing a description of the employed dataset and
how the integration process for three various datasets was
accomplished.

A. DATASET AND PRE-PROCESSING
We have downloaded three omics data types, namely,
RNASeq, miRNA, and DNA methylation data from the
cancer genome atlas (TCGA) (https://portal.gdc.cancer.gov/)
using the TCGABiolinks package in R. Different techniques
accompanied the data preparation. The RNASeq dataset had
60660 genes and 531 samples; the genes located on sex
chromosomes (X and Y) were removed, reducing the total
number of genes to 57670. Furthermore, filtering was per-
formed using the rowSums function to exclude genes with
low expression or variation. Genes were retained only if the
sum of counts across all samples was greater than two and if at
least four samples had counts greater than two. This process
resulted in 46615 genes that have high variability between the
samples. After that, the DESeq2 techniquewas applied to find
the differentially expressed genes (DEGs) between the cancer
stages (Stages I, II, III, and IV). Thus, 5271 genes were found
to be differentially expressed between the cancer stages at a
0.05 threshold level.

Also, we downloaded miRNA Expression Quantification
data with 1881 features. The Count per million was used to
filter the miRNA features leading to 1065 features. Moreover,
differential miRNA was accomplished using the linear mod-
els for microarray data (LIMMA) package in R to find the
essential features that distinguish the cancer stages. This pro-
cess reduced the miRNA features to 118, which significantly
discriminated the stages at 0.05 level.

Additionally, we downloaded the Methylation data with
485577 features (probes), which is a very high dimensional
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TABLE 1. Summary description of the datasets.

data. However, probes with missing data were removed,
leaving 331959 probes. Also, features that matched the sex
chromosomes were excluded leaving 325128 probes. The
overlapped probes were removed, and single nucleotide poly-
morphisms (SNPs) with a minor allele frequency of 5%
were kept. This process led to 299834 features. In addition,
we removed probes that have been demonstrated to map
multiple places in the genome [41], reducing the probes
to 298588. The probes were further reduced to 260077 by
filtering those with low expression levels using the count per
million (CPM) method. These were further reduced using
LIMMA to find the differentially methylated probes between
the cancer stages. The differentially methylated analysis
using LIMMA resulted in 2838 probes that significantly dis-
criminate between the cancer stages. All the prepared omics
data types were integrated based on the common samples,
making a new dataset with 448 samples and 8227 features.
Table 1 displays the description of the datasets.

B. PROPOSED CNN MODEL
After data preprocessing, we addressed the problems of high
dimensionality and class imbalance in the dataset using the
PCA model. This reduced the dimensionality of the dataset
by applying a different number of components to determine
which was better. After that, we employed the data after the
dimensionality reduction as input for the SMOTE algorithm
to rebalance the classes.

We developed a CNN architecture based on the lung cancer
datasets within the TensorFlow environment using the Keras
library in Python programming language. Table 1 shows the
PCA-SMOTE-CNN model hyperparameters that were used
in this study. The structure of the proposed CNNmodel starts
with three 1D convolutional layers that are used for the han-
dling of one-dimensional data such as DNA/RNA expression
data to extract features (probes) from the input data with
a kernel size of 3, ReLU activation, and filters of 16, 32,
and 64, followed by the dropout layers of values of 0.7, 0.6,
and 0.5 after each 1D convolutional layer, respectively. The
last 1D convolutional layers are followed by a max-pooling
layer. The pooling layers with a size equal to 2 utilized,
reduce the dimensionality of the input features, compress
the number of parameters and data, and enable overcoming
overfitting. We flatten the output of the convolutional layers

TABLE 2. Summary of major model hyperparameters.

to create a single long feature vector. Then dense layers with
64 units and ReLU activation function were incorporated to
allow each neuron to interact with all the neurons in the
previous layer. This helped to capture complex patterns in
the data, along with a dropout layer to reduce overfitting
with the value of 0.5. Finally, the output layer consisting
of four units with softmax activation function was used for
multi-class classification. The proposed CNN was designed
to extract features from the input data, reduce dimensionality,
and make predictions based on the learned patterns. The pro-
posed CNNmodel architecture applied in this study is shown
in Figure 1 as detailed above. Figure 1 demonstrates the steps
we followed in this study. Initially, we obtained the datasets,
subsequently processed each dataset and fed the preprocessed
data to the proposedmodel. Table 2 displays a summary of the
key hyperparameters employed in the implementation of the
proposed model for the study.

C. PERFORMANCE MEASURES
We evaluated the performance of our constructed CNN
model using the accuracy, precision, recall, and F1-measure.
The accuracy which measuring the percentage of correctly
classified cases, may not sufficiently evaluate a classifier’s
performance, especially with imbalanced data. Precision
computes the proportion of observations predicted as positive
by the model that are actual positives. On the other hand,
Recall calculates the proportion of actual positive observa-
tions that the model correctly predicts as positive. Moreover,
we employed the weighted average which is more advan-
tageous over a regular average because it provides a better
level of detail. It assigns different weights to the data points,
reducing the influence of less important data and allowing
more significant data to have a more pronounced impact on
the results. This can lead to a more nuanced and accurate
assessment. The equations for these metrics are provided
below. Where i and j indicate the different classes. The
weighted accuracy is computed using the equation 1.

Balanced_Accuracy =
1
2

(
TP

TP+ FN
+

TN
TN + FP

)
(1)

In this context, TP represents instances of True Positive,
TN represents instances of True Negative, FP represents
instances of False Positive, and FN represents instances of
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FIGURE 1. The proposed methodology.

False Negative.

Recall i = Mii
/
Mii +

∑
j=1:n;i̸=jMji

(2)

Precisioni = Mii
/
Mii +

∑
j=1:n;i̸=jMij

(3)

Class-wise precision and recall scores were combined using
micro-averaged, macro-averaged, and weighted-averaged
precision and recall to derive global precision and recall
values for the overall model. The weighted-average metrics
represent a sample-weighted mean of class-wise precision
and recall, making them suitable for assessing model perfor-
mance on imbalanced datasets. The three global scores are
computed as follows:

Micro_Recalli =

∑
i:nMii

/∑
i:nMii +

∑
i:n

(∑
j=1:n;i̸=jMji

)
(4)

MicroPrecisioni =

∑
i:nMii

/∑
i:nMii +

∑
i:n

(∑
j=1:n;i̸=jMij

)
(5)

Macro_Recalli =

∑
i:n Recall i

/
n (6)

Macro_Precisioni =

∑
i:n Precisioni

/
n (7)

Weighted_Recall =

∑
i:n
wi × Recall i (8)

Weighted_Precission =

∑
i:n
wi × Precisioni (9)

where wi =
Number of samples in class i
Total number of samples

(10)

Ideally, we aim to assign class weights in the range of [0, 1],
ensuring that the sum of weights across all classes equals 1.
0 ≤ wi ≤ 1, and

∑
i=1 wi = 1. Additionally, in imbalanced

data scenarios, the less frequent class is often more signifi-
cant, leading us to assign weights accordingly. A widely used
formulation for this purpose is the Normalized Inverse Class
Frequency.

wi = 1
/(

fi ×
∑n

j=1 fj
)

. (11)

F1scorei =
2 × Recalli × Precisioni
Recalli + Precisioni

(12)

IV. EXPERIMENT CONFIGURATION
The conducted experiments were carried out utilizing a
Lenovo computer system that is powered by an 11th Gen-
eration Intel(R) Core i5 processor, providing robust compu-
tational capabilities. Additionally, the storage component of
the system is noteworthy, with a hard disk size reaching up
to 952.69 gigabytes, and a storage memory capacity of up
to 16 gigabytes, ensuring ample space for data processing
and storage. The development of the experimental models
was implemented within the Spyder platform, leveraging the
programming capabilities of Python 3.10.9. This integrated
development environment (IDE) facilitated the coding and
implementation processes, ensuring a seamless and efficient
development environment for the models under investigation.

A. RESULTS AND DISCUSSION
Table 3 shows the performance metrics per class across dif-
ferent numbers of PCA (100, 200, 300, and 400) employed
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FIGURE 2. Bar graph of the number of samples within a training dataset before and after the SMOTE algorithm.

in our experiment. In stage I, it becomes clear that employ-
ing 400 PCA yields outstanding results for the proposed
model, with a recall of 0.91, f1-score of 0.95, and a
precision of 100% across all PCA values. In Stage II,
the performance of 400 PCA surpasses other PCs, show-
casing precision, recall, and f1-score of 100%. Stage III
displays 100% precision, recall, and f1-score when apply-
ing 400 PCA. Meanwhile, stage IV exhibits similar outcomes
when employing 200, 300, and 400 PCA. In summary, the
process of picking the number of PCA has a significant
impact on the model’s performance in different stages, and
the optimal number of PCA may vary depending on the
specific stage of the experiment. It is also reported that a lower
number of PCA can still result in an excellent performance
in some stages. In addition, the results show that 400 PCA
performed better in all stages.

Figure 2 presents bar plots of the number of samples within
a training dataset before and after the SMOTE algorithm.
In section A of Figure 2, it is indicated that the data utilized
has a significant imbalance, with 448 samples of different
stages of lung cancer. Specifically, stage I is a majority class
with 245 samples, while stages II, III, and IV have 110, 73,
and 20 samples, respectively. Section B of Figure 2 illustrates
the data after the implementation of the SMOTE algorithm,
and it is completely balanced with all classes now possessing
an equal number of 245 samples.

Table 4 displays the test results across different batch sizes,
highlighting a trend where increasing the batch size corre-
lates with a reduction in performance metrics. We utilized
the weighted average for the recall, precision, and f1-score.
Notably, the proposed model excelled and achieved identical

TABLE 3. Classification metrics per class based on different numbers of
PCA.

TABLE 4. Test results of the proposed model with 400 PCA across various
batch sizes.

results for a batch size of 32. Additionally, the performance
decreases when a batch.

Figure 3 illustrates the results of the proposed model
with and without PCA. Based on the analysis of the plot,
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FIGURE 3. The proposed model with and without PCA.

significant differences in performance metrics are observed
between the models. The proposed model achieved a recall of
0.97, while without PCA, achieved a recall of 0.93% which
is lower. Furthermore, the model with PCA demonstrated
a high precision of 97%, compared to 95% for the model
without PCA. The accuracy of the model with and without
PCAwas 97% and 93%, respectively. Moreover, the F1-score
improved to 97% with PCA compared to 93% without PCA.
More so, it is concluded that the usage of PCA enhances the
model’s ability to precisely identify positive cases and reduce
false negatives simultaneously, thus increasing the model’s
accuracy.

Figure 4 illustrates the outcomes of the proposed model
in terms of the training and validation accuracy, as well as
the loss values across different batch sizes (32, 64, 128, and
256) with 400 PCA to determine the optimal batch size over
500 epochs. In parts A, B, C, and D of Figure 3, it is shown
that the loss values of the training and validation decreased
continuously approaching zero. This is a good indication
that the proposed model learned effectively from the training
set. Furthermore, the training and validation accuracy in part
A surpasses that of parts B, C, and D. This indicates that
the proposed model shows strong generalization capabilities
when making predictions on new data. These graphical rep-
resentations distinctly illustrate that increasing the batch size
leads to an elevation in loss values. Therefore, it is evident that
the most suitable batch size for the proposed model is 32.

Figure 5 shows the confusion matrix of our proposed
model based on the 400 selected PCs for various batch sizes,
where part (A) indicates the model performance when a batch
size of 32 is utilized, while batch sizes of 64, 128, and 256 are
depicted in parts (B), (C), and (D), respectively. Overall, it is
observed that the model with a batch size of 32 surpasses
other batch sizes.

B. COMPARISON WITH VARIOUS MODELS
Table 5 provides a comparative analysis of our PCA-SMOTE-
CNN model against other solutions such as LungDWM
(Lung cancer subtype Diagnosis using Weakly paired Mul-
tiomics data), convolutional variational autoencoder (CVAE)

FIGURE 4. Accuracy and loss during training and validation across varying
batch sizes. In Figures A, B, C, and D of Figure 3, it is illustrated that the
loss values for both training and validation consistently decreased,
approaching zero.

or CVAE-based (MetaCancer), CC2DT, and SVMEnsem-
ble that were discussed in the studies presented in [37],
[38], and [40], respectively. All models utilized the inte-
grated mRNA, miRNA, and DNA methylation dataset.
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FIGURE 5. Confusion matrix of the proposed model based on 400 PCA using 32, 64, 128, and 256 batch sizes in (A), (B), (C), and (D),
respectively.

For fair comparisons with literature findings, we had to
adjust our model parameters and experimental conditions
to match closely with the aforementioned approaches.
Our method shows an accuracy of 0.97 outperforming
LungDWM (0.942), CVAE-based (0.888), CC2DT (0.824),
and SVMEnsemble (0.825). Furthermore, PCA-SMOTE-
CNN achieved a precision and f1-score of 0.97 surpassing
the f1-score for LungDWM (0.937), CVAE-based (0.904),
CC2DT (0.887), and SVMEnsemble (0.829). In addition, the
proposed model achieved a precision of 0.970 outperform-
ing the precision score for CVAE-based (0.916), CC2DT
(0.855), and SVMEnsemble (0.810). The proposed model
exhibited a recall of 0.97 outperforming the CVAE-based
(0.876), CC2DT(0.899), and SVMEnsemble (0.850). More-
over, we also implemented and utilized the long short-term
memory (LSTM) and multi-layer perceptron (MLP) models
on our integrated dataset. LSTMmodel achieved an accuracy
of 0.70, precision of 0.71, recall of 0.76, and F1-score of
0.69. However, the MLP model scored an accuracy of 0.93,
precision of 0.92, recall of 0.95, and F1-score of 0.93.

In summary, the proposed PCA-SMOTE-CNN model
appeared as a promising and effective approach for lung can-
cer classification using integrated multi-omics data, proving
excellent performance compared to the alternative models.

Table 6 demonstrates the comparison between the
proposed model with various machine learning models

TABLE 5. Comparative evaluation of our proposed approach to other
deep learning methods that integrate RNA, miRNA, and DNA methylation
data.

including K-nearest neighbors (KNN), Support Vector
Machines (SVM), decision trees (DT), GaussianNaive Bayes
(GNB), and Random Forests (RF) using the same inte-
grated multi-omics data and experimental condition. The
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TABLE 6. Comparison between the proposed model and different
machine learning models based on the integrated data.

PCA-SMOTE-CNNmodel performed better than other mod-
els achieving an accuracy, precision, recall, and an F1-score
of 0.970. Notably, SVM, GNB, and DT, also performed
well, with an accuracy of 0.93, 0.90, and 0.80 respec-
tively. In contrast, RF observed low performance with an
accuracy of 0.53 compared to other models. Overall, the
PCA-SMOTE-CNN model showcased outstanding perfor-
mance, highlighting its effectiveness in comparison to other
models. The model performance demonstrates that incorpo-
rating RNASeq, miRNA, and DNA methylation data types
further allows the machine learning algorithm to understand
detailed patterns in the dataset. This incorporation of different
molecular data gives the model a more complex understand-
ing of those underlying biological factors that contribute to
lung cancer. Therefore, this can lead to more precise classifi-
cations and predictions.

To fully test this model, three separate experiments were
conducted for comparison as illustrated in Figure 6. Next,
the applied DeepMO [42] computational model employs
deep neural networks structured on multi-omics data. This
involved the integration of three diverse omics data types:
Data on copy number variation (CNV) data, mRNA,
and DNA methylation. The result was an accuracy of
0.77. In contrast, multi-omics graph convolutional networks
(MOGONET) [43] proposed a novel multi-omics approach
that integrated mRNA expression data and DNA methylation
information with microRNAs to discriminate breast invasive
carcinoma and Alzheimer’s Disease patients against normal
controls. The accuracy of the MOGONET model was 0.81.
However, the final accuracy of an ensemble of decision trees
with gradient boosting (XGBoost) for applying to LUAD
on the integrated training dataset was 0.85 %. The most
important observation is that the proposed model seemed to
work better than the other models and in fact had a higher
efficiency.

Figure 7 presents the results of performance scores
obtained with the PCA-SMOTE-CNN model using single
omics data or integrated omics (miRNA, RNASeq, and DNA
methylation). The results indicate that the PCA-SMOTE-
CNN model demonstrates superior performance when inte-
grated with multiple omics data compared to using single
omics with accuracy, precision, recall, and F1 scores of 0.93,
0.96, 0.93, and 0.94 respectively. On the other hand, RNASeq

FIGURE 6. Comparison between the proposed model with different
model.

FIGURE 7. PCA-SMOTE-CNN performance when using the integrated
omics (mRNA, DNA methylation, RNASeq) dataset or Single-omics data.

accomplished an accuracy of 0.87, precision of 0.89, recall
of 0.87, and F1 score of 0.87. DNA methylation performed
0.83 for all metrics. miRNA had the lowest performance
with accuracy, precision, recall, and F1-score of 0.8, 0.79,
0.8, and 0.77 respectively. To compare, we utilized 100 PCA
components because there are relatively few probes (118) for
miRNA data.

Figure 8 illustrates the area under the curve (AUC) evalua-
tion metric when utilizing a single or a combination of omics
types. When using a single-omics type, miRNA performed
the best with AUC = 0.98, DNA methylation had a perfor-
mance with AUC = 0.92, and RNASeq ranked second with
AUC = 0.95. However, using integrated multi-omics data
enhanced the performance and achieved AUC = 1.00.

C. PROPOSED MODEL STRENGTHS AND LIMITATIONS
The strengths of the proposed architecture of the CNN
model lie in its ability to leverage multiple classification
models through a combination of PCA and SMOTE. PCA
helps to reduce the data dimensionality, potentially improving
model performance and generalization. Conversely, SMOTE
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FIGURE 8. Micro-averaged ROC curves using single-omics vs integrated
omics.

addresses class imbalances, which leads to a more balanced
dataset. However, despite the aforementioned merit, the lim-
ited availability of high-quality multi-omics data for lung
cancer may impact the robustness of the model. Moreover,
inconsistencies or inaccuracies in the collected data may
introduce bias and affect the reliability of the results.

Further suggested improvement can concentrate on com-
bining more classification models with the CNNmodel, opti-
mizing the hyperparameters, utilizing different techniques for
class imbalances, combining more methods for data reduc-
tion, and identifying Hub Genes. Despite these limitations,
the proposed PCA-SMOTE-CNNmodel significantly outper-
formed other models developed in previous studies. Further
research is necessary to evaluate the PCA-SMOTE-CNN
model’s performance on other medical problems.

V. CONCLUSION
This study focused on the comprehensive analysis of
LUAD development and progression by applying combined
datasets. To improve lung cancer classification and detection,
we designed a deep learning model that utilizes integrated
data from RNASeq, miRNA, and DNA methylation markers.
The experimental results indicated the effectiveness of the
proposed method in classifying and predicting lung can-
cer using the integrated dataset. Comparative analysis with
recent competitive techniques demonstrated that our pro-
posed method has an outstanding prediction performance,
as indicated by various evaluation metrics such as accuracy,
precision, recall, and F1-score. This indicates the potential
of our integrated approach to improve the diagnosis and
understanding of LUAD, contributing significant insights to
the domain of lung cancer-related research.

Future research in the domain of deep learning models for
improved classification and prediction of lung cancer using

multi-omics data could explore several promising directions
to enhance the field. For example, researchers can investi-
gate the inclusion of additional omics data types, such as
proteomics and metabolomics, to create a more comprehen-
sive and holistic view of the molecular landscape associated
with lung cancer. This expansion could potentially provide
richer insights into the underlying mechanisms and facilitate
more accurate predictions. Moreover, the focus on develop-
ing methods to enhance the interpretability of deep learning
models in the context of multi-omics data can be looked into
or investigated. Furthermore, transparent and interpretable
models are crucial for gaining trust in the clinical applica-
tion of these models and can aid researchers and clinicians
in understanding the biological significance of model pre-
dictions. As regards the implementation of a more robust
model, researchers could explore the option of transfer learn-
ing techniques that leverage pre-trained models on related
cancer types or datasets. Transfer learning has the potential
to improve model performance, especially when faced with
limited labeled data for lung cancer, by transferring knowl-
edge gained from other well-annotated datasets. Another
interesting study would be to conduct longitudinal studies
to capture the dynamic changes in omics profiles over time.
Longitudinal data can provide insights into the progression of
lung cancer and aid in the development of models that con-
sider temporal aspects, potentially leading to more accurate
predictions and personalized treatment strategies.
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Abbreviations Meaning
NCDs Non-communicable diseases
SCLC Small Cell Carcinoma
NSCLC Non-Small Cell Carcinoma
scRNA-seq Single-cell RNA sequencing
RNAs Cellular ribonucleic acids
mRNA messenger RNA
PCA principal component analysis
SMOTE Synthetic Minority Over-sampling
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CNN Convolutional Neural Networks
FFN Feed Forward Neural Networks
RNN Recurrent Neural Networks
AE Autoencoders
LUAD Lung adenocarcinoma
PPI protein-protein interaction
cfDNA cell-free DNA
TOO tumor tissue-of-origin
CUP carcinoma of unknown primary
ceRNA competitive endogenous RNA
KEGG Kyoto encyclopedia of genes and

genomes
GO gene ontology
SVM Support Vector Machine
ASD autism spectrum disorder
TCGA The Cancer Genome Atlas
SNPs single nucleotide polymorphisms
CPM count per million
CNV copy number variation
MOGONET multi-omics graph convolutional net-

works
LSTM long short-term memory
MLP multi-layer perceptron
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