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ABSTRACT The interaction between the central nervous system (CNS) and peripheral nervous system
(PNS) governs various physiological functions, influences cognitive processes and emotional states. It is
necessary to unravel themechanisms governing the interaction between the brain and the body, enhancing our
understanding of physical and mental well-being. Neuro-ergonomics-based human-computer interaction can
be improved by comprehending the intricate interrelation between the CNS and PNS. Various studies have
been explored using diverse methodologies to study CNS-PNS interaction in specific psychophysiological
states, such as emotion, stress, or cognitive tasks. However, there is a need for a thorough, extensive, and
systematic review covering diverse interaction forms, applications, and assessments. In this work, an attempt
has been made to perform a systematic review that examines the interaction between the CNS and PNS
across diverse psychophysiological states, focusing on varied physiological signals. For this, scientific
repositories, namely Scopus, PubMed, Association for Computing Machinery, and Web of Science, are
accessed. In total, 61 articles have been identified within the period of January 2008 to April 2023 for
systematic review. The selected research articles are analyzed based on factors, namely subject information,
stimulation modality, types of interactions between the brain and other organs, feature extraction techniques,
classificationmethods, and statistical approaches. The evaluation of the existing literature indicates a scarcity
of publicly available databases for CNS-PNS interaction and limited application of machine learning and
deep learning-based advanced tools. Furthermore, this review underscores the urgent need for enhancements
in several key areas including the development of a more refined psycho-physiological model, improved
analysis techniques, and better electrode-surface interface technology. Additionally, there is a need for more
research involving daily life activities, female-oriented studies, and privacy considerations. This review
contributes to standardizing protocols, improves the diagnostic relevance of various instruments, and extracts
more reliable biomarkers. The novelty of this study lies in guiding researchers to point out various issues
and potential solutions for future research in the field of bio-signal-based CNS-PNS interaction.

INDEX TERMS Central nervous system (CNS), peripheral nervous system (PNS), electroencephalogram
(EEG), brain-heart, brain-skin, brain-muscle, differentiation, classification.

I. INTRODUCTION
The perception of human existence consists of thoughts,
dreams, and memories. These phenomena are controlled
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by the interactions that take place between the human
brain, body, and the external environment. Such interactions
primarily rely on the transmission of information through
neural pathways. These pathways connect the brain to
various sensors and actuators distributed throughout the
human body [1]. The nervous system is remarkably intricate.
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It enables a wide range of cognitive processes and controls
various actions. After receiving an immense amount of
sensory information from different nerves and organs,
Brain processes and integrates this information to generate
appropriate bodily responses [2].

The nervous system is a complex network that serves as
the control center of the human body. It consists of two
main components: the central nervous system (CNS) and
the peripheral nervous system (PNS). The CNS, composed
of the brain and spinal cord, is responsible for processing
and integrating information. Meanwhile, the PNS connects
the CNS to the rest of the body, relaying sensory and
motor signals. After processing and comprehending the
information, CNS transmits specific instructions through the
PNS to various parts of the body [3]. The PNS is divided into
two major components: the somatic nervous system (SNS)
and the autonomic nervous system (ANS). The somatic
nervous system is responsible for the voluntary control of
body movements. It also helps in the transmission of sensory
information from the body to the CNS. On the other hand,
the ANS regulates involuntary functions and controls internal
processes to maintain homeostasis [2].
The hypothalamus serves as the central core for ANS.

It consists of several subnuclei that are responsible for
overseeing essential physiological functions, including food
digestion and body temperature regulation. Additionally,
various peripheral hormones play a role in modulating brain
functions. Some of these are Leptin, Insulin, and Gas-
trointestinal hormones. These chemicals regulate instinctual
behaviors such as feeding and also participate in cognitive
and emotional activities [4].
The interaction between the brain and PNS is evident

when experiencing nervousness or stage fright, leading to
sweating and memory lapses. This illustrates how emotional
experiences can impact both the PNS through sympathetic
innervation of sweat glands and the CNS by impairing mem-
ory retrieval [5]. The Brain-Computer Interface (BCI) allows
individuals with sensorimotor impairments to interact with
computers using their thoughts, enabling communication and
control. It benefits those with limited physical abilities but
intact cognitive functions [3]. Brain-body interactions can be
understood more delicately with a better neural interfacing
method. This may offer new treatments for traumatic injuries
and diseases that currently lack effective solutions [1]. CNS-
PNS interaction also helps in gaining knowledge related to
hormonal, and immune responses, challenges, and therapies
related to chronic diseases [6].
Neuro-ergonomics explores the relationships between

individuals, and the surrounding environment, taking into
account individual abilities and limitations. It aims to
create work environments that are safe and conducive to
a satisfying experience for individuals [7], [8], [9], [10].
Conventional qualitative subjective techniques are insuffi-
cient for analyzing the interplay between physical, cognitive,
and perceptual aspects involved in daily tasks. It also fails

to provide a means to effectively design and evaluate the
complicated human cognition and technological systems
relationship [9], [11], [12], [13], [14]. Industry 4.0 which is
driven by artificial intelligence and automated systems forces
humans to interact with continuously evolving technical
surroundings. It demands high cognition and perception [15].
Hence, there is a necessity for gaining an understanding

of human performance by studying the functioning of
the nervous system during everyday life activity [16].
All these things indicate that there should be a rigorous
understanding of CNS and PNS interaction. It will help in
gathering more knowledge towards integrating humans in
this sophisticated age of human-computer interaction (HCI).
For this purpose analysis of various bio-signals can be a
useful tool. Bio-signals refer to signals that are measured
over time from the human body or other organic tissue.
It may be electrical, mechanical, thermal, and other types of
signals. Physiological signals, such as electroencephalogram
(EEG), electromyogram (EMG), electrocardiogram (ECG),
and electro-dermal activity (EDA) provide valuable insights
into the communication between the CNS and PNS [17].

The CNS signal can be represented by the EEG. It captures
the electrical activity of the brain by detecting the potential
difference generated in the brain and measuring it on the
scalp. There are other types of CNS-originated signals
namely magnetoencephalogram (MEG) or electrooculogram
(EOG). But from the viewpoint of temporal resolution
and cost effectiveness EEG is considered here. The PNS
signals can be further divided into the SNS and ANS
signals. The SNS signals include EMG, which records
muscle activity, and EOG, which measures eye movement.
The ANS signals consist of the photoplethysmogram (PPG)
and electrocardiogram (ECG), which monitor heart activity
and blood flow. Additionally, the Galvanic Skin Response
(GSR) measures the electrical conductance of the skin
and Electrogastrogram (EGG) measures gastric myoelectric
activity. That’s why these bio-signals are used to gather
valuable information about the interworking of the CNS and
PNS [18].
Researchers have put forward several types of stimuli

to study mental and cognitive processes. These stimuli
include standardized sets of audio-visual materials, film clips,
faces, pictures, and words. These stimuli provide researchers
with the ability to choose perfect triggers and compare
results within controlled laboratory settings [19]. Numerous
bio-signals and non-bio-signal characteristics have been
utilized to examine human reactions in diverse conditions.
However, comprehensive reviews focusing on the interaction
between the CNS and PNS using different types of stimuli
and the instrumental approaches employed are limited.

This systematic review also points out the comparison
of various types of interaction and the psycho-physiological
situation of the participants. Additionally, it has the potential
to aid in the creation of a standardized protocol for acquiring
data and assessing procedures within this domain. This
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standardized approach will allow for the evaluation of
various data collection methods and provide a framework for
comparing and analyzing research findings.

The main contributions of this article are summarized
below:

1. An encoding scheme is used here to differentiate existing
research according to bio-signals used, applications, and
analysis aspects of that particular study.

2. This work consolidates various types of interaction
between EEG and other physiological signals.

3. Various types of trend analysis in the domain of year-
wise publication, data collection procedure, stimuli type,
interaction type, psychophysiological states, and analysis
technique have been done here.

4. A generalized data acquisition protocol and various
instrumental aspects regarding it are discussed in a structured
way.

5. Most of the important parameters and features which are
used in this type of study are discussed in detail.

6. It also paves the way for future fields of explorations
of bio-signal based CNS-PNS interplay across domains such
as neuro-ergonomics, healthcare, biomedical, and cognitive
psychophysiological research.

The remaining sections of this paper are structured as
follows: section II consists of research methodology which
includes the involved search strategy, subject information,
stimulation modalities, data acquisition protocol, categories
to classify papers, comparison of various types of inter-
actions and applications, different types of time domain,
frequency domain, time-frequency domain features and
statistical parameters used in various studies, classification
and statistical analysis used in various studies. Section III
discusses the pitfalls of the literature and potential avenues
for future research. The final section includes the concluding
remarks.

II. REVIEW METHODOLOGY
The methodology for this review is divided into seven
subsections to ensure a systematic and organized approach.
These include search strategy, subject information, stimula-
tion modality, data acquisition protocol, categories to classify
papers, feature/ parameter extraction, and classification/
analysis.

A. SEARCH STRATEGY
This study collected articles from reputable scientific repos-
itories, such as Scopus, PubMed, Web of Science, and the
ACM digital library. The articles are gathered within a
specific time frame, from January 1, 2008, to April 9, 2023
(6.40 PM). After conducting the preliminary search, a total
of 629 articles are identified. Out of these, 127 articles are
obtained from Scopus, 82 articles from Web of Science,
109 articles from PubMed, and 311 articles from the ACM
digital library.

B. STUDY SELECTION
For conducting this review following keywords are used
in Scopus ((eeg OR electroencephalography OR electroen-
cephalogram OR electroencephalographic) AND (synchro-
nization OR brain-body OR interaction OR correlation OR
coupling OR (phase-amplitude AND coupling)) AND ((cen-
tral AND nervous AND system) OR cns) AND (((peripheral
AND nervous AND system) OR pns OR autonomic AND
nervous AND systemOR ansOR autonomicAND activity))).

C. CRITERIA FOR INCLUSION AND EXCLUSION
The PRISMA (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) guidelines are followed during
the selection process to identify articles that are pertinent to
the study [20]. Figure 1 displays the PRISMA framework
utilized for the literature selection process in this review.
Additionally, 121 articles are excluded from the analysis as
these are duplicates of already identified articles.

Then exclusion criteria are employed to obtain relevant
literature. So, 424 records are removed which discussed ani-
mals, diseases, chemicals, prosthetics, non-EEG modalities,
databases, demographic studies, pediatric and geriatric cases,
historical backgrounds, medicinal remedies, and documen-
taries. Papers without an interaction between EEG and other
physiological signals are also excluded. Some of the papers
are also not available on the internet. From the remaining
papers, 23 papers which are review papers, editorial papers,
or non-English papers are excluded. As a result, 61 papers
meet the criteria and are considered for further analysis.

The inclusion criteria of articles are as follows:
1. Papers dealing with the interrelation of EEG with other
peripheral signals, 2. Papers related to healthy adult people,
and 3.Various types of normal psycho-physiological states
namely emotion, cognition, stress, and sleep.

III. RESULTS
A. STUDY CHARACTERISTICS
The year-wise breakdown of the literature is shown in
Figure 2 (a). One of the interesting facts that can be derived
from these statistics is that the number of papers dealing
with the aforementioned interactions is increasing day by day
more specifically after 2020. Till 2010 only 3 papers dealt
with this topic. But after that, for every 5 years, there are 17,
21, and 20 (N.B. only 1.5 years are considered) no. of papers
published on this topic.

Figure 2 (b) shows the modality-wise breakdown of
literature. The Pie chart indicates that the Interaction of EEG
in these studies is mainly done withMultimodality (41%) and
ECG (37.70%). EDA and EMGmodalities are used in 11.5%
and 6.6% of the total cases respectively. Other types include
single modalities namely arterial blood pressure, EOG, PPG,
and EGG. There are some special instances also where a
particular interaction namely brain-heart, multimodality is
used such as ECG and PPG both are considered with EEG.

VOLUME 12, 2024 60349



S. Banik et al.: Exploring Central-PNS Interaction Through Multimodal Biosignals

FIGURE 1. The PRISMA flowchart of the article selection process.

B. SUBJECT INFORMATION
In most of the reviewed papers, 10-50 subjects are considered
irrespective of the experiment types. The age of the subjects
lies between 16 to 65 years. On average, subjects who
are in their 20s or early 30s are mainly preferred for
signal acquisitions. Another interesting fact is that around
53 studies are experimental work and only 7 papers have
used pre-existing databases. Figure 3 shows the distribu-
tion of selected 61 articles based on the data collection
procedure.

Subjects in these studies are recruited based on the history
of their neurological disorder [21], [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37],
[38], [39], [40], [41], [42], [43], [44] diabetes [45], [46],
obesity [46], cardiovascular disease [25], [27], [30], [34],
[42], [45], [46], [47], muscular issues [44], [48], and sleep
disorder [49]. People who are taking medications [21], [22],
[32], [43], [45], [46], [50], [51], [52], smoking [21], [39],
[45], [49], [51], alcohol, tea, coffee [22], [25], [35], [37],
[38], [45], [52], [53] are not considered. People who had done
strenuous exercise before the experiment are avoided [22],
[37], [38], [44], [52].

In some papers, subjects are selected by conducting a
questionnaire session namely the morningness and evening-
ness questionnaire [49] and LIPP’s questionnaire [51]. Some
papers have evaluated their subjects by Annett Handedness
Scale [43], mini-mental state evaluation, state-trait anxiety,
andHamilton rating scale [47], Epworth sleepiness scale [49].
In a few of the cases, right-handed people are preferred [18],
[21], [22], [25], [39], [40], [41], [44], [45], [50], [51], [53],
[54], [55], [56], [57]. Subject’s consent is also taken in some
literatures [21], [22], [24], [26], [27], [28], [29], [30], [31],
[32], [33], [34], [35], [37], [38], [39], [40], [41], [42], [43],
[45], [46], [47], [52], [54], [56], [58], [59], [60], [61], and
[62]. Meanwhile, there is no information about the consent in
other remaining studies.

C. STIMULATION MODALITIES
The quantity and duration of the stimuli vary across different
published articles and are not standardized. The experimenter
gives different types and amounts of stimuli depending upon
the application situation of the experiment. From Figure 4
it is evident that audio stimuli are the most used stimuli in
these papers. Though other types of stimuli such as task-based
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FIGURE 2. Distribution of selected 61 articles based on (a) year-wise till
present (b) based on the signal modalities.

FIGURE 3. Distribution of selected 61 articles based on data collection
procedure.

stimuli (24.6%), video (16.4%), and audio (6.6%) are also
used in a significant number of cases. Some of the studies
(21.3%) have not used any stimuli namely in sleep and
meditation-based literature. Few of these have not provided

any information regarding the used stimuli. Around 7 papers
used online public databases for acquiring bio-signals namely
DEAP [18], [48], [63], [64], MANHOB-HCI [18], [48], [65],
CAP sleep database [66], MERTI-Apps [18], eNTERFACE
summer workshop database [50].

FIGURE 4. Distribution of selected 61 articles based on types of stimuli.

Some of the most used stimuli are musical videos [18],
[48], [63], [64], [65], visual stimuli [23], [40], [41], [45],
[53], [54], [67], images [31], [33], [36], [46], [50], [51], [68],
[69], Audio [29], [34], [37], [52], task based stimuli [24],
[25], [27], [38], [39], [42], [43], [44], [48], [55], [56], [57],
[58], [62], [70], [71], [72], [73], [74], [75], film clips [76],
[77], normal video clips [26], [62], [78]. In task-based
stimuli either the subjects are instructed to do the mental
task (mathematics-related problems, memorizing, computer-
based gaming, and reading) or physical task (cold-pressor
test, rope skipping, surgical task, and fatigue exercise).

It is seen that audio-visual stimuli dominate other stimuli
in eliciting psychological traits. This can be explained with
the help of the emotional matrix concept. According to this,
any stimuli should be chosen by keeping 5 characteristics
in mind, these are Ecological Validity (EV), Temporal
Resolution (TR), Controllability (CNT), Complexity (CMP),
and Emotional Intensity (EI). As audio-visual stimuli are very
close to an actual emotional experience it’s EV score is high
compared to other stimuli [19].

D. DATA ACQUISITION PROTOCOLS
A generalized protocol is followed in almost all the studies
for the acquisition of relevant information from subjects.
The flowchart of the protocol is illustrated in Figure 5.
The experimenter takes the consent from the subjects before
starting the experiment. Subjects are informed about the
procedure of the experiment.

Various types of environmental conditions are simulated
depending upon the application type of the experiment such
as FARADAY’s cage [40], [53], CAVE [23], VR environ-
ment [24], [76], aCAMS [55], electrically shielded dimly
lit room [75]. In the pre-stimulus phase (baseline), the
participant is brought back to a neutral situation. It is mostly
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FIGURE 5. Flowchart of generalized data acquisition protocol.

TABLE 1. The experiment protocols used in the database-based articles in recording various modalities using stimuli.

done through taking rest [22], [23], [24], [25], [26], [45],
[62], [71], [79]. Then according to application, the stimulus
is applied or task is performed. They are Go/ NoGo task [45],
Stroop task [53], Handgrip fatigue task [44], [75], rope
skipping [25] and various bio-signals (EEG, ECG, EDA,
EMG, PPG, and respiration signal (RSP)) are recorded
simultaneously. For sleep, meditation, and resting-based
experiments no stimulus is applied [21], [30], [32], [35], [47],

[49], [59], [60], [61], [66]. For sleep-related experiments,
polysomnography (PSG) is recorded.

Table 1 and Table 2 show the various application
types (psycho-physiological state) and stimuli used in
every study. Then a subjective assessment is done using
various self-evaluation method namely Likert scale [46],
[54], Roken Arousal Scale (RAS) [52], Self-Assessment
Mannikin (SAM) [18], [23], [48], [63], [64], [78] Karolinska
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TABLE 2. The experiment protocols used in the experimental-based articles in recording various modalities using stimuli.
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TABLE 2. (Continued.) The experiment protocols used in the experimental-based articles in recording various modalities using stimuli.
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TABLE 2. (Continued.) The experiment protocols used in the experimental-based articles in recording various modalities using stimuli.
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TABLE 2. (Continued.) The experiment protocols used in the experimental-based articles in recording various modalities using stimuli.

Sleepiness Scale (KSS) [27], Borg Rating of Perceived
Exertion scale (RPE) [25]. In a post-stimulus situation,
participants are brought back to the neutral state. Both
single and multichannel bio-signals are extracted at different
sampling rates at a range of 30-2048 Hz. In some cases those
signals are down-sampled to reduce processing time [25],
[26], [30], [39], [43], [53], [54], [57], [64], [73], [78].
Among database-based emotion-related articles, five papers

have used a dimensional model, whereas only one paper has
used a discrete model-based database. For experiment-based
articles, these numbers stand out as 6 and 5 respectively.
The majority of data acquisition devices originate from the
USA, Netherlands, Germany, and Italy. EEG acquisition
predominantly employs 32-channel systems, although 9,
16, 21, 64, and 128 channel-based systems are also
utilized.
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E. CATEGORIES TO CLASSIFY PAPERS
In this section, the approach used to determine the categories
for classifying the papers will be discussed. Additionally, The
discussion will cover how the papers are clustered based on
their application, the types of bio-signals studied, and the
analysis methods employed.

During the analysis of the literature, various criteria
have been identified for segregating papers and approaches,
including the utilization of bio-signals to investigate inter-
actions with EEG. Some of the bio-signals used are ECG,
EDA, EMG, skin temperature, and multimodal. Some other
categories of bio-signals include arterial blood pressure,
EOG, PPG, EGG, pupillometry, eye gaze, plethysmograph,
wrist motion, salivary cortisol rate, and respiratory signal.
The multimodal category indicates the combination of
various types of peripheral signals. Some papers have used
multichannel instead of single channels for signal acquisition.
These papers can be segregated in terms of extracted features
or parameters. Out of the analyzed papers, forty-six papers
employed linear features, while only six papers utilized
nonlinear features. A combination of linear and nonlinear
features has been used in ten papers. The 1st condition on
which the surveyed literature is encoded is EEG’s interaction
with particular bio-signals. This is represented as B (Origin,
Channels, Features).

The 2nd category utilized to differentiate the different
approaches is the domain of application. The concern lies
in the interaction of the CNS and PNS. So, the interaction
of these bio-signals in various psychological and physical
situations is considered. Most prominent among these is the
Emotional situation (22 papers). Followed by mental (8) and
physical stress (7), cognition (11), sleep (9), volition (3), and
vigilance (1). If any study uses less than 10 subjects then
it is assumed as a small-size study. Similarly, medium-size
(10-50) and large (more than 50) population study is defined.
The emotions or whatever the condition felt by participants
are quantified using annotations which can be self-reported,
expert-based, or the combination of both of these two. In the
third case, the matching between the subjective assessment
and expert-based assessment is seen [18], [40], [50], [53],
[76]. Application (A) type encoding is done as A(Type, Size,
Annotations).

Lastly, various types of analysis techniques are used in
different literature. Conventional Machine Learning (ML)
is used in 13 cases and Deep Learning (DL) is used in
4 cases. While combination both ML and DL is used in
2 cases. In terms of statistical analysis, it is seen that most
of the literature employed parametric tests namely ANOVA,
t-test, Wald test, Pearson’s correlation coefficient, etc. Non-
parametric tests namely Friedman’s test, Wilcoxon test,
Mann-Whitney test, and Spearman’s correlation coefficient
are also used in various cases. In the overall scenario,
statistical methods dominate the analysis techniques which
are used in 42 cases among the 61 selected papers. Finally, the
last index represents the data collection method i.e. whether

the pre-existing publically available online database is used
or by experiment data is collected. One interesting fact is
that in 53 cases, experimental data is used. Meanwhile, in
7 cases data is directly employed from the databases. Analysis
(AN) type encoding is done as AN (Algorithm, Statistics,
Assessment).

By merging these 3 coding schemes 61 papers are coded.
For example, the paper of Yu et al. [42] is encoded as
B(121) A(121) AN(412). It indicates that this paper finds an
interaction between EEG and ECG, Multichannel ECG, and
linear features are used here. This study is done to assess
mental stress with 10-50 no. of participants who have done
a self-assessment of the situation. However, ML or DL-based
classification is not used here. But for assessing the result
parametric statistical methods such as t-test and Pearson’s
correlation coefficient calculation are used here. The data
is collected experimentally. Figure 6. shows the encoding
framework used for this literature survey. Table 3 displays
the codes assigned to all 61 papers included in this review.
It is worth noting that a very small number of duplicates
are there, highlighting the research diversity and confirming
the effectiveness of the encoding system across different
methods.

1) COMPARISON OF VARIOUS TYPES OF INTERACTIONS
After, going through all the 61 literature these studies can
be broadly divided into four categories from the perspective
of morphological interaction. These are Brain-heart (29),
Brain-skin (7), Brain-muscle (4), and Multimodal interaction
(21) (here various types of peripheral signals which are
generated from different organs are considered). One organ
may have different types of related peripheral signals (e.g for
the heart there are ECG, PPG, and arterial blood pressure).
So to understand each interaction, papers that deal with
more than one signal from one organ are also considered
[32], [66]. Cases that deal with the interaction of more
than one morphologies are considered as Multimodal. When
stimuli are applied for assessing various types of interaction,
a wide range of physiological signals are obtained through the
respective modality acquisition methods. Some of these are
EEG, ECG, EDA, EMG, PPG, RSP, and skin temperature.

All of these modalities have some pros and cons. EEG
gives information about the neural activity of the brain
which is fast and reliable with high time and frequency
resolution. However, installation and maintenance are very
complex and costly. It has also very low spatial resolution,
Signal-to-noise ratio, and very poor estimation of lower
cortical neural activity. ECG is portable, non-intrusive,
computationally efficient, and has high amplitude compared
to other techniques. However, some of its disadvantages are
high inter-subject variability and movement artifact-induced
low accuracy. PPG is easy to implement on consumer
electronics but hand movement results in inaccuracy in
tracking PPG signal. EDA signal being one of the real-time
correlates is simple, non-obtrusive, easily recordable, and
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FIGURE 6. Classification of the parameters used for encoding the literature.

TABLE 3. Coding Scheme for all 61 papers.

low-cost. But it is also easily influenced by temperature and
humidity. Although EMG has good spatial resolution it is
contaminated by noise and time resolution is poor. Again,
RSP has a problem with motion artifact it is useful for
non-contact and long-term monitoring [19].

Due to this kind of incongruous nature of each physi-
ological signal various combinations of earlier mentioned
modalities have been tried out for understanding the inter-
action of CNS and PNS. These signals can be acquired
as multichannel or single channel. Typically, multi-channel
ECG signals are characterized by their complexity and large
data size. The presence of multiple leads also enables the
direct application of Convolutional Neural Network (CNN)
and Recurrent Neural Network (RNN) architectures. Most of

the papers used multichannel signals compared to a single
channel. For classification or analysis, features are extracted
from the signals. linear features are preferred over nonlinear
features in most of the literature. Figure 7 demonstrates the
distribution of selected 61 articles based on the types of
interaction used by the researchers.

2) COMPARISON OF VARIOUS TYPES OF APPLICATIONS
Neuroergonomics is an interdisciplinary field that integrates
neuroscience and ergonomics to investigate human perfor-
mance under various daily life circumstances by analyzing
different types of recorded physiological signals [16].
In some of the emotion-related studies elicitation is done
by showing musical videos [18], [48], [50], [63], [64], [65],
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FIGURE 7. Distribution of selected 61 articles based on types of
interaction used by the researchers.

happiness recall task [46], video clips [26], [78], [79], film
clips [76], and IAPS Images [31], [40], [46], [51], [68].
Mental stress is imposed by arithmetic task [27], [38], [42],

[58], Stroop task [53], control task [55], video clips [62],
images [51], [54], gamming [24], and film clips [76].
Physical stress is induced by cold pressor task [70], [71],
rope skipping [25], fatiguing exercise [22], [56], handgrip
task [44], [75]. Cognition is evaluated using go/no go
task [45], surgical task [74], audio stimuli [29], images [67],
[69], visual stimuli [41], film clips [77], reading comic
strips [73], audio visual stimuli [43], gamming [57], and
deceptive task [28]. Sleep based task is also done in some
cases namely [21], [27], [30], [34], [35], [49], [59], [60],
[66]. Volition-related papers used biocontrol by showing
images [33], and auditory tones [37], [38]. Vigilance is also
studied using a mental task [39].

FIGURE 8. Distribution of selected 61 articles based on types of
applications used by the researchers.

Most of the paper (44) deals with 10-50 participants. Small
no. of participants (<10) are there in [35], [39], [50], [51],
[55], [56], [60], [73], [75], and [78]. Large no. of participants
(>50) are there in [18], [27], [33], [37], [38], [40], [43], and
[66]. Figure 8 shows the share of various applications among
the selected papers. As volition and vigilance are contributing
less compared to other applications these are clubbed together

in other category. The process of annotating or labeling
physiological signals requires specialized expertise and can
be both costly and time-consuming. In this survey, 3 types
of annotation have been seen. In most of the case, self-
annotation is done. Expert based annotation is also done in
some literatures [31], [44], [51], [63], [68], and [64]. Mixed
annotation can be done for more clarity [18], [40], [50], [53],
[76], [78].

F. FEATURE / PARAMETER EXTRACTION
For classification and analysis, various types of features have
been extracted. Some of these are time domain, frequency
domain, and time-frequency domain features.

1) TIME DOMAIN FEATURES EXTRACTION
For EEG, the following time domain features are extracted
namely N550 latency and amplitude [34], mean [18],
[50], [57], [69], maximum [18], minimum [18], standard
deviation [50], [57], [76], skewness [50], [76], kurtosis [50],
[76], variance [57], [69], peak-to-peak amplitude [57], [69],
mean of the absolute values of the first difference of raw
signals [18], [50], and mean of the absolute values of the
first difference of normalized EEG signal [50]. Some of them
also have used power spectra of one second EEG epoch [55],
approximate entropy [46], corrected conditional entropy
(CCE) [38], duration of overall NREM [21], number of Slow
oscillation events [21], global power [36], the correlation
coefficient between two channels [69], root mean square
value and energy of EEG signal [69], median frequency (MF)
and mean power frequency (MPF) of resting state EEG.

For ECG, the following features are extracted namely
heart rate [29], [32], [42], [55], [67], inter-beat interval [32],
[73], maximum successive systolic blood pressure amplitude
values in relation to the previous R-peak [73], mean RR
interval [31], [52], [77], [78], standard deviation of RR
interval (SDNN) [23], [40], [46], [53], [74], [77], [78], root
mean square of the successive differences (RMSSD) [23],
[40], [53], [74], proportion of adjacent pulse to pulse intervals
that vary by more than 50 milliseconds (pNN50) [53]. Some
of the papers have also used the following features such as
heart rate deceleration [41], standard deviations of Poincare
plot in terms of short-term variability (SD1) and long-term
variability (SD2) [79], the magnitude of the peak in cardiac
acceleration and deceleration, differences in baseline pretone
cardiac activity [34].
For EDA, the following features are extracted namely

mean [18], [40], [50], [74], mean of derivative [18], [50], the
standard deviation of EDA signal [50], [74], skin conductance
response (SCR), skin conductance level (SCL) [40], [67],
range of SCR [23], the slope of SCL [24], peak rate of
SCR [24], mean of SCL [57], [77], number of SCRs [73],
mean SCR [73], and maximum SCR amplitude [57], [68],
[69], [73]. Some of the least used features are latency to
the maximum SCR [73], the relative latency [73], latency
to the first SCR [57], [68], [73], the relative latency [73],
no. of peaks [74], the sum of the SCR-amplitudes of the
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significant SCRs [57], [69], average phasic driver [57], area
of phasic driver [57], trough-to-peak response latency of first
significant SCR [57], mean skin conductance (SC) value
(global mean) [57], z-scored SCR [54], SC changes [36], rise
time [68], and SCR duration [68].

EOG-based features are eye blinking rate [18], mean and
variance of EOG signal [18]. From PPG following features
are extracted: Range of pulse to pulse intervals (dRR) [61],
mean of pulse to pulse interval (RRNN) [61], SDNN [61],
coefficient of variation [61], median [61], amplitude of
median [61], RMSSD [61], volumetric changes in blood in
peripheral circulation [18], mean heart rate [18], standard
deviation of heart rate [18], variance of heart rate [18].
Following EMG features namely the mean and peak-to-peak
amplitude of facial EMG [57], the energy of special muscle
(Zygomaticus, Corrugator) signal [18] are also explored in
some literature.

Some of the other types of features are mean blood
pressure [50], Distal-to-proximal skin temperature gradi-
ent [39], mean, standard deviation, minimum, maximum
of skin temperature [50], pupil diameter [41], [43], The
mean and standard deviation of three-axis gyroscope,
accelerometer [74]. From respiratory signal following fea-
tures are extracted: fundamental respiratory frequency over
time [31], mean [50], mean of derivative [50], standard devi-
ation [50], range [23], [50], respiratory rate [61], respiratory
amplitude [61].

2) FREQUENCY DOMAIN FEATURES EXTRACTION
For EEG, the following frequency domain features are
extracted namely lateralization index [18], [46], [51], [77],
[78], delta power [21], [23], [24], [27], [29], [39], [47], [57],
[62], [65], [67], [68], [26], [70], [76], [79], theta power [23],
[24], [26], [29], [31], [39], [40], [43], [45], [47], [53], [54],
[57], [62], [65], [67], [70], [76], [79], alpha power [23], [24],
[26], [29], [31], [33], [35], [40], [43], [44], [45], [46], [52],
[53], [54], [57], [62], [65], [67], [70], [73], [76], [79], beta
power [23], [24], [26], [29], [31], [35], [39], [40], [44], [53],
[57], [62], [65], [70], [73], [76], [79], alpha 1 power [47],
alpha 2 power [47], beta 1 power [33], [39], [47], beta
2 power [39], [47], gamma power [23], [24], [26], [29],
[31], [40], [44], [47], [53], [57], [62], [65], [67], [79], beta/
alpha ratio [77], Beta / (Alpha + Theta) ratio [72], EEG
power spectrum (12–15 Hz) [27], alpha/theta ratio [45], [61],
Beta power/ (Alpha power + Beta power) [73], gamma
1 power [73], gamma 2 power [73], alpha/beta ratio [61],
HF/LF ratio [60], where high frequency (HF) is the PSD in
the frequency range of [20–50] Hz, and low frequency (LF)
is the PSD in the delta band, sigma power [21].

Other types of EEG based features include mean power
from the EEG (in relation to each RR-interval), mean,
variance, and energy of various decomposed bands [32],
[69], fast-wave mean amplitude (FWMA) [59], amplitude-
weighted frequency (AWF) [59], occurrence probability of
delta wave (OPDW) [59], power spectra of one second
EEG epoch [55], ratio of absolute delta power over total

power [30], total EEG power [27], mean, maximum, integral
of Power spectrum density (PSD) from slow alpha [18],
alpha [18], beta [18], Gamma [18], Hjorth parameters (Activ-
ity, Mobility and Complexity) and fractal dimensions [26],
[76], P300 and P100 evoked potential [68].
For ECG, the following features are extracted namely HF

power [21], [31], [35], [37], [38], [42], [46], [47], [48], [58],
[60], [67], [73], [74], [76], LF power [21], [35], [37], [38],
[42], [46], [47], [48], [54], [58], [60], [73], [74], [76], LF/HF
ratio [35], [37], [42], [46], [47], [48], [53], [58], [60], very
low frequency (VLF) power [73], [74], total power [21],
[33], [38], [42], Systolic and diastolic arterial pressure,
LF/HF [60], HF peak frequency [21], complexity index and
logarithm of HF and LF spectrum [45], and inter-beat interval
peak frequency [73].
From EOG only one type of frequency domain feature is

used i.e. LF power [35]. From PPG HF, LF, logarithmic HF,
and logarithmic LF are extracted [24]. From EGG normalized
signal power for bradygastria, normogastria, and tachygastria
is extracted [24]. In one study, the respiratory signal power
in 10 frequency bands between 0.25 Hz to 2.75 Hz are also
used [50]. From EMGmedian frequency [22], [44], and mean
power frequency [22] is extracted.

3) TIME-FREQUENCY DOMAIN FEATURES EXTRACTION
From EEG, the following time-frequency domain features
are extracted namely wavelet packet energy [46], absolute
value of logarithm, and power of discrete wavelet transform
(DWT) from slow alpha, alpha, beta, and gamma band [18],
average wavelet energy in the beta and gamma bands [56],
Relative Wavelet Entropy [78]. From EMG cumulated and
average wavelet energy in sEMGduring pre- and post-muscle
fatigue is extracted [56].

4) STATISTICAL PARAMETER EXTRACTION
Some of the important parameter extracted for statistical
analysis are brain heart interplay coupling coefficient [48],
[70], [71], directed transfer function [28], [37], [58], partially
directed coherence [28], [67], modulation index [21], [24],
[39], [63], slow oscillations – heart rate intervals [49], multi-
scale fuzzy measure entropy [25], Wiener–Granger causality
interactions [66], system in error range (SIE), time percentage
for system in transition zone (SIT), absolute system error
(ASE) [55], coherence index [22], clustering coefficient [22],
local efficiency [22], global efficiency [22], characteris-
tic path length [22], time-delayed maximal information
coefficient [56], transfer spectral entropy [75], Granger
causality [75], cortico-muscular coherence [44], cortico-
cortical coherence [44], stress index [33], [61], cardiac vagal
index [79], sympathetic index [62], [79], sympathovagal
balance index [79], parasympathetic index [62], phase-
amplitude coupling (PAC) profile [24].

G. CLASSIFICATION AND STATISTICAL ANALYSIS
In order to classify and distinguish between various psycho-
physiological states, a variety of statistical analysis and
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classification methods are employed. In this context, features
are extracted from diverse signals. The conventional ML
technique has been used in 13 cases, with 4 papers dealing
with the DL technique, meanwhile, 2 papers have used
both ML and DL. Statistical analysis is done in 42 studies.
Figure 9 illustrates the distribution of 61 selected papers,
categorizing them based on the analysis techniques employed
by researchers.

FIGURE 9. Distribution of selected papers 61 articles based on types of
analysis techniques used by the researchers.

1) CLASSIFICATION
Table 4 provides a gist of the classifiers used in the
study, along with their corresponding performance metrics
such as accuracy, F-score, and target classes. Among the
19 literatures which are performing classification, 8 of
these are employing emotion-related classification [18],
[26], [50], [63], [64], [65], [72], [78]. Some of the
popular target classes are positive/negative/neutral valence,
low/high/neutral arousal, low/high liking, calm, joy, fear,
happiness, and melancholy. Another type of popular
psycho-physiological state for classification is cognition.
Where various studies have classified between truth and
lie [28], low, high, normal and very high cognitive task load
level [55], [74], funny, not funny [73], low or high trust [57],
[69], and High /low interest [77]. Stress related classification
is done to know about stress level [22], [62], [72], [76].
The best classification can be seen in the paper of Sharma

et al. where a multimodal approach using EEG, ECG, EDA,
arterial blood pressure, and eye gaze data from 25 subjects
is employed. Around 1334 features are extracted from these
signals and then the Genetic algorithm is used for the feature
selection. The student’s t-test showed the relevance of the
Genetic algorithm. Selected features are applied to support
vector machine (SVM) and artificial neural network (ANN).
Among them, ANN gives the best result in classifying
stress and non-stress situations with average accuracy and
F- score of 95% and 94% respectively [76]. Song et al. paper
performs least in detecting levels of arousal and valence

with an accuracy of 61.5% and 58% respectively. However,
DL models such as 1D-CNN, 2D-CNN, and MLP with
multimodal approaches are used here.

Most of the classification-related works employed multi-
modal approach [18], [26], [28], [50], [57], [65], [73], [74],
[76], [77], [78]. Meanwhile, significant no. of EEG and
EDA-based classification is also visible in [63], [64], [68],
[69]. There is a huge no of brain-heart interactions using
EEG and ECG interactions. But among these only 2 articles
have done classification with an accuracy of 76.67% and 77%
for cognition and stress levels respectively [55], [62]. Some
of the widely used classifier is SVM [55], [74], [77], [78],
LDA [28], QDA [50], [57], [69], k means clustering [63],
[64], naive Bayes [62], random forest [73], various types
of neural network namely ANN [68], [76], long short term
memory (LSTM) [18].
Liang et al. have used a combination of various classifiers

namely SVM and backpropagation (BP) neural networks to
categorize positive, negative, and neutral emotions which
give 90.66% average accuracy. Ajenaghughrure et al. used
an ensemble classifier which is a combination of QDA,
SVM, MLP, and GNB for classifying low and high trust
with an accuracy of 68.10% and f-score of 76.60%. Some
of the feature selection algorithms are PCA [28], Laplacian
Eigen map [55], Minimum redundancy maximum relevance
score [62], genetic algorithm [50], [76], ant colony optimiza-
tion [18], ReliefF, Sequential forward floating selection [43],
t-test-based feature selection, ICA [74], Pearson correlation
coefficient, Wilcoxon rank-sum test [57], [73], ANOVA test
[68]. Li et al. have achieved an r-value of 0.691 for the
prediction of individual fatigue tolerance using the SVR
model. This model is based on the network properties of
the resting-state EEG in the beta band of 18 subjects before
exercise [22].

Out of 7 articles which has used pre-existing databases,
5 of these have done classification [18], [50], [63], [64],
[65]. Among these Hwang et al. [18] and Rivera et al [48]
even used 3 (MAHNOB-HCI, DEAP, MERTI-Apps) and 2
(MAHNOB-HCI, DEAP) databases respectively to validate
their classifiers [18].

2) STATISTICAL ANALYSIS
Statistical analysis has been carried out in 42 selected studies.
Most of the analyses are divided into 3 categories such as:
1) Parametric test where it makes assumptions about the
underlying distribution of data, such as normality, 2) Non-
parametric test where such type of assumptions are not taken
into consideration, 3) combination of both parametric and
non-parametric tests. Around 28 papers used parametric tests
and 13 papers used nonparametric tests. A combination of
these two approaches is applied in 12 papers.

Some of the parametric tests used in various literatures
are ANOVA [21], [23], [27], [29], [30], [34], [35], [36],
[40], [41], [43], [44], [46], [54], [56], [57], [66], [67], [68],
[74], [75], [77], T-test [21], [27], [34], [35], [36], [37], [38],
[39], [40], [42], [43], [46], [51], [53], [56], [58], [67], [74],
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TABLE 4. The summary of classifiers and respective performance metrics.

[76], Watson– Williams’s multi- sample test [21], [47], [60],
Wald test [39], Mauchly’s test [67], Pearson’s correlation

coefficient [22], [24], [27], [29], [35], [40], [42], [47], [49],
[52], [53], [55], [58], [59], [61], [73], [74], [77].
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Some of the non-parametric tests are Friedman’s test [44],
[48], [62], [70], cluster based permutation test [25], [43],
[48], [56], [70], [79], Wilcoxon test [24], [31], [32], [33],
[44], [45], [48], [51], [62], [66], [70], [71], [73], Mann-
Whitney test [33], [45], [60], Chi-square test [31], [33],
[74], Kruskal-Walli’s test [33], Shapiro-wilk test [23],
[34], [45], [51], [54], Kolmogorov–Smirnov test [25], [51],
[66], Bootstrap hypothesis testing [63], [64], Spearman’s
correlation coefficient [25], [45], [46], [48], [60], [63], [78].
For measuring effect size cohen’s kappa [74], [78],

or cohen’s d [24], [63] is also used [24], [63], [74], [78].
In order to address the issue of multiple comparisons, some
correction strategy is also employed to mitigate its effects
such as Greenhouse– Geisser correction [21], [23], [29],
[40], [41], [43], [47], [54], [57], [60], [67], [69], [75], false
discovery rate (FDR) correction [21], [23], [53], [61], [67],
Bonferroni correction [27], [29], [31], [44], [57], [63], [64],
[67], [73], Bonferroni–Holm procedure [41], Huynh-Fedlt
correction [57].

IV. DISCUSSION
The study emphasis on the systematic integration of various
physiological signal interactions of CNS and PNS through
the consolidation of a broad range of psychophysiological
states. Post-2020 trend analysis reveals a significant surge of
CNS-PNS interaction studies, highlighting the necessity for
such investigations. The systematic review places particular
emphasis on crucial metrics in this domain, such as EEG
band power and heart rate variability. By critically evaluating
past research, the study unveils variations in experimental
frameworks and emphasizes the necessity for standardization
and generalized datasets. It also suggests future exploration
avenues of CNS-PNS interaction using various physiological
signals.

The measurement of the interaction of the CNS and
PNS using physiological traits is generally straightforward.
However, the specific requirements for measurement can
vary greatly based on experimental factors such as its type,
applications, and analysis being used. Most of the papers
that have used publically available databases mainly focus
on various emotional state classifications only. So it indicates
there is a lack of publically available databases for the study
of CNS- PNS interaction in various situations such as stress,
and cognition.

There is an abundance of emotion recognition-related
work. In numerous articles, emotion models have been
categorized into two main groups based on their theoret-
ical frameworks: (a) discrete and (b) dimensional models.
Discrete emotion theories propose universal fundamental
emotions rooted in identifying six core emotions: fear,
disgust, surprise, anger, sadness, and happiness [81], [82].
However, annotators may struggle to distinguish closely
related emotions in this model. Dimensional emotion model-
ing suggests interconnected emotions using arousal, valence,
and dominance dimensions [83], yet it oversimplifies

complex emotional experiences. Arousal and valence aren’t
exclusive or equally effective in distinguishing all emotions
and this may also result in information loss. Models
based on cognitive theories, acknowledging varied emotional
responses to the same stimuli, present a potential solution.
According to this theory user’s emotional state is influenced
by their behavior and context [84]. In the first step of emotion
recognition, signal acquisition is done from CNS (EEG)
and PNS (ECG, EDA, and EMG, etc.) in various emotional
states. Then features are extracted from those signals, which
are used as an input to various classifiers for segregating
emotion mostly on the matrices of arousal and valence.
Stress and cognition-related classifications also employed the
same framework. Some of the emotion, stress, and cognition
studies are related to source localization. For these various
statistical analyses are used.

The majority of the papers focus on a moderate number
of subjects, typically ranging from 10 to 50 participants.
This tendency could be attributed to the proximity to the
empirical threshold value of the central limit theorem [85].
Within the scientific community, female-oriented research
lacks a lot [86] and this is also noticeable here. Despite the
inclusion of both female and male participants in certain
studies, there are only 2 papers specifically focusing on
physical activities carried out exclusively by females [22],
[58]. Further research is needed to fill the gap in comparing
CNS-PNS interaction studies between females and males.
It has been seen that user-reported information may not
accurately reflect the user’s true state. Psychophysiological
measures, on the other hand, reveal a more authentic
representation of the user’s actual condition. The primary
challenges with psychological measures involve intricate
arrangements of equipment, analysis of signals, and the
need for a regulated environment. However, the benefits of
psychophysiological analysis outweigh the drawbacks.

Some papers have utilized multiple modalities because
they may provide richer information and can act in com-
plementary roles against each other. This may also be the
reason for getting better classification accuracy inmultimodal
cases compared to single physiological signal. The utilization
of various combinations of features and classifiers can
contribute to the enhancement of accuracy in assessing
various psychophysiological states. By exploring diverse sets
of features and classifier configurations, the accuracy of the
classification process can be significantly improved. The
selection of the feature extraction technique is dependent on
the signal type and its inherent phenomenon. The utilization
of time-frequency domain features is currently limited,
indicating a potential avenue for future exploration. These
types of features capture how the frequency content of signals
changes over time, providing a comprehensive representation
essential for analyzing non-stationary bio-signals. Given the
nonlinear nature of physiological signals, there is a growing
need for increased focus on nonlinear analyses in future
studies.

VOLUME 12, 2024 60363



S. Banik et al.: Exploring Central-PNS Interaction Through Multimodal Biosignals

Some of the popular ML-based classifiers used in these
studies are SVM, LDA, RF, and K means clustering. The
selection of a suitable classification algorithm is primarily
driven by the specific bio-signal and application at hand.
As the utilization of ML and artificial intelligence tools
continues to grow, the integration of advanced DL methods
becomes increasingly viable. Most of the articles here
employed statistical analysis. The choice between statistical
analysis and ML depends on the specific research question,
data characteristics, and desired outcomes. In some cases,
a combination of both approaches may be beneficial, where
statistical analysis provides rigorous inference and ML
techniques offer predictive power and pattern recognition
capabilities. Albeit this type of technology holds promise
for applications like psycho-physiological understanding,
health support, and customer satisfaction enhancement, it also
sparks concerns about personal privacy and public safety. The
ethical questions arise from its ability tomonitor, analyze, and
interpret emotions with subjective profiling without consent,
impacting personal sovereignty, integrity, and data credi-
bility. Some privacy-preserving learning approaches such
as Federated learning [87], Homomorphic Encryption-based
Learning [88], SecureMulti-Party Computation (SMPC) [89]
can be explored in future.

Secure anesthesia is attained through employing sophisti-
cated techniques to assess the patient’s condition throughout
various stages of the surgical procedure. Under general
anesthesia, a patient’s condition is delineated by three
primary facets which are interlinked, namely hypnosis,
analgesia, and muscle relaxation. All of these three aspects
may be understood through the interaction of EEG, PPG,
and EMG signals [90]. Recent advancements in Large
Language Models (LLMs) demonstrate promise in signal-to-
text processing. Integrating LLMs unveils insights into CNS-
PNS interaction, transforming physiological signal analysis
through natural language processing, especially in the field
of psycho-physiological disorders. The intricate interactions
among various CNS and PNS-originated bio-signals generate
artifacts among themselves. For example, EMG and ECG
artifacts can be found in EEG signal [91]. Advances in
affective neuroscience have greatly progressed in elucidating
the impact of signals originating from the PNS on CNS-
originated signals. One of its examples is the development
of EEGLAB toolbox which has been used in many literatures
to remove various PNS-originated artifacts from EEG [92].
However such kind of toolbox for PNS-originated signals has
not been used in any of the literature. ANSLAB is such a
toolbox that can be used for PNS-originated signals in future
studies [93].
In studies related to sleep, numerous potential applications

are rooted in the coupling of the CNS and PNS, either directly
or indirectly. In the wearable tech market, enhancement of
sleep scoring involves combining ECG-derived ANS features
with EMG, EEG, PPG, and motion data. This helps in more
accurate sleep stage assessment [94], [95]. During deception,
simultaneous changesmay be observed in brain activity along

with heart rate, pupil diameter, and skin conductance. So, for
automated lie detection, CNS-PNS interaction may provide
a lot of improvement [96]. This type of neuro-ergonomics
study has the potential to enhance sports performance as
well. Combining EEG and EMG with additional sensors like
an accelerometer to track the movement of the head, and
a pulse oximeter for measuring HRV presents significant
scope for monitoring biofeedback training for athletes [97].
Combining various modalities not only allows for a more
immersive and engaging user experience but also facilitates
the creation of adaptive virtual reality (VR) environments,
particularly when continuous biofeedback is essential [98].
In the future, advanced motor imagery-based-BCI will
be able to gain control of motor vehicles swiftly during
emergency braking. For this purpose, BCI should be reliable
and faster compared to PNS transmission in transmitting
particular neural commands for braking. Implementing such
applications requires a profound understanding of the CNS-
PNS interaction [99].

The majority of interactive studies rely predominantly on
subjective evaluations. It is essential to incorporate objective
methods for measuring diverse psycho-physiological states.
A hybrid approach that combines both techniques can prove
beneficial, with each method complementing the other. The
literature reviewed has primarily employed a small number
of datasets or experiments related to daily life activities. This
is justifiable considering the rarity, subjectivity, and diversity
of atypical activities in the real world. Many researchers
obtained their datasets in controlled environments. Mean-
while, ambulatory recordings and synthetic data generation
can offer a partial solution, a more sustainable long-term
solution is imperative.

Conventional signal processing techniques demonstrate
mathematical accuracy with smaller datasets but experience a
decline in performance as the dataset size grows. Conversely,
DL algorithms perform more effectively with larger datasets,
benefiting from their inherent data-hungry nature. The
simultaneous interaction of the brain and PNS innervated
organs should be explored more using graph theory-based
approaches such as brain connectivity [100]. This facilitates
in characterizing the stationary pattern of EEG, which may
not be elucidated through simple linear techniques [101].
Functional connectivity gives us a better temporal under-
standing of various brain functions [102]. However, effective
connectivity assesses how the functioning of a specific brain
region impacts other distinct brain areas [103].

The utilization of wet electrodes demands the appli-
cation of an electrolytic gel to improve conduction, but
this can be uncomfortable for participants. Therefore,
in scenarios requiring real-time acquisition dry electrodes
should be preferred [104]. The interface quality depends
on the configuration, placement, and geometry of the
electrodes. Closeness to the nerve fiber and a small electrode
site size lead to exceptionally high interfacial selectivity.
So multi-channel intra-fascicular microelectrode may be
a good option for better PNS neural interface [1]. The
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determination of the appropriate no. of recording electrodes
needs more exploration [105].

V. CONCLUSION
This comprehensive review conducted a bibliometric analysis
of selected papers published between 2008 and 2023 to inves-
tigate the utilization of different modalities in studying the
interaction between the CNS and PNS. All the 629 articles are
subjected to a rigorous selection process known as PRISMA.
After that, a meticulous quantitative and qualitative study is
done from various aspects. According to the knowledge, this
review is the first literature to consolidate various types of
interaction between EEG and other physiological signals in
diverse psychophysiological scenarios. The review provided
a thorough analysis of the prominent research trends in the
field of cognitive neuro-ergonomics.

It illustrates the diverse interaction domains of bio-signals
associated with various psycho-physiological states through
the analysis of 61 articles. Additionally, it presents the
details on subject information, stimulation modalities, data
acquisition protocols and devices, application types, useful
features, and analytical approaches.

It revealed a growing trend in publications in this field
over the past ten years, specifically after the year 2020. The
majority of the studies employed EEG band power and heart
rate variability parameters to assess the interaction between
the CNS and PNS in diverse psychophysiological contexts.
The majority of the approaches primarily concentrated
on improving the recognition of psychological states or
determining the specific brain regions that play an important
role in particular physical or mental states. Most of the
methods utilized a combination of features, classifiers, and
statistical analysis to achieve their goals.

This comprehensive study indicates that past research
did not adhere to a standard experimental framework,
leading to notable variations in the size of the sample,
age, gender, and duration of the session. This lack of
uniformity complicates the comparison of results across
different contexts. A fundamental approach in constructing
a credible theory involves validating prior findings using
a more generalized dataset. This process seeks to address
questions regarding the performance of existing theories
across various societal contexts, modalities, and experiences.

Finally, the utilization of the DL algorithms and hybrid
fusion (combination of sensor and decision level fusion) for
large and high-dimensional data may be a new arena for
exploring the characterization of the CNS-PNS interaction.
Another dimension in which future studies can be done
is the interaction of CNS and PNS in various cases of
physical or mental disorders. Assessing the various proposed
methods’ adherence to standards and regulations is an
important prerequisite for the potential mass application of
such research. This involves a comprehensive examination
of the regulations and standards from the design phase.
The findings from the systematic review may provide

valuable insights for the next generation of researchers
interested in future studies related to bio-signal interaction.
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