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ABSTRACT Resource-efficient and robust validation of systems designed to measure a multi-dimensional
parameter space is an unsolved problem as it would require millions of test permutations for comprehensive
validation coverage. In the paper, an efficient and comprehensive validation approach based on a Gaussian
Process (GP) model of the test system has been developed that can operate system-agnostically, avoids
calibration to a fixed set of known validation benchmarks, and supports large configuration spaces. The
approach consists of three steps that can be performed independently by different parties: 1) GP model
creation, 2) model confirmation, and 3) targeted search for critical cases. It has been applied to two systems
that measure specific absorption rate (SAR) for compliance testing of wireless devices and apply different
SARmeasurement methods: a probe-scanning system (per IEC/IEEE 62209-1528), and a static sensor-array
system (per IEC 62209-3). The results demonstrate that the approach is practical, feasible, suitable for
proving effective equivalence, and can be applied to any measurement method and implementation. The
presented method is sufficiently general to be of value not only for SAR system validation, but also in a
wide variety of applications that require critical, independent, and efficient validation.

INDEX TERMS Failure detection, Gaussian process surrogate, implementation-agnostic system validation,
SAR measurement standard, SAR measurement systems.

I. INTRODUCTION
The operation of wireless devices close to the body results
in millions of distinct induced electromagnetic (EM) field
distributions. Accurate assessment of these fields is a
complex task for which different measurement approaches
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have been proposed and defined in two different compliance
testing standards. In this study, we have derived the key
requirements to ensure reliable, independently-verifiable,
implementation-agnostic, and comprehensive validation. For
that purpose, a general, Gaussian Process (GP) model-based
approach has been developed and is under discussion for
adoption in upcoming revisions of the specific absorption rate
(SAR) measurement standards [1]. The data and the source
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code of an implementation of the procedure are available
at [3], and a corresponding application is accessible through
a graphical user interface (GUI) at [4]. The approach, which
is elaborated and demonstrated in this paper, is believed to be
widely applicable, i.e., well beyond SAR system validation,
in situations where similar validation requirements exist.

A. SAR MEASUREMENT SYSTEMS
SAR measurement systems measure the induced electric
field distribution in phantoms that represent the user of a
commercial wireless device. That wireless device is operated
in close proximity to the phantom, which contains a tissue-
simulating medium. At any location in the phantom, the
SAR is related to the root-mean-squared value of the induced
E-field, E⃗ , in the medium through the relation

SAR =
σ |E⃗|

2

ρ
, (1)

where σ is the frequency-dependent electrical conductivity
and ρ = 1000 kg/m3 is the mass density of the medium.
The induced E-field is temporally and spatially assessed
in the phantom. Then, spatial and time averaging of the
SAR is applied, followed by the identification of the peak
spatial- and time-averaged SAR (psSAR). This value is
compared against the psSAR limits set by safety standards
such as the International Commission on Non-Ionizing
Radiation (ICNIRP), which have been adopted by many
regulators. ICNIRP limits are also endorsed by the European
Council [5] and adopted in the harmonized standards of the
European Committee for Electrotechnical Standardization
(CENELEC) [6], [7]. Before a wireless device can be sold
on the market, the manufacturer is required to demonstrate
that the psSAR is below the limit in all tested conditions
defined by the measurement standard. ICNIRP has set a
psSAR limit of SAR10g = 2 W/kg averaged over a 10 g
cubic mass, applicable to the general public for localized
exposures of the head and torso at frequencies from 100 kHz
to 6 GHz [8]. Some countries, such as Canada, India and
USA, have adopted amore stringent psSAR limit of SAR1g =

1.6 W/kg averaged over a 1 g cubic mass in accordance with
the IEEE Standard C95.1-1999 [9]. Other limits apply to the
limbs, and there are different limits for occupational exposure
and whole-body exposure.

The two commonly used SAR measurement systems are
scanning systems and array systems. Both systems will be
studied in this paper using commercially available products:
the scanning system DASY8 [10] and the array system
cSAR3D [11], both manufactured by Schmid & Partner
Engineering AG (Zurich, Switzerland) as shown in Fig 1.

Scanning systems use a robot to mechanically scan a single
isotropic E-field or dosimetric probe throughout the human
phantom (e.g., head, torso or wrist phantom) [12]. Scanning
systems are versatile in that the robot can position the
probe anywhere in the phantom and at the required density,
avoiding the need for field reconstruction. Irregular grids
are commonly used to locally improve the resolution in the

FIGURE 1. SAR measurement systems: DASY scanning system (left) and
cSAR3D array system (right).

relevant region of highest SAR. The dosimetric E-field probe
is calibrated in well-controlled induced fields [13]. Robot
positioning repeatability is less than 0.05 mm for DASY8 and
thus does not significantly affect the measurement accuracy
of the peak spatial-average SAR.

Array systems use a large number of sensors in a fixed
grid to electronically scan the field in the phantom without
any moving parts and are therefore much faster than scanning
systems. However, array systems have higher measurement
uncertainty. Mutual coupling between the sensors limits how
close the sensors can be to each other, which restricts the
measurement resolution. The material inside the phantom
(sensors, transmission lines, and supporting structure), causes
polarization- and distribution-dependent scattering of the
induced fields in the phantom, making it difficult to fully
characterise and remove scattering-related effects during
calibration. Scattering also restricts the sensors to a single
plane conformal to the phantom surface, so that array systems
are dependent on field reconstruction algorithms to estimate
the SAR at locations that cannot be measured. Having no
moving parts allows cSAR3D to be hermetically sealed
and use a gel instead of a liquid to prevent separation of
ingredients over time. The flat cSAR3D phantom studied in
this paper has 1024 sensors that measure the three orthogonal
field components over a 120 mm x 240 mm measurement
area.

B. REQUIREMENTS FOR VALIDATION OF SAR
MEASUREMENT SYSTEMS
The requirements for scanning systems and array systems
are defined in standards IEC/IEEE 62209-1528 [1] and IEC
62209-3 [2], respectively. IEC/IEEE 62209-1528 is based
on a standard that was released in 2001 and has been
updated several times to account for changes in wireless
technology, measurement system technology, and regulatory
requirements. It is broadly accepted by national regulatory
agencies. IEC 62209-3 was released in 2019, but regulators
have faced difficulties adopting it. The lack of and need
for formal demonstration of equivalence have been cited as
primary concerns regarding adoption of IEC 62209-3.

Both standards include validation requirements. IEC/IEEE
62209-1528 [1] requires validation of each system
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component separately and has proven to be very robust.
However, such an approach is not possible in IEC 62209-3
[2] as array systems are implemented as sealed boxes
without access to the individual components, necessitating
a different approach. Furthermore, array systems inherently
have a much larger number of uncertainty-affecting degrees-
of-freedom (and potential sources of failure), due to the
large number of sensors that are independently calibrated
for the large number of power levels, frequencies, and
modulations needed to accurately measure any mobile
wireless communication signal. The standards committee
was faced with the issue that a comprehensive set of tests
would include millions of configurations, which cannot be
practically implemented. The reduced set of standardized
exposure conditions currently listed in IEC 62209-3 has
proven insufficient, as comparison studies using different
array systems show large deviations in the measured psSAR
(as much as 5 dB [14]). This has prompted the Joint
Research Center of the European Commission to recommend
improving the IEC 62209-3 validation [16].
A validation method is needed that satisfies the following

requirements, in order to establish equivalence of the stan-
dards and drive universal acceptance of SAR measurement
systems:

• it is universally applicable to any SAR measurement
system (device agnostic),

• it is able to use knowledge of the measurement system
to reduce validation effort,

• it ensures that any successfully validated system per-
forms within the reported measurement uncertainty (as
prescribed by corresponding standards) for any wireless
device,

• it empowers the test lab to confirm the validation
independently of the system manufacturer,

• it identifies critical test conditions that maximize the
likelihood of detecting inadequate measurement device
performance,

• it can be performed with a reasonable effort, to permit
re-validation on a periodic basis (or whenever the system
is relocated, or hardware or software components of the
system change),

• it comprehensively covers the space of all relevant
exposure conditions and configurations,

• it is readily extendable as wireless technologies evolve.

To simultaneously satisfy the requirements of compre-
hensive coverage and reasonable effort, it is necessary to
introduce a stochastic component to the approach. Using a
subset of all validation conditions selected by a procedure
involving stochastic elements each time the validation is per-
formed avoids bias and ensures increasingly comprehensive
coverage over time. It also has the added benefit of preventing
system manufacturers from primarily calibrating the system
in view of a priori known validation configurations such
that it would pass the validation but exceed the reported
uncertainty.

C. A THREE-STEP VALIDATION APPROACH
This paper presents a three step approach that satisfies
all the above requirements and demonstrates its successful
application to both scanning systems and array systems. At its
center is the elaboration of a surrogate model that estimates
the expected measurement error (and the confidence interval
associated with that estimate) of the investigated system for
a given exposure configuration. An important note is that
it is a model of the measurement system error and not of
the measurement output itself. The method consists of three
independent steps, which are each described in detail in
correspondingMethods sections:

1) Model creation: elaboration of the surrogate model
using a comprehensive set of measurements,

2) Model confirmation: independent confirmation that
the surrogate model established in Step 1 is valid –
otherwise, the model must be revised,

3) Targeted search for critical cases: search of the configu-
ration space for regions with non-negligible likelihood
of exceeding the maximum permissible error (MPE)
using the confirmed model to maximize detection
probability, and testing the identified configurations to
ensure that the measurement system performs with the
required accuracy.

In the context of SAR measurement system validation,
model creation would typically be performed by the system
manufacturer, while independent model confirmation and the
targeted search for critical cases is typically performed by
a test lab or the system user (at least once per year; the
acceptable effort for each party should be within 1 day).

Gaussian Process (GP) modeling is a classical surrogate
modeling approach that is capable of estimating system
responses on a continuous parameter space with zero-
centered error values and of providing associated interpola-
tion uncertainties based on any given set of known values at
specific locations. Such a model will be referred to as the
‘GP model’ or ‘surrogate model’. Background information
on geometric GP models can be found in the Supporting
Information section. For extended background we refer to,
e.g., [17] and [18].

The application of the developed approach to a scanning
system and an array system in the present study demonstrates
the feasibility (with acceptable effort), sensitivity, and
generality of the proposed approach. Indeed, the method
is sufficiently general to be of value in a wide variety
of applications beyond SAR systems that require critical,
independent, and efficient validation of system performance.

This method has been proposed for adoption in the next
revision of IEC 62209-3 and for a future unified standard that
incorporates both and IEC 62209-3 and current IEC/IEEE
62209-1528.

D. STUDY GOALS
The principal goal of this study is to identify and demonstrate
a practical, robust, trustworthy, efficient, and comprehensive

60406 VOLUME 12, 2024



C. Bujard et al.: GP Based Approach for Validation of Multi-Variable Measurement Systems

solution 1) to the specific problem of SAR system validation
and 2) to the more general one of efficiently and reliably
validating systems that are expected to perform within their
uncertainty bounds everywhere in the configuration space.
It is not the goal to develop novel GP modeling theory (other
than the extensions needed for the search algorithms, such
as the δp(l) function derived in the Supporting Information),
nor to identify the best possible approach to GP model
creation, validation, and exploitation. The methods applied
here were selected based on accessibility and effectiveness
for the task at hand, while respecting practical SAR
measurement constraints such as: a) being non-iterative
(i.e., all measurements are performed in a single session);
b) ability to reduce the continuous validation space to a
discrete set of measurable configurations (e.g., test labs can
only have a finite number of validation antenna sources); and
c) respecting the physical parameters of the measurement
space (sensor resolution and accessible sensor region).

II. METHODS
This section presents the background of the proposed
approach, before introducing the investigated generic appli-
cation and the real world applications that build upon the test
configuration space of [1].

A. STEP 1: MODEL CREATION
In the first step, a GP model of the deviations from the
target values is constructed from a measured sample set.
The Supporting Information provides background on GP
modeling theory, establishes the employed notations, and
defines geometric GPmodels based on a finite set S of known
configurations in the n-dimensional parameter space X in Rn

(whose measured results are denoted S̄ ⊂ Rn
× R with

the added component for the measured values). Many GP
model creation approaches exist and can be employed, as long
as they are capable of conservatively estimating variances.
For this study, we assume a geometric GP model, based on
ordinary kriging, with the Matheron estimator for the semi-
variance, a Gaussian theoretical variogram model, and the
default variogram fitting algorithm from the SciKit-GStat
package [19]. These choices were based on the analysis of the
collected data on SAR measurement systems, but alternative
choices are of course possible.

B. STEP 2: MODEL CONFIRMATION
Given a geometric GP model, a statistical validation proce-
dure is performed in the second step, after which the model
is either rejected or considered trustworthy. This procedure
shall be referred to as the model confirmation procedure; it
can be performed as a series of successive tests, where each
success leads to the next test, and the model is considered
valid if and only if the procedure reaches its end. The
procedure can be divided into two main phases: goodness
of fit and residuals validation. Statistical model validation is
a well-studied field and valuable information can be found,

e.g., in [20]. The metrics and tests chosen for this study are
commonly employed in statistics.

1) GOODNESS OF FIT
The goal is to assess how well the model’s theoretical
variogram γ fits the empirical semivariogram γ̂ = {γ̂j}

k
j=1

built from the known sample set S̄ = {(xi, y(xi))} ⊂ X × R.
For each j = 1, . . . , k one defines γj to be the value returned
by γ at the lag corresponding to γ̂j. As opposed to the often
used mean absolute error (MAE) or root mean square error
(RMSE) the normalized root mean square error (NRMSE) is
used as its magnitude does not depend on the sill.

NRMSE =
RMSE
mean(γ̂ )

=

√
1
k

∑
j(γj − γ̂j)2

1
k

∑
j γ̂j

, (2)

The GP model passes the goodness of fit test when
NRMSE ≤ α for a given acceptance value α (typically in
the interval [0.1, 0.3], see Parameter Choices).

2) RESIDUALS VALIDATION
The goal is to evaluate how well a fitted model generalizes
to other samples T ⊂ X ⊂ Rn whose measured set is
T̄ ⊂ X × R. In practice, such a test sample is obtained either
as the test subset of a train/test cross-validation-partition
of a larger known sample, or as a set of measurements
acquired independently from the initial sample that was
used to build the model. The residuals of T against the
given model are the differences between the measured
values y(x) and the corresponding predictions ŷ(x). If the
residuals appear to behave randomly and follow the expected
distribution, it suggests that themodel successfully represents
the underlying data. On the other hand, if non-random
structure is evident in the residuals, or if their distribution is
not the one predicted by the model, it is a sign that the model
poorly fits reality.

The validity of the model is evaluated based on a randomly
distributed test sample T̄ = {(x,Y (x)) : x ∈ T } ⊂ Rn

× R
such that:

• T is independent from S with S ∩ T = ∅,
• T is locally (stratified) randomly uniformly distributed,
in the sense that an element of T must be randomly
picked within a predefined neighborhood (for example
within its square if T is generated via latin hypercube
sampling (LHS) [21], [22]).

This last point differs from S, where global evenness (as
opposed to local randomness) is a necessity. The evenness
of T is less important, while its randomness is crucial. The
independence between T and S is equally crucial. In the
extremely unlikely case where some configurations x belongs
to S ∩ T after generating T , they should not be used, or T
should be resampled, as zero residuals are not allowed in the
next phase.

For every x ∈ X , the kriging function returns a pair
(ŷ(x), ê(x)), where Y (x) knowing Y (S) follows a normal
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distribution of mean ŷ(x) and variance ê(x)2. Because ŷ(x) is
an unbiased linear combination of the elements of y(S) with
ê(x)2 the variance Var(Ŷ (x) − Y (x)), the random variable

Ȳ (x) =
Y (x) − ŷ(x)

ê(x)
∼ N (0, 1) (3)

follows the standard normal distribution. Consequently, many
well known statistical tests are applicable. The suggested
procedure is as follows:
1) Choose a set T such that T ∩ S = ∅ and T contains

50 elements that are evenly distributed across X with
a local randomly generated identically independently
distributed (iid) component (i.e. T is obtained through
stratified random sampling),

2) Measure the set T and build T̄ by recording themeasured
values,

3) Use the Shapiro-Wilk test (see [23]) to determine the
normality of Ȳ (T ) with acceptance criterion α = 0.05,

4) Make a QQ-plot of Ȳ (T ) versus N (0, 1) on the [0.025,
0.975] inter-quantile range, and compute the slope and
location of its linear regression fit,

5) As the QQ-plot is expected to be linear based on the
above step, use the QQ-location µ (the QQ fit value at
zero) and the QQ-scale (the QQ fit slope) σ to determine
standard normality with acceptance |µ| ≤ 1 and 0.5 ≤

σ ≤ 1.5 (see Sec. II-E).
A bad QQ-location indicates a poorly calibrated model.
The QQ-scale is the standard deviation of the residuals
relative to the ideally expected standard deviation ofN (0, 1)
(i.e., 1). Slope values below the ideal 1 are an indication of
model conservativeness (overestimation) and thus are more
acceptable than values above 1 (hence the 1.5 tolerance
factor above vs. the factor of 2 below). In practice, a non-
negligible NRMSE can be the cause of slope deviation and,
therefore, the interpolation error tolerance should increase
with increasing NRMSE. By studying different failure
scenarios (e.g., artificially constructed, non-conservative GP
models) the formula

e(x) = ê(x) · (1 + NRMSE),

has been heuristically found to be a suitable.

C. STEP 3: TARGETED SEARCH FOR CRITICAL CASES
Given a fully confirmed GP model, the goal of the third
step is to search the n-dimensional domain X for regions
containing points x that have non-negligible probabilities for
Y (x) to cross a given threshold (see MPE definition below)
and must be added to the test measurements. These regions
are referred to as critical regions and the contained points as
critical data points. AsX might have a relatively high number
of dimensions, a good GP model might need a relatively
large initial sample S, which can lead to substantially
slower kriging computations. It is therefore essential to
establish an algorithm that identifies the critical regions of
X efficiently. This requires an algorithm that exploits the
available information – as contained in the GP model – to

perform its task. The proposed algorithm relies on the delta
function δp (estimate of the shortest distance from ameasured
point to points where the conditionally estimated value has a
probability p of exceeding a given level; introduced in the
Supporting Information).

The maximum permissible error (MPE) is defined in IEC
62209-3 [2] for each validation configuration j as

MPEj = 10 · log10(1 + usystem,j + usource), (4)

where usystem,j is the manufacturer declared expanded uncer-
tainty (95% confidence interval) of the SAR measurement
system for the validation configuration j (which may not be
larger than 30 % according to [2]), and usource is the expanded
uncertainty of the target psSAR value of the validation
antenna (which is set to 15 % in [2] based on a tolerance
evaluation of the antennas). By adding usystem,j and usource
directly in (4), IEC 62209-3 treats them as correlated terms,
which lowers the validation burden in comparison to treating
them as uncorrelated and combining them as root-sum-
squared [24]. Each validation configuration j must satisfy

1SARj =

∣∣∣∣10 · log10

(
SARmeas,j

SARtarget,j

) ∣∣∣∣ ≤ MPEj, (5)

where 1SARj is the error in the measured psSAR and
SARmeas,j and SARtarget,j are the measured psSAR and
the verified numerical target psSAR value, respectively.
If 1SARj > MPEj for any configuration j, the reported
system uncertainty usystem,j is not met. The declared usystem,j
can then either be increased (but not larger than 30 %), or the
measurement system is declared to have failed the validation.

Since the measurement system is expected to perform
within its uncertainty bounds everywhere in the configuration
space, the inequality in (5) is enforced for all steps: model
creation (where 1SARj ≡ S̄), model confirmation (where
1SARj ≡ T̄ ) and the search for critical cases (here).

1) SEARCH ALGORITHM
The proposed search algorithm is motivated by heuristic
optimization methods, with an added uncertainty component.
Its goal is to identify critical configurations to be remeasured
(search for global extrema), rather than to estimate the global
probability of exceeding the MPE or to improve the surrogate
model. The considerations that went into designing the search
algorithm were that it must:

• maximize the chance of detecting configurations with a
high likelihood of exceeding theMPE, whileminimising
the number of required measurements;

• balance the need to spread coverage of the search space,
against the need to increase the sampling density if either
the response surface fluctuates strongly, or the predicted
measurement error is close to the MPE such that even
small fluctuations could result in a violation of theMPE;

• adhere to the general philosophy of established vali-
dation procedures from the currently binding standard
(point-by-point evaluation according to a pass-fail
criterion);
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Algorithm 1 Search Algorithm: Starting From a Sample Set
S∗ = S0, the Algorithm Iteratively Constructs Sets S∗ ∈

(Sk )mk=1 by Moving the Elements of S∗ so as to Evenly Cover
Critical Regions With Significant Probability of Exceeding
the MPE
1: procedure search(S∗ ⊂ X , f : X → R, T−, T+, δp :

R+ → R+, q ∈ [0, 1], m ∈ N∗)
2: Y∗ = f (S∗)
3: T0 = (T− + T+)/2
4: d = −1, s = 0
5: for k = [1,m] do
6: α =

1
2k

7: for j = [0, |S∗|) do
8: xj = S∗[j], yj = Y∗[j]
9: if yj > T0 then
10: s = 1
11: if (yj > T+) then
12: d = αδp(yj − T+)
13: else
14: d = 2αδp(T+ − yj)

15: else
16: s = −1
17: if (yj < T−) then
18: d = αδp(T− − yj)
19: else
20: d = 2αδp(yj − T−)

21: S ′
∗ = {xj} ∪ {xj ± d−→ei ∈ X}

22: Y ′
∗ = f (S ′

∗)
23: S(j)∗ = S∗\{xj}
24: D′

∗ = (min
x∈S(j)∗

{|x − x ′
|})x ′∈S ′

∗

25: h = argmaxi{s(Y
′
∗[i] − T0)D′

∗[i]
q
2 }

26: S∗[j] = S ′
∗[h], Y∗[j] = Y ′

∗[h]

27: return S∗,Y∗

• converge rapidly and be amenable to efficient imple-
mentation.

The function δp can be used to build an efficient search
algorithm for identifying critical regions in which Y is likely
to cross given threshold(s). Let S0 ⊂ X be a finite, evenly
distributed sample over X . Let f be a realization of Y over
its domain X = D(f ); it can for example be a kriging
function built from the elements of S0. Let T−,T+ ∈ R denote
two thresholds such that T− < T+ (for SAR measurement
system validation, T− = -MPEj and T+ = +MPEj, as given
in (4)). Given a constant of repulsion q ∈ [0, 1], we have the
m-iterations search algorithm 1.
Even though the search algorithm is not strictly speaking an

optimization, it can be interpreted as a multi-search variant of
a heuristic global optimization algorithm with an uncertainty
component that is simultaneously population and trajectory
based: At the ith iteration, the search algorithm produces
a new sample Si ⊂ X in such a way that the series
(Si) converges towards a sample that is evenly distributed

over (non connected) critical regions. An element of {Si} is
denoted S∗, and T∗ denotes an element of {T−,T+}, where
∗ acts as a general placeholder. Programmatically, S∗ can
as well be seen as a mutable set equal to Si at the end of
iteration i, and implemented as a sequence of elements S∗[j]
for j = 0, . . . , |S∗| − 1. For a small number of iterations
m ≥ 1, algorithm 1 returns a new sample Sm in which points
of S∗ have been moved towards local extrema of f in such
a way that they are evenly spread throughout the regions
that are likely to be close to or beyond the upper and lower
thresholds T±. The elements of population S∗ are moved
according to two kinds of forces:

• A force that pulls x such that y(x) is pulled towards
the nearest T±. Once Y (x) crosses that threshold, x’s
velocity decreases and the location of the elements of
S∗ start to accumulate in the regions surrounding nearby
extrema of Y . The force is a function of δp(|y(x) − T |)
for T the closest threshold,

• Amutually repulsive force with coefficient q that serves
to spread the elements of S∗ and quickly decreases
with distance. The force on any x0 is a function of its
distance to the set S∗\{x0}. This prevents points from
converging towards the same configuration: they should
cover regions of interest in a way that maximizes their
minimal separation.

The choice of p is empirical. It reflects effort-reliability-
balance considerations and ensures that the algorithm detects
threshold violations with a user-defined sensitivity level.
The parameter p must be set according to the degree of
smoothness and the rate of variation of f over its domain X : if
p is chosen too small, points are overly likely to be classified
as potentially crossing the thresholds T±, resulting in a too
large number of requested measurements during the targeted
search for critical cases. On the other hand, if p is overly
large, the crossing condition might not trigger rapidly enough
to detect sharp peaks in f , potentially leading to undetected
regions.

The parameter q is the constant of repulsion. It is often
reasonable to set q = p: with a lower p a finer search is
performed and thus a repulsive force that decreases rapidly
with distance is needed. For coarser searches over wider
regions, points should not be too close to each other, and
a higher q ensures that the repulsion acts on longer ranges.
Setting q = 0 will remove any repulsion between points.
A simple, model-agnostic space-filling design (such as

LHS) is sufficient to initiate the algorithm. The initial
sample S0 used for this study is described in the Supporting
Information.

The algorithm can be adapted in various ways. In the
present application, knowing that S∗ starts as a latin
hypercube, the choice was made to search along each
dimension of X , reducing the chances of multiple points
colliding too quickly. If S∗ is instead chosen to be a lattice
with high regularity, one should rather use search trajectories
that incorporate a random element.
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Assuming that f also returns its estimation uncertainty for
y(x), that is f (x) = (µx , σx) where σx = 0 if f = y, one
can use algorithm 2 to return the two subsets L∗,U∗ ⊂ S∗

of points that have a probability of at least p to cross the
corresponding thresholds.

Algorithm 2 Filter Algorithm: Starting From a Sample Set
S∗ Covering the Critical Regions and a GP Model f , the
Algorithm Partitions S∗ = L∗ ∪ U∗ ∪ M∗ According to Its
p-Likelihood of Exceeding T−, or T+, or None of Them,
Respectively
1: procedure filter(S∗ ⊂ X , f : X → R × R+, T−, T+,
p ∈ [0, 1])

2: L∗ = ∅, U∗ = ∅, M∗ = ∅

3: a = 8−1(p)
4: for x ∈ S∗ do
5: µx , σx = f (x)
6: if µx < T− and a ≤

T−−µx
σx

then
7: L∗ = L∗ ∪ {x}
8: else if µx > T+ and a ≤

µx−T+

σx
then

9: U∗ = U∗ ∪ {x}
10: else
11: M∗ = M∗ ∪ {x},
12: return L∗,U∗,M∗

D. APPLICATIONS
The developed validation methodology has been applied
to (1) an analytic example where the underlying response
is known, for which we assess the ability of the proposed
method to successfully identify critical configurations that
exceed given thresholds, (2) a subspace of the system
validation of cSAR3D to gain an understanding of the
performance of the proposed approach, and full system
validation of (3) cSAR3D and (4) DASY8. In applications (3)
and (4), care was taken to ensure that GP model creation
was performed independently of the model confirmation
and the targeted search for critical cases by involving two
different measurement laboratories, LAB1 (BNN, India)
and LAB2 (IT’IS Foundation, Switzerland), with different
operators and different sets of equipment. GP model creation
was performed by LAB1, and GP model confirmation
and targeted search for critical cases were performed
by LAB2.

The set of equipment used in applications (2)–(4) includes
a set of validation antennas (see below), equipment for
delivery and monitoring of stable power to the antennas
(signal generators, amplifiers, directional couplers, power
sensors, power meters, cables, and adapters), and hardware
for accurate positioning of the antennas while minimizing
influence on the near field distribution (spacers, holders,
and masks). These are further described, with minimum
specifications to ensure high quality results, in the SAR
standards [1], [2].

FIGURE 2. Latin square sample S ∈ [0, 1]2 of size 50. The estimated
interpolation Ŷ (x) along the indicated diagonal is shown below: The red
curve is the exact noiseless function f , the blue curve is the predicted
interpolation f̂ along with the associated 99 % confidence interval.

It is important to emphasize that the goal is not to predict
psSAR, but to predict the psSAR measurement error, 1SAR,
and to identify configurations where that error is likely
to exceed the MPE tolerance (i.e., to identify validation
configurations j where (5) is not met).

1) ANALYTIC SINE WAVE EXAMPLE
Let S ⊂ X = [0, 1]2 be the 2-dimensional LHS sample
shown in Fig. 2, and let Y : X → R be such that

Y (x) = f (x) + e,

where

f (x) = y sin(2πy), y =
1

√
2
||x||,

e ∼ N (0, 0.0012).

This process is isotropic and the semivariogram model γ is
Gaussian with parameters rγ = 0.97, sγ = 0.22, nγ = 0.
Fig. 2 shows this model on the segment line {λ(1, 1) : λ ∈

[0, 1]}. The confidence interval decreases the closer one gets
to a known value, and increases where the sampling is scarcer
and towards the domain’s border.

The search algorithms was applied with varying sen-
sitivities p and iterations m, while fixing the threshold
T± and reusing S as initial sample set, even though a
new (and frequently larger) sample set would typically be
used.
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2) DIMENSIONS AND RANGE OF PARAMETER SPACE FOR
CSAR3D AND DASY8 VALIDATION
To validate a SAR measurement system requires testing of
the system using validation field sources placed in close
proximity to the phantom surface. A set of standardized
validation sources is available to the test lab and system
manufacturer lab. The dimensions of the sampling space
must cover all the relevant variables, and each dimension
must cover a range sufficient to validate the system for all
foreseeable exposure conditions. The measurement accuracy
of a SAR measurement system depends on the following
SAR parameters (with relevant validation variables in
parentheses):
Frequency (f ): The calibration of the SAR measurement

system is frequency-dependent, due to the dispersion of
the tissue-simulating medium dielectric parameters and
the frequency response of the system components (e.g.,
amplifiers, filters). Typically, the sensors are calibrated
at discrete frequencies and the calibration is interpolated
to cover entire bands. To cover the frequency range of
IEC 62209-3 (f = 300MHz – 6GHz), the validation uses
15 dipole antennas to cover 18 frequencies. These are
14 dipoles each operating at a single frequency labeled
D300 (300 MHz), D450, D750, D835, D900, D1450,
D1750, D1950, D2300, D2450, D2600, D3700, D4200,
and D4600, plus a broadband dipole labeled D5000
that operates at 4 frequencies (5200, 5500, 5600, and
5800 MHz).

Polarization (θ): The system must be able to measure the
induced E-field for any polarization. A measurement
system might do this using multiple, e.g., orthogonally-
oriented, E-field sensors inside the probe that can
be combined to isotropically sense arbitrary field ori-
entations. Imperfect isotropy, i.e., angle-of-incidence-
dependence, affects the measurement uncertainty and
needs to be considered in the validation. To cover
the combined space, different sources and varying
orientations are defined:
1) sources with a dominant polarization parallel to the

phantom surface to test the measurement accuracy of
the x and y components. The aforementioned dipole
antennas are used for this purpose (see Fig. 3).

2) sources with a dominant polarization normal to the
phantom surface to test the z-component measure-
ment accuracy. Four VPIFAs (vertically-polarized
inverted F antennas, see Fig. 3) operating at a different
frequency each and labeled V750 (750 MHz), V835,
V1950, and V3700 are designed for this purpose.
A PIFA structure [25] is oriented such that the open
end is close to the phantom and the short-circuited end
is on the opposite end away from the phantom. This
provide capacitive coupling at the phantom surface
resulting in a dominant normal E-field polarization.
The evanescent fields decay rapidly, resulting in a
sharp SAR distribution and thus providing a good test
of the capabilitity of the measurement system.

Antennas should be rotated at all angles θ ∈ [0◦, 360◦)
with respect to the phantom surface normal. This can
be reduced to [0◦, 180◦) or even [0◦, 90◦) without loss
of rigor for antennas having SAR patterns with one-fold
(VPIFAs) or two-fold (dipoles) reflectional symmetry,
respectively. The range θ ∈ [0◦, 180◦) with steps
of 1θ = 15◦ has been used for both antennas for
simplicity.

SAR pattern (s): The measurement accuracy can depend
strongly on the spatial distribution of the SAR, due
to the field reconstruction algorithms, sensor design,
sensor spatial resolution, and sensor distance to the
phantom surface (which affects the capability to reliably
measure rapidly decaying fields). The measurement
system must be validated with sources that cover the
range of potential SAR distributions from wireless
devices. This is validated by using different antenna
types and frequencies, as explained earlier. Additionally,
dipole antennas are tested at distances from the dipole
axis to the phantom lossy medium of s = 5, 10, 15, and
25 mm using spacers (s = 5 mm is excluded at 300, 450,
and 750 MHz due to their thicker dipole arms). To test
SAR patterns from wireless devices having multiple
SAR peaks, a dual-peak antenna is used. It is known
as the CPIFA (centrally-fed inverted F antenna) and
operates at 2450 MHz (labeled C2450).

SAR level (Pin): The measurement accuracy depends on
the SAR level, due to non linearities of the SAR
measurement system that are compensated through
calibration. Therefore, the system needs to be validated
across the system’s dynamic range. Input power to each
antenna, Pin, is varied over a 20 dB range in 1 dB
steps such that SAR1g varies from 1 – 100 W/kg for
CW (continuous wave) signals, and 0.1 – 10 W/kg for
modulated signals. Reliability should be tested up to
an upper bound of 100 W/kg for the local SAR, which
corresponds to the extremity 10 g-averaged SAR limit of
4 W/kg for any SAR distribution. Pin values depend on
the source type, frequency and distance.

Modulation (PAR, BW): Sensors are calibrated using
different modulated signals commonly employed in
wireless devices (e.g., 3G, 4G, 5G, andWLAN signals).
The signal bandwidth, BW (in MHz) is an important
signal parameter in the frequency domain, while the
peak-to-average ratio (PAR, in dB) describes signal
aspects in the time domain. To cover ranges of PAR =
0 – 12 dB, and BW = 0 – 100 MHz, a set of 22 common
modulations has been selected that include two 3G
signals, ten 4G signals, six 5G signals, and four WLAN
signals. An unmodulated (CW) carrier has been included
to test the upper end of the dynamic range, and a pulsed
CW signal with a 10 ms period and 10 % duty cycle has
been included to test pure pulsed signals.

Location (x, y): Array systems must be validated at any
x and y locations within the measurement boundaries,
because the measured SAR varies due to a) mechanical
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FIGURE 3. Dipole (left), VPIFA (center), and CPIFA (right) validation
antennas used in SAR measurement standards [1], [2]. The dipole and
VPIFA test the measurement of parallel and normal polarization with
respect to the phantom surface, respectively, while the CPIFA tests the
ability to measure multiple peaks.

tolerances and calibration errors of the different sensors
in the array, b) measurement variations related to the
discrete field sampling by the sensors, and c) the
influence of field scattering across the sensor array that
may be different in the center of the array compared
to the array boundaries. During validation, x and y are
varied over the full measurement area using a 1 mm
resolution to include locations between the sensors.

These n = 8 dimensions (f , θ, s,Pin, PAR, BW, x, and y)
are considered to be a sufficient set for the system validation
of general SAR measurement systems, while six dimensions
are sufficient for scanning systems due to their independence
on the device location (x, y). Knowledge about the SAR
measurement system implementation could be used to further
reduce the number of dimensions and of required validation
measurements (improper reduction will result in failure at the
model validation step). For example if the scanning system
implementation is independent of the rotation of the SAR
pattern, the sampling of the rotation angle θ could be reduced
or removed. Or, the dimensions of frequency f and distance
s could be reduced and/or combined for a high-resolution
scanning system that is less sensitive to the SAR pattern.
Still it must be kept in mind that both characteristics of
the measurement system as well as of its reconstruction
algorithms must be considered. For this study, the authors
chose to maintain the full dimension space to demonstrate
device dependence on all parameters. The chosen validation
antennas (dipoles, VPIFAs and CPIFA) are described in detail
in [2].

Note that each of these dimensions is continuous by nature.
Reduction to a finite number of measurable configurations is
the result of practical limitations in a) validation hardware
(only specific validation antennas and spacers available to
test labs, for which target values have been determined, can
be used); b) measurement setup (modulated signals must be
loaded onto the signal generator); and c) operator ease-of-use

(need for manual positioning and orientation of the validation
antennas).

3) CSAR3D (X , Y , θ)-SUBCUBE
We examine the case of psSAR measurement error on the
(x, y, θ)-subdomain of a cSAR3D device (fixing the other
parameters) to assess the ability of the proposed approach
to detect systematic measurement deviation patterns despite
being agnostic about the measurement system implementa-
tion. A single dipole antenna is used at f = 2450MHz. It is fed
at a power level of Pin = 29.2 dBm with a continuous-wave
signal (modulation parameters: PAR = 0 dB, BW = 0 Hz).
The dipole is placed at a fixed distance of s = 10 mm
on 25 randomly selected phantom surface locations L =

{(xi, yi)}i∈[1,25]. The rotation dimension was covered using
12 rotation angles A = {j · 15◦

: j ∈ [0, 11]} at each location
(xi, yi). Therefore, the (x, y, θ)-subcube consists of 300 points

S = L × A = {(xi, yi, j · 15◦)} ⊂ X ⊂ R3.

4) CSAR3D VALIDATION
For the full cSAR3D system validation, the entire validation
procedure was performed, this time covering the complete
configuration space described above. A GP model for the full
configuration space was constructed at LAB1 from a set of
cSAR3D flat phantom measurements.

a: INITIAL SAMPLE GENERATION
An initial sample S of 400 data points (see Parameter
Choices) was LHS-generated with a maximization of the
minimal distance between any two points, so as to ensure that
S was well spread within X . For the chosen configurations,
the 1g-averaged psSAR (SAR1g) was measured using a
cSAR3D device (flat phantom), and the corresponding
deviations 1SAR1g from the published target values were
computed, resulting in the valued sample S̄.

b: OUTLIER DETECTION
Potential outliers were detected and their measurement values
double checked to eliminate any operator errors. An outlier
is defined to be any value not in the set

{ x ∈ S y(x) ∈ [q1 − rq, q3 + rq] } ,

where q = q3 − q1 for q1, q3 the first and third quartiles
of y(S), and where r is a positive predetermined interquartile
range multiplier chosen equal to 2 in this case. With r = 2,
a few valid values might still be classified as outliers. Outliers
are not to be ignored in applying (5). Nor are they ignored
from the linear system of equations used for interpolation,
but they are to be ignored during the construction of the final
isotropic variogram.

c: MODEL CREATION
The data space was prescaled based on the standard
deviations of the known values y(S) = Y (S) along each
dimension; i.e., for Y (S)i the projection of Y (S) on the
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1-dimensional R-subvector space generated by the i-th
variable, and for si the standard deviation of Y (S)i, the
invertible linear map ι0 is pre-constructed as the diagonal
matrix

60 =

s1 0
. . .

0 sn

 .

Working from ι0(X ) not only normalizes the arbitrary choice
of units, but also reduces the conical uncertainties in the
construction of the 1-dimensional directional variograms
along each dimension (lag pairs are chosen with an angular
tolerance – set to 45◦ in our implementation – around the
direction-of-interest to improve the statistics). A Gaussian
theoretical variogram is used for the fitting and, due to
the very different characteristic length of each variable’s
variation, only the range, sill and nugget need to be
determined along the eight directions of the canonical base
vectors of the surrounding space Rn. The sill was found to
be similar along all directions, so that ι was defined as the
composition

6 =

r1 0
. . .

0 rn

 · 60,

where ri is the range of the directional variogram along
dimension i. Now that ι(X ) is isotropic, an 8-dimensional
semivariogram γ on ι(X ) can be estimated.

d: MODEL CONFIRMATION
To confirm the model, we first quantify its NRMSE value to
assert that the isotropic semivariogram γ fits the empirical
semivariogram γ̂ sufficiently well within an acceptance
threshold of 25 % (see Parameter Choices). Next, the
GP model is tested using measurements taken at LAB2,
an independent laboratory with a different operator and
different equipment than those involved in the model creation
performed at LAB1. An appropriate random test sample T̄
of 50 points is generated and the residuals are obtained from
the values in T̄ using (3). Provided T has good randomness,
the residuals are to be standard normal distributed. The
Shapiro-Wilk test with a p-value well above 0.05 did assert
normality, and the QQ-plot of the order statistics of the
residuals versus the theoretical standard normal distribution
were assessed.
Targeted search for Critical Cases: The confirmed GP

model was used to search the data space for critical regions
where psSAR deviations to the target values (1SAR1g) are
likely to exceed the MPE. A sample of appropriate size
and distribution was LHS-generated and used to initiate the
search Algorithm 1. Eight iterations were performed and
the configurations were returned where the probability that
1SAR1g > MPE is at least 5%. After the last iteration,
snapping to the closest meaningful neighbour was performed
(see Methodology and Implementation). These critical cases

were thenmeasured to checkwhether or not the values exceed
the MPE.

e: MEASUREMENT OF CRITICAL CASES
The identified critical configurations were measured on a
cSAR3Dflat phantom to determinewhether themeasurement
system passed the validation (i.e., 1SAR1g ≤ MPE).
This was performed by LAB2 with different equipment and
operator than those used by LAB1 for the model creation
measurements.

5) DASY8 VALIDATION
For the full DASY8 system validation, as in the case of
cSAR3D, a GP model was constructed based on system
knowledge and an LHS-generated initial set S system
knowledge. This use of system knowledge does not compro-
mise the validation as the model confirmation step, which
requires the measurement of a test set T , is carried out
independently. The model creation step was identical to
that of the cSAR3D case, except that a non-zero nugget
was introduced as model parameter, since the nugget was
found to be non-negligible compared to the sill. The model
confirmation and the targeted search for critical cases were
conducted for DASY8 in the same way as for cSAR3D.

E. METHODOLOGY AND IMPLEMENTATION
Selected implementation-specific aspects, such as parameter
choices, are discussed here.

1) PARAMETER CHOICES
The proposed procedure involves a number of tuneable
parameters. To establish the GP model based on a
LHS-distributed initial sample, a size of 400 is usually needed
to ensure that 75 % of the 50 bins used in the construction of
the empirical semivariogram contain at least 40 lag values.
The Gaussian semivariogram model was chosen from the
smoothness of the underlying process (a result of the smooth
dependence of the measurement physics on variations of
the underlying parameters). It also has the advantage of
being less sensitive to variance changes at the smallest
lags, where the LHS generated initial sample provides few
to no values. A value in the range 10–30 % is typically
chosen for the NRMSE tolerance in the fit validation of the
model confirmation step. Data analysis has shown that a
tolerance below that range is too severe. As explained in [23],
the Shapiro-Wilk test is best applied to samples that have
20-50 elements, while at least 50 points are recommended
for the QQ-plot to be meaningful. The usual tolerance of 5%
is applied; this could easily be increased for more severity,
however, normality itself is less important than the scale
and location factors of the QQ-test. The QQ-test location
and scale tolerance are set at |µ| < 1 and 0.5 ≤ σ ≤

1.5 after normalization to the standard deviations (3). In order
to accept more conservative models, the tolerance for σ is
more permissive below than above the ideal 1. The constant
of repulsion q in the search algorithm should typically be
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chosen in the range of 0.05–0.2, depending on the expected
global smoothness of 1SAR over the configuration space. A
default value of 0.1 has been found to work for the types of
measurement systems studied, The number of iterations m in
the search algorithm is set to 8, as this proved sufficient for
the configuration samples to converge to the critical regions.
Finally, the initial search population size is in the range
50–10000. The search algorithm can efficiently handle such
a potentially large number of trajectories.

2) LATIN HYPERCUBE SAMPLING IMPLEMENTATION
In order to efficiently sample S for the initial GP model
creation, the choice made was to use Latin Hypercube
Sampling (LHS) (see [21] and [22]). For a unified LHS
procedure to generate suitable sample sets S of size k for
both the model creation and the model confirmation step, the
following conditions need to be satisfied:

• The cube In = [0, 1]n is partitioned into the canonical
grid of kn equally sized n-dimensional sub-cubes
(‘cases’). The elements of S are placed in their own
‘case’, such that each row along each of the n dimensions
contains exactly one element of S, and that the minimal
euclidean distance between two occupied squares is
maximized,

• each element of S0 is placed within its ‘case’ according
to a uniform probability distribution.

While the first condition guarantees a good initial sample, the
second condition is essential for it to constitute an appropriate
test sample. A custom developed implementation of LHS
based on pyDOE [26] was used for this purpose.

3) DATA SNAPPING
Not all configurations in domain X are valid (i.e. physically
measurable). The general approach is to treat X as a
continuous connected subset of Rn, and to derive meaningful
values a posteriori (after the last iteration) through snapping
to their closest meaningful neighbour. In this way the search
algorithm does all its works on X , after which a final kriging
round is performed to the snapped configurations. In rare
instances, if an element is too far from a meaningful location,
it is removed from the resulting critial set. This approach
avoids having to treat categorical variables, discrete variables
and continuous variables differently in the validation proce-
dure, and greatly simplifies all statistical operations without
significantly affecting the results.

As for initial samples generation, the source selection is
based on the (frequency, distance)-pair. If a frequency is valid
for different source types, distance is used as a secondary
criterion.When nomeaningful source exists, the sample point
is ignored.

4) VARIOGRAM MODELING
All semivariograms were generated using the scikit-gstat
1.0 package from the pypi repository; all details on the meth-
ods used are provided in [19]. The Matheron semivariance

FIGURE 4. Results obtained using Algorithm 1 for the targeted search for
critical cases. Identified candidate configurations are shown for various
values of the sensitivity p (always with m = 8 iterations). A higher p
reflects the expectation of a smoother response surface, which permits to
increase the spacing between sampling points and to search the
configuration space more sparsely.

estimator given in (7) is used for the empirical variogram
construction. The Gaussian semivariogram model defined in
(9) was found to be the most effective model. The convex
nature of the model at short ranges reduces the fitting
uncertainty associated with the typically sparse sampling
data at the shortest lags. Most importantly the monotonicity
of the semivariogram model ensures that the delta function
is applicable. The domain is binned such that 75 % of its
diameter is partitioned into 25 equally-sized bins for the
1-dimensional directional variograms and into 50 bins for the
final isotropic variogram. While zero nugget models worked
for cSAR3D, it became obvious that nugget-inclusion was
necessary in the DASY8 case.

III. RESULTS
A. ANALYTIC SINE WAVE
The application of the targeted search for critical cases (using
T+ = 0.20 and T− = −0.75) for various sensitivities p,
and iterations m, moves the elements of S as illustrated in
Fig. 4 and Fig. 5 respectively. The impact of the p value is
illustrated in Fig. 4. The fact that δp incorporates the relevant
semivariogram characteristics allows the search algorithm
to remain efficient with a minimal number of iterations
(provided the semivariogram model is of sufficient quality).
Fig. 5 illustrates how after only two iterations the points have
already converged to cover the regions-of-interest. These
figures show the remarkable regularity in how points are set
apart from each other.

Each of these points come with their own probability to
cross the thresholds. Fig. 6 shows these probabilities for the
lower threshold of T− = −0.75, which is identical to the
infimum of f on X .

B. CSAR3D (X , Y , θ)-SUBCUBE
The results from applying the developed procedure to the
(x, y, θ)-subdomain of a cSAR3D device provide valuable
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FIGURE 5. Impact of the iteration number m on the results returned by
Algorithm 1. The sensitivity parameter is set to p = 0.1 throughout with an
increasing number of iterations m. Quick convergence up to m = 8, then
stabilization beyond m = 8 of the identified failure candidate is observed.

FIGURE 6. Configurations for remeasurement, identified by the complete
search procedure (algorithms 1 and 2). The probability of the samples to
fall below the lower threshold of T− = −0.75 is indicated.

insights into how regions can be identified that – as a
result of the measurement system design (in this case, the
arrangement of sensors in the array) – have an increased
likelihood of exceeding the accuracy limits. The set of
measured configurations S̄ = {(xk , yk , θk , 1SARk )} can be
represented by projecting all measurement errors 1SARk
onto each dimension: their mean and standard deviation are
shown in Fig. 7.
Note that the locations are not as optimally distributed

(i.e., locally random, but globally homogeneous) as if they
would have been LHS-generated. This is compensated by
the high number of elements in S and the high regularity of
all standard deviations across the board. The data shows a
smooth geometric anisotropy with low noise. By definition
of geometric GP models as given in (11), one can compute
an isomorphism ι via which the underlying data space X
can be rescaled into an isotropic space ι(X ). An isotropic
semivariogram γ built on ι(X ) is shown in Fig. 8.

FIGURE 7. The set S̄ of the measured cSAR3D deviations from the target
values, 1SAR1g, projected along the different dimensions of the
(x, y, θ)-subcube configuration space. The bars denote the standard
deviations of all elements of S̄ with the same projected parameter value.

FIGURE 8. Empirical (dots) and fitted (line) isotropic semivariograms for
the cSAR3D system in the (x, y, θ)-subcube of the configuration space.
It is shown along with the histogram (bars) of the sample lags in the
underlying bins.

The NRMSE of less than 12 % – well below the 25%
acceptance limit – indicates that the semivariogram is well
suited for probing X . Applying the search algorithm with a
very low MPE threshold of 0.3 dB (well below that allowed
by the standards; see (4)) using different sensitivity values
p results (after only 8 iterations) in the critical samples
shown in Fig. 9. Color clustering is apparent in Fig. 9, which
corresponds to the local extrema along the θ dimension from
Fig. 7, namely 15◦, 65◦, 105◦, 120◦, and 165◦. Fig. 10 then
applies Algorithm 2 and returns the probability of exceeding
the MPE value. Clear clustering around the global maximum
at θ = 65◦ and the global minimum at θ = 165◦ is evident,
in addition to spatial clustering.

C. CSAR3D VALIDATION
The isotropic semivariogram γ fits the empirical semivari-
ogram γ̂ with an NRMSE value of about 10 %, well below
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FIGURE 9. Results obtained for the reduced cSAR3D dataset when
applying Algorithm 1 in the targeted search for critical cases. The
outcomes for various values of the sensitivity parameter p are shown on
the (x, y )-surface, while encoding θ in color.

FIGURE 10. Results obtained for the reduced cSAR3D dataset when
applying both algorithms of the targeted search for critical cases. Shown
are the outcomes of Algorithm 1 (top; see as well Fig. 9), and of
Algorithm 2 (middle and bottom) for an error threshold (0.15, 0.2,
or 0.25 dB) which is well below the typical MPE of 1.5 dB or more.

the acceptance threshold of 25 %. Typically, a good model
has an NRMSE in the range of 8 % to 15 %, which is the case
here as shown in Fig. 11.

The Shapiro-Wilk test confirms that the residuals are
indeed normally distributed, with a p-value of 0.29 > 0.05.
As shown in Fig. 12, the linear regression of the QQ-plot of
the residuals order statistics versus the theoretical standard
normal distribution has its location and scale well within
[−1, 1] and [0.5, 1.5], respectively.

FIGURE 11. Isotropic semivariogram of the cSAR3D (blue) and DASY8
(red) GP models, showing the empirical (dots) and fitted (lines)
semivariances along with the histograms (bars) of the binned sample
lags. The fit quality for the cSAR3D and DASY8 models returned an
NRMSE of about 10 % and 15 %, respectively.

FIGURE 12. QQ-plot of the model residuals (dots) and linear fit (lines) for
cSAR3D (blue) and DASY8 (red) shown in comparison to the ideal fit
(black line). The Shapiro-Wilk test p-value, as well as the location and
scale of the linear regression are within their acceptance ranges,
confirming the GP model.

The confirmed GP model was then used to search the data
space. The critical configurations returned after 8 iterations
of the search algorithm with an attributed probability of at
least 5% of exceeding the MPE value are listed in Table 1.
These 44 configurations are sorted by decreasing probability
of exceeding the MPE (from 18.8 % to 5.1 %). A cluster of
cases using the D5000 dipole at a distance s = 25mm with
input power levels around Pin = 10 dBm is evident, as well
as two cases using the V750 antenna. This is unsurprising,
as the D5000 and V750 antennas have the sharpest SAR
distributions among the sets of dipole antenna and VPIFA,
respectively. A sharper SAR distribution results in a larger
measurement variability for an array system with a fixed
sensor resolution.

The 44 identified critical cases were measured in LAB2.
The results are shown in Fig. 13. It is observed that (5) is
met for all measurements. Thus this cSAR3D flat phantom
has passed all of the validation criteria, and is considered
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TABLE 1. 44 identified critical configurations for the cSAR3D system
where there is at least a 5 % probability (column labeled Fail prob.) that
the inequality in (5) is not met. Each configuration is identified by its
8-dimensional coordinate in the validation parameter space (f , Pin, PAR,
BW, s, θ, x, y ), while Ant. name is the validation antenna operating at the
listed f and s combination). The three right-most columns are estimated
from the GP model: the GP model error (1SAR1g); the standard deviation
of the GP model error (Model error), and the failure probability (Fail
prob.). Since the MPE of (4) and (5) is only known after the measurement
is performed, it was conservatively estimated from the MPE values
reported during model creation.

FIGURE 13. Deviation (dots) of the SAR1g measured on cSAR3D from the
published SAR1g numerical target for the 44 critical configurations
identified in Table 1. All of the results are within the MPEj limits (black
lines), such that the measurement system passes the validation.

to be fully validated for measurement use. Note that this
only validates the individual cSAR3D flat phantom and not
the class of all cSAR3D flat phantoms, since measurement
accuracy is dependent on manufacturing tolerances and
calibration quality. Each phantom must be individually
validated.

D. DASY8 VALIDATION
The main differences in the results obtained with the
DASY8 compared to cSAR3D stem from the fact that the
deterministic component of the isotropic variogram is now
small compared to the nugget (not as in the model obtained
in the cSAR3D case; see Discussion). The obtained isotropic
semivariogram and good fit validation are summarized in
Fig. 11. As expected, given the small sill, the NRMSE is
larger than in the cSAR3D case, but it is still comfortably
within the 25 % acceptance threshold. The residuals val-
idation test results (see Fig. 12) further confirm the GP
model. As a result of the prominent noise level (compared
to the systematic deviations), the Shapiro-Wilk test p-value
is excellent. The slope of the QQ-plot regression is slightly
below 1, which means that the model is on the conservative
side (the estimated interpolation errors are in average slightly
larger than those obtained through measurements), which
pushes the search algorithm to use a larger initial sample and
is likely to increase the validation effort. No configuration
with a probability above 5 % of exceeding the MPE value
was found, which did not come as a surprise, considering
the precision of the system-under-validation. In other words,
the targeted search for critical cases was performed and
no critical points were returned. Therefore, the evaluated
DASY8 system (including the specific probe and phantom
used) is considered to be validated.

IV. DISCUSSION
A. REVEALING DEVICE-SPECIFIC FAILURE
RISK HETEROGENEITY
When analyzing the search algorithm performance for the
cSAR3D (x, y, θ)-subcube GP model using intentionally
lowered – i.e., stricter –MPEs, clear clustering of the revealed
configurations at risk of exceeding the MPE are evident in
Fig. 9 and Fig. 10. The clustering around specific spatial
locations and angular orientations reveal how a combination
of sensor calibration variability and field reconstruction
methodology results in a heterogeneous distribution of
the measurement error throughout the configuration space.
Despite using a validation approach that is device agnostic,
the GP model-based approach is capable of revealing such
variations, and of assessing the probability of measurement
errors exceeding the tolerances.

B. BEHAVIOR COMPARISON BETWEEN
CSAR3D AND DASY8
For the DASY8 system, the deterministic component of
the isotropic variogram is almost negligible compared to
the nugget. The latter results from thermal noise, amplifier
instability, stochastic placement and other operator inaccu-
racies. The cSAR3D and DASY8 system nuggets nearly
have the same magnitude, indicating that their noise levels
are comparable. However, in the cSAR3D case, the nugget
only represents a small portion of the sill, indicating that
systematic (i.e., reproducible) deviations from the target
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value cannot be neglected compared to the measurement
noise anymore. Importantly, theGPmodel approach performs
correctly in both situations and remains as effective in the
presence of a high relative amount of noise as in the almost
deterministic cases. This further strengthens the confidence
in the general applicability of the developed validation
approach.

The possibility of augmenting the GP model quality
using manufacturer knowledge, without compromising the
trustworthiness of the validation (thanks to the independently
performed model confirmation step), could also be demon-
strated for the DASY8 system.

C. BENEFITS OF THE DEVELOPED METHODOLOGIES
The developed validation approach offers a range of impor-
tant and valuable features:

• Validation can readily be performed by an independent
party; in fact, different parts of the validation can be
performed by different parties, thus maximizing trust in
the validation,

• It maximizes the likelihood of detecting potential
configurations that violate the MPE limit,

• It incorporates stochastic elements, which ensures
comprehensive coverage over time, avoids bias, and
prevents preferential calibration for known validation
benchmark configurations,

• It is a device-agnostic approach where no device-
specific knowledge is assumed, such that is ideally
suited for harmonizing the divergent standards of
scanning- and array-based systems; at the same time,
manufacturers are free to use their knowledge to reduce
the GP model generation effort.

• It can be performed and repeated with a reasonable
effort (one day of measurements) by a suitable test-lab
or the device user.

• It can be implemented in a software tool that can
easily be used without any knowledge of the underlying
mathematics (see the implementation accessible at [4]).

The proposed validation method has been demonstrated on
two different SAR measurement systems. Beyond the bene-
fits for validation purposes, the developedmethodologies also
offer:

• an efficient approach for exploring high-dimensional
parameter spaces with a very small training set that
furthermore is generated in a non-iterative manner
(important in the given application context, as a
single measurement session is desired; this is, e.g.,
not the case for the sophisticated approaches from
[27] and [28]);

• a search algorithm that exploits knowledge of the
variogram at each iteration for increased computa-
tional efficiency; this implies the ability to use large
search populations, with no need for elaborate ini-
tial designs based on refined models. Increasing the
search population allows to detect even highly local
anomalies.

D. COMPARISON TO OTHER APPROACHES
1) COMPARISON TO RELIABILITY THEORY
The present approach addresses a need that is not typically
covered by reliability theory approaches (such as [29], [30],
and [31]), where the determination of the reliability of a
system relies on the overall probability of failure expressed
as

PF =

∫
X
IF (x)p(x)dx

for F ⊂ X the region of failure, IF : X → {0, 1} the indicator
function of F , and p some probability density function on X .
In our application, we are not interested in the overall failure
probability over a space of events. Instead, we want to find
those x ∈ X where the deviation y(x) has a high probability
q(x) of exceeding the MPE. In an optimal scenario the failure
probability would be expressible as

PF = sup
x∈X

q(x)

for q(x) the probability of the value y(x) to violate the
MPE. In this situation the failure detection problem could be
formulated as an optimization problem:

argmax
x∈X

q(x).

This however is not suitable for our purpose: as not all
configurations x are physically measurable (only a non-dense
countable subset of X is), we are interested in regions of
failure rather than individual points of failure. We therefore
need an algorithm that outputs the subset F ⊂ X whose
individual elements have a significant probability to violate
theMPE. As explained above,F is typically disconnected and
connected components can be arbitrarily small. In general,
no GP surrogate will guarantee to successfully model all
potential outliers; our geometric GP model assumptions are
meant to provide a context in which it is reasonable to assume
that a large part ofF can be found. In the SAR validation case,
data analysis has shown smoothness and good geometricity
of the underlying physics, and the present method offers a
major improvement over the published IEC 62209-3 standard
which only requires a predefined set of configurations to be
validated.

2) COMPARISON TO BAYESIAN METHODS
Bayesian methods typically rely on an acquisition function
which is based on the current information provided by the
surrogate model. The search process is then guided to either
improve the surrogate model or to find more optimal function
values. In our application, the modeler is free to use any
Bayesian method to iteratively build the GP model within
Step 1 of the proposed approach, but from the point of
view of a test lab independently executing Step 3, model
improvement is not allowed. Because of that, a separate
acquisition function such as expected improvement is not
necessary; it suffices to directly apply the search to the fixed
GP model.
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The iterative model improvement of Bayesian meth-
ods allows the search to neglect the uncertainty of the
covariance function (i.e. variogram fitting) as component
of the interpolation error. Since the surrogate model is
fixed and we cannot impose an optimal level of accuracy
(unlike iterative approaches), the covariance error may
lead to overestimated confidence in the predicted values
distributions. With the proposed approach, the incorporation
of the variogram RMSE into the resulting estimated error
alleviates this problem. The approach embraces that the fitted
variogram is an imperfect approximation of the empirical
one, accepts a larger fitting tolerance, and adds a safety factor
to avoid underestimation of the uncertainty. This manifests in
improved capture of the QQ plot slope.

Since the method goal is conservative estimation of failure
risk, rather than generation of a highly accurate model of
device performance, it strikes a different trade off between
efficiency and accuracy. While Bayesian optimization meth-
ods typically rely on reducing uncertainty by optimizing
an expected improvement function at each iteration, our
approach accepts estimated model uncertainty as is, and it
locates the parameter value regions most at risk of failing
without reevaluating the underlying truth or adapting the error
prediction. As a result, it essentially scales linearly with the
number of trajectories. Even though the required number of
trajectories is affected by the dimensionality of the problem,
it primarily depends on the global proximity of the model to
the failure thresholds. Thus, it will remain small for systems
that are unlikely to fail, which allows the present approach to
scale favorably with dimension.

3) COMPARISON TO MONTE-CARLO METHODS
The search algorithm should be fast and efficient, notably in
order to allow for a large initial search population when the
system performance is known to be close to the MPE. On the
other hand, when performance is far from the MPE, critical
regions can become very small, in which case Monte-Carlo
methods often suffer from the curse of dimensionality. The
δ-function (which plays a role similar to the δ in the
classical analytical definitions of continuity and convergence)
naturally permits the use of particle velocities that adapt to the
likelihood of exceeding the MPE, thus accelerating evolution
towards critical regions, while reducing the risk ofmissing (or
not converging to) small critical regions in the configuration
space.

E. APPLICABILITY TO MODEL VALIDATION
The elements of the presented approach can be applied
for diverse forms of model validation (e.g., in data-driven
modeling and machine learning), where the GP surrogate Y
is used to model an error function e : X → R knowing the
errors at locations S between the true values and the predicted
values returned by the model to be tested. In this context,
assuming a continuous and ‘‘smooth’’ response curve, the
residuals validation step (notably the QQ-plot) can be applied
to locate the outliers that break the assumption of smoothness

and fail to be predicted by the GP surrogate, and the search
algorithm returns the regions of the parameter space with
critical errors. Outliers and critical cases are then used to
either validate the model or locate the regions on which the
original model is to be improved.

In the case of SAR measurement systems, the variance
anisotropy is relatively mild and the linear transformation to
an isotropic version of the parameter space does not disfigure
latin hypercube samples into hyperrectangles whose support
lengths substantially vary along the different dimensions.
In general, the model uncertainty will increase along
overstretched dimensions; the decrease of information along
these dimensions will increase the uncertainty of the model,
and as a result of approaching the failure threshold increase
the computational time of the search algorithm by requiring
a potential significant increase in the number of trajectories.
This may affect the performance of the method, but should
not affect the outcome of the validation. The issue can be
alleviated by applying sampling techniques that distribute
points according to an a priori estimated isotropization.

F. LIMITATIONS AND EXTENSIBILITY
The present approach can readily be extended in view
of future evolutions of the measurement standards, e.g.,
by adapting the configuration space to include other frequen-
cies, modulation schemes, or antennas. Also, if future devices
prove to break certain assumptions on the model, or show the
need to refine the search, the proposed validation approach
remains open for any of its components to be generalized or
improved.

1) ASSUMPTIONS
The space is geometrically anisotropic and can be made
isotropic through linear transformation; if that is not the case,
nested model, multi-fidelity models, or multiple models valid
in subspaces can be used. In addition, a zero drift process
is assumed throughout the space (otherwise, universal
kriging is needed). Stationarity, monotonic semivariograms,
seperatability and continuity are assumed (see above).
Various generalizations are possible at the cost of increased
complexity, which includes, replacing ordinary kriging by
universal kriging, geometric anisotropy by zonal anisotropy,
and treating continuous domains with categorical variables.

2) OPERATOR VARIABILITY
it is included in the noise and nugget, but is likely operator
specific (operator error might anyway trigger remeasurement
if outliers are apparent). Poor device consistency (manufac-
turing or calibration) will result in failure of confirmation step
that could be remedied by creating a specific GP model for
that device.

3) MEASUREMENT EFFICIENCY
The LHS nature of S makes the measurement process
slow as each sample point requires a completely different
measurement configuration. However, the user can sort
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S by antenna type (switching antennas is the most time
consuming task) to improve measurement efficiency. This is
an advantage of our approach over an iterative approach.

4) OTHER APPLICATION-RELATED ASPECTS
The current study focuses on flat phantoms and still needs
to be applied to the slightly more complicated situation in
head phantoms, where the lack of translational symmetry
increases the configuration space. There are other aspects
of system validation that are taken care of outside the GP
model of this paper. Simultaneous transmission of multiple
signals (as done using 5G signals with carrier aggregation
to improve bandwidth, for example) is validated separately.
Another example that is validated separately is the validation
of dynamic power control systems of mobile phones, where
the signal amplitude is adjusted over time to keep the psSAR
below the regulatory limit.

5) SURROGATE MODELING APPROACH
GP modeling is a wide field in which more sophisticated
approaches for model creation, validation, and exploitation
exist than the ones employed here. For instance, it might
be preferable to use maximum likelihood or cross-validation
to select the covariance parameters, or the negative log
predictive density (NLPD) could complement the RMSE
in the quality assessment. In fact, other non-GP surrogate
modeling approaches could be employed, as long as they
are capable of providing conservative variance estimates
(the validation step will need to be adapted if ordinary
kriging is not used). However, in view of the purpose of this
study – namely identifying a practical solution to the specific
problem of SAR system validation and to the more general
one of efficiently and reliably validating systems with a large
configuration space in an unbiased, implementation-agnostic
and independently verifiable manner – choices in the current
study were dictated by the benefits listed above, as well as the
simplicity and ready availability of suitable routines, and are
justified by the successful application.

V. CONCLUSION
A general, robust, trustworthy, efficient, and comprehensive
validation approach has been developed that can operate
agnostically of the technical implementation of the tested
device, prevents calibration that favors known validation
benchmarks, and is applicable to large configuration spaces.
Its applicability, suitability, and strength has been demon-
strated through rigorous validation of two technologically
completely different SARmeasurement system types, a scan-
ning system and an array system, and involved two different
laboratories for separate steps in the process to illustrate
how the approach permits independent verification of the
validation.

The proposed approach resolves the current problem
of unifying and demonstrating equivalence of the IEC
standards [1] and [2]. At the same time, it establishes a
process by which any laboratory or user can evaluate at

any time and with reasonable effort (less than one day)
that the system performs within its reported uncertainty
bounds using the commonly available, standardized set of
antennas for which target values are specified by the standard.
At the same time, the generality of the method ensures that
the set of validation antennas can readily be extended or
adapted without affecting it, as long as the exposure space
is comprehensively covered.

The proposed validation approach is general (i.e., not
specific to the SARmeasurement system) and has been made
available as a simple software tool [3], [4], so that it can
easily be followed despite the complexity of the underlying
mathematics. Overall the procedure will improve the quality,
reliability, and reproducibility of the assessment of wireless
devices conformity with safety regulations which benefits the
public, government agencies and industry alike.
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VII. SUPPORTING INFORMATION
A. GEOMETRIC GP MODELS
This section defines geometric GP models. The background
theory is well known: it was first established in the field of
geostatistics by [32] and detailed accounts can be found in
the literature (e.g., [17] or [18]).
We let Y = {Y (x) : x ∈ X} be a Gaussian process

over a convex connected index set X ⊂ Rn; X is the
underlying domain or parameter space. We say the process
Y is separable on X if it is uniquely determined from a
countable set of points (such as X ∩ Qn), and it is said
to be (sample) continuous if almost all its realizations are
continuous. More generally, a process is weakly continuous
if it can be decomposed as a sum of a continuous process
and an uncorrelated noise component. All Gaussian processes
will be assumed to be separably weakly continuous, as well
as stationary: such a process has a constant mean and on two
points x1, x2 ∈ X only depends on the difference h = x2 −

x1 ∈ Rn, as opposed to the actual positions of these two points
in X . If the process only depends on the euclidean distance
|h|, it is said to be isotropic, otherwise it is anisotropic. The
process is geometric if there exists an invertible linear map
ι : X → ι(X ) inGLn(R) such that the process Yι = Y ◦ ι−1 on
ι(X ) is isotropic. Clearly, an isotropic process is geometric.

The semivariogram γ : R2n
→ R can be defined via

2γ (x1, x2) = Var (Y (x1) − Y (x2)) . (6)

The stationary nature of Y implies that γ is also defined as a
univariate function γ : Rn

→ R by γ (h) = γ (0, h) via the
relation γ (x1, x2) = γ (x2−x1). The corresponding variogram
is 2γ .

If the process is furthermore isotropic, γ can be defined on
R by γ (|h|) = γ (h), in which case γ is called isotropic. More
generally for a subvector space V ofRn, a semivariogram γ is
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said to be directional on X along V if γ is isotropic on X ∩V .
Obviously, an isotropic semivariogram is directional, and any
directional semivariogram γ ′ can be defined on R by setting
γ ′(|h|) = γ (h). In this study, γ is assumed to be monotonic
on |h| and to be directional on some subspace of X . As the
expectation of a square, γ (x1, x2) ≥ 0 for all x1, x2. At lag
h = 0, γ (0) = γ (x, x) = E

[
(Y (x) − Y (x))2

]
= 0, such that

γ is always zero at the origin. Nevertheless, the limit

nγ = limh→0γ (h)

can be non-zero and is called the nugget. When nγ > 0,
it describes the height of the discontinuous jump at the origin.
In case X has no spatial dependence the variogram is the
constant Var(Y (x)) everywhere except at the origin, where it
is zero. As explained in [17] paragraph II-C1 it can be shown
that a stationary separable Gaussian process is continuous if
and only if it is mean square continuous in the sense that

lim
|h|→0

E[|Y (x + h) − Y (x)|2] = 0 for all x ∈ X ,

and this is true if and only if nγ = 0. When nγ ̸= 0 it is still
assumed that Y is weakly continuous, so that the origin is the
only point of discontinuity in the variogram.

In the directional case, the limit

sγ = lim
|h|→∞

γ (h)

exists and is called the sill of the semivariogram γ . The
lag rγ at which sγ − γ (h) becomes negligible is called the
range: when sγ = γ (h) for some h, then rγ is the infimum
of all such h; while for models with an asymptotic sill,
rγ is conventionally taken to be the distance at which the
semivariance first reaches 95 % of the sill, in which case it
is referred to as the effective range.

Since in practice it is impossible to sample everywhere, the
interval [0, ∞) is binned and for a finite set of known sample
S = {yi}, the function γ is estimated based on the empirical
variogram γ̂ defined by

γ̂ (h) :=
1

2N (Bh)

∑
|yi−yj|∈Bh

(yi − yj)2, (7)

for Bh the bin that contains h and N (Bh) the cardinality
of the set {|yi − yj| ∈ Bh}; this estimator is also refered to as
theMatheron semivariance estimator. Of course the binning,
the size and evenness of the sample all play major roles in the
quality of the resulting γ̂ . A theoretical variogram model is
then fit to the empirical values – we say that γ fits Y on S.
Three of the most common models are:

• the Exponential model

γ (h) = nγ + sγ

(
1 − e

−
3h
rγ

)
, (8)

• the Gaussian model

γ (h) = nγ + sγ

(
1 − e

−
4h2

r2γ

)
, (9)

• the Spherical model

γ (h) = nγ +
sγ
2rγ

(
3h− h3

)
. (10)

We can now define a geometric GP model to be a
commutative diagram

S

y

$$

inc // X × �

Y

��

ι×id
∼=

// ι(X ) × �

Yι

xxR

(11)

endowed with a monotonic isotropic semivariogram γ :

R+
→ R+ that fits Yι on S, where:

• S = {xi} is a finite subset of X ⊂ Rn;
• Y = {y : X → R} is a geometric, separable,
stationary, and weakly continuous Gaussian process
with probability space �;

• Yι is isotropic with ι an invertible linear map in GLn(R).
The commutativity of the diagram implies the process is fully
known on S, with

Y (xi, ω) = y(xi) =: yi

for all xi ∈ S, ω ∈ �, y ∈ Y . Writing S̄ = {(x,Y (x)) :

x ∈ S)} ⊂ Rn
× R, a geometric GP model is characterized

by the triple (S̄, ι, γ ) which can be used to fully represent the
model in a software implementation. Under the geometric GP
model assumptions, S̄ is sufficient to build a full model. The
approach is as follows:
1) Given S̄, one can build ι by probing spatial dependencies

along all possible (1-dimensional) directions in the data
space. Under the geometric assumption of a GP model
an iso-variance contour forms an (n − 1)-dimensional
ellipsoid inX . This ellipsoid can bemapped to an (n−1)-
sphere via a series of rotations and axis rescalings. The
composition of these invertible linear maps on Rn form
ι : Rn

→ Rn which can be represented as a matrix in
the canonical base of the data space.

2) Given S̄ and ι, one can compute an empirical semi-
variogram γ̂ on the isotropic space ι(X ), on which a
semivariogram γ can be fitted. Most often, the model
and binning are set a priori – they depend on the
application field –, while the range, sill and nugget are
the result of a fitting algorithm.

A geometric GP model can then be used for spatial
inference at any unobserved location via ordinary kriging.
The unknown value Y (x) and the (unbiased) ordinary kriging
estimator Ŷ (x) are interpreted as random variables located at
x. The linear combination ε(x) := Ŷ (x)− Y (x) is a Gaussian
random variable with zero mean, and for σ 2(x) the kriging
estimator variance, the variable

ε(x)
σ (x)

=
Ŷ (x) − Y (x)

σ (x)
∼ N (0, 1) (12)

follows the standard normal distribution.
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B. THE DELTA FUNCTION
Let T ∈ R be a fixed threshold and M = (S̄, ι, γ ) a
geometric GP model. For {Y (x) : X → R} the underlying
geometric Gaussian stationary process over X ⊂ Rn known
on S = {xi}ki=1, and for x0 a point in X , a measure needs to be
established of how far away from x0 the next candidate point
x must be to have a reasonable likelihood of Y (x) crossing the
threshold T in the sense that:

(Y (x) − T ) (Y (x0) − T ) < 0.

The probability p that Y (x) < T knowing that y0 = Y (x0) for
a neighboring point x0 is

p = P(Y (x) < T | Y (x0) = y0)

= P(Y (x) − Y (x0) < T − y0 | Y (x0) = y0)

= 8

(
T − y0

σ

)
,

where σ 2 is the variance of the zero-mean Gaussian
distributed variable Y (x)−Y (x0). In this case, the probability
that Y (x) > T knowing y0 = Y (x0) is 1 − p. Since by
definition σ 2

= 2γ , assuming p < 1
2 ,

8

(
T − y0

σ

)
= p

⇔ T − y0 = σ8−1(p) =
√
2γ (h)8−1(p)

⇔ γ (h) =
1
2

(
T − y0
8−1(p)

)2

,

for the lag h = x − x0 ∈ Rn. Along a given direction, γ

is invertible on the interval (0, rγ ] with sγ := γ (rγ ) for rγ
the (effective) range of γ . Then the continuous monotonic
function δp : R+ → R+ can be defined as

δp(l) =


0 l ≤ gp(nγ ),

γ −1
(

l2

28−2(p)

)
gp(nγ ) < l < gp(sγ ),

rγ l ≥ gp(sγ ),

(13)

where

gp(d) =
√
2d |8−1(p)|, 0 < p <

1
2
, (14)

for nγ the nugget of γ . Knowing the values T and y0 one can
choose a parameter p and use δp(T − y0) to find the closest
points to x0 with a probability ≥ p to cross the threshold T .
By construction the function δp encodes all the covariance
characteristics carried by the variogram:

• Parameter p expresses the sensitivity of the model in
the assessment of whether or not the true value y(x) is
considered to have crossed T .

• Models typically assume nγ to be zero. However, when
|T −y0| is smaller than a non-negligible gp(nγ ) > 0, the
expected value of Y (x) is so close to T that δp(l) is zero,
which expresses the fact that it cannot be predicted on
what side of T the true value y(x) is likely to be.

• As y0 approaches T , δp(l) approaches zero in accordance
with γ .

• When |T − y0| is larger than gp(sγ ), x is too far away
from x0 for the condition Y (x0) = y0 to have an
influence on the outcome of Y (x).

The function δp can only be effectively incorporated into
an algorithm, if it can be efficiently evaluated at any x.
This depends on the ability to efficiently evaluate the inverse
function of the variogram γ on the interval (nγ , rγ ) defined
by the nugget and range parameters. Even though computing
the inverse of a function can be computationally intensive
(provided it even exists), the most commonly used variogram
models (see (8), (9) and (10)), including the one used here,
happen to be analytically invertible.

C. SIZE OF INITIAL SEARCH POPULATION
How can it be ensured that S0 is suitable for the initiation of
algorithm 1? A method is needed to determine the sample
size required for the search algorithm to either locate these
out of bound elements, or – if none are found – to establish
confidence that there are none. It must be applicable even in
those cases where the likelihood of crossing T−,T+ is low
(i.e., the T∗ are far from the known values Y (S0)).

Assume that T− < Y (x) < T+ for every x in S∗ (i.e., the
device is valid). For x0 ∈ S∗ and T ∈ {T−,T+}, it is known
by definition that for any continuous realization y of Y and
for any l = |y(x0) − T |, there is a δ > 0 such that none of
the elements in the open hyperball B(x0, δ) ⊂ X with center
x0 and radius δ will cross T . Determining the supremum
δsup(y) of all these δ’s for each continuous y, and setting δinf
to be the infimum of all δsup(y) would give a neighborhood
around x0 in which an element x is known not to cross one of
the thresholds. The problem is that without further conditions
on a realization Y it can reach arbitrarily large values in any
given open neighborhood of x0, even if it is continuous – in
other words δinf = 0. It is therefore impossible to guarantee
with a finite sample in X and a finite searching algorithm
that all out of bound elements will be found. However, by the
weakly continuous nature of the underlying process, and by
the definition of δp, it is possible to establish a condition with
probability 0 < p < 1

2 in which δinf reaches δp(l): For a finite
sample S∗ ⊂ X in an isotropic space X with semivariogram
γ , an element x0 ∈ S∗, and a threshold T∗ ∈ R, the largest
δ > 0 with a probability of at most p for elements of B(x0, δ)
to cross T∗ (knowing γ ) is δ = δp(|Y (x0) − T∗|). One can be
confident, with probability q = 1 − p for small p > 0, that
all the points in the open subset of radius δp(l) around x0 will
not cross T . Ideally, the situation should be reevaluated by
performing additional measurements at points in x ∈ X that
are distant by more than δp(l) from x0. In practice, because
algorithm 1 searches along a single dimension at a time, it is
sufficient to consider the 2 ·dim(X ) points on the hypersphere
S(x0, δ) = ∂B(x0, δ) that are located along directions {

−→ei }.
The closer y(x) is to T∗, the smaller δ becomes; therefore,

for each x ∈ S∗ one is only interested in the threshold T that is
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the closest to y(x). Assuming that the values of S∗ are evenly
distributed over X , let

L∗ = {min(|y(x) − T−|, |y(x) − T+|) x ∈ S∗}

and define l̄ to be the sample mean of L∗. Then, for Xi (the
projection of X on its ith dimension; 1 ≤ i ≤ n = dim(X ))
the positive integer

νp =

n∏
i=1

⌈
sup(Xi) − inf(Xi)

δp(l̄)

⌉
(15)

is suggested as an estimate of the required sample size. Here,
νp is the number of points of the coarsest discretization of
X resulting from uniform discretizations of all Xi with step
interval at most δp(l̄). In practice, a uniformly distributed
sample of size νp over X that incorporates a random element
is desirable, such as a n-dimensional latin hypercube sample
that maximizes the minimal distance between sample points.
Clearly, νp must and does increase when the required
confidence q = 1 − p increases. As expected

lim
q→1

νp = lim
p→0

νp = ∞.

From the above, it follows that the proposed approach
permits p to be set based on effort-reliability-balance con-
siderations and ensures that the algorithm detects threshold
violations with a user-defined sensitivity level.
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