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ABSTRACT A real-time image compression method based on field programmable gate array is proposed
for the problem of high-frame-rate high-resolution camera image transmission under the limited bandwidth
of universal serial bus (USB). This method quantizes image pixels on a per-row basis, taking advantage
of the high correlation between adjacent pixels within a row, thus reducing the data volume of a single
frame image transmission. The algorithm also aims to minimize the decoding complexity on the central
processor of the receiving end. Corresponding hardware circuits and software programs are designed, and
tests are conducted on an experimental platform. The experimental results show that this method effectively
compresses image data losslessly on the board, improves the transmission frame rate. The maximum frame
rate of 1280×1280 images tested in a USB 2.0 environment can reach 25.58 fps, an improvement of 11.67 fps
compared to the original data transfer, with a compression rate of up to 55.8%. Furthermore, this method
outperforms PNG decoding in terms of decoding speed, supports multi-core decoding, and achieves the
highest decoding speed of 61fps when tested on the 1920×1080 imagewith 16 threads. This method provides
a feasible transfer solution for real-time compressed transmission of high-speed and high-definition cameras
in the industrial field.

INDEX TERMS Field programmable gate array, image compression, lossless compression, image relevance,
industrial applications.

I. INTRODUCTION
With the advancement of image sensors and differential
transmission technology, the resolution and frame rate of
images continue to increase, posing greater challenges for
data storage and processing during image acquisition. Due to
the bandwidth limitations of traditional Universal Serial Bus
(USB), a large amount of image data will be stored in the
hardware system under high frame rate and high-resolution
conditions. To avoid data loss, the output rate of the sensor
must inevitably be reduced accordingly, which leads to poor
real-time performance of the data received. Therefore, it is
particularly important for the lower-level machine to imple-
ment a set of methods to compress the volume of image data,
thereby reducing bandwidth occupancy.

Image compression technology can be divided into dif-
ferent categories based on various standards. According to
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the degree of image recovery, it can be divided into lossy
compression methods (such as run-length encoding, fractal
encoding, etc.) and lossless compression methods (such as
Huffman coding, arithmetic coding, etc.) According to the
image encoding and decoding methods [1], it can be divided
into entropy coding, transform coding, predictive coding, etc.
In recent years, some researchers have used FPGAs to imple-
ment different types of image or video encoding. To improve
the time-consuming problem of Huffman coding during con-
struction sorting, the parallel characteristics of FPGA (Field
Programmable Gate Array) are utilized to improve the imple-
mentation of Huffman coding, and pipeline technology is
used to increase the system operating frequency. This solution
is a trade-off of space for time [2]. Since Huffman coding
is entropy coding, when there is a lot of random data in the
image, the amount of data after compression may signifi-
cantly exceed the amount before compression, introducing
instability. To solve this problem, the PNG (Portable Net-
work Graphics) compression algorithm firstly compresses
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the image using the LZ77 algorithm and then re-encodes
it using the Huffman algorithm. To study the feasibility of
implementing PNG compression in hardware, the best filter
is selected by comparing different filters during the predic-
tion phase and implemented in hardware. At the same time,
the LZ77 compression algorithm and Huffman coding are
implemented in hardware to compress the data, solving the
problem that the amount of data after Huffman compression
may severely exceed the amount before compression. How-
ever, due to the high data correlation of the LZ77 algorithm,
it requires multiple cycles to complete in complex predic-
tion block situations, making this solution more suitable for
storing data with low real-time requirements [3]. the perfor-
mance of PNG deployed in FPGA is very poor [4]. To solve
the problem of spacecraft component crashes that may be
caused by high-frequency direct transmission of image data
on aerospace equipment, an adaptive predictive coding com-
pression algorithm based on the least mean square error is
used to compress camera images. This method encodes the
difference between the predicted value and the actual value
while updating the weight parameters. This solution relies
heavily on context data and requires real-time updates of the
predictive weights, making the algorithm relatively complex
[5]. Many scholars have also tried inter-frame compression
schemes on FPGAs, among which the more famous video
encoding schemes are H.264 and H.265. The inter-frame
transmission scheme requires the comparison of two or even
more than two images, which is complex in algorithm logic
and requires the storage of multiple images at the same
time, making it unsuitable for use in camera systems [6],
[7]. More scholars have turned their attention to JPEG-
LS, a lossless or near-lossless image compression algorithm
based on the LOCO-I algorithm [8]. Some scholars have
evaluated the JPEG-LS algorithm and found it suitable for
elevation data compression [9]. JPEG-LS is also applicable to
real-time image compression, Due to the significant impact of
LOCO-I’s context update on the overall algorithm through-
put, a high-performance global pipeline hardware structure
based on fragment compression and featuring spatial par-
allelism is proposed [10]. In order to solve the problem of
context writing and reading in JPEG-LS, a co-design method
is proposed from both software and hardware aspects [11].
The hardware structure of the LOCO-ANS lossless and near-
lossless image compressor based on the JPEG-LS standard
is evaluated [12]. Some scholars have proposed a new com-
pression method, which can predict based on linear and
non-linear methods. The prediction error coding uses two-
level compression, adopting adaptive Golomb coding and
binary arithmetic coding [13]. Some scholars have simplified
the hardware occupancy of JPEG-LS by specific optimization
in the hardware implementation process [14]. Compressing
raw images with JPEG-LS is also a good choice [15]. In order
to improve the parallel capability of JPEG-LS, a new architec-
ture has been designed which can process four pixels at one
period time on FPGA [16]. However, the software decoding
speed of JPEG-LS falls short of real-time standards. It can

only achieve a speed of 156ms per frame when decoding
an image of 1024∗2048 resolution on software [17]. Based
on the shortcomings of the above schemes, this paper pro-
poses a row compression encoding algorithm suitable for
FPGA implementation. By compressing the single-row pix-
els in the image, it saves data transmission bandwidth and
avoids the instability introduced by the amount of data after
compression far exceeding the amount before compression.
Experimental results show that this algorithm overcomes
instability, improves the efficiency of image compression
encoding, and has the advantages of low resource occupancy
and a short compression cycle.

The organization of this paper is as follows: Section II
introduces the design principles of the compression method
and the overall design of the FPGA system. Section III
describes the implementation logic of the main modules
of compression encoding. Section IV compares with the
other algorithms and conducts on-board testing experiments.
Section 5 is the summary. Compression algorithm principle
and overall system design.

A. COMPRESSION ALGORITHM PRINCIPLE
To achieve image compression, this paper proposes a method
based on intra-row data comparison. This method utilizes the
characteristic that adjacent pixels in an image are correlated
to compress and encode images captured by the camera: the
image data is converted into an encoded sequence consisting
of benchmark data, compression amount, and differences
between pixel data and benchmark data. The intra-row com-
pression operation is processed as shown in Algorithm 1.
1. Take the first pixel value of each row as the benchmark
data and set a deviation range. 2. Sequentially compare the
difference between the current pixel value and the benchmark
data; if it is within the deviation range, use the difference
as the encoding output and count the number of consecutive
pixels within the deviation range in this compression union;
if the deviation between the pixel and the benchmark data
exceeds the range, place the counted pixel data at the head
of the previous unit’s encoding queue, take the current pixel
value as the new benchmark data, and repeat the above steps.
3. Perform the above operations for each line, and when a
row of data ends, determine whether the amount of data after
compression exceeds the original pixel data amount; if so,
use the original data. Repeat above operations until an entire
frame of the image has been processed. This method ensures
that the compressed data amount does not exceed the original
pixel data amount, effectively improving the compression
rate.

From the above pseudocode, it can be seen that the encod-
ing system is divided into two situations. In the worst case,
the time complexity is

T (m, n) = O(mn2) (1)

where m represents the number of rows in the image, and n
represents the number of pixels per row. At this time, the pixel
correlation within each row of the image is extremely poor.
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Algorithm 1 Proposed Algorithm Working Flow
Input: pixel array: P∗, deviation range:D, line size:N
Output: codec data array: Q∗

1 b← 0, i← 0, k ← 0;
2 Q∗ ← empty array;
3 while i < N do
4 if i = 0 then
5 b← Pi;
6 Qk ← Pi;
7 k ← k + 1;
8 Qk ← 0;
9 k ← k + 1;

10 else
11 if (i = N − 1) then
12 if (k > N − 1) then
13 Q∗ ← P∗;
14 end
15 else
16 if (|b− Pi| < D) then
17 Qk ← b− Pi;
18 k ← k + 1;
19 else
20 b← Pi;
21 Qk ← Pi;
22 k ← k + 1;
23 Qk ← 0;
24 k ← k + 1;
25 end
26 end
27 end
28 i← i+ 1
29 end
30 return Q*;

In the best case, the time complexity is

T (m, n) = O(mn) (2)

where all pixels in each row can be compressed. However,
since the encoding system is implemented on the FPGA, and
the software does not participate in the encoding process, the
FPGA can compensate for the high time complexity through
pipelining. Interestingly, for the decoding system, since there
will be a mark for whether each row of pixels in the image is
compressed after the encoding process, the time complexity
of the decoding system is

T (m, n) = O(mn) (3)

which greatly alleviates the pressure of software decoding.

B. OVERALL SYSTEM DESIGN
This paper has constructed a hardware platform based on
Efinix’s T85 series FPGA chips, selected the GMAX0505
image sensor from GPixel Technology Co., Ltd., used DDR3
(double-data-rate 3) as the image cache storage device, imple-
mented data transmission through the USB2.0 interface, and
adopted the AMD Ryzen7 5800h processor as the host com-
puter processor. The development was carried out using
Efinity software, with Verilog HDL as the design language.

FIGURE 1. System architecture diagram.

FIGURE 1 shows the architecture of the system, which
consists of four modules: the image data acquisition mod-
ule, DDR read-write control module, image compression
encoding module, and data upload module. The image data
acquisition module receives the data output by the sensor
through the LVDS (LowVoltage Differential Signaling) inter-
face and sends it to the DDR3 for buffer storage after channel
adjustment conversion through the DDR read-write control
module. The image compression encoding module reads data
from the DDR through the DDR read-write control mod-
ule and encodes it. The encoded data is then passed to the
CYUSB3014 chip by the data upload module and transmitted
to the host computer to display by the CYUSB3014. When
the CYUSB3014 detects that the internal data is full and has
not been all received by the host computer, it will send a
read pause signal to inform the data upload module to stop
transmission.

II. IMAGE COMPRESSION AND ENCODING MODULE
The function of the image compression encoding mod-
ule is to analyze and compress images. It consists of
three sub-modules: the benchmark calibration sub-module,
the compression amount statistics sub-module, and the
encoding sub-module. The relationship between these three
sub-modules is shown in FIGURE 2.

A. BENCHMARK CALIBRATION SUB-MODULE
The function of the benchmark calibration sub-module is
to determine the position of the benchmark value for each
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FIGURE 2. Internal structure diagram of image compression encoding module.

FIGURE 3. An example of output diagram of the benchmark calibration
sub-module.

compression unit in a row. Upon receiving a row of data,
it stores the original data in RAM (Random Access Memory)
and generates a binary sequence to mark whether each posi-
tion is a benchmark data, i.e., if the pixel value at that position
is the benchmark value of the compression unit, then the flag
is set to 1, otherwise, it is 0. This module also compares the
difference between subsequent pixel values and the current
benchmark value. The flag is set to 0 if the difference is
within the deviation threshold, otherwise the flag is set to 1,
and the current pixel value becomes the new benchmark data.
The output of this module includes the original data and the
calibration sequence.

Taking the deviation range [-127,+127] as an example, its
illustration is shown in FIGURE 3. 0 is the first data in the
row. Currently, the row valid signal lv is detected to rise, so
0 is used as the benchmark data. The flag is marked as 1. The
difference between the second data and the first reference data
exceeds the threshold of 127. Therefore, 255 is set as the new
benchmark data, the flag is marked as 1, and the difference
between 129 and 255 is less than 127, so it is judged that
the value is not the benchmark data, and the corresponding
flag is 0. By analogy, when it is detected that 255 is the last
data in the row, the flag is also set to 1. To improve compres-
sion speed and reduce timing requirements, the benchmark
calibration sub-module processes multiple pixels within one
clock cycle. Let’s take processing two data in one cycle as an
example. Four signals are required for processing: frame valid
signal (fv), line valid signal (lv), handshake signal (valid), and
original data (pix_data, 32-bit data, where the high 16 bits are
the first pixel data, and the low 16 bits are the second pixel
data), and benchmark flag signal (flags, 2-bit data, where the
high bit indicates whether the first pixel data is benchmark
data, and the low bit indicates whether the second pixel data
is benchmark data). At the start of the line valid signal,
the module marks the first data as the benchmark data and
calculates the difference between the two data currently input.

TABLE 1. Correspondence between benchmark data, input data, and
benchmark flags.

If the gap between the second pixel data and the first pixel
data is less than the given deviation, the benchmark data will
not be updated, and the benchmark flags signal will set to
10; otherwise, the benchmark flag signal is set to 11, and the
benchmark data will update to the second data. Subsequently,
with the handshake signal high, the relationship between two
input data and the benchmark data is determined, as shown in
Table 1.

Repeat the operation until the module detects the falling
edge of the line valid signal, then mark the second pixel as the
benchmark position. This position corresponds to a sequence
marked as 1. Wait for the start of the next row. The relevant
timing is shown in FIGURE 4 (taking the deviation [-127,
+127] as an example). When the sub-module detects the
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FIGURE 4. An example of output timing diagram of the benchmark
calibration sub-module.

rising edge of lv, it takes 0 × 0001 as the benchmark data,
and sets the high bit of the flags to 1. At this time, it detects
that the difference between the data 0×0002 and 0×0001 is
less than the threshold 127, so the low bit of the flags is set
to 0. In the second clock cycle, the difference between the
data signal 0 × 0002 and 0 × 0001 is less than 127, so the
high bit of flags is set to 0, and the low bit 0 × 00FF and
0× 0001 have a difference of more than 127, so 0× 00FF is
set as the benchmark data, and its flag low bit output is 1. And
so on, to the last data of this line, at this time, it detects that
the difference between the high bit of the data signal 0×000A
and the benchmark data 0 × 0009 is less than the threshold,
so the high bit of the flag is set to 0, and the low bit of the
data signal is the last data of this line, so the corresponding
flag low bit is set to 1.

B. COMPRESSION AMOUNT STATISTICS SUB-MODULE
The compression amount statistics sub-module uses a ping-
pong operation. Ping-pong operation is to use two FIFO (First
Input First Output), one for writing and one for reading at
the same time. In this sub-module, a line of original data
is set to facilitate the encoding sub-module to encode. This
sub-module is mainly responsible for counting the amount
of data in each compression unit, that is, judging the num-
ber of pixels between the two flags with a value of 1 in
the flags stream passed by the benchmark calibration sub-
module. When a new row of data is detected, the counter
is started. When the current sequence is detected as 1, the
value of the counter is stored in RAM, and then the counter
is reset; otherwise, the value of the counter continues to
accumulate. At the same time, the sub-module also calculates
the equivalent compression amount for that line. For different
flags, the method of accumulating the equivalent compres-
sion amount is shown in Table 2. When the line needs to
be output, the equivalent length will be compared with the
valid data amount length of the input row. The sub-module
outputs the original data stream, benchmark sequence, and
the compression amount of the corresponding unit, as well as
a flag signal indicating whether to compress that row.

The sub-module requires five signals: frame valid signal,
line valid signal, handshake signal, original pixel data, and
benchmark flags signal. Similarly, to ensure compression
speed, this module will also process multiple data in one
cycle. Taking the example of processing two data in one clock
cycle, the sub-module internally uses 4 RAMs, with 2 RAMs

TABLE 2. The cumulative relationship between benchmark flag signals
and equivalent compression amount.

as a group, adopting a method of writing one group while
reading another. When the rising edge of the line valid signal
is detected, the internal counter is reset, and in all cases where
signals are valid, the counter operation performs different
actions based on the incoming benchmark flags, as shown in
Algorithm 2. If the incoming benchmark flags are 00, then the
two counters each add 2; if the incoming benchmark flags
are 01 or 10, different values are added to the previously
selected RAM, and the RAM for this time is set; if the input
benchmark flags are 11, then the current counter is saved to
the last selected RAM and the counter is reset, at the same
time, the RAM for this time is set as the second RAM; when
the falling edge of the line valid signal is detected, then switch
to another group of RAM for writing, and read from that
group of RAM.

C. ENCODING SUB-MODULE
The compression encoding sub-module encodes image data
using a method of benchmark data encoding. This module
requires seven signals: frame valid signal, line valid signal,
handshake signal, original pixel data, benchmark flags signal,
compression identification, and unit compression amount.
Internally, the module recalculates the deviation value and
generates encodings of different lengths based on the bench-
mark flag signal, with the relationship between encoding
length and benchmark flag signal as shown in Table 2.
The sub-module internally has a register with a width of

256. The sub-module will sequentially write the generated
encoding into the high bits of register. When it is detected
that the count exceeds 128, the module indicates that the data
output is valid and outputs the low 128 bits of data from
register to the data upload module. When the module detects
the falling edge of the frame valid signal, it will output the
remaining signals and after a delay of one cycle, output an
end code to facilitate the host computer’s recognition and
termination of data reception. The related process is shown
in Algorithm 3.

III. EXPERIMENTS
A. COMPARATIVE EXPERIMENTS
This paper compares the image performance parameters of
different algorithms through simulation. The computer used
for the experiment is configured with an AMD Ryzen R7
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Algorithm 2 Last Select Ram and Benchmark Flags
Corresponding Operator Ralationship
Input: frame valid signal:fv, line valid signal:lv,benchmark

flag:bf [1 : 0], reset signal:rst
Output: Register array:R1,R2

1 if (rst = 1) then
2 LastSelectRam← 0, count1 ← 0, count2 ← 0;
3 R1 ← [0, 0 . . . 0];
4 R2 ← [0, 0 . . . 0];
5 end
6 if (fv ∧ lv) then
7 if (LastSelectRam = 0) then
8 if (bf = 2′b00) then
9 count2 ← count2 + 2;

10 count1 ← count1 + 2;
11 end
12 if (bf = 2′b01 ∨ bf = 2′b11) then
13 count1 ← count1 + 2;
14 R1 ← [R1[0],R1[1]. . .count1];
15 LastSelectRam← 1;
16 count1 ← 0, count2 ← 0;
17 end
18 if (bf = 2′b10) then
19 count1 ← count1 + 1;
20 R1 ← [R1[0],R1[1]. . .count1];
21 LastSelectRam← 0;
22 count1 ← 0, count2 ← 0;
23 end
24 else
25 if (bf = 2′b00) then
26 count2 ← count2 + 2;
27 count1 ← count1 + 2;
28 end
29 if (bf = 2′b01) then
30 count2 ← count2 + 1;
31 R2 ← [R2[0],R2[1]. . .count2];
32 LastSelectRam← 1;
33 count1 ← 0, count2 ← 0;
34 end
35 if (bf = 2′b10) then
36 R2 ← [R2[0],R2[1]. . .count2];
37 LastSelectRam← 0;
38 count1 ← 0, count2 ← 0;
39 end
40 if (bf = 2′b11) then
41 R2 ← [R2[0],R2[1]. . .count2];
42 LastSelectRam← 1;
43 count1 ← 0, count2 ← 0;
44 end
45 end
46 end

5800H CPU, which has 8 cores and 16 threads. The base
clock speed is 3.2Ghz, and it can be overclocked up to
4.4Ghz. The L1 cache is 512KB, the L2 cache is 4MB, and
the L3 cache is 16MB. The operating system is Windows 11
22H2. The computer has 40GB of RAM and a 1.5TB SSD.
This paper randomly extracts a subset of data (1000 images)
from the COCO dataset for compression encoding, in order
to obtain more fair performance parameters. The images
randomly extracted are normalized to a resolution of 1920×
1080, pixel depth is 8bit per pixel. and a comprehensive eval-
uation is conducted on the compression ratio, decompression

Algorithm 3 Encoding Sub-Module
Input: pixel data: P[31 : 0], frame valid signal: fv, data

valid signal: dv, compress flag: cf , benchmark flag:
bf [1 : 0], union compress amount: uc1[15 : 0],
uc2[15 : 0], Reset signal: rst

Output: codec data: Q[127 : 0] output data valid: dvo
1 if (rst = 1) then
2 i← 0,arr[255 : 0]← 0, count ← 0, b← 0;
3 end
4 if (fv = 1) then
5 if (cf = 0) then
6 if (dv = 1) then
7 arr[count + 31 : count]← P[31 : 0];
8 count ← count + 32;
9 end

10 else
11 if (dv = 1) then
12 if (bf = 2′b00) then
13 arr[count + 15 : count]← (b− P[31 :

16], b− P[15 : 0]);
14 count ← count + 16;
15 end
16 if (bf = 2′b01) then
17 arr[count + 39 : count]← (b− P[31 :

16],P[15 : 0], uc2);
18 count ← count + 40, b← P[15 : 0];
19 end
20 if (bf = 2′b10) then
21 arr[count + 39 : count]← (P[31 :

16], uc1, b− P[15 : 0]);
22 count ← count + 40, b← P[31 : 16];
23 end
24 if bf = 2′b11 then
25 arr[count + 63 : count]← (P[31 :

16], uc1,P[15 : 0], uc2);
26 count ← count + 64, b← P[15 : 0];
27 end
28 end
29 end
30 if (count ≥ 128) then
31 Q[127 : 0]← arr[127 : 0];
32 count ← count − 128;
33 dvo← 1;
34 else
35 Q[127 : 0]← 0;
36 dvo← 0;
37 end
38 else
39 if (count ̸= 0) then
40 Q[127 : 0]← arr[count − 1, 0];
41 dvo← 1;
42 else
43 Q[127 : 0]← 0;
44 dvo← 0;
45 end
46 end

time, PSNR, and Throughput. The data results obtained from
the experiment are shown in Table 3 (All algorithms have
been set to single-thread decoding). From the table, it can be
seen that the best compression effect is achieved by JPEG,
with an average compression ratio of 0.206237. However,
in terms of frame rate and image information loss, it is not as
good as the algorithm proposed in this paper. JPEG-LS (with
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TABLE 3. Comparison table of various parameters and indicators across
different algorithms.

TABLE 4. The relationship between the number of decoding threads and
the decoding frame rate.

the Near parameter set to 0, at which point the decompression
speed is the fastest) has a compression effect second only to
JPEG, with an average compression ratio of 0.292913, but
it lacks performance in software decoding, with an average
frame rate of only 26.25778fps. PNG (with the compression
parameter set to 1, at which point the decompression speed is
the fastest) can achieve a compression ratio of 0.411754, but
the average frame rate during decoding is only 29.6609fps.

At the same time, the algorithm proposed in this paper sup-
ports multi-threaded parallel decoding. The paper tested the
average frame rate of decoding coco dataset(normalized to a
resolution of 1920×1080, pixel depth is 8bit per pixel) under
different threads by OpenMP, as shown in Table 4. We can
see that as the number of threads increases, the decompres-
sion frame rate also increases accordingly. However, when
the decompression thread exceeds 8 threads, the increase in
decompression frame rate will decreases. This is because the
program also generates some time overhead when creating
threads, which leads to the reduction of frame rate. The best
performance is achieved with 16-thread decoding, reaching a
speed of 61.4435fps. This paper also tested the CPU usage
and memory usage under different decoding threads. The
CPU usage increases with the increase of the number of
threads, reaching the highest at 16 threads, with an average
usage rate of 20.581%. However, the increase in the number
of threads does not have a significant impact on memory
usage.

In order to simulate a real scenario, we added noise to
FIGURE 5(normalized to a resolution of 1920 × 1080,

FIGURE 5. Image to be processed.

pixel depth is 8bit per pixel) and then used different algo-
rithms for compression and decompression to compare the
relevant parameters. After adding salt-and-pepper noise and
random noise to FIGURE 5, the relationship between various
compression algorithms and compression rates is shown in
FIGURE 6. The horizontal axis represents the proportion of
noise added, and the vertical axis represents the compression
rate. It can be seen from the figures that after the insertion of
salt-and-pepper noise, as the proportion of noise increases,
the compression rates of all compression algorithms are
increasing. Among them, PNG compression performs better
because it uses a mix of LZ77 and Huffman compression,
so it can still control the compression rate around 0.7 even
when the proportion of noise is large. Next is the algorithm of
this paper and JPEG-LS, which can control the compression
rate around 1.0 as the noise increases. Through random noise,
it can be observed that the PNG algorithm still maintains a
better compression rate. The algorithm of this paper is based
on the principle of row compression, so when it is detected
that the data size after row compression exceeds the original
transmission data size, the original data will be automatically
used for transmission, therefore, the compression rate can still
be maintained around 1.0 under the worst conditions. It is
worth mentioning that JPEG-LS does not provide a solution
when the data size after compression is larger than before
compression. In order to have a better comparison, when this
situation occurs, this paper fills in with the last time the data
size after compression is less than before compression.

The comparison of the decoding frame rate and noise ratio
for each algorithm is shown in FIGURE 7. As the number
of noise ratio increases, the decoding speed of the JPEG
algorithm will rapidly decrease and eventually stabilize. All
algorithms, except for the one proposed in this paper, other
algorithm are at a lower decompression frame rate. In con-
trast, the row-based compression algorithm proposed in this
paper will significantly increase the decoding speed as the
number of noise points increases. When the amount of noise
data reaches a point where the data size after compression
is greater than before compression, the algorithm will auto-
matically transmit the original pixel data. The host computer
only needs to directly copy the data to the target location after
parsing the uncompressed identifier. Therefore, in such cases,
the algorithm of this paper can achieve a decoding speed

VOLUME 12, 2024 64669



L. Xie et al.: Real-Time Image Row-Compression Method for High-Definition USB Cameras Based on FPGA

FIGURE 6. The relationship between compression ratio and noise ratio of various algorithms after inserting
salt-and-pepper noise (left)and random noise (right).

FIGURE 7. The decompression frame rate and noise ratio of various algorithms after inserting salt-and-pepper
noise (left) and random noise (right).

TABLE 5. FPGA resource utilization.

of over 80 frames, ensuring the stability of camera image
transmission and minimizing the impact of the environment
on the compression algorithm as much as possible.

B. ON-BOARD EXPERIMENTS
After the program compilation is completed, the resource
utilization rate is as shown in Table 4. Compared to the orig-
inal data output, the logic resources occupied by the output
after adding compression encoding increased by 3%, and the
storage resources increased by 36.8%.

FIGURE 8 shows the image captured by the sensor, which
has been successfully decoded and displayed by the host
computer. The image resolution is 1280 × 1280, with a bit
depth of 12 bits (transmitted as 16 bits per pixel). Under USB
2.0 (The ideal bandwidth is 32 Mbyte/s, but the actual test
can reach 42 Mbyte/s), the original transmission frame rate is
13.91 fps, and after compression, the transmission frame rate
can reach 25.58 fps. the experimental results have proven that

FIGURE 8. Captured image.

this compression algorithm can reduce the data transmission
size of a single frame image and increase the frame rate.

IV. CONCLUSION
In response to the phenomenon of low transmission frame
rates and poor real-time performance of high-resolution
cameras under the condition of limited bandwidth trans-
mission media, this paper proposes a lossless compression
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algorithm based on the principle that adjacent pixels in an
image have high correlation, and implements this algorithm
on an FPGA. At the same time, this paper compares the
proposed algorithm with common compression encoding
and decoding algorithms in terms of compression rate,
decompression frame rate, and image performance. The
experimental results show that the algorithm in this paper is
superior to the PNG algorithm in decompression frame rate,
while ensuring lossless compression in image performance.
Considering the current development of processors towards
multi-core and multi-threading, this paper tests the frame rate
of the algorithm under multi-threaded decompression. The
algorithm in this paper can achieve optimal processing of
images with a resolution of 1920 × 1080 under 16-thread
decompression, reaching up to 61fps. Considering the worst-
case, this paper also adds noise to the images to simulate
the worst case and compares different algorithms in terms
of decoding frame rate. The experimental results show that
the higher the random pixels in the image, the higher the
frame rate that can be achieved by the algorithm in this paper.
The experimental results demonstrate that under certain band-
width conditions, the algorithm in this paper can reduce the
data size of single-frame image transmission and improve
the real-time transmission of the camera on limited band-
width media. Moreover, the decoding algorithm requires low
computational power on the receiving end and can support
multi-threaded processing. For cameras with high resolution
that only support limited bandwidth media transmission, this
algorithm can save the transmission volume of single frames
and improve the frame rate.With the continuous development
of sensor technology and differential transmission technol-
ogy, cameras will inevitably develop towards faster frame
rates and higher resolutions, but this also poses challenges
to the transmission media, especially traditional media such
as USB, GIGE (Gigabit Ethernet), etc.
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