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ABSTRACT A modern electric power system integrated with advanced technologies such as sensors and
smart meters is referred to as a ‘‘smart grids’’, aimed at enhancing electrical power delivery efficiency and
reliability. However, fault location and prediction can become challenging when dynamic fault currents from
renewable energy sources are present. To address these challenges, three unique deep learning models that
make use of Deep Neural Networks (DNN) have been proposed. CNN, LSTM, and Hybrid CNN-LSTM are
deep learning models. Line faulty identification (LF), fault classification (FC), and fault location estimate
(FL) are the subjects on which they concentrate. These models analyze data gathered both pre and post
faults occur in order to enhance decision making. Signals including the voltage and current were fed into
these models from many different locations across the test networks. Once the 1D CNN has extracted
characteristics from the gathered signals, LSTMuses these features tomake accurate estimations and identify
faults. Complex data are compatible with this method in terms of optimal outcomes. Using training and
testing data from transmission line failure simulations, the proposed approaches were evaluated on the IEEE
6-bus and IEEE 9-bus systems. The tests encompassed a range of fault classes, locations, and ground fault
resistances at various locations. Distributed Generator (DG) resources were additionally included in the
system architecture and changes in the topology of the networks were considered in terms of location and
number of DG resources. The results demonstrated that the proposed algorithms outperformed contemporary
technologies in terms of detection, classification, and location accuracy. They demonstrated high accuracy
and robustness in their performance.

INDEX TERMS Deep learning, smart grids, fault detection, fault classification and location, CNN, LSTM,
hybrid CNN-LSTM.

I. INTRODUCTION
A. RESEARCH MOTIVATION
Contemporary Energy SystemsWitness Growing Penetration
of Renewable Resources and Heightened Complexity Across
Distribution, Transmission, and Generation Components. All
aimed at fulfilling the escalating energy requirements. Over
the past few years, numerous developed nations have adopted
smart grids, leading to the comprehensive transformation
of traditional energy grids into adaptable, intelligent, and
collaborative systems. This transition facilitates the seamless
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integration of various distributed energy resources such as
solar, wind, and tidal energy along with advanced metering
and communication infrastructures. In transmission lines,
occurrences of power outages are significantly attributed to
unpredictable and irregular faults [1], [2], [3], [4], [5]. Power
system faults are unavoidable and cannot be ignored. The
fault detection and classification are paramount importance
for maintaining the stability of both conventional and smart
power grids.

Faults, especially transmission line faults and equipment
failures, can cause significant disruptions to the power
system, leading to power outages and equipment dam-
age. Therefore, accurate and timely fault detection and
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classification are essential for maintaining stable and safe
operation of the smart grid. A smart grids is a complex
and dynamic system that requires continuous monitoring
and maintenance to ensure reliability and efficiency. Fault
detection and classification are crucial tasks in the operation
and management of the smart grids. In recent years, machine
learning techniques have shown significant promise in fault
detection and classification in various domains, including
fault detection in smart grids [6], [7]. As stated in [8]and [9],
a majority of the faults within the transmission segment of
the power systemmanifest in transmission lines. Short-circuit
faults are prevalent and regarded as the most severe type,
posing substantial risks to transmission lines. These risks
include diminishing the operational lifespan of components,
elevating power losses, cable heat, and insulators damage.

B. LITERATURE REVIEW
In this literature review, we discussed the use of CNN and
LSTM for fault detection and classification in smart grids
(SGs). In recent years, machine learning techniques have
shown promising results in fault detection and classification
in various domains. In particular, recurrent neural networks
(RNN) have been widely used in time series analysis and
have shown excellent performance in various applications
such as speech recognition, natural language processing,
and financial forecasting. Long short-term memory (LSTM)
networks, a special version of RNN, are particularly suitable
for modeling temporal data with long-term dependencies,
making them ideal for detecting and classifying faults in the
smart grid. Moreover, a smart grid is a complex and dynamic
system that requires continuous monitoring and maintenance
to ensure reliability and efficiency.

Fault detection and classification are crucial tasks in
the operation and management of the smart grid. Con-
temporary power systems are transitioning into digital
and data-intensive environments. Numerous parameters can
now be measured across different terminals using phasor
measurement units (PMUs), involving various metrics such
as current, voltage, and frequency. These measures serve
as valuable input for intelligent detection and classification
algorithms. Additionally, the deployment of PMUs has
prompted new projects aimed at addressing the issues
of fault localization, categorization, and identification in
transmission lines. This is achieved through the utilization
of diverse measurements collected from various locations
within the power system. The rise of using PMUs has led to
the availability of extensive datasets, facilitating the broader
implementation of data-driven methodologies within power
systems, as demonstrated in [10] and [11].
In recent years, machine learning techniques have shown

significant promise for fault detection and classification in
various domains, including smart grids [12], [13]. Recurrent
neural networks, especially long short-term memory neural
networks, have demonstrated exceptional performance in
time series analysis. LSTM networks are particularly suited
for modeling long and short-term dependencies in sequential

data, making them ideal for modeling the complex and
dynamic behavior of smart grids. Several studies have
employed LSTM networks for fault detection and clas-
sification in smart grids [14], [15]. In [16], LSTM was
demonstrated to be effective for automatically extracting
features for accurate fault diagnosis in photovoltaic arrays.
Likewise, [17] established the superiority of LSTM in
diagnosing faults within wind turbines using multivariate
time series data.

In [18], the authors introduced a hybrid architecture that
combining CNN and LSTM. This model was trained to esti-
mate the distance to the fault location within a 220 km long
2-bus single-line test system, utilizing voltage and current
measurements. The effectiveness of this approach surpassed
that of alternative methods for accurately classifying faults
within transmission lines. In [19], the authors introduced
an amalgamation of LSTM with a calibration training filter
to classify faults in transmission lines.This approach was
evaluated on a 2-bus single-line test system 300 km in length.
The authors in [20] presented a CNN model to classify
and locate fault in 2-bus system in different architectures of
CNN with the penetration of DGs resources obtaining high
performance in terms of computation complexity and testing
time. A support vector machine technique accompanied
by wavelet transform was presented in [21] for feature
extraction to efficiently locate and classify the shunt faults
on transmission lines networks. This approach was tested on
a single 69 kV line spanning 29.4 km.

A transmission line fault classification technique based
on support vector machines (SVM) with different types of
training models was proposed by [22]. This method performs
effectively in fault classification when examined on a
transmission line. Nevertheless, previousmethodologies have
been implemented within the confines of two-bus, single-line
power systems. However, large-scale multi-machine power
systems possess a broader scope and increased intricacy,
necessitating the formulation of novel models to overcome
these challenges. in this study, the proposed models were
designed to accomplish the tasks of identifying the faulty
section, classifying the fault type, and determining the fault
location distance within the affected region.

In recent years, a variety of techniques have been proposed
for fault detection and classification, including the most
effective and widely used theories such as wavelet transform
(WT), artificial neural networks (ANN), and fuzzy logic in
addition to the combined of two or more algorithms such
as (WT-ANN) and neuron-fuzzy. Thus, wavelet transform
(WT) is commonly utilized for feature extraction across
different frequency ranges. For example, authors in [23] and
[24] offered a WT-based strategy to record high-frequency
traveling waves for fault detection, classification and phase
selection of faults.

A feed-forward neural network, combined with a back-
propagation algorithm, was employed for fault detection
and classification. This involves using three-phase voltages
and currents as inputs to the neural networks [25]. In [26],
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a fuzzy system was introduced to enhance detection and
classification performance, and combined techniques have
been extensively used. The use of the two algorithms
overcomes different drawbacks and improves the detection
and classification accuracy in addition to the benefits
of using each algorithm and combining them together.
Additionally, these algorithms can overcome the system
challenges represented by the complexity of the designed
power system network.

However, the combination of ANN and wavelet transform
was presented in [13] and [27] for transmission-line fault
detection and classification. Furthermore, fuzzy logic with
WT was developed to identify various faults in an electrical
distribution system [28]. Deep learning has been categorized
as an end-to-end model, demonstrating superior performance
in handling large datasets compared to traditional models,
which rely onmanually created features. Study in [29] offered
different promising new models named as DBN (deep belief
network), LSTM, and CNN, for fault classification tasks.

A novel self-attention convolutional neural network
(SAT-CNN) model was introduced for the detection and
classification of transmission line faults [3], [25]. Their
notable advantage lies in their ability to implicitly focus on
output information from hidden layers, thereby enhancing the
classification accuracy of the proposed system. In addition,
authors in [30] utilized a convolutional neural network (CNN)
as a classifier for utilizing bus voltages to locate the faulted
line. Despite the effectiveness of deep learning-based models
in fault detection and classification, practical application can
be challenging owing to the limitations inherent in their main
structures.

However, LSTM is particularly effective in capturing
the temporal correlations present in time-series data. For
instance, authors in [32] introduced DWT-LSTM for fault
detection in insulated overhead conductors of transmission
lines. However, LSTM struggles with the extraction of the
spatial features. Therefore, this challenge was addressed
using a combination of CNN and LSTM structures which
offers a solution for extracting spatial and temporal features
simultaneously.

A combination of CNN and LSTM deep networks was
introduced for sentiment analysis of Twitter datasets owing
to its ability to analyze large datasets [33]. As a result,
a model integrating CNN and bidirectional LSTM networks
was proposed for network intrusion detection. While the
fusion of CNN and LSTM architectures effectively extracts
spatial and temporal features, they often underutilized the
concept of multi-channel input, where diverse features or
regions are simultaneously fed into deep neural networks
in a parallel multi-channel manner. Therefore, Incorporat-
ing the multi-channel approach facilitates multi-angle and
multi-directional feature extraction and expression, thereby
enhancing the classification accuracy.

Additionally, it is worth noting that CNN-LSTM
serves as an assumption-free algorithm capable of effec-
tively managing complex non-linear dynamics within

higher-dimensional noisy spaces. A CNN-LSTM hybrid
model was presented by the authors in [34], with the purpose
of identifying unusual events in solar power generation.
Although other machine learning techniques encountered
challenges, the model performed exceptionally well. With the
extraction of relevant features from the PV power output-
influencing factors, the hybrid model forecasts PV power
generation efficiently.

A comparative analysis was conducted against several
machine learning techniques to showcase the efficacy of
proposed models. In summary, the use of CNN and LSTM
neural networks for fault detection and classification in smart
grids has shown significant promise. LSTM networks are
particularly suited for modeling the complex and dynamic
behavior of a smart grid, making them ideal for fault detection
and classification. The proposed methods have achieved high
accuracy in fault detection and classification, outperforming
the traditional methods.

C. RESEARCH GAP
Protection algorithms in power systems can be broadly
categorized into two approaches: (1) the utilization of
‘‘conventional’’ protection devices and (2) the application
of AI-based algorithms. Traditional methods encounter
limitations owing to the fault resistance and signal distortion
caused by noise. The motivation for seeking another solution
lies in the potential to expedite power supply restoration to
customers by accurately pinpointing fault locations. Conven-
tional techniques entail intricate calculations and may result
in errors when estimating fault locations. These challenges
can be effectively addressed by using AI-algorithms [35].

Recently, a significant amount of research has been
directed towards investigating protection challenges within
ring grids. A solution involving artificial neural networks
(ANN) with communication among protective devices (PDs)
was introduced in [36] to address this issue. Addressing the
same concern, [37] and [38] focused on the utilization of
directional relays. Furthermore, [39] and [40] and explored
the using ofmulti-agent systems (MAS) to identify faulty sec-
tions within the grid. It is noteworthy that the aforementioned
studies did not emphasize the on penetration of distributed
generation (DG)-based inverters.

Recent developments have led to the establishment of
diverse methodologies that specifically consider the presence
of DG-based inverters. In [41] and [42], a fault detection
approach utilizing the discrete wavelet transform (DWT) and
artificial neural networks (ANN) was introduced. Despite
this, the presence of extensive transient data required for
ANN training results in low accuracy, which calls for
enhancement. Regarding [43] and [44], a protective system
that depends on communication was established following
the guidelines of the IEC 61850 standard. Nevertheless,
additional information is required to thoroughly assess the
dynamic behavior and inherent communication attributes of
the system. In [45] and [46], a protection approach for an
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isolated medium voltage direct current (MVDC) micro-grid
was examined.

A communication-based DC directional overcurrent pro-
tection method is implemented to isolate the faulted section
of the grid. In the context of [47] and [48], the feasibility
of Wireless Fidelity (Wi-Fi) in a communication-oriented
protection coordination strategy is explored. Nevertheless,
considerations regarding the security and susceptibility to
interference of the Wi-Fi protocol must be addressed,
followed by experimental verification. Previous research has
primarily focused on solutions reliant on communication,
often neglecting considerations of potential communication
breakdowns.

Within the context of [49], an examination was conducted
regarding the protection requisites for substantial photo-
voltaic (PV) integration. The outlined protection strategy
relies on communication between overcurrent protections to
detect faults, yet the findings are constrained to situations
involving symmetrical faults. The authors in [50] focused
on fault location in radial system using KNN and SVM
based on the voltage of the faulty section and DG sources.
In this study, the proposed approach can detect, classify
and identify faulty lines in an entire ring system without
requiring communication facilities or traditional protections
relays. Subsequently, the impact of distributed generation
(DG) penetration on conventional protection schemes is
investigated considering the topological change during the
occurrence of faults in terms of the presence of renewable
energy sources in the various parts of the network. Finally,
a comprehensive representation of the proposed protection
scheme involving various fault scenarios was provided.

D. CONTRIBUTIONS
This study aims to detect, classify, and localize faults that
occur in power transmission lines and distributed system.
To address the challenge of handling vast amounts of data
encompassing diverse fault scenarios, a different optimized
deep neural network approach is proposed. The fault
scenarios were simulated within the MATLAB environment,
utilizing the two IEEE test networks. This evaluation
demonstrates the superior efficacy of the proposed method
compared to existing approaches. Prior to this study, earlier
research in the realm of ring systems and large-scale multi-
machine power system did not encompass the simultaneous
incorporation of the fault class (FC), line fault (LF), and fault
location (FL) models simultaneously.

This study aims to introduce and evaluate various models,
with a particular focus on the precision of responses including
line fault identification, classification of fault types and
fault location estimation. The proposed models introduces
an innovative algorithm that is appropriate for identifying
the faulty line, analyzing the fault, and estimating precise
location of fault scenarios. These algorithms provide higher
accuracy and robustness by monitoring and modeling the
entire sequence, which captures the transient phase and

reflects a distinct system reaction to a fault. This study made
significant advances in the following areas:

• The proposed algorithm (hybrid CNN-LSTM) model
combines the advantages of our customized CNN,
which is responsible for extracting relevant fault features
from the signal, and then serves as an input for our
manipulated LSTM, which results in high accuracy.

• The proposed method has proven its immunity and
robustness in terms of network topologies (grid-
connected,island-modes) and operation conditions that
include fault scenarios and network specifications.

• The proposed methodology overcomes the computa-
tional burden by reducing the computational complexity
according to mathematical equations to practically reach
the optimal hyperparameters of the proposed model.

• To validate and assess the performance of the proposed
algorithm, a meticulous evaluation of the model accu-
racy was conducted and discussed according to metric
factors including Precision, Recall, F1-score, Sensitivity
and Dependability.

II. THE IMPACT OF DG PENETRATION LEVEL ON THE DS
PROTECTION
As renewable energy (RE) penetration levels increase over
time, the complexity of hybrid power systems also increases.
This, in turn, complicates the design, operation, and control of
these power systems. Employing suitable methods is crucial
to distinguish between normal and abnormal operating condi-
tions. The grid-connected might become disrupted owing to
abnormal circumstances, resulting in an island-mode scenario
where the distributed generator sources continue to provide
power to local loads. Similarly, fault disturbances can arise
from various types of defects occurring between the phases
and the ground. There are many protections issue in smart
grids that should be taken care to prevent fault current to flow
from the micro-grid side to the grid sides as follows:

• Dynamics in level of fault current
Distributed generators have a significant effect on the
fault current levels. Furthermore, the magnitude of the
fault current fluctuates based on the operating modes
of the micro-grid (MG). Figure 1 a illustrates that in
the event of a fault, indicated by the red line, the fault
current is contributed by both G1 and G2 renewable
resources. Consequently, the fault current If is the sum
of IGf , IG1, and IG2. This scenario pertains to the
grid-connected mode. When the grid disconnects from
the rest of the network because of a circuit breaker
opening, meaning that the two DG sources disconnect
from the main grid, the fault current becomes equal
to the sum of only these DG sources, as shown in
Figure 1 b. Thus, the fault current changes according to
the operation mode. Furthermore, depending on the type
of DG integration, inverter-based DG limits the fault
current to two per unit of the rated current in the case
of a fault inception. Conversely, for asynchronous-based
DG, the fault current increases to five times the rated
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current, which reduces the sensitivity of the protection
devices.

FIGURE 1. Magnitude of fault current in micro-grid.

• Bi-directional fault current
The integration of DGs sources alters direction and
magnitude of fault current. In Figure 2, when fault F1
occurs on the lower-voltage side, as indicated by the red
line, the fault current is contributed by G1 in a left-to-
right direction. However, if a fault occurs at the LV side
or grid-side denoted as F2, G1 contributes to the fault
current in the right-to-left direction. This implies that the
direction of the fault current contributed by a particular
DG varies based on the fault’s location relative to the
DG position. Overcurrent relays are commonly used in
distributed system. Therefore, traditional unidirectional
overcurrent relays cannot adequately protect the safety
of MG. For mesh networks, this issue has been
addressed by employing directional overcurrent relays,
that consider the fault current direction. Currently, with
the integration of renewable energy into the distribution
network, relying solely on traditional overcurrent relays
is insufficient. It is necessary to incorporate directional-
ity aspects into existing relays or utilize AI algorithms
to address the complexities of smart grids protection.

FIGURE 2. Bi-directional fault current in micro-grid.

• False Tripping
Another issue of concern is false tripping, which refers
to the unnecessary interruption of power to loads
connected to a healthy feeder.This issue arises when
a distributed generator in a healthy feeder causes a
malfunction in a nearby feeder. To further illustrate,
consider a simple grid with two feeders as shown

in Figure 3, each equipped with its own protection
relay. For instance, when a fault occurs in feeder2,
G1 contributes current to the fault point, and the
grid also supplies some current to this fault point
(IF = Igrid + IG1). When the fault current contribution
from G1 exceeds the current setting, Relay 1 (R1) is
tripped before the operation of the relay in the faulted
feeder, Relay 2 (R2). Consequently, this results in an
unnecessary power interruption for loads connected to
healthy feeder1.

FIGURE 3. False tripping in micro-grid.

• Blinding of Protection
In a micro-grid system integrated with numerous Dis-
tributed Generators along the feeder, there is a notable
effect on the fault current level. Consequently, the
contribution of utility grid to the fault current decreases
when DG sources participate, and the feeder relay may
no longer detect the fault state. This type of occurrence
is usually referred to as ‘‘blinding of protection,’’ and
it is represented in Figure 4. IGF represents the fault
current contributed by themain grid, and IGF1 represents
the fault current contributed by DGs sources. Initially,
assuming the absence of DGs, IGF is equal to zero,
indicating that the fault is entirely supplied by the grid
through IGF .
However, when DGs is present, the fault current is
contributed by both the DGs and the grid ( IF = IGF +

IGF1). The settings of the particular relay are based on
IGF , which represents the fault current contributed by
the grid system. However, owing to the integration or
penetration of DG renewable sources, the fault current
remains relatively constant and falls below the set value
of the overcurrent relay. This causes the relay do not
respond to the fault because it cannot detect it, thus
leading to the phenomenon of ‘‘Blinding of Protection’’.

FIGURE 4. Blinding of protection in micro-grid.

III. MATERIAL AND METHODOLOGY
Initially, we present an overview of the created dataset,
followed by a description of the data preprocessing
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method. Finally, we describe the theoretical foundations and
architecture of the proposed hybrid deep learning models.

A. DATA COLLECTION AND TRAINING PROGRESS
In this study the data set will be generated through MATLAB
simulation for two test network IEEE 6-bus and IEEE 9- bus
test system. Figure 5 and 6 show the single-line diagram
of the IEEE 6-bus and IEEE 9-bus test systems to simulate
different fault scenario in a transmission line system with
DGs penetration in different location. We consider the IEEE
6-bus with four machines, seven transmission lines and three
loads [51]. A standard IEEE 6-bus test system equipped
with two types of DGs, a PV inverter-based with 20 mw
and wind turbine synchronous with 30 mw was selected and
located on (Bus5 and Bus6) respectively [52], as depicted in
Figure 5.While in the IEEE 9-bus test system equipped with
three types of DGs, two PV inverter-based with 30 mwwhich
located on (Bus6 and Bus8) respectively and wind turbine
synchronous with 50 mw was selected and located on Bus5
as shown in Figure 6.

FIGURE 5. IEEE 6-bus System with DG penetration.

Furthermore, the popular western system Coordinating
Council (WSCC) or (IEEE 9-bus) 3-machine, 9-bus system.
The system consists of three generators, three transformers,
three loads, and six transmission lines. The IEEE 9-bus
system was employed as an electric distribution system.
In this study The IEEE 9-bus transmission setup has been
adapted to serve as a distribution system. Data generation
during the simulation is as a result of the time sequence of
the fault scenarios. These values greatly help us in analyzing
the Fault occurred. The timer determines the time span
considered for capturing fault data. The feature data (voltage
and current signal) and its corresponding classes are exported
from the workspace as a CSV file to use them in training
progress without any further transform process.

The training data set (MATLAB simulation data) have a
total of 115220 × 60 instances for the IEEE 6-bus network
and 51840 × 45 instances for the IEEE 9-bus network.
The collected features were fed into various types of deep
learning algorithm to predict fault class (FC), line faulty

FIGURE 6. IEEE 9-bus System with DG penetration.

(LF) and determination the fault location (FL) as a response
to proposed algorithms. During the data collection process,
various fault resistance (10 value) was considered as shown
in Table 1 and 2 to simulate setup for fault and non-fault
scenarios with the total number of cases in each class, this
includes both low and high settings.

Fault resistance and the fault inception angle, holds
significant importance in fault detection within electrical
systems, as they experience alterations during fault incidents.
These changes result in voltage and current fluctuations
within the affected section. Thus, integrating diverse fault
resistance values into the data collection process plays a
crucial role in elevating the accuracy of fault identification
techniques. Table 3 and 4 illustrate the detail for each class
and number of symbols generated for each class.

The input vector of features consists of numerous training
and validating samples,each consisting of a long sequence of
high-dimensional vectors produced from the real measure-
ments of 3-phase voltages as well as currents signals obtained
at different locations as illustrated in Figure 7. This study
presents three novel classifiers. The primary objective of the
first classifier is to detect the fault types. Subsequently, for
each given location, a classifier is built to categorize faulty
lines based on fault types, aiding in fault diagnosis within that
area. Finally, the third classifier model is used to estimate the
location percentage and calculate the distance fromwhich the
fault occurred inside the predefined region.

The diagram in Figure 8 illustrates a comprehensive
flowchart of the suggested fault identification, classifica-
tion, and estimated location methodology. This algorithm
comprises three key stages: identifying the fault region,
classifying its type, and predicting the fault distance.

B. DATA PREPROCESSING
The preprocessing of data involved collecting and storing
data in a data frame with specific variable names such
as fault type, faulty line, fault location, fault parameters,
sample number, and measurements of three-phase voltage
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TABLE 1. Simulation setup for fault scenarios with the total number of cases in each class.

TABLE 2. Simulation setup for non-fault scenarios with the total number of cases in each class.

TABLE 3. Total No. of samples for IEEE 6-bus network.

TABLE 4. Total No. of samples for IEEE 9-bus network.

and current amplitudes. The fault types included 10 different
fault classes listed as AG, BG, CG, AB, BC, CA, ABG,
BCG, CAG, and ABC/ABCG fault. The number of fault
varies from zero to ten, where label 0 represents non-fault
signals, and fault types one to ten represent different fault
types on the transmission line. The fault location included
nine different fault locations listed as 10%, 20%, 30%,
40%, 50%, 60%, 70%, 80%, and 90% of the transmission
line length. The faulty lines are different for each network
type. For the IEEE 9-bus and 6-bus were (6) and (7)
respectively. In addition to the aforementioned process,

FIGURE 7. Protection scheme diagram for proposed methodology.

three-phase current and voltage amplitudes from all busbars
were measured through the simulation. The final dataset,
which included training, validation, and testing, was utilized
to train the proposed algorithms.

For data preprocessing, we used two fundamental data
preprocessing techniques: data conversion and data nor-
malization which have been widely used. Data conversion
involves transforming the features of the voltage and current
signals from nominal to numeric format, ensuring all data are
in a numerical state for compatibility with the deep learning
model. In contrast, data normalization is implemented to
mitigate the significant variance among features, narrowing
down to a specific range of values [53]. During this process,
null and overlapping values were eliminated, and we used a
minimum-maximum scaling strategy, as shown in equation 1,
to address the normalization of larger values and reduce their
influence. This techniqueworkswith values between zero and
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FIGURE 8. Flow chart of proposed protection scheme.

one.

x_normalized =
x − x_min

x_max − x_min
(1)

where x is the original value, xmin is the minimum value, and
xmax the maximum value. Sample fault signals for different
fault types, including single line to ground fault (SLGF), line
to line fault (LLF), and three line fault (LLL), which took
place on the transmission line, are depicted in Figure 9.

C. LSTM
Recently, the advancement of deep learning techniques has
established the recurrent neural network (RNN) as one of
the most powerful models for classification tasks that involve
sequential data.Moreover, the RNN is capable of establishing
correlations between current and past information within the
network. However, despite its ability to learn from sequences
of any length, RNN are plagued by issues such as gradient
exploding and vanishing. These issues can be addressed by
employing a specialized type of RNN known as LSTM.

The fundamental concept that drives the LSTM model is
the cell state, which distinguish it distinct from other recursive
neural networks. LSTM is designed to learn long-term
dependencies within a network. Based on the input Xt , LSTM
creates a temporal feature vector ht at each time-step by
updating its cell state (temporal memory). The LSTM model
is characterized by three primary gates: the forget gate, input
gate, and output gate, as illustrated in Figure 10. Using the
sigmoid activation function (σ ), the forget gate (ft ) controls

the amount of data removed from candidate memory cell state
(c∗t ) and decides whether to utilize memory from the previous
time-step. Its output ranges between zero and one, indicating
portion of the input to be transmitted to the output.

The decision of whether and how much new information
should be included in the current time-step is made by the
‘‘update gate,’’ which is represented by (it ). The memory
must be updated at each step, which is accomplished
using (c∗t ). The ‘‘output gate’’ (ot ) controls the quantity
of information from the previous time-step that should
be combined with the current time-step information and
passed on to the subsequent time-step [34], [35], [36].
equations 2 and 3 below provide a mathematical description
of how the LSTM model works.

it = σ
(
Wi ⊙

[
h(t−1),Xt

]
+ bi

)
ft = σ

(
Wf ⊙

[
h(t−1),Xt

]
+ bf

)
C∗
t = σ

(
WC ⊙

[
h(t−1),Xt

]
+ bC

)
Ot = σ

(
WO ⊙

[
h(t−1),Xt

]
+ bO

)
 (2)

where Wf , Wi, Wc, and Wo represent the input weight
vectors.while bf , bi, bc, and bo representing the bias vectors.
The memory cell value (Ct ) and output (ht ) of the network
are obtained using the following equations:{

Ct = C(t−1) ⊙ ft + C∗
t ⊙ it

yt = Ot ⊙ tanh (Ct)

}
(3)

LSTMmodels were trained using the Python programming
language with Keras on Google Collaboratory, which has
GPU capability. In two case studies on the IEEE 6-bus
and IEEE 9-bus system, the performance of the suggested
structural technique for identifying, classifiying, and locating
faults (FC, LF, and FL) in power systems was evaluated.It is
crucial to evaluate performance of the proposed classifiers
using testing data once the LSTM models have been
trained. In general, the proposed LSTM model illustrated
in Figure 11, were examined and meticulously evaluated
using the F1-score, Accuracy, Recall, and Precision criteria.
Custom splitting was used to train the LSTM models for
each of the three scenarios’ FC, LF and FL with 70% for the
training set, 10% for the validation set and 20% for the testing
set, the number of epochs was 100 and the learning rate equal
to 0.001 and Adam optimizer was used. The hyper parameter
configuration is presented in table 5.
To explore the computational complexity of a given model,

we select the optimal input parameters and hyperparameters.
Because of computational limitations, exhaustive testing of
all parameter combinations is impractical, therefore, we focus
on key parameters that are likely to have the greatest impact
on the computational complexity of the system. Specifically,
the selected hyperparameters for this study focused on the
number of (convolution layers and dense layers), as well as
the size of (pooling, filter, neuron, and convolution kernel).
The most significant layers were convolutional, pooling, and
dense layers. Therefore, we can mitigate time complexity
by carefully selecting the number of convolutional and fully

59960 VOLUME 12, 2024



A. S. Alhanaf et al.: Fault Detection and Classification in Ring Power System With DG Penetration

FIGURE 9. Fault Signal waveforms with different fault resistance. (a) Voltage of AG fault, (b) Current of AG fault, (c) Voltage of BCG fault (d) Current of
BCG fault, (e) Voltage of ABCG fault, (f) Current of ABCG fault.

FIGURE 10. Architecture of single LSTM cell.

connected layers. The time complexity of the convolutional
layer can be computed using equation 4:(

d∑
n=1

kn−1 · s2n · fn · l2n

)
· r1 · b1 (4)

where, d represents the depth of the convolutional layer, ln is
the length of the output feature map, fn denotes the number of
filters in the n-th layer, Sn represents the length of the filter,
kn−1 specifies the number of input channels in the (n − 1)
layer, r1 indicates the learning rate, and b1 represents the
batch size.

The batch size and learning rate are two critical parameters
which significantly affect the computational complexity.

TABLE 5. Hyperparmater selection.

Therefore, Increasing the batch size led to an increase in the
computational burden of the model and vice versa. However,
it is crucial to consider the product of these two parameters
to measure the complexity of the model accurately. In a fully
connected layer, every parameter is interconnected,thereby
establishing a link between the higher and output layers. This
layer comprises varying numbers of neurons that influence
the output size. To assess the total complexity of all fully
connected layers within the model, it is essential to multiply
the parameters of each layer (including the height and width
of the input), number of neurons, and input dimension.
Subsequently, summing the complexities of all the layers
yields the total complexity of the fully connected layers in
the model. The time complexity of the fully connected layer
can be determined using equation 5: f∑

l=1

D ·W · H · N

 (5)
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FIGURE 11. Block Diagram of Proposed LSTM.

where l represents the depth of the fully connected layer, and
D, W , H , and N denote the dimensions of the input/output
channel, width of the input, height of the input, and number
of outputs, respectively.

The classification process occurs during the design stage of
the network architecture. The input layer was constructed to
receive exactly the same input signal as the order input layer
at this point. The hidden layer of the network is composed of
three LSTMhidden layers with 80, 50 and 30 cells. To prevent
overfitting, a dropout layer was included between each LSTM
layer, resulting in a total of three dropout layers.

Subsequently, for classification purpose, a fully connected
layer with a size of 11 was placed at the final stage of the
structure for both faulty and non-faulty cases for the FC
classifier and a size of 10 for the FL classifier. While for
the LF the fully connected layer has a size of 8 in IEEE
6-bus and a size of 7 in IEEE 9-bus. The fully connected
layer is followed by a softmax layer and a classification layer,
which predict the probability of each fault class, line faulty
and fault location, respectively. Once the network settings are
complete, the network training stage and validation process
proceed. Finally, the network was tested using a testing
dataset to classify the fault type and fault location on the
transmission line, the results obtained are listed in Table 6.

D. CNN
Recently, advanced machine learning techniques, in partic-
ular, 1D convolution neural networks (CNNs) and recurrent
neural networks (RNNs), have demonstrated remarkable
performance in tackling demanding activity recognition and
classification tasks. It’s worth noting that these algorithms
achieve such coups with little or no manual feature
engineering, instead relying on feature learning from raw
data. CNN architectures are versatile in their capability
to accommodate various input data formats, including 1D,

2D, and even higher-dimensional representations. These data
shapes typically involve a range of 1 to N channels. For the
model proposed in this study, we specifically utilized the 1D
input data format which ismore suitable and effective for time
series data.

Each CNN neuron’s output is computed based on its
inputs as well as the weights and biases of neurons in
the layers of the network architecture that come before it.
Accordingly, the weights and biases associated with each
layer can be adjusted separately by applying the subsequent
equation to the preceding layers of the network’s architecture.
Consequently, the weights and biases pertaining to each layer
can be individually updated using the equations 6 and 7:

1wi(t + 1) = −
αr
n
wi −

α

n
×

∂C
∂wi

+ m1wi(t) (6)

1bi(t + 1) = −
α

n
×

∂C
∂bi

+ m1bi(t) (7)

where wi and bi represent the weight and bias of a neuron,
respectively. The regularization parameter is indicated by
α, and the learning rate is given by r . The numbers n
and m represent the total number of samples used for the
training and momentum respectively. The cost function is
represented by C , whereas the updating step is indicated
by t . Throughout the training process, these parameters
are iteratively adjusted and fine-tuned to achieve optimal
performance. Within the depths of a deep convolutional
neural network (CNN), two discrete operations stand out: the
convolution and pooling layers. These strata of the network
are aptly labeled as convolutional and pooling layers as
shown in Figure 12. A number of filters across the input
were combined in the convolution layer to create a unique
feature vector. In one-dimensional data, convolution has the
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TABLE 6. Layer characteristic detail of proposed LSTM.

following mathematical definition in the equation 8:

yi(k) =

N−1∑
n=0

xi(n)h(k − n) (8)

where n is the number of elements in the output vector
yi at position K , h is the filter, and N is the number of
elements in the input vector Xi. Conversely, the pooling
process (also known as down-sampling) at the pooling
layer minimizes the output dimensions of the convolutional
layer. This reduction aids in decreasing the computational
complexity and mitigating overfitting concerns. A pivotal
hyperparameter within CNN architecture is the number of
filter maps. It is possible to explore a spectrum of values,
such as (8, 16, 32, 64, 128, 256), based on the task’s
inherent complexity. Another vital hyperparameter for a 1D
CNN is kernel size (3,5,7,..). This kernel size regulates the
number of time steps considered during each ‘‘reading’’ of
the input sequence, which is subsequently projected onto the
feature map via a convolutional process. A larger kernel size
implies a more relaxed data analysis, potentially yielding a
broader and more generalized representation of the input.
One-dimensional convolutional neural networks (1D CNNs)
offer distinct advantages and are therefore favored over their
two-dimensional counterparts when handling signals in a
one-dimensional format. This preference is attributed to the
following reasons [54], [55]:

• The computational complexities of the 1D and 2D
convolutions exhibited a noteworthy distinction. Specif-
ically, when convolving an image with dimensions NxN
using a KxK kernel size, the computational complex-
ity is approximately O(N 2K 2) for 2D convolutions.
In contrast, the complexity of the corresponding 1D
convolution with the same dimensions (N and K ) is
nearly O(NK ). This indicates that the computational
complexity of a 1D CNN is significantly lower than
of a 2D CNN with the same configured network, and
hyperparameter settings.

• In a broad analysis, particularly based on recent studies,
it is notable that the majority of 1D CNN applications
tend to adopt compact configurations, typically with
fewer than 10,000 parameters and networks with 1-2
hidden CNN layers. On the other hand, almost all 2D

FIGURE 12. Layer details of proposed 1D-CNN.

CNN applications choose ‘‘deep’’ architectures, which
frequently include more than one million parameters
(typically more than ten million). Clearly, networks
with shallower architectures are considerably more
straightforward to train and implement.

• Deep 2D CNNs typically require a certain hardware
configuration, such as GPU farms or cloud computing.
In contrast, for compact 1D CNNs with a small number
of neurons (less than 50) and hidden layers (two or
fewer), training on a conventional computer with a CPU
is both possible and relatively quick.

• Concise 1D CNNs have low computational burden
requirements, which makes them ideal for real-time and
cost effective applications.

E. HYBRID CNN-LSTM
In this study, CNN layers were employed to capture
localized features from time-series data of voltage and
current inputs across all lines within the test network,
following a preliminary preprocessing stage. 1D CNNs are
useful for time-series applications because they automatically
extract hidden properties from data that might not be
visible in the temporal dimension by using convolution
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FIGURE 13. The proposed framework of hybrid deep CNN-LSTM.

kernels. Subsequently, the LSTMarchitecture use the features
extracted by the encoder (CNN) as the input.

During the training process, both the training data and
the numerous gates within the LSTM network were con-
tinuously adjusted, enabling the LSTM model to identify
the relationships within the input and output sequences. The
architecture of the proposed hybrid deep learning system,
which incorporates CNN and LSTM layers, is shown in
Figure 13. The CNN feature extraction block consists of
two consecutive layers of 1D convolution. We have added
a maxpooling layer, drop out layer, and rectified linear
unit (ReLU) layer in between, these subsequent layers of
convolution neural networks to prevent overfitting issue.

The input feature was passed through the kernel layer,
which was is 3 × 3. Subsequently, two convolutional layers
were utilized to extract the feature maps with a convolutional
sizes of 32 and 64 accordingly.

Stacking a several convolutional layers inside a deep
learning framework enables the initial layers to extract
and capture low-level characteristics from the input data,
which makes this configuration of convolutional layers very
effective. It is worth mentioning that the convolutional
layers maintain precise feature location data from the
input sequence. Therefore, even with small changes in the
placements of the input features,unique feature maps were
obtained.

We add a pooling layer after the convolutional layer to
overcome this limitation and improve the model’s ability to

learn complicated structures. A maxpooling layer (downsam-
pling approach) was incorporated into the model to lower
the spatial dimensions of the feature maps by a factor of
20%. This decrease in spatial dimensions contributes to a
reduction in the overall computational burden. We also used
the ReLU activation function, which is well-known for its
ability to withstand the vanishing gradient issue. Researchers
have used this activation function extensively to increase the
trainability and learning capacity of the model by adding non
linear aspect to increase the model complexity to solve more
complex problems.

A useful method for decreasing the issue of overfitting
in any deep learning model is to incorporate a dropout
layer. During training, a portion of the neurons in this
layer are randomly deactivated. To reduce the overfitting
problem, we added a dropout layer after each CNN feature
extraction layer as well as in the LSTM layers. The final
output is created by connecting the results of the sequential
learning segment to a dropout layer, and then to a fully
connected layer. Three LSTM layers, 128, 64, and 32,
each with a different number of neurons were used in
the sequence learning component. For the first two LSTM
layers, we set the parameter ‘‘return sequence’’ to the state
‘‘true’’. As a result, the output will be the entire sequence
of hidden states without deleting anything. However, in the
last LSTM layer, we set the ‘‘return sequence’’ to the state
‘‘False’’ to consider only the hidden state of the last time
step.
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TABLE 7. Performance metrics of LSTM for each classifier (FC, LF and FL) in IEEE 6-bus.

IV. SIMULATION RESULT AND EXPERIMENTAL
VALIDATION
A. CASE STUDY 1: IEEE 6-BUS TEST SYSTEM
The effectiveness of the proposed hybrid deep learning
approach was assessed by conducting a series of simulations
aimed at classifying three distinct types of faults: fault
Class, faulty Lines, and fault Location. For these simulations,
we utilized a standard IEEE 6-bus test system equipped with
distributed generators (DGs). This network consist of six bus-
bars, seven line segments, three loads, and two DGs, located
at bus-bars 5 and 6 near the load section. The DG at bus-5
had a power rating of 20 MW, while the DG at bus-6 had a
power rating of 30MW, both with an X/R ratio of 10. Despite
the relatively short distances between nodes in distribution
networks We utilized the pi-line model to accommodate the
capacitive characteristics of the transmission lines.

This enable us to collocate amore accurate training dataset.
Simulink in MATLAB 2022b is used as the simulation
environment. The proposed models were developed using
Python, utilizing the Keras library with the TensorFlow
backend engine. MATLAB Simulation was used to create
time-series data for the voltage and current signals. An Intel
CORE i7-10510U CPU running at a 2.2 GHz base clock and
2.30 GHz turbo boost, paired with 16 GB of RAM, was used
for all experiments. The generated dataset was divided into

three subsets: 70% for training, 10% for validation, and 20%
for testing. For the testing phase, 20% of the data from each
class were used.

The performance evaluation of the proposed classifiers for
FC, LF, and LF was demonstrated by using LSTM, CNN, and
hybrid CNN-LSTMmodels, respectively. n-actual refer to the
number of actual cases in a class while n-classified mean
number of cases belonging to a class. The performance of the
proposed model was evaluated using various metrics, such
as Accuracy, Precision, Recall and F1-Score. Together, these
metrics offer a comprehensive evaluation of the accuracy of
classification model, the ability to detect relevant instances,
and the balance in minimizing both false positives and
false negatives. These metrics prove particularly valuable in
scenarios where the costs or impacts of classification errors
vary significantly.

• Precision evaluates the precision of the positive pre-
dictions generated by a model by determining the
ratio of true positives to the total number of predicted
positives. A high precision value indicates that the
model’s positive predictions are likely to be accurate.
Precision is particularly beneficial in scenarios where
the cost associated with false positives is significant
because it reduces the probability of erroneous positive
predictions.
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TABLE 8. Performance metrics of CNN for each classifier (FC, LF and FL) in IEEE 6-bus.

• Recall, alternatively referred to as the Sensitivity or
True Positive Rate, quantifies the capacity of a model to
accurately detect all relevant instances within datasets.
It computes the ratio of the true positives to the total
number of actual positives. A high recall score indicated
the effectiveness of the model in capturing the majority
of positive instances in the datasets. This is essential
in situations where the omission of positive instances
carries a significant cost or is intolerable.

• F1-Score: The F1-Score is the harmonic mean of
precision and recall. It provides a balanced assessment of
model performance by considering both false positives
and false negatives. The F1-Score is particularly useful
when there is an imbalance between classes or when one
wants to strike a balance between precision and recall.
It is often used as a single metric to compare the overall
classification performance of models.

In this context, true positive (TP) refers to the count of
correctly identified positive class instances, true negative
(TN) represents accurately identified negative class instances,
false positive (FP) indicates the count of incorrectly identified
positive class instances, and false negative (FN) represents the
count of incorrectly identified negative class instances. These

values are determined as follows:

Accuracy =
TP+ TN

TP+ TN + FP+ FN
(9)

Precision =
TP

TP+ FP
(10)

Recall =
TP

TP+ FN
(11)

F1 − score =
2 × TP

2 × TP+ FP+ FN
(12)

Tables 7, 8 and 9 provide a detailed evaluation of different
models or configurations for the IEEE 6-bus system using
LSTM, CNN and Hybrid CNN-LSTM respectively, demon-
strating the performance of each model in term of precision,
recall, F1-Score, and accuracy across different classes and
conditions.

The performance metrics of the proposed LSTM model
are listed in Table 7.The LSTM model is employed as a
fault classifier, encompassing FC, LF, and FL. Regarding
the FC, the model exhibited superior accuracy for the
‘‘BC’’ class, contrast to the lower accuracy for the ‘‘ABC’’
class under fault conditions. Conversely, the model achieved
100% accuracy in identifying the no-fault conditions. In the
context of line faulty classification, the model demonstrated
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TABLE 9. Performance metrics of hybrid CNN-LSTM for each classifier (FC, LF and FL) in IEEE 6-bus.

minimal accuracy for ‘‘lines 2-5’’ and elevated accuracy for
‘‘lines 2-3’’ and ‘‘3-4’’. Concerning fault location accuracy
presented as a percentage, the model attains a maximum
accuracy of 99.23% for 10% of the line length, while
registering a minimum accuracy of 99.02% for 50% of the
line length.

Table 8 lists the performance metrics of the 1D-CNN
model across three response categories: FC, LF, and FL.
In the domain of fault class identification, the model attains
a commendable accuracy range of (99.89% - 99.97%) for
fault scenarios, while achieving perfect accuracy (100%)
for no-fault conditions. Regarding line faulty classification,
the model demonstrated an average accuracy range of
(99.72% - 99.94%). Additionally, in fault location identifica-
tion, the model demonstrates an average accuracy range of
(99.18% - 99.66%), considering the percentage of line length.

Table 9 presents the performance evaluation of the
proposed hybrid CNN-LSTM deep learning model, across
three response categories: Fault Class, Line Faulty,
and Fault Location. The results indicate a notewor-
thy performance enhancement across all the output
responses. This improvement is attributed to a reduction
in the number of false positives (FP) within each class,
thereby enhancing the overall quality of the proposed

model and contributing to an elevated level of model
accuracy.

B. CASE STUDY 2: IEEE 9-BUS SYSTEM
To validate the proposed algorithms experimentally,
We tested by creating a simulated IEEE 9-bus network
on a MATLAB environment. subsequently, we used a
typical IEEE 9-bus test system integrated with Distributed
Generators (DGs). This network comprised nine buses, six-
line segments, four loads, and three DGs. Tables 10, 11
and 12 offer a comprehensive evaluation of various models or
configurations for 1DCNN, LSTM, and Hybrid CNN-LSTM
in the test network IEEE 9-bus system.

Table 10 outlines the performance evaluation of the
LSTM model, showing commendable levels of accuracy
across various categories. Specifically, the model achieved
an average accuracy range of (98.34% - 99.99%) for
fault class identification (FC), (99.74% - 99.93%) for Line
Faulty classification (LF), and (98.59% - 99.02%) for Fault
Location classification (FL). It is noteworthy that, despite a
slightly elevated number of false positives(FP) resulting from
the utilization of the percentage of line length, the overall
accuracy remains within acceptable limits.
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TABLE 10. Performance metrics of LSTM for each classifier (FC, LF and FL) in IEEE 9-bus.

Table 11 presents the performance metrics of three classi-
fiers: FC, LF, and FL. The classifiers are evaluated based on
accuracy, sensitivity,precision, F1-score,, true positives (TP),
false positives (FP). The classifier demonstrated exceptional
performance across all fault classes, consistently achieving
high Accuracy, Recall, F1-score, and Precision. The distri-
bution of instances in the classes was fairly balanced, with
slightly higher misclassifications in the ‘‘BCG’’ and ‘‘ABC’’
classes. The LF classifier performed remarkably well for all
line faulty scenarios, achieving perfect Accuracy in each case.
Furthermore, the FL classifier exhibits commendable metrics
performance across different percentages of line length. The
slight increase in number of false positives in the FL classifier
as a result of using percentage of line length rather than
km-based, which indicates a trade-off between precision and
sensitivity, but overall accuracy remains adequate.

Table 12 presents the performance of the hybrid
CNN-LSTM model for the IEEE 9-bus system evaluated
across three classifiers: FC, LF, FL. The FC classifier
demonstrated excellent precision, recall, F1-score, and
accuracy for most fault classes. The average accuracy of
99.92% suggests highly accurate identification of the fault
classes. The LF classifier performs exceptionally well,
achieving high precision, recall, F1-score, and accuracy

for various line faulty scenarios. An average accuracy
of 99.96% indicates a robust performance in identifying
line faulty conditions. The FL classifier demonstrates high
performance across different percentages of line length. The
average accuracy of 99.4% indicates accurate fault location
identification. The hybrid CNN-LSTM model demonstrates
exceptional performance in fault classification, line faulty
identification, and fault location for the 9-bus system. The
high accuracy and low misclassification rates suggest its
efficacy in real-world applications of power system fault
analysis.

A confusionmatrix is a structured table used to evaluate the
performance of supervised learning techniques, particularly
machine learning and statistical classification. This matrix
offers a comprehensive breakdown of the classifier’s perfor-
mance. A confusion matrix is a vital tool in assessing the
performance of a classifier. It displays the true classes along
the vertical axis and the predicted classes along the horizontal
axis. This arrangement facilitated the identification of correct
and incorrect predictions. The diagonal of the matrix repre-
sents the number or percentage of true classes correctly iden-
tified by the classifier, offering insights into the accuracy of
class detection across different categories in the training data.
Figure 14 illustrates the classification confusion matrices
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TABLE 11. Performance metrics of CNN for each classifier (FC, LF and FL) in IEEE 9-bus.

generated during a single testing phase for the proposed
models. Subfigures 14 a and 14 b provide the confusion
matrices for the Fault class, employing hybrid LSTM, in the
grid-connected scenario for both the IEEE 6-bus and 9-bus
systems, respectively. Meanwhile, subfigures 14 c and 14 d
depict the confusion matrices for Line faulty, utilizing
hybrid CNN-LSTM, in the IEEE 6-bus and 9-bus sys-
tems, respectively. Finally, subfigures 14 e and 14 f show the
prediction performance of Fault location using the hybrid
CNN-LSTM.

V. RESULT AND PERFORMANCE ANALYSIS
Table 13 compares the features of the various methods
with those of the proposed approach, facilitating a clearer
comprehension of these studies. Three common deep learning
(DL) models for fault location prediction (FLP), fault
type classification (FTC), and fault region identification
(FRI) in large-scale multi-machine power systems were
introduced by the authors in [19]. These models are
based on deep recurrent neural networks (DRNN). To pro-
duce reliable categorization and prediction findings, the
models use fully transient data from pre and post-faults
recorded using phasor measurement units (PMUs). the
proposed algorithms performed better when evaluated in
a two-area with four-Machine power system. the study
focuses on testing the algorithms in a two-area four-
machine power system, which may limit the generalizability

of the results to other power system with configurations,
Further research and testing on different power system
setups and fault scenarios would be necessary to fully
assess the performance and limitations of the proposed
models.

The authors in [20] concentrate on fault detection in distri-
bution networks incorporating distributed generators (DGs).
With conventional relaying methods becoming inadequate
due to fluctuating fault current levels, the authors proposed
a CNN model for fault classification without pre-processing
or feature engineering. The performance evaluation is
conducted using 10-fold cross-validation, resulting in an
accuracy of 99.92%. The proposed model surpasses the con-
ventional approaches in terms of accuracy and computational
burden.

The authors in [35] and [36] developed classification
schemes utilizing ANN models for the IEEE 9-bus system.
However, these studies have a notable limitation as they
do not offer a comprehensive fault detection and location
scheme, which is a critical element in smart grid networks.
In another study [56], a deep learning approach based on
a benchmark dataset was introduced to classify non-fault
and faulty scenarios. Unfortunately, this study lacks a
fault section identifier and fault location. Additionally,
it does not investigate different modes of operation such
as grid-connected and island-mode with high level of DG
penetration.
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TABLE 12. Performance metrics of hybrid CNN-LSTM for each classifier (FC, LF and FL) in IEEE 9-bus.

In [57], the authors proposed a shuffle attention using
DNN. However, the primary limitation of this study is its
failure to provide information on the faulty section, which
could help reduce the isolated regions in the radial IEEE 6-bus
system, especially compared to the mesh or ring system.
Reference [58] evaluated fault classification in a radial
two-machine system but did not consider the impact of DG
penetration, utilizing only voltage signals. Similarly, in [59],
a current signal-based with probabilistic neural network
(PNN) approach was used in a radial system with grid-
connected mode. However, the fault location information was
not provided in either study. Finally, in [60], an RNN model
was introduced to classify fault cases in single-machine
radial and ring systems. Unfortunately, the study did not
investigate the proposed model in large system networks
and did not provide a fault location scheme. In this study,
we present three deep learning models (1D-CNN, LSTM,
Hybrid CNN-LSTM) for three classifiers (FC, LF, FL)
evaluated in ring systems (IEEE 6-bus and 9-bus) with
different modes of operation (grid-connected and Island-
mode). Moreover, we considered the effect of DG penetration
in both networks, to achieve optimal accuracy for each
classifier.

The statistical metrics provided were utilized to assess
the efficacy of the proposed methods for fault detection,
classification, and localization, as outlined below.

• Dependability: This was defined as the ratio of the total
number of predicted fault cases to the total number of
actual fault cases.

• Security: The ratio of the total number of predicted
no-fault cases to the total number of actual no-fault
cases.

• Accuracy: This represents the ratio of the total number
of correctly predicted cases (both fault and no-fault) to
the total number of actual cases (both fault and no-fault).

In the context of fault detection and classification, evaluating
dependability is crucial, as it directly assesses the scheme’s
ability to predict fault cases in comparison to the actual
number of fault cases, which indicates the rate of misclassi-
fication. This metric serves as a measure of the reliability of
a scheme for identifying faults. However, security quantifies
false alarms, representing instances where non-fault events
are incorrectly predicted as faults. As a result, the primary
goal is to reduce misclassification, which is more important
than lowering false alarms. Finally, accuracy measures the
model’s ability to predict all cases, considering both fault and
no-fault cases.

A comparative analysis of the performances of the
1D-CNN, LSTM, and Hybrid CNN-LSTM models is
illustrated in Figures 15, 16, 17, and 18. The utilized
dataset encompasses mixed scenarios, incorporating faults
occurring in both grid-connected and island-modes with
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FIGURE 14. Confusion matrix for Hybrid CNN-LSTM in IEEE 6-bus & IEEE 9-bus.

FIGURE 15. Performance of proposed methodology for fault
classification, in grid and island-connected modes (Ring topology IEEE
6-bus).

ring network topologies. The development of deep learning
models, namely 1D-CNN, LSTM, and Hybrid CNN-LSTM,
were conducted using the open-source software Collab.
Notably, the performance metrics exhibit proximity among
the models, with dependability being a pivotal criterion, and
all the proposed models showed significantly enhanced fault
classification performance.

The performance comparisons, specifically for fault clas-
sification under different operating modes (grid-connected
or island-mode), are presented in Figures 15 and 16. In
Figures 17 and 18, the evaluations for fault location are
similarly presented. Additionally, in the grid-connected
mode, 1D-CNN achieves 99.59% accuracy (with 99.74%

FIGURE 16. Performance of proposed methodology for fault
classification, in grid and island-connected modes (Ring topology IEEE
9-bus).

dependability and 100% security) for fault classification,
whereas in the island-mode for the IEEE 6-bus network,
it achieves 99.99% accuracy (with 99.85% dependabil-
ity and 99.95% security). Similarly, the 1D-CNN shows
99.46% accuracy for the IEEE 9-bus network (with 99.14%
dependability and 99.79% security). On the other hand, for
the IEEE 6-bus network, LSTM demonstrated an accuracy
of 99.25% in the island-mode (with 99.6% dependability
and 98.89% security) and 99.54% accuracy (with 98.8%
dependability and 100% security) for fault classification in
the grid-connected.

With respect to the IEEE 9-bus network, LSTM
attains 99% accuracy in the grid-connected with (98.69%
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TABLE 13. Comprehensive comparison with previous studies.

FIGURE 17. Performance of proposed methodology for Fault location,
in grid and island-connected modes (Ring topology IEEE 6-bus).

FIGURE 18. Performance of proposed methodology for fault location in
grid and island-connected modes (Ring topology IEEE 9-bus).

dependability and 99.51% security) and 99.57% accuracy
in the island-mode with (98.95% dependability and 99.72%
security). Because of this, accuracy and security are only
slightly impacted in the island-mode, whereas reliability is
almost unchanged in both operating scenarios. As a result,
both data-mining models exhibit comparable performance in
grid-connected and island-mode operation.

Comparing the accuracy of the hybrid CNN-LSTM for
fault classification in the grid-connected (with 99.71%
dependability and 100% security) to its accuracy in island-
mode (with 99.87% dependability and 100% security) for
IEEE 6-bus, it is observed that the hybrid CNN-LSTM
performs better in the earlier scenario as in Figure 15.
In Figure 16, the hybrid model for IEEE 9-bus indicates an

TABLE 14. Analyzing the reliability of fault detection and classification
methods in both operational modes for IEEE 6-bus.

TABLE 15. Analyzing the reliability of fault detection and classification
methods in both operational modes for IEEE 9-bus.

accuracy of 99.22% with (98.81% dependability and 99.65%
security) in the grid-connected mode, while in island-mode it
has an accuracy of 99.75% with (99.62% dependability and
99.89% security), as depicted in the same scenario.

The Hybrid CNN-LSTM model is a promising choice,
offering a well-balanced performance in terms of accu-
racy, dependability, and security across different operation
modes. The selection of an optimal model may depend
on the specific application requirements and priorities. In
Figures 17 and 18, a comprehensive comparative analysis is
presented, highlighting the performance metrics of accuracy,
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dependability, and security across three distinct deep learning
models: CNN, LSTM, and Hybrid CNN-LSTM. This eval-
uation is conducted under varying operational scenarios of
grid-connected and island-mode specifically tailored for fault
location.

Remarkably, the Hybrid CNN-LSTM model consistently
displayed elevated performance levels across all metrics,
exhibiting competitive or superior outcomeswhen juxtaposed
with CNN and LSTM in both operational conditions.
Notably, in the grid-connected, CNN has the lowest accuracy,
whereas Hybrid CNN-LSTM excels in terms of accuracy,
dependability, and security. Conversely, in the island mode,
both LSTM and Hybrid CNN-LSTM demonstrate notewor-
thy performances, with the latter showing superior accuracy
and dependability. The findings underscore the robust and
versatile capabilities of the Hybrid CNN-LSTM model in
fault location tasks across diverse operational conditions.

Table 14 presents an exhaustive analysis of the reliability
metrics, specifically dependability and security percent-
ages, pertaining to fault classification, line fault detection,
and fault location across various proposed models. The
evaluation encompasses both operational modes, namely
‘‘grid-connected’’ and ‘‘island-mode,’’ within the IEEE
6-bus system. This table compares the performance of all
models in these distinct operational contexts. Notably, higher
percentages indicate superior performance in terms of both
dependability and security.

In addition, Table 15 extends the evaluation of the metric
performance to the IEEE 9-bus system, encompassing both
operational modes. These tables are used to make informed
decisions regarding the most reliable fault detection and
classification models based on their performance in different
operational modes.

VI. CONCLUSION
Fault occurrences is inevitable in electrical networks. The
precise and real-time detection of faulty sections in smart
distribution networks, integrated with distributed generator
(DGs), is imperative for fulfilling customer demand, pre-
venting disruptions, and mitigating financial losses over the
long term. In this study, we addressed the challenge of fault
detection, diagnosis, and fault location in power systems
using a data-driven approach within the context of ring
grids or mesh topology. This approach was applied to both
transmission and distributed systems, and comprehensive
data validation was conducted across various scenarios using
a two-IEEE system (comprising 6 and 9-bus configurations).
The challenge revolves around a data-driven approach for
identifying faulted zones, accurately classifying fault types,
and precisely predicting fault locations, with a particular
focus on distributed systems. This emphasis arises because
of the absence of protection relays within distributed systems
that are capable of determining fault locations.

We developed three innovative deep learning models for
intelligent fault identification, classification, and location
in the transmission lines of the two IEEE test systems.

These models are based on a 1D-CNN, LSTM, and a
Hybrid CNN-LSTM architecture. The new models take
advantage of comprehensive transient data that includes
measurements of both voltage and current signal obtained
during pre- and post-fault cycles. These signals are acquired
either directly or through phase measurement units (PMUs),
which provide high-frequency sampling over very short time
intervals. These data are collected from different bus-bares
and are used as features for training deep neural network
models. These models depend on the automated extraction of
features directly from the input voltage and current patterns
over a specific time interval, obviating the requirement
for additional techniques such as transforming them into a
different domain or utilizing image-based features for feature
extraction.

The sequential learning algorithms presented in this
context were designed to extract the utmost spatiotemporal
information from these sequential features to effectively
model the behavior of the system. Both fault class and line
faulty classification models exhibit remarkable accuracy in
fault detection and classification, with the highest precision
achieved in identifying the faulty region. However, fault
location accuracy is comparatively lower, primarily because
of the utilization of a percentage-based approach instead
of a kilometer-based method. Nevertheless, the accuracy
achieved in fault location, even with the percentage method,
is acceptable, and this approach offers a more versatile
solution applicable to any network, irrespective of the length
of the transmission lines.

The findings indicate that CNN-LSTM models are
highly accurate, dependable, and exceptionally efficient
in identifying, classifying, and locating faults in power
system transmission lines. This contribution, involving the
introduction of three novel deep learning models that work
collaboratively, significantly enhances the effectiveness of
maintenance strategies for ring power systems. Furthermore,
the suggested models rely heavily on voltage and current
data from all bus-bars, and these variables play a crucial role
in enhancing the performance of the proposed classifiers.
Moreover, this study considered the uncertainty associated
with changes in topology, including variations in the
penetration level of different DGs sources.In future study,
we will evaluate the proposed approach on larger ring power
networks.

ABBREVIATIONS

SGs Smart Grids
DG Distributed Generator
RE Renewable Energy
MG Microgrid
PV Photovoltaic
DNN Deep Neural Network
CNN Convolutional Neural Network
RNN Recurrent Neural Network
FNNs Feed forward Neural Network
LSTM Long Short Term Memory
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DS Distributed System
KNN K-Nearest Neighbors Network
SVM Support Vector Machine
PNN Probabilistic Neural Network
ANFIS Adaptive Neuro-Fuzzy Inference System
FC Fault Class
LF Line Faulty
FL Fault Location
WT Wavelet Transform
PMU Phasor Measurement Unit
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