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ABSTRACT In this paper, we have proposed a new paradigm for modeling of SAG mills. Typically,
important parameters found in the modeling of such processes are described as state-space system model
rather than unknown parameters. Here, we propose to estimate the system model using the maximum
likelihood approach. Additionally, we propose using a new measurement that has not been considered in
other modeling approaches. The benefits of our proposal are illustrated via numerical simulations. The
results demonstrate that incorporating this new measurement within the framework of maximum likelihood
estimation improves the accuracy of estimating the unknown parameters.

INDEX TERMS SAG mills, system identification, em algorithm, maximum likelihood, filtering, modeling.

I. INTRODUCTION
System identification of real-world processes is imperative
for developing effective process control strategies and precise
fault detection and diagnosis methods. A benefit of such
identification is enhanced plant stability and performance,
which can be achieved by integrating the model with
advanced model-based process control, outperforming tradi-
tional control methods [7], [35], [40], [43].

In copper mining, two key processes are the grinding and
flotation. These processes require a significant amount of
electrical energy, particularly in the operation of the semi-
autogenous (SAG) mill. An SAG mill is equipment used
to mix minerals from the crushing stage with water and

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad S. Khan .

lime. Within the mill, the minerals are reduced in size
through kinetic interactions with other rocks and steel balls
(hence the name semi-autogenous) [41]. Several studies have
been conducted to optimize SAG mill performance aimed
at reducing traditional energy consumption in the mining
industry, including the use of advanced control strategies
and new technologies such as high-pressure grinding rolls
(HPGR) and stirred mills [1], [8]. An alternative to the
energy reduction using traditional sources is the inclusion of
renewable energy, such as solar panels, which play a key role
in the profitability of the whole copper mining process [32],
[34], however, renewable energy discussion is out of the
scope of the paper.

Figure 1 illustrates the open-loop SAG mill circuit used in
the mining industry [28]. The mill is fed with three streams:
the water flow rate (MIW ), the ore feed rate (MFO), and the

VOLUME 12, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 60883

https://orcid.org/0000-0002-5797-4231
https://orcid.org/0000-0002-7201-8424
https://orcid.org/0000-0002-8632-5126
https://orcid.org/0000-0002-3336-8683
https://orcid.org/0000-0003-0304-7907
https://orcid.org/0000-0001-7104-3233
https://orcid.org/0000-0002-2224-3826


A. L. Cedeño et al.: Maximum Likelihood Estimation for an SAG Mill Model

FIGURE 1. A semi-autogenous grinding mill operation.

steel balls feed rate (MFB), all of which combine to aid in
ore breakage and form the charge in the mill, comprising a
mixture of grinding media and slurry [23], [24]. Grinding
media refers to the steel balls and large rocks used to break
down the ore, while the slurry comprises a mixture of water
and all the ore material. The fraction of the mill volume
filled with charge is represented by JT [29]. The overall
process works as follows: The mill is rotated by a motor
along its longitudinal axis, lifting the charge by the inner
liners on the walls of the mill to a certain height. After
being lifted, it cascades down, only to be lifted again by
the liners as the mill rotates. If the rotational speed is high
enough, the material in the charge will go airborne after
reaching the top of its travel on the mill shell. The highest
point where material leaves the mill shell is known as the
shoulder of the charge. Airborne particles follow a parabolic
path, reaching a maximum height known as the head before
making contact again with the mill charge at the bottom of
the mill. The cascading motion of the charge causes the ore
to break down via impact, abrasion, and attrition [29]. The
mill grind is the fraction of material in the mill discharge
below the specified size and indicates the efficiency of the
mill to break the ore down [12]. The motor (turning the mill)
power draw (Pmill) indicates the kinetic and potential energy
given to the charge [28]. The slurry is discharged through
an end-discharge grate with an aperture size that limits the
particle size of the discharged slurry. The slurry flow-rate
at the mill discharge is given by Q, and it is assumed that
the in-mill slurry density is equal to the discharge slurry
density (ρQ).

One of the primary challenges for modeling (and control)
an SAG mill process is the insufficient measurements
available to estimate the necessary states and parameters in
the model. In general, the number of real-time measurements
available is significantly lower than the size of the state vector
that needs to be measured [43]. In [4], [5], and [6], the
problem of inferential modeling, state estimation, and model
validation of an SAG mill is addressed using the extended
Kalman filter. However, the results are obtained based on
a set of measurements that are not physically measurable
in the process. Along the same line of reasoning, another
study is presented in [24], where states and parameters of a
simplified SAG model are estimated. This study, described

in [41], focuses on the estimation of SAG mill states using
a simplified model, emphasizing the use of commonly
available measurements not typically utilized. For SAGmills,
recent works have concentrated on the application of neural
networks and machine learning techniques to estimate mill
throughput or identify operational regions within the SAG
mill, primarily for control purposes (see [13] and [26] and
the references therein). The comparative study presented
in [13] focuses on state estimation techniques for control,
particularly modern predictive control. However, neural
network and machine learning approaches are not suitable
for identification techniques. They do not utilize the actual
system model but define one based on some training and
output data, generally not based on the physics properties of
the actual system of interest. Other works have also focused
on accurate estimation of state variables, such as load volume,
but from measurements of physical variables and parameters,
such as mill filling (see e.g. [19]). However, these methods
include direct measurement that rely on the mill not working
for a period of time, on images that require further analysis,
or on precise knowledge of the mill’s geometry (see [19] and
the reference therein).

On the other hand, the difficulty and importance of esti-
mating non-linear parametric systems are widely recognized
in the control and system identification community, see
e.g. [30], [39], and [46]. Usually, in nonlinear modeling,
researchers focus on a specific class of systems, such
as those characterized by Volterra kernels [27], molecular
biology [22], and Hammerstein-Wiener structures [45],
to mention just a few.

The maximum likelihood (ML) framework for estimating
unknown parameters has been the workhorse in the system
identification community when considering uncertainty in
the dynamical models. The ML framework has been applied
to a range of problems, including continuous-time, discrete-
time, linear, and nonlinear dynamic models. To solve the
ML estimation problem, the Expectation-Maximization (EM)
algorithm is typically the preferred tool.

In this paper, we apply ML estimation to obtain unknown
parameters in an SAG mill non-linear system model using
available measurements in practice, specifically, the total
SAG mill weight. The main contributions of this work are:

• We present an iterative methodology for estimating the
unknown parameters of an SAG mill, leveraging both
the ML method and the EM algorithm. Specifically,
we employ the extended and the unscented Kalman
filters and smothers, comparing their performance in
addressing the ML estimation task.

• Within the EM algorithm framework, to address the
inherent high nonlinearity of the model, we propose
computing the auxiliary function (also known as the
surrogate function) through a Taylor-based second-order
approximation of the log-likelihood function.

• To validate this approach, we conduct comprehensive
Monte Carlo simulations to demonstrate its robustness
and accuracy in the estimations.
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The remainder of the paper is as follows: In Section II,
a general description of the SAG system model is presented.
In Section III, the ML problem for the system of interest is
stated. In Section IV, an EM-based algorithm is presented.
A numerical example with simulated data is presented in
Section V. Finally, in Section VI we present our conclusions.

II. MODELING AN SAG MILL
A. GENERAL SYSTEM DESCRIPTION
In this section, we provide a description of the state-space
system model of an SAG mill. We consider the Hulbert SAG
mill model presented in [20] and utilized in [9], [23], [24], and
[31]. The SAG mill model is based on (1), which describes
the mass balance using a continuous-time state-space model
as follows:

ẋ = u − Vout +8, (1)

where we define the following vectors

x=


xw

xs

x f

xr

xb

, u=


uw

us

uf

ur

ub

, Vout=


Vwo
Vso
Vfo
0
0

, 8=


0
RC
FP

−RC
−BC

. (2)

Here Vso, Vfo and Vwo represent the discharge of solids,
fines, and water from the mill, respectively; RC denotes rock
consumption, BC ball consumption, and FP fines production.
The elements of the input vector, uw, us, uf , ur , and ub,
represent the water flow-rate, solids, fines, rocks, and balls,
respectively. The elements of the state vector xw, xs, x f , xr ,
and xb, represent water volume, solids, rocks, and balls in the
mill. The mill inflow-rate is described as follows:

uw = MIW, (3)

us =
MFS
ρ0

(1 − αr ), (4)

uf =
MFS
ρ0

αf , (5)

ur =
MFS
ρ0

αr (6)

ub =
MFB
ρb

, (7)

where MIW represents the water flow-rate, MFS denotes the
ore feed-rate to the mill, and MFB stands for the steel balls
feed-rate, ρ0 and ρb are the densities of the feed ore and steel
balls, respectively, and αr and αf represent the mass fraction
of rocks and fines in MFS.

Similarly, the water discharge Vout, solids, and fines are
given by:

Vw0 = ϕdHxw (ζw) , ζw = xw/(xs + xw), (8)

Vs0 = ϕdHxw (ζs) , ζs = xs/(xs + xw), (9)

Vf 0 = ϕdHxw
(
ζf

)
, ζf = x f /(xs + xw), (10)

where dH is a discharge constant. The rheology factor, ϕ,
is used to model the slurry effect in the performance of the
mill as follows [23]:

ϕ =

[
max

(
0, 1 −

(
1
εsv

− 1
)
xs

xw

)]0.5
, (11)

where εsv represents the maximum fraction of solids.
On the other hand, the fines production (FP) and rock and

ball consumption (RC) and (BC)–in the population balance
in (1)– are described as follows:

RC =
ϕPmillxr

ρ0κr (xr + xs)
, (12)

BC =
ϕPmillxb

κb
(
ρ0(xr + xs) + ρbxb

) , (13)

FP =
Pmill

ρ0

{
κf

[
1 + ακf

(
VLOAD
vmill

− vPmax

)]} . (14)

Here Pmill represents the power draw of the mill (see e.g.
[20] and [24]), κr , κb, κf denote the rock abrasion factor,
steel abrasion factor, and the power needed per tonne of fines
produced, respectively, ακf represents the fractional change
in power per fines produced per change in the fractional
filling of the mill, vmill denotes the volume of the mill, vPmax
represents the fraction of the mill filled for maximum power
draw, and VLOAD represents the mill charge volume in terms
of the volumetric states in the mill.

B. A REDUCED HULBERT MODEL
Substituting (3)–(14) in (1) we obtain the Hulbert model [20].
Notice that this model is described using five (5) state
variables and several parameters, in addition to the param-
eters resulting from the choice of the mill’s power draw
Pmill, see e.g. [20] and [24]. Nevertheless, it is possible to
obtain a reduced model, referred to as the Hulbert model,
by considering the following assumptions:

• The state, x f , which represents the volume of fines, does
not affect the dynamics of the remaining state variables.

• There is instrumentation available capable of measuring
input flows, thus with these estimates, the input flow
equations–to the mill–can be omitted and assumed to be
known [4].

• The mill’s power draw, Pmill, can be assumed to be
known. Moreover, abrasions of the rocks and steel balls
(κr and κb, respectively) are inherent material properties
that can be known in advance [4].

Then, the Hulbert model can be expressed as follows:

ẋ = fc(x) + u, (15)

where the state and input vectors are given by

ẋ =


xw

xs

xr

xb

 , u =


uw

us

ur

ub

 . (16)
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and the nonlinear function fc(x) is defined as

fc(x) =



−ϕdHxw (ζw)

−ϕdHxw (ζs)+
ϕPmillxr

ρ0κr (xr + xs)

−
ϕPmillxr

ρ0κr (xr + xs)

−
ϕPmillxb

κb
(
ρ0(xr + xs) + ρbxb

)


. (17)

Equation (15) is an SAG system model with four state
variables, and two (unknown) parameters to be estimated: the
discharge constant, dH , and the maximum fraction of solids,
εsv.

C. SAG MODEL OUTPUTS
One of the challenges to analyzing an SAGmill is the limited
useful information that can directly be obtained in practice,
primarily because there is a lack of instrumentation available
to measure internal variables within the mill. Recent studies
have focused on developing methodologies for detecting and
measuring internal variables, such as acoustic emissions,
and residence time distribution [18], [33]. Other studies
have explored the use of advanced modeling techniques to
optimize SAG mill control, and to improve overall ball mill
performance [36], [37]. These studies highlight the ongoing
efforts to improve the analysis and control of SAG mills. For
this study, we consider that the model of the output is given
by:

y = hc(x), (18)

where, under the assumption of the measurement of the total
SAG mill weight, Wc, is available. For the Hulbert model
in (15) we have:

hc(x)=
[

Wc
VLOAD

]
=

[
xw+ρ0(xs + xr )+ρbxb+Wmill

xw + xs + xr + xb,

]
,

(19)

where Wmill the empty mill weight, ρrb the density related
with the state xrb.

D. DISCRETE-TIME SYSTEM MODEL FOR THE SAG MILL
Continuous-time systems can be converted to discrete-time
systems using various discretization techniques. However,
in the case of non-linear continuous-time systems, it is not
always feasible to have an exact representation in discrete
time. Instead, an approximation method can be employed to
obtain a sampled-model from the continuous-time system.

In the case of the SAG mill, a non-linear continuous-time
system, its model needs to be discretized since the measure-
ments are taken in discrete time. One common method to
obtain a discrete-time model from a continuous-time system
is the forward Euler approximation [11]. For instance, for a
continuous variable x, the forward Euler approximation can
be written as:

ẋ ≈
xt+1 − xt

1
, (20)

where t is the sample index, and 1 is the sampled period.1

Then, the discrete-time version of the SAG models are:

xt+1 = xt +1fc(xt ) +1ut , (21)

yt = hc(xt ). (22)

III. MAXIMUM LIKELIHOOD ESTIMATION PROBLEM
A. PROBLEM FORMULATION
Maximum Likelihood (ML) is a method to estimate system
parameters using the information provided by the obser-
vations. These observations are considered realizations of
stochastic variables [25]. In general, several ML estimation
algorithms have been developed for discrete-time models of
dynamical systems. In this paper, we consider an SAG mill
state-space model described, in general, as follows:

xt+1 = f (xt ,ut , θ) + wt , (23)

yt = h(xt ,ut , θ) + vt , (24)

where xt ∈ Rnx×1 is the state variable, ut ∈ Rnu×1 and yt ∈

Rny×1 denote the observed input signal and output signal,
respectively. Furthermore, θ ∈ Rnθ is a vector of (unknown)
parameters that specifies the non-linear mappings, f (·) and
h(·). Finally, wt and vt are independent and identically
distributed random processes with zero mean and unknown
variances Q and R, respectively. Because of the random
nature of the processes noise,wt , and the measurement noise,
vt , the system model in (23) can be represented with the
following stochastic description:

xt+1 ∼ p(xt+1|xt ,ut , β), (25)

yt ∼ p(yt |xt ,ut , β), (26)

where p(xt+1|xt ,ut , β) is the probability density function
(PDF) that describes the system model dynamics for given
values of xt , ut and β, and p(yt |xt ,ut , β) is the PDF that
describes the output measurements.
Problem 1: The problem addressed in this paper is

obtaining the ML estimate, β̂ML, of the vector of parameters

β = [θT vec {Q}
T vec {R}

T ]T , (27)

utilizing N measurements of the input response, u1:N =

[u1 . . . uN ], and the output response, y1:N = [y1 . . . yN ].2

With this in mind, the ML estimation problem can be
formulated as follows:

β̂ML = arg max
β

L(β), (28)

where L(β) is the likelihood function defined as

L(β) = p(y1, . . . , yN |u1:N , β). (29)

Notice that p(y1, . . . , yN |u1:N , β) is the joint PDF of the
observed output data given the input data, u1:N , and the vector

1xi is the variable x at time i1.
2xT denotes the transpose of the variable x and vec {·} denotes the

vectorization of a matrix.
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of parameters, β. To compute this PDF, Bayes’ rule can be
used to decompose the joint density function:

L(β) = p(y1)
N∏
t=2

p(yt |y1:t−1,u1:N , β), (30)

which ultimately transforms into (31) because of the
monotonic nature of the logarithmic function. Thus, the
optimization problem in (28) can be solved by minimizing
the log-likelihood function, ℓ(β), as

β̂ML = arg max
β

ℓ(β),

= arg max
β

{log[p(y1)]

+

N∑
t=2

log[p(yt |y1:t−1,u1:N , β)]}. (31)

B. COMPUTING THE PREDICTION DENSITY
In order to compute the log-likelihood function in (31),
we need to compute the prediction density based on the law
of total probability and the Markov nature of (25) and (26) as
follows:

p(yt |y1:t−1,u1:N , β) =

∫
p(yt |xt )p(xt |y1:t−1)dxt , (32)

Then, using Bayes’ rule, we obtain:

p(xt |y1:t ) =
p(yt |xt )p(xt |y1:t−1)

p(yt |y1:t−1)
, (33)

p(xt+1|y1:t ) =

∫
p(xt+1|xt )p(xt |y1:t )dxt . (34)

Notice that (33)–(34) provide a recursive formulation to com-
pute the prediction density p(yt |y1:t−1,u1:N , β) as well the
predicted and filtered state densities p(xt |y1:t−1), p(xt |y1:t ).
This recursive formulation can be used to solve the ML
estimation problem in (31). In the linear and Gaussian case,
the Kalman filter can be employed to solve the estimation
problem. In the nonlinear case in (23), solutions based on
Particle filtering (PF) and particle smoothing (PS) have
been used to obtain the state estimates (see e.g. [39]).
For completeness, the smoothing equation, see e.g. [38],
is defined by:

p(xt |y1:N ) = p(xt |y1:t )
∫

p(xt+1|y1:N )p(xt+1|xt )
p(xt+1|y1:t )

dxt+1.

(35)

Traditional methods can be used to optimize the log-
likelihood function in (31). However, due to its systematic
approach, the EM algorithm is the preferred tool. The EM
algorithm maximizes the likelihood function by defining
an auxiliary function, which can be optimized by using
Quasi-Newton methods (see e.g. [15] and [16]).

IV. AN ITERATIVE ALGORITHM FOR SAG MILL MODEL
ESTIMATION
The EM algorithm has gained widespread popularity for its
effectiveness in identifying linear and non-linear dynamic
systems in both time and frequency domains, see e.g. [3],
[14], [17], and [44]. In this section, we will show the
development of an EM-based estimation algorithm that can
effectively solve the ML problem posed in (28).

A. THE EM-BASED ALGORITHM FORMULATION
The EM algorithm is a two-step iterative procedure to
solve the ML estimation problem in the presence of
latent variables, see e.g. [10]. The goal is to optimize an
auxiliary function instead of the log-likelihood function. This
auxiliary function is computed from the definition of the
likelihood function utilizing the observed data, y1:N , and a
hidden variable (state variable), x1:N+1. In other words, the
likelihood function is determined when using the complete
data.3 Hence, the EM algorithm is given by:

Q(β, β̂(i))=E
{
log {p(x1:N+1, y1:N |β)} |y1:N , β̂(i)

}
, (36)

β̂(i+1)
= argmax

β
Q(β, β̂(i)), (37)

where β̂(i+1) is the current estimate, p(x1:N+1, y1:N |β) is the
joint PDF of y1:N and x1:N+1, and Q(β, β̂(i)) is the auxiliary
function. Here, E {·|·} denotes the expected operator. Notice
that (36) and (37) correspond to the E-step andM-step of the
EM algorithm, respectively [10].

In order to develop the iterative algorithm in (36) and (37),
we first need to obtain an expression for Q(β, β̂(i)).
Lemma 2: Consider the vector of parameters to be esti-

mated β = [θT vec {Q} vec {R}]T for the dynamic system
in (23) and (24). Then, the complete log-likelihood function,
ℓC(β) = log {p(x1:N+1, y1:N |β)}, in (36) is given by

ℓC(β)=−
N
2
log {|2πQ|} −

N
2
log {|2πR|}

−
1
2

N∑
t=1

[xt+1−f (xt ,ut , θ)]TQ−1[xt+1−f (xt ,ut ,θ)]

−
1
2

N∑
t=1

[yt − h (xt ,ut , θ)]T R−1 [yt − h (xt ,ut , θ)]

−
1
2
log {|2πP1|} −

1
2
(x1 − µ1)

T P−1
1 (x1 − µ1) ,

(38)

where x1 is Gaussian distributed with mean value µ1 and
variance P1, that is, x1 ∼ N (x1;µ1,P1).
Proof: See [2] □
Computing the auxiliary function for the EM algorithm is

a difficult task because of the nonlinear functions f (xt ,ut , θ)
and h (xt ,ut , θ) in (23) and (24), respectively. In this work,
we propose to approximate the complete log-likelihood

3The complete data {x1:N+1, y1:N+1} corresponds to the set defined by
the observed data y1:N , and the unobserved data x1:N .
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Algorithm 1 Expectation-Maximization Algorithm

1 Input: Initial guess β(0) so that ℓ(β̂(0)) is finite.
2 Set i = 0.
3 while Until convergence do
4 Expectation step (E-step):
5 Compute Q̃(β, β̂(i)) according to (39).
6 Maximization step (M-step):
7 Solve β̂(i+1)

= argmax
β

Q̃(β, β̂(i))

8 Set i = i+ 1
9 end
10 Output: The parameter vector estimate β̂.

function in (38), by using a second-order Taylor series. From
Lemma 2, the auxiliary function for our proposed EM-based
algorithm can be computed using the following:
Lemma 3: Consider the dynamic system represented in

the state-space form in (23)-(24), the incomplete data y1:N ,
and the complete data {x1:N+1, y1:N }, then the Taylor-based
second-order approximation of the auxiliary function around
the point x̂1:N+1 is given by

Q̃(β, β̂(i))=E
{
ℓC(β)+GTβ dN+

1
2
dTNHβdN

∣∣y1:N , β̂(i)} ,
(39)

where Gβ = ∇ℓC(β) and Hβ = ∇
2ℓC(β) are the gradient

and the hessian of the likelihood function ℓC(β), respectively,
evaluated at x̂1:N+1 = E

{
x1:N+1|y1:N , β̂(i)

}
, and dN is

defined as dN = x1:N+1 − x̂1:N+1
Proof: Directly using the second-order Taylor approxima-

tion of a function f (x) around the point x0, i.e. f (x) ≈ f (x0)+

(x− x0)TG0 +
1
2
(x− x0)TH0(x− x0), whereG0 = ∇f (x)|x0

and G0 = ∇
2f (x)|x0 . □

Finally, the resultant EM-based procedure is summarized
in the Algorithm 1. Please note that to calculate the
expectation in the auxiliary function (39), it is essential to
implement filtering and smoothing algorithms in order to
obtain the smoothed distribution p(x1:N+1|y1:N , β̂(i)). In the
following, we present two alternative methods for computing
these necessary probability density functions recursively.

B. EXTENDED KALMAN FILTER AND SMOOTHER
The extended Kalman filter (EKF) (and the corresponding
extended Kalman smoother (EKS)) is an extension of the
standard Kalman filter to nonlinear state-space systems
considering the process andmeasurement of Gaussian noises.
The idea of the EKF is to build a linear approximation around
a state estimation by using a Taylor series expansion. This
approximation allows us to rewrite the nonlinear system (23)-
(24) into a linear time-varying system as follows:

xt+1 = Atxt + Bt + wt , (40)

yt = Ctxt + Dt + vt , (41)

Algorithm 2 Extended Kalman Filter

1 Input: The distribution of the initial condition p(x1),
e.g. x̂0|1 = µ1 and 60|1 = P1.

2 for t = 1 to N do
3 Compute the Kalman gain using:

Kt = 6t|t−1CT
t (R + Ct6t|t−1CT

t )
−1.

4 Measurement Update:
5 Compute the filtering state x̂t|t according to

x̂t|t = x̂t|t−1 + Kt (yt − h(x̂t|t−1,ut )).
6 Compute the covariance matrix 6t|t according to

6t|t = (I − KtCt )6t|t−1.
7 Time Update:
8 Compute the predicted state x̂t+1|t according to

x̂t+1|t = f (x̂t|t ,ut ).
9 Compute the covariance matrix 6t+1|t according

to 6t+1|t = Q + At6t|tAT
t .

10 end
11 Output: The Filtered PDFs

p(xt |y1:t ) = N (xt ; x̂t|t , 6t|t ) and the predicted PDFs
p(xt+1|y1:t ) = N (xt+1; x̂t+1|t , 6t+1|t ) for
t = 1, . . . ,N .

Algorithm 3 Extended Kalman Smoother

1 Input: The PDFs p(xt |y1:t ) ∼ N (xt ; x̂t|t , 6t|t ) and
p(xt+1|y1:t ) ∼ N (xt+1; x̂t+1|t , 6t+1|t ) for
t = 1, . . . ,N computed in Algorithm 2.

2 for t = N to1 do
3 Compute the gain using Gt = 6t|tAT

t 6
−1
t+1|t .

4 Compute x̂t|N according to
x̂t|N = x̂t|t + Gt (x̂t+1|T − x̂t+1|t ).

5 Compute 6t|N according to
6t|N = 6t|t + Gt (6t+1|T −6t+1|t )GT

t
6 end
7 Output: The smoothed PDFs

p(xt |y1:N ) ∼ N (xt ; x̂t|N , 6t|N ) for t = 1, . . . ,N .

where At is the Jacobian matrix of f (·) with respect to
xt and evaluated at x̂t|t , Ct is the Jacobian matrix of h(·)
with respect to xt and evaluated at x̂t|t−1 (see Appendix),
Bt = f (x̂t|t ,ut ) − At x̂t|t and Dt = h(x̂t|t−1,ut ) − Ct x̂t|t−1.
The equations of the EKF are summarized in Algorithm 1.
On the other hand, the EKS is an extension of the standard
Rauch-Tung-Striebel Smoother. The algorithm also considers
the linearized model in (40)-(41) to compute the filter gain.
Notice that the smoothing algorithm starts at t = N where the
filtering and smoothing distribution are equal i.e. p(xN |y1:N ),
then continues computing the smoothing distribution in the
time t based on the smoothing distribution on time t + 1 as is
shown in Algorithm 3.

C. UNSCENTED KALMAN FILTER AND SMOOTHER
The unscented Kalman Filter [21] is a deterministic-
sampling-based approach that uses samples called
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sigma-points to propagate the mean and covariance of
the system state (that is assumed a Gaussian random
variable) through the nonlinear functions of the process
or/and the output of the system. These propagated points
capture the mean and covariance of the posterior state
accurately to the 3rd order Taylor series expansion for
any nonlinearity [42]. The key idea of the UKF is to
directly approximate the mean and covariance of the
posterior distribution instead of approximating the nonlinear
function [21]. The unscented Kalman Filter and smoother
(see Algorithms 4 and 5) are based on the unscented
transformation of a random variable x into a random variable
y = g(x) + v where x ∼ N (x;m, 6) and v ∼ N (v; 0,P).
Sigma points are defined as

ψ0
= m, (42)

ψτ = m +
√
n+ λ

[√
P
]
τ
, (43)

ψτ+n = m −
√
n+ λ

[√
P
]
τ
, (44)

where τ = 1, . . . , n, the scaling parameter λ = α2(n+κ)−n,
the parameters α and κ determine the propagation of the
sigma points around the mean. The notation [A]τ means the
τ th column of the matrix A. The notation

√
A means the

matrix square root of the matrix A such that
√
A

√
AT

= A.
The weights associated with the unscented transformation are
the sets{

ω0, ω1, . . . , ω2n
}

= {λς, 0.5ς, . . . , 0.5ς} , (45){
σ 0, σ 1, . . . , σ 2n

}
= {λς + ϱ, 0.5ς, . . . , 0.5ς} , (46)

where ς = (n+λ)−1, ϱ = 1−α2+β. Here β is an additional
algorithm parameter that can be used for incorporating
prior information on the (non-Gaussian) distribution of x.
Then the statistic of the transformed random variable is:
mean µ =

∑2n
τ=0 ω

τg(ψτ ), the covariance matrix 6 =∑2n
τ=0 σ

τ [g(ψτ ) − µ] [g(ψτ ) − µ]T + P. Additionally, the
cross covariance matrix between x and y is given by 6 =∑2n
τ=0 σ

τ [ψτ − m] [g(ψτ ) − µ]T .
Remark 4: Note that solving the traditional maximum

likelihood estimation problem presented in (31) poses a
significant challenge. Directly maximizing the log-likelihood
function is often intractable due to its non-convex nature.
However, the EM algorithm [10] provides a solution to this
obstacle. It addresses a less complex optimization problem
in each iteration, as is shown in (37), especially when lever-
aging the auxiliary function (Taylor-based approximation) in
Lemma 3.

V. NUMERICAL EXAMPLES
In this section, we present a numerical example to illustrate
the performance of the proposed EM-based algorithm.
We consider the discrete–time Hulbert SAG system model
in (21) and (22) in order to generate synthetic data with a
sampled period 1 = 2[s].

Algorithm 4 Unscented Kalman Filter

1 Input: The PDF p(x1), e.g. x̂0|1 = µ1 and 60|1 = P1,
the constant α, κ , and β

2 for t = 1 to N do
3 Measurement Update:
4 Compute and store the sigma points ψτt|t−1, the

weights ωτt|t−1 and σ
τ
t|t−1 by using x̂t|t−1 and

6t|t−1 for τ = 0, . . . , 2n.
5 Propagate sigma points using h(·) for

τ=0, . . . , 2n: Yτt =h(ψτt|t−1,ut ). Compute the
gain Kt = 0tS−1

t , where

µt =
∑2n
τ=1 ω

τ
t|t−1Y

τ
t .

St =
∑2n
τ=1 σ

τ
t|t−1(Y

τ
t − µt )

(
Yτt − µt

)T
+ R.

0t =
∑2n
τ=1 σ

τ
t|t−1(ψ

τ
t|t−1 − x̂t|t−1)(Yτt − µt )

T .

Compute the filtering state
x̂t|t = x̂t|t−1 + Kt

(
yt − µt

)
.

6 Compute the covariance matrix
6t|t = 6t|t−1 − KtStKT

t .
7 Time Update:
8 Compute and store the sigma points ψτt|t , the

weigths ωτt|t and σ
τ
t|t by using x̂t|t and 6t|t for

τ = 0, . . . , 2n.
9 Propagate sigma points using the model f (·) for

τ = 0, . . . , 2n: X τ
t = f (ψτt|t ,ut ).

10 Compute the predicted state
x̂t+1|t =

∑2n
τ=1 ω

τ
t|tX

τ
t .

11 Compute the covariance matrix
6t+1|t =

∑2n
τ=1 σ

τ
t|t (X

τ
t −x̂t+1|t )(X τ

t −x̂t+1|t )T+Q.
12 end
13 Output: The filtered PDFs

p(xt |y1:t ) = N (xt ; x̂t|t , 6t|t ), the predicted PDFs
p(xt+1|y1:t ) = N (xt+1; x̂t+1|t , 6t+1|t ), and the
sigma points ψτt|t and ψ

τ
t+1|t for t = 1, . . . ,N .

The Hulbert model is simulated using Simulink/Matlab ő.
To perform continuous-time simulations of such a model
in (15) and (17), we consider the power Pmill given by
equation (4) in [6]. The constants used to simulate the model
can be summarized in Table 1.

A. SIMULATION SETUP
For comparison we consider the inputs defined in [24]:

MIW=max
(
4.64 + 8 sin

(
2π

12 · 60
t
)
, 0

)
, (m3/h) (47)

MFO=65.2 + 10 sin
(

2π
4 · 602

t
)
, (t/h) (48)

MFB=5.68 + arµ(t1), (t/m3) (49)

where ar is a uniform random variable in the interval [−1, 1]
and µ(t1) starting at every t1 = 2 hours. The state and
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Algorithm 5 Unscented Kalman Smoother

1 Input: The filtered PDFs
p(xt |y1:t ) = N (xt ; x̂t|t , 6t|t ), the predicted PDFs
p(xt+1|y1:t ) = N (xt+1; x̂t+1|t , 6t+1|t ), the sigma
points ψτt|t and ψ

τ
t+1|t for t = 1, . . . ,N computed in

Algorithm 4.
2 for t = N to1 do
3 Compute the gain Gt = Ht6

−1
t+1|t using :

Ht =
∑2M
τ=1 σ

τ
t|t

(
ψτt|t − x̂t|t

) (
ψτt+1|t − x̂t+1|t

)T
.

Compute the smoothing state
x̂t|N = x̂t|t + Gt

(
x̂t+1|T − x̂t+1|t

)
.

4 Compute the covariance matrix
6t|N = 6t|t + Gt

(
6t+1|T −6t+1|t

)
GT
t .

5 end
6 Output: The smoothed PDFs

p(xt |y1:N ) ∼ N
(
xt ; x̂t|N , 6t|N

)
for t = 1, . . . ,N .

TABLE 1. Parameters used in the simulations.

measurement noises are Gaussian distributed, that is wt ∼

N (wt ; 0,Q) and vt ∼ N (vt ; 0,R), respectively. Here,
we study two scenarios. Scenario 1 considers a low variance
for the noise, such as:

Q = diag [0.004, 0.0025, 0.1, 0.064] (m6), (50)

R = 10−4diag
[
1(t2), 1(m6)

]
. (51)

and Scenario 2, on the contrary, considers a higher value for
the noise variance such as:

Q = diag [0.01, 0.01, 0.01, 0.04] (m6), (52)

R = diag
[
200(t4), 10(m6)

]
. (53)

Typical initial state and input values for the system are given
by:

x1 =


xw1
xs1
xr1
xb1

 =


8.23
1.88
4.65
4.63

 (m3), (54)

u =


uw

us

ur

ub

 =


116.6
107.7
9.6
0.7

 (m3/h). (55)

The initialization of the parameter to be estimated is as
follows: i) The initial guest of covariancematrixR is obtained
as the sample variance of each measurements in yt , that is

R̂(0)
= diag {var{Wc}, var{VLOAD}} . (56)

ii) The initial guest of covariancematrixQ is defined–for both
Scenario 1 and 2 as

Q̂(0)
= αQQ, (57)

where the factor αQ = {0.1, 1, 10}, and iii) The initial guest
of the initial state and the parameter vector θ are studied in
two cases:

• Case factor 0.2 far from the real values:

x̂(0)1 = [6.58m3, 2.26m3, 3.72m3, 5.55m3]T , (58)

P̂(0)
1 = diag

{
2m6, 2m6, 2m6, 2m6

}
, (59)

θ̂ (0) = [0.48, 105.6]T , (60)

• Case factor 1.5 far from the real values:

x̂(0)1 = [4.12m3, 2.82m3, 2.33m3, 6.95m3]T , (61)

P̂(0)
1 = diag

{
2m6, 2m6, 2m6, 2m6

}
, (62)

θ̂ (0) = [0.3, 132]T . (63)

B. RESULTS
To compare the results obtained with the proposal presented
in this paper, we have considered the conventional approach
for estimating parameters in the SAG model, using filtering
and smoothing techniques as described in [5], [24], and
[38]. In these prior works, the authors suggest estimating
system parameters by modeling them as state variables.
To apply these techniques, the parameters were included as
additional states and then estimated by using EKF and UKF
algorithms. The estimates’ mean and standard deviations
are summarized in Table 2, considering different scenarios
(low and high variance for the noise), and different starting
points for the initial values. In general, it can be observed
that there is no significant difference between using EKF
and UKF. However, it is worth noting that the performance
of such methods rely upon the initial values and the level
of noise. A more accurate parameter estimate is typically
obtained when the initial value is close to the true one.
Figure 2 shows a particular case of the ones shown in
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TABLE 2. Estimation of SAG mill parameters as additional states, using EKF/EKS and UKF/UKS.

FIGURE 2. Comparison of the estimates θ̂ = (θ̂1, θ̂2) considered as states, with low variance (upper plots) versus high variance
(lower plots).

Table 2, considering low variance (upper plots) and high
variance (lower plots), and αQ = 1 for both cases.
Notice that the mean value of the estimated parameter is
far from the true value. This discrepancy stems from the
fact that the EKF, used for state and parameter estimation,
employs a first-order Taylor series approximation of the
nonlinear system around a state estimate. Similarly, the UKF
relies on a third-order Taylor series linearization of the
system. In both instances, significant estimation errors arise
due to these approximations.

For the case when the unknowns are considered as
parameters in the ML estimation framework, we have
obtained the results shown in Table 3. Here, we can observe

that there is no significant difference between the results
obtained using the EM algorithm combined with EKF/EKS
and UKF/UKS in both cases, whether the noise variance
is high or low. A particular case in Table 3 is depicted in
Figure 3. However, the main difference can be observed
when comparing the two approaches, that is, unknowns are
considered as states and as parameters in the ML framework.
Comparing both tables, we can infer that considering the
unknowns as parameters can greatly improve the accuracy
of the estimation. That is, combining a parametric estimation
algorithm with filtering and smoothing techniques can help
compensate for the nonlinear effects in the estimation values.
With each iteration of the proposed algorithm, the parameter
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estimation is progressively refined, thereby improving state
estimation, and so forth.

VI. CONCLUSION
In this paper, we have proposed an ML estimation method
to obtain critical parameters in the model of an SAG
mill. Traditional methods consider a reduced number of
measurements in order to estimate such parameters. Here,
we have included an extra measurement (the total SAG mill
weight) that has not been considered in previous works by
other authors.

When the parameters are considered as state-space vari-
ables, a comparison between EKF and UKF is appropriate.
In this case, we have carried out extensive simulations consid-
ering both cases. It has been shown that the implementation
of the UKF shows no particular advantage and that the
performance of both EKF and UKF depends mostly upon the
chosen initial values, which have been selected as 0.2 and
1.5 of the nominal values, and the level of noise variance.

When estimating the parameters in the model as unknown
parameters rather than states in a state-space model, we pose
the problem in the ML framework. Here, we solve the ML
estimation problem by using the EM algorithm. We have also
considered two approaches when it comes to the calculation
of the E-step in the EM algorithm, namely the use of the
EKF/EKS and the use of UKF/UKS. The utilization of the
EM algorithm greatly improved the accuracy of the estimates
when compared to the approach that considers the unknowns
as state variables. When it comes to the comparison of EKF
and UKF, within the EM algorithm approach, no significant
differences have been found, even considering higher values
for the noise variances. When it comes to the selection of
the initial values in the aforementioned algorithms, we have
evaluated them in two cases: (i) considering a factor of 0.2 of
the initial values, and (ii) considering a factor of 1.5 of the
initial values. In all cases, no significant differences were
found, mainly because they were not too far from the optimal
value of the parameter.

APPENDIX
JACOBIAN MATRICES TO IMPLEMENT THE EXTENDED
KALMAN FILTER
In this section, we obtain the Jacobian matrices to implement
the Extended Kalman Filter. Let us consider the system
in (21) and (22). Notice that the rheology factor in (11) can
be rewritten as follows

ϕ (xt) =

√
max {0, bt }, bt = 1 − csv

(
xst
xwt

)
, (64)

where csv = (1 − εsv) /εsv. Due to the max term, the
rheology factor is a non differentiable function. In this
work, we propose to approximate the rheology factor using
max {a, b} = τ−1

r log {exp {aτr} + exp {bτr}}, then, the
rheology factor approximation is given by

ϕ̂ (xt) =

√
τ−1
r log {1 + exp {btτr}}. (65)

where τr is positive scale parameter defined by the user.
To compute the Jacobian matrix At given in (40), we define
the following:

gw :=
∂ϕ̂ (xt)
∂xwt

, gs :=
∂ϕ̂ (xt)
∂xst

, (66)

then taking the partial derivative of the function ϕ̂ (xt) w.r.t
xwt and xst we can define gw and gs as follows

gw =
−0.5(xwt )

−2xst exp {btτr} csv(
τ−1
r log {1 + exp {btτr}}

)1/2
(1 + exp {btτr})

, (67)

gs =
0.5(xwt )

−1 exp {btτr} csv(
τ−1
r log {1 + exp {btτr}}

)1/2
(1 + exp {btτr})

. (68)

Then, the Jacobian matrix is given by

At =


1 − J111 J121 0 0
J211 1 − J221 J231 0
J311 J321 1 − J331 0
J411 J421 J431 1 − J441

 , (69)

where

J11 = gwdHxwt 0w + ϕ̂ (xt) dH (2xst + 2xwt − 1)02
w, (70)

J12 = −gsdHxwt 0w + ϕ̂ (xt) dH02
w, (71)

J21 = −gwdHxwt 0s − ϕ̂ (xt) dH02
s + gw0r , (72)

J22 = gsdHxwt 0s + ϕ̂ (xt) dH02
w − gs0r + ϕ̂ (xt) 0p, (73)

J23 = ϕ̂ (xt) (xrt )
−1(xst )

20p, (74)

J31 = −gw0r , (75)

J32 = −gs0r + ϕ̂ (xt) 0p, (76)

J33 = J23, (77)

J41 = −gw0b, (78)

J42 = −gs0b + ρ0ϕ̂ (xt) 0q, (79)

J43 = ρ0ϕ̂ (xt) 0q, (80)

J44 = −ϕ̂ (xt) (xbt )
−1ρ0(xrt + xst )0q. (81)

where

0r =
Pmill
t xrt

ρ0κr (xrt + xst )
, 0p =

Pmill
t xrt

ρ0κr (xrt + xst )2
, (82)

0w =
xwt

xst + xwt
, 0b =

Pmill
t xbt

κb
[
ρ0(xrt + xst ) + ρbxbt

] , (83)

0s =
xst

xst + xwt
, 0q =

Pmill
t xbt

κb
[
ρ0(xrt + xst ) + ρbxbt

]2 . (84)
On the other hand, the Jacobian matrix Ct given in (41) is
directly obtain from the output model as follows:

Ct =

[
1 ρ0 ρ0 ρb
1 1 1 1

]
. (85)
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TABLE 3. Estimation of SAG mill parameters using the proposed method, using EKF/EKS and UKF/UKS, but considering the unknowns as parameters.

FIGURE 3. Comparison of estimates θ̂ = (θ̂1, θ̂2) considered as unknown parameters, with low variance (upper plots) versus high
variance (lower plots).
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