
Received 26 March 2024, accepted 19 April 2024, date of publication 25 April 2024, date of current version 3 May 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3393844

HW-SW Interface Design and Implementation
for Error Logging and Reporting for
RAS Improvement
NICASIO CANINO 1, STEFANO DI MATTEO 1,2, DANIELE ROSSI 1, (Senior Member, IEEE),
AND SERGIO SAPONARA 1, (Senior Member, IEEE)
1Department of Information Engineering, University of Pisa, 56126 Pisa, Italy
2CEA-List, Grenoble Alpes University, 38000 Grenoble, France

Corresponding author: Nicasio Canino (nicasio.canino@phd.unipi.it)

This work was supported in part by European Union’s Horizon 2020 Research and Innovation Program ‘‘European Processor Initiative’’
(EPI) under Grant 101036168 (EPI SGA2); and in part the Italian Ministry of University and Research (MUR) in the framework of the
CrossLab and FoReLab projects (Departments of Excellence), Department of Information Engineering, University of Pisa.

ABSTRACT When designing a resilient computing system, the desired degree of Reliability, Availability,
and Serviceability (RAS) must be assessed and guaranteed. This article presents a Hardware-Software
(HW-SW) Interface for Error Logging and Reporting independent of specific Instruction Set Architectures
(ISA), aiming to improve RAS in computing systems. A HW-SW Interface defines the facilities by which
detected hardware errors are logged into an ad hoc set of registers (i.e., Error Record) and then reported to
system software. System software will promptly address and recover from those errors, preventing system
failures. Our architecture offers flexible and configurable Error Logging and Reporting features, satisfying
the requirements of different application scenarios by selectively incorporating or removing specific features.
After reporting the most relevant results from synthesis on FPGA (Xilinx UltraScale+ MPSoC) and
Standard-Cell technologies (45nm and 7nm libraries), we discuss them to provide valuable insights on
the dependency of resource utilization on error logging capability. The principal findings demonstrate that
the developed module would not limit system operating frequency, and its area occupation can be readily
configured to align with desired logging and reporting features to be implemented. Then, we validate the
Error Logging and Reporting features of our architecture by developing a test SoC on FPGA that emulates
a computing system, including a 32-bit RISC-V core and two ECC-protected (Error Correcting Code)
memories. The proposed HW-SW Interface extends beyond monitoring only ECC-protected memories, yet
it can monitor any system module incorporating error control logic.

INDEX TERMS Error logging, error reporting, FPGA, HW-SW interface, reliability-availability-
serviceability.

I. INTRODUCTION
The three separate properties of Reliability, Availability,
and Serviceability (RAS) in a computing system converge
into one main concept, which is its ability to prevent or
recover from failures and to handle undesired system states
adequately [1]. A greater system RAS enables a lower
downtime frequency and may provide a quick recovery
from system failures. However, it should be increased with

The associate editor coordinating the review of this manuscript and

approving it for publication was Lorenzo Ciani .

minimal impact on performance and cost to bring a real
benefit to the system. This requirement can be addressed by
proper adoption of error-checking hardware and redundancy
on critical data paths [1]. Both solutions should provide the
ability to detect and locate errors upon their first generation
and, if hardware is also able to autonomously correct it,
system operation continues without any noticeable loss in
performance.

Since errors in a system can arise from a plethora of causes,
over the years numerous solutions have been proposed to
reach the desired RAS, being either hardware-based or

VOLUME 12, 2024


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

60081

https://orcid.org/0009-0003-7548-8696
https://orcid.org/0000-0002-5711-432X
https://orcid.org/0000-0002-9487-378X
https://orcid.org/0000-0001-6724-4219
https://orcid.org/0000-0001-7820-6656


N. Canino et al.: HW-SW Interface Design and Implementation for Error Logging and Reporting

software-based. Different software-based solutions can be
embraced to increase the overall system RAS through fault
prediction and error recovery techniques [1], [2], [3], [4],
[5], [6], [7]. Fault prediction tries to prevent failures by
analyzing fault statistics and effective resource usage [8], [9].
It allows for the confinement of potentially defective parts
of the system and the application of predictive maintenance.
Relevant information to implement this technique can be
gathered by dedicated SW such as the HealthLog monitor
proposed in [5]. Error recovery, instead, is applied after
the occurrence of the error or failure and tries to recover
the correct system functionality as effortlessly as possible.
However, all software approaches need some hardware to
monitor selected modules and to signal the occurrence of
an error. Concurrently, there are several hardware-based
solutions not only to monitor and correct errors [4],
[10], [11], [12] but also to monitor the usage of some
system modules (e.g., Performance Monitors [13]). Since
many studies assess memories to be the components most
susceptible to errors in a computing system (99.9% of errors
corrected by ECC (Error Correcting Code) circuitry [1], [14],
[15], [16]), if not explicitly specified, for the rest of the paper
we will only refer to memories and their ECC circuitry.

Regarding hardware errors, they can be classified as soft
errors and hard errors. Soft errors are usually caused by
the emission of high-energy particles from the atmosphere,
or alpha particles from the chip package (non-deterministic
event) [17]. Instead, hard errors depend on physical defects or
wear out of the memory (deterministic event) [18]. Therefore,
technology advancement, increased miniaturization, higher
operating frequencies, and lower voltage levels, make
memories more susceptible to errors (whether soft or hard).

Both hardware- and software-based approaches have a
detrimental impact on the availability and performance of
the system. Indeed, the software needs to handle every error
event even if it does not lead to a failure, e.g. erroneous
data autonomously corrected by HW through its ECC code.
Concurrently, the hardware cannot handle autonomously
certain error states, for example, when the ECC logic is
not able to directly correct the error. For this reason, a
‘‘HW-SW Interface for Error Logging and Reporting’’ is
required, which can store relevant information related to the
detected HW errors, calling system software only when its
intervention is truly necessary to restore correct operation
or contain the error effect. This way, it can significantly
increase the system’s availability and serviceability, affecting
its performance as little as possible.

The HW-SW Interface acts as a monitoring peripheral
for error messages from error-checking hardware. When an
error is detected, it stores relevant error-related information
such as severity and source of the error, address location (if
available), and timestamp, in an Error Record (ad hoc set
of registers). A set of error records is referred to as a Bank.
The HW-SW Interface can also alert software about potential
failures. This is crucial since such failures could potentially

result in the loss of data integrity, thus discarding all the
results of the affected task.

Nowadays, only ICs design companies like Intel, AMD,
and Arm [19], [20], [21] provide Error Logging and Report-
ing features in their systems. These proprietary solutions
can be divided into two main approaches, briefly described
in Subsection II-C: the Intel/AMD approach [19], [20],
denoted as Machine Check Architecture (MCA), and the
Arm approach [21], referred to as RAS Extension. Some
processor architectures, including various generations of
Intel Xeon [22] and AMD EPYC [23], implement the
MCA. Likewise, several Arm platforms such as the v8-A
architecture [24], include the RAS Extension. These two
approaches represent the state-of-the-art in terms of HW-SW
Interfaces for processor systems. Still, to the best of the
authors’ knowledge, no micro-architectural details of these
solutions are publicly available.

Regarding our work on designing and implementing a HW-
SW Interface, preliminary results have been presented at the
SEEDA-CECNSMconference [25]. Considering the scenario
described above, the main contributions of this paper are
summarized hereafter:

• Proposal of the first public micro-architecture of an
ISA-independent HW-SW Interface for Error Logging
and Reporting, named ENGAGE (Error loggiNG And
reportinG architecturE). Its internal architecture is
characterized by a first pre-processing stage that gathers
and synchronizes the error-related information from the
monitored HW units, and then a log & report stage that
writes the information in an error record.

• The proposed HW-SW Interface is highly configurable
in the implementation stage, thus allowing designers to
meet different trade-offs in terms of system resource
overhead and logging/reporting requirements. There-
fore, it can satisfy the needs of different application
scenarios, from embedded low-cost systems, which
usually rely on 32-bit CPUs, to high-performance
computers, which usually exploit the processing power
of 64-bit CPUs.

• Evaluation of the ENGAGE module considering power
consumption and area occupation on both Standard-Cell
and FPGA technologies.

• Validation of the ENGAGE module in a test SoC
demonstrator implemented on FPGA, which emulates a
simple computing system.

The rest of the paper is organized as follows: Section II
provides some background information including the state-
of-the-art in terms of HW-SW Interfaces, with a brief descrip-
tion of the main properties of the two existing approaches
(i.e., Intel/AMD and Arm approaches). In Section III,
a system-level description of the designed architecture will
be provided, and a detailed discussion of the purpose and
functionality of all its building blocks will be included.
In Section IV, the results of the syntheses performed on both
FPGA and Standard-Cell will be discussed. Then, the testing

60082 VOLUME 12, 2024



N. Canino et al.: HW-SW Interface Design and Implementation for Error Logging and Reporting

environment in which the developed architecture has been
validated will be described. Finally, Section V will conclude
with a summary of the main characteristics of the developed
IP and of all the major results obtained.

II. BACKGROUND
After evaluating the desired resiliency level of a system,
we must consider implementing a combination of different
approaches because each one can improve one or more prop-
erties within ‘‘RAS’’. Specifically, Reliability refers to the
system’s ability to avoid failures and produce correct results
over time. Availability measures the system’s functionality at
a specific moment and is often expressed as the percentage of
time it delivers the expected service. Serviceability relates to
the system’s capability to provide relevant information about
occurred failures, with error logging playing a crucial role.
In the considered scenario, we will refer to an Error as

the ‘‘deviation of an external state of the system from the
correct service state’’ [26]. For instance, a SEU (soft error) in
memorywill cause an error in the affected data. It is important
to observe that not all errors lead to failure because they could
be corrected or be irrelevant to the system’s correct operation.

A. ERROR DETECTION, CORRECTION, LOGGING AND
REPORTING
Several approaches can be adopted to enhance the RAS of
a system. From a hardware perspective, Error Detection,
Correction, Logging, and Reporting mechanisms are effec-
tive ways to improve the system’s RAS. Usually, system
memories (either Main Memory or Caches) adopt SEC-DED
(Single-Error-Correction and Double-Error-Detection) codes
to correct single errors and detect double errors affecting the
protected information [27], [28]. As far as RAS is concerned,
their adoption provides the system with increased reliability
and availability. For instance, if an error is autonomously
corrected by some dedicated hardware, the system will not
undergo a failure (increase in reliability) and will continue
to operate correctly with no downtime. Concurrently, Error
Logging and Reporting operate in synergy with ECC to
increase the reliability, availability, and serviceability of the
system. Indeed, error logging enables an improvement of
reliability and serviceability as, after the detection of an
error, relevant error-related information is stored as an error
record in the ad-hoc set of registers. Therefore, in case of
a recoverable error (e.g., a single-bit error or a double-bit
error in a non-modified line in the data cache with SEC-
DED protection), it can correct the error either by fixing
the data or invalidating only the affected cache line. In case
of unrecoverable errors (double bit error in a modified line
in the data cache, with SEC-DED protection), the system
must be halted, as there is no possible simple recovery
action. Also, error reporting increases availability since,
signaling immediately a critical event to software, the system
can take recovery actions before the error further expands,
for example, in case of erroneous data used in a task.
Error logging and reporting nowadays are implemented in

processor systems by proprietary HW-SW Interfaces, such as
MCA from Intel [19] and AMD [20], or RAS Extension from
Arm [21].

B. ERROR TAXONOMY
Error Taxonomy classifies errors in the system depending
on their severity for the correct system state. Hypothesizing
that the monitored units are equipped with hardware for
error detection and correction (error-checking HW), the error
taxonomy depicted in Figure 1 has been considered [21].

Upon its occurrence, an error is classified according to
its detectability. Additionally, undetected errors cannot be
handled by the HW-SW Interface because of the very nature
of this type of error. Therefore, they are not further analyzed,
even though they may cause a system failure.

Detected errors can either be corrected or uncorrected,
depending on the error-checking HW and the type of error.
Also, an uncorrected error can be further categorized as
deferred or urgent. Adopting the standard description of these
three error categories [19], [20], [21], detected errors are then
classified into the following three classes:

• Corrected Error (CE): if the detected error has also
been corrected by specific hardware. As an example,
such hardware can implement an ECC protection
that can detect and correct errors in protected data
words [27], [28].

• Uncorrected Deferred Error (UDE): if the detected error
can not be corrected but has no immediate impact on
the operation of the system. In this case, the operation
can continue, and dealing with the error is eventually
deferred to a later point in time when the corrupted
data is consumed. For instance, if an uncorrected error
is detected in a memory-to-memory transfer, it will
be classified as deferred since no unit is going to
immediately consume the wrong data. However, such
erroneous data is tagged as poisoned and monitored
throughout its lifetime. Since the system can track the
poisoned data, when it is about to be consumed, thus
altering the state of the system, it will be escalated to
Urgent;

• Uncorrected Urgent Error (UUE): if the detected error
can not be corrected and requires immediate action from
system software. For example, erroneous data that is
going to be consumed by the processor, thus altering the
correct state of the system.

Among the detected errors, a severity hierarchy can be
defined in which CE < UDE < UUE . CEs are the
least severe because the affected data has already been
corrected. Instead, UUEs are the most severe from the system
perspective, since they must be handled immediately to
minimize the impact of the possible system failure.

C. STATE-OF-THE-ART HW-SW INTERFACES FOR ERROR
LOGGING AND REPORTING
Hardware with error-checking capabilities can quickly locate
and even correct some errors, independently from the

VOLUME 12, 2024 60083



N. Canino et al.: HW-SW Interface Design and Implementation for Error Logging and Reporting

FIGURE 1. Error taxonomy adopted and severity hierarchy of the error
classes.

TABLE 1. Major differences between the Intel/AMD approach, on the left,
and the Arm approach, on the right. The rows compare design choices for
the same characteristic.

software. However, to implement some post-error or failure
diagnosis, error-checking HW must immediately report to
system software that an error has occurred, even if the newly
detected error does not lead to a failure (e.g., when errors are
corrected directly by the HW). These calls to system software
penalize the availability and achievable performance of the
system, as it may pause important tasks to handle error events
even if they are harmless.

To solve this issue, one of the possible HW add-ons
is the Hardware-Software Interface for Error Logging and
Reporting. It provides valuable information about the latest
hardware errors detected by error-checking HW (error
logging) and calls up software only when needed (error
reporting).

In the next paragraphs, the main characteristics of the
Intel/AMD approach [19], [20], [29], [30] and the Arm
approach [21] for Error Logging and Reporting will be
described. Table 1 reports the main characteristics of the two
considered approaches. The main difference between the two
approaches that is worth mentioning is the granularity of the
HW-SW interface. Indeed, while there can be only one MCA
per core (in single-core systems there will be only one), there
can be any number of RAS Extensions, as highlighted in
the first row of Table 1. In the Arm approach, each RAS
Extension module is denoted as a ‘‘node’’.

The error logging feature is also implemented with
different design strategies. From the first four rows of Table 1,
it can be deduced that the RAS Extension has a more
flexible structure, since each core of a computing system can
instantiate more than one node, and each node can have more
than one error record. Also, each node has its own feature
and configuration registers that are implementation-defined
and independent of the other nodes of the same processor.
Different from the Intel/AMD approach, the Arm approach
uses all the error records owned by a node without
distinguishing between the monitored error-checking units.
Therefore, if a node allocates a number of error records
equal to or higher than two, an error can be stored in any
of them. Instead, the Intel/AMD approach imposes a direct
correspondence between the monitored error-checking HW
and an error record. This greatly simplifies both the control
logic and the routing of the error-related information to the
records, at the cost of less flexibility and adaptability to the
specific application in which such an architecture is to be
implemented.

The last row of Table 1 compares the error reporting
feature. While the MCA can send only one or two interrupt
signals (depending on the Intel or AMD version), each RAS
Extension node can send up to four different interrupt signals.
This way, the software interrupt handling routine in the Arm
approach can univocally identify which node is reporting
the error, thereby eliminating the need to read all the error
records. Moreover, the handling routine can be restricted to
only those records owned by that node.

III. PROPOSED ERROR LOGGING AND REPORTING
ARCHITECTURE (ENGAGE)
Before discussing the architectural details of our proposed
solution, hereafter referred to as ENGAGE (Error loggiNG
And reportinG architecturE) module, this section provides a
concise overview of our approach from a system perspective.

It should be noted that the proposed architecture will
be described considering, as monitored units, only ECC-
protected memories. However, it could monitor other units
(not only memories) with a likewise approach, as long as they
have error control logic. For instance, it may also monitor bus
controllers, NoC (Network on Chip), temperature and power
controllers, and watchdog errors [10].

A. SYSTEM-LEVEL DESCRIPTION
From a system perspective, see Figure 2, the proposed
ENGAGE module can be seen as a peripheral that gathers
information about hardware errors detected by error-checking
hardware through specific input ports (error monitoring).
Error information is stored in a set of error records that can
be accessed by the CPU via a standard memory-mapped
interface (e.g., AXI [31], Avalon-MM [32], etc.). An interrupt
signal is generated to provide the error reporting capabil-
ity. Moreover, system software can configure at run-time
which events generate an interrupt request. This capability

60084 VOLUME 12, 2024



N. Canino et al.: HW-SW Interface Design and Implementation for Error Logging and Reporting

FIGURE 2. Placement of our HW-SW Interface in a generic computing
system that includes units monitored by error-checking HW.

significantly increases system availability and overall perfor-
mance, as the non-relevant conditions can be ignored.

Similar to the Arm approach, our developed architecture
provides high flexibility and efficiency in the use of Error
Records. Nevertheless, we highlight that our work provides
the first public micro-architecture of an HW-SW Interface for
Error Logging and Reporting. Even though Intel, AMD, and
Arm provide details on their organization of the error records
and the logged information format, to the best of the authors’
knowledge, no public detail is provided about the architecture
and implementation of their proprietary HW-SW Interfaces.

We will refer to the single ENGAGE module within a
system as ‘‘RAS hub’’. Also, a system may contain more than
one RAS hub. Referring only to ECC-protected memories
as ‘‘units’’, the single RAS hub may own one or more error
records and maymonitor one or more units. Since the number
of error records and monitored units are independent of each
other, a record can store data from one or more units, and,
vice-versa, multiple records can be related to only one unit.
We will refer to Bank as the group of error records owned by
that RAS hub.

A high-level block illustration of the architecture of the
developed ENGAGE module is depicted in Figure 3, which
is considered to monitorM units protected by error-checking
HW. It comprises the following main building blocks:

• Error Mux
• Error Synchronization Interface
• Logging Controller
• Error Record Bank
• Interrupt Request (IRQ) Generator
Its structure can be divided into two stages. First, Pre-

Process stage, including Error Mux & Error Synchronization
Interface, monitors error-checking HW and pre-processes
information related to the detected error. This information
will then be channeled to the second stage, Error Log
and Report, composed of Logging Controller & Error
Record Bank. This stage is in charge of collecting the error
information and storing it in one of the error records of the
Bank within a RAS hub, along with the error timestamp. The
Controller also monitors the poisoned data throughout their

TABLE 2. Error Code implemented, characterized by different formats in
which the fields have specific meanings.

TABLE 3. Values that each field of the error code can assume.

lifetime in the monitored units, thus escalating its severity
from UDE to UUE. Lastly, the IRQ Generator triggers an
interrupt signal according to the run-time configuration of the
Control register of the Bank (see Subsection III-D).

B. ERROR MUX AND ERROR SYNCHRONIZATION
INTERFACE
As shown in Figure 3, theErrorMux receives the error control
signals generated by the error-checking circuitry of the M
monitored blocks and generates an error_message signal
comprising of the:

• err_m_th signal, which indicates which one of theM
error-checking HW has detected the error;

• error_sev signal, which contains the severity of the
detected error (either CE, UDE, or UUE);

• error_code signal, which identifies the nature of
the monitored unit affected by the error, as per the
classification reported in Table 2.

The err_m_th field of the error message contains a
binary number in the range [0,M−1], allowing us to identify
the mth unit that has detected the error. The error_sev
information is encoded with three bits in a one-hot encoding,
0b001 for CE, 0b010 for UDE, and 0b100 for UUE.
We propose the error_code as reported in Table 2, which
is similar to the AMD implementation [33]. Each row of the
table represents a different error code format, depending on
the source of the error. In detail, TLB (Translation Lookaside
Buffer), Memory, and Interconnects. 1 For a given type of
source, the error code is further subdivided into different
fields described in the third column in the Table 2. The
encoding of these fields is listed in Table 3.
The Error Synchronization Interface synchronizes and

combines the information generated by the Error Mux

1Although we only refer to memories in the design description, we also
included interconnects for the sake of completeness.

VOLUME 12, 2024 60085



N. Canino et al.: HW-SW Interface Design and Implementation for Error Logging and Reporting

FIGURE 3. Architecture of the developed Error loggiNG And reportinG architecturE (ENGAGE).

FIGURE 4. Simplified block diagram of the internal architecture of the
Logging Controller.

(error_message in Figure 3) with the address associ-
ated with that specific error (mem<m> address+r/w in
Figure 3), as they may not be synchronous with each other.
Therefore, assume that at time t1 a read command, along with
the address, is sent to the monitored memory. If the ECC
circuitry generates its result one clock cycle after t1, they
will arrive at the RAS hub in different cycles. Consequently,
the Error Synchronization Interfacemust delay theaddress
data of one clock cycle. Then, the synchronized information
is forwarded to the Logging Controller.

C. LOGGING CONTROLLER
Once an error has been detected, its relative information must
be stored in one of the error records within a Bank, whose
number is limited. When there is no available error record,
an overwriting algorithm should be activated to determine
whether to discard the new error log or overwrite one of the
previously stored error logs. The Logging Controller makes
these decisions to resolve overwriting issues based on the
state of the records (its decision criteria will be detailed
below). Considering a Bank with N error records, Figure 4
illustrates a simplified view of this module, which can be
divided into four main functional components.

The Error Pickup retrieves the information on the detected
error from the first stage, together with the timestamp (if
provided by the system).

TABLE 4. Action taken by the Logging Controller in the selected record,
depending on the severity of the new error and the stored one in said
record.

FIGURE 5. State flow of the policy adopted by the Logging Controller to
handle new detected errors. It depends on the error severity: a) for CE, b)
for UDE, and c) for UUE.

TheBankMonitor explores the current state of each record,
checking if the record contains valid information and its
severity. It outputs a synthesis of the state of the error records,
such as the first free error record, or the presence of stored
CEs. This information is then provided to the Decision-
Maker.

TheDecision-Maker is the heart of the Logging Controller.
It determines which record to select and how to act (see
Table 4), based on the state of the records and the new error.
Figure 5 summarizes the writing/discarding policy. If one or
more free error records are available, any new error-related

60086 VOLUME 12, 2024



N. Canino et al.: HW-SW Interface Design and Implementation for Error Logging and Reporting

FIGURE 6. Simplified block diagram of the internal architecture of the
monitoring process of UDEs carried out by the Logging Controller.

information will be stored in the lowest indexed free record
within the bank. However, if there are no free error records
and the new error is classified as UUE or UDE, it will
overwrite the stored error log with the lowest severity. If all
stored error records have higher or equal severity, the new
error log will be discarded according to the policy prioritizing
older errors. We have considered that an older error record
may represent the first error that has led to the system failure,
thus causing a series of newer errors. In this case, knowing the
root cause of the failure may be more valuable than the errors
resulting from it. Finally, if a new CE occurs and all records
contain higher severity error logs (i.e., UDE or UUE), its
relative information will be discarded. Otherwise, if specific
conditions are met, as will be described in Subsection III-D,
one of the two counters (CE Counter, CEC) in the record will
be incremented to keep track of the number of CE detected.2

Lastly, the Bank Writer writes on the selected error record
within the Bank of the RAS hub.

In parallel, the Logging Controller also monitors poisoned
data, which is erroneous data whose error information is
stored in the records of a bank and classified as UDE.
A sketched view of its internal architecture is depicted in
Figure 6, assuming a RAS hub that monitors more than one
unit (M in Figure 6) and with more than one error record
(N in Figure 6). It determineswhether poisoned data are being
accessed in read or write mode, by continuously monitoring
address and read/write signals from the monitored units. The
internal architecture of this parallel task can be split into three
main stages.

The UDE Bank Monitor searches for logged errors with
a UDE severity, among all the records owned by the
ENGAGE module, and provides the information related to
each poisoned data to be monitored to the next stage.

The Poisoned Monitor monitors each read or write
transaction related to the units containing the poisoned data.
Therefore, whenever poisoned data is going to be consumed
or overwritten by new data, the monitor will determine how
to update the corresponding error record. The following three
cases may occur:

• The memory location containing the poisoned data
is being overwritten, resulting in the deletion of the
poisoned data. Thus, the corresponding error record will
be invalidated;

2Each error record can handle two counters for CEs, namely CEC. While
one counts all CEs detected in the same memory location, the other counts
all CEs detected in that memory independently of the specific location.

FIGURE 7. Registers composing the nth error record. For each register, the
maximum number of bits that might be implemented is delimited.

• The memory location containing the poisoned data is
requested by a consumer unit (e.g., the processor). In this
case, the severity of the corresponding error record will
be escalated from UDE to UUE;

• The memory location containing the poisoned data is
requested by a non-consumer unit (e.g., memory-to-
memory transaction). In this case, the corresponding
error record remains unchanged.

Lastly, the UDE Bank Writer invalidates or upgrades the
specific record in the bank, according to the operations
described above.

D. ERROR RECORD
The designed ENGAGE module provides the error logging
feature to the system through its Error Records. An error
record comprises an ad hoc set of 64-bit registers to store
all necessary error-related information. As described in
Section III, each RAS hub can own more than one record.
Figure 7 depicts the set of registers within the generic
nth Error Record and the maximum number of available
bits within each register (grey fields will never be used,
independently of the configuration of the logging capability).
A description of the characteristics of each register, from the
user’s point of view, and the information stored in it, is given
below.
Feature Register (ERR<n>FR) is a Read-Only register

that contains information concerning the error logging
and reporting features that are implemented in that RAS
hub; consequently, its content is implementation dependent.
It specifies the severity of the logged error (CE, UDE, UUE);
whether the counters for CEs are implemented or not and,
if so, their width; if the timestamp is stored; the severity of
errors that may raise an interrupt.
Control Register (ERR<n>CTRL) is a Read-Write register,

which consists of several bits to enable the conditions under
which an interrupt is generated (Error Reporting) by that
RAS hub. At run-time, a user can enable an interrupt to be
generated when a UDE is stored. Therefore, this register

VOLUME 12, 2024 60087



N. Canino et al.: HW-SW Interface Design and Implementation for Error Logging and Reporting

FIGURE 8. State flow of the conditions to be satisfied for incrementing
one of the two CECs (CE Counters).

allows for the control of the error reporting feature at run-
time, depending on the specific application requirements.
Status Register (ERR<n>STATUS) is a Read-Write regis-

ter that stores all the major information about the error logged
in the nth record. It contains the error message, the overflow
bit of the CECounter, and a bit representing if the error record
has been overwritten. In addition, it contains a bit to validate
the address contained in the Address Register and another
field to validate the content of the Miscellaneous Registers.
Address Register (ERR<n>ADDR) is a Read-Only register

that stores the address associated with the erroneous data,
as long as an address can be associatedwith the detected error.
For example, an error in the watchdog timer can be logged in
an error record, yet it cannot be associated with an address.
Two Miscellaneous Registers (ERR<n>MISC<0> and

ERR<n>MISC<1>) that store additional information about
the logged error. The ERR<n>MISC<1> is a Read-Only
register that stores the timestamp, i.e. date and time at
which the error is stored in the nth record. Instead, the
ERR<n>MISC<0> is a Read-Write register that keeps track
of the number of CEs detected in a specific monitored unit
through the CE Counters (CECs), the primary-CEC and the
secondary-CEC. Figure 8 shows the criteria for the use of
the CECs. The first prerequisite is to have previously logged
a CE in one of the Error Records; then, when a new CE
is detected, the primary-CEC is incremented if both the
monitored unit and the address of the new CE match the ones
of the stored CE. Instead, the secondary-CEC is incremented
if the monitored unit of the new CE matches the one of the
stored CE but the related address is different. This feature can
be useful for statistical purposes and for determining whether
the faults are localized or distributed throughout the unit.

As will be explained in Section IV, the error record Bank
requires a big portion of the total area resources of the entire
ENGAGE module. In the assessment of the area overhead
of the error logging features, for system parameters the
notation in Table 5 is adopted. Particularly, area overhead
will be evaluated in terms of the number of 1-bit registers
(REGs) needed only by the error records (REGTOT ). Firstly,
we should consider that a system will never have more
RAS hubs than monitored units (it would be a waste of
resources) and that each RAS hub shall have at least one
record; therefore, it is NREC ≥ NHUB. Therefore, the total
number of REGs of the error record can be estimated as:

REGTOT = (bFR + bCTRL)NHUB
+ (bSTAT + bADDR + bCEC + bTS )NREC . (1)

TABLE 5. Indexes that are required to define the total number of REGs
enveloped by all the error records in a system, with their values and
definitions.

FIGURE 9. Example of progression of the REGTOT depending on the
configuration of the Error Logging features implemented in the system.

Since the Feature andControl Registers are only implemented
in the first record of the RAS hub’s Bank, they will be
hardwired to logical zero from the second record onwards.
Instead, each record within the Bank includes all the
remaining registers. As reported in the fourth row of Table 5,
the Feature register does not require actual registers since it
contains only implementation-defined values that are usually
synthesized as hard-wired signals; no REGs are needed for
this register. Also, bADDR, bCEC , and bTS vary depending on
the specific configuration of the error logging feature of a
RAS hub (see last three rows of Table 5).

Once the configuration of the error logging feature has
been set (bADDR, bCEC , and bTS ), the remaining variables are
NHUB and NREC . In the case of NHUB > 1, we considered
that all RAS hubs implemented in the system have the
same Bank configuration. For example, Figure 9 shows
the increase of REGTOT as a function of the number of
records in the system (NREC ) in the two extreme cases:
Full error logging features, assuming the maximum values
for bADDR, bCEC , bTS , and each RAS hub with only one
error record; and Minimum error logging features, assuming
to minimize the bits of information in the error record to
only the Status register (bADDR = bCEC = bTS = 0)
and including all error records within a single RAS hub,
single Bank. In an actual implementation of the proposed
ENGAGE module, the number of REGs used will probably
lie between these two configurations since, for instance, one
system may have 16-bit addresses, while another can have
64-bit ones. Furthermore, the resource overhead is strongly

60088 VOLUME 12, 2024



N. Canino et al.: HW-SW Interface Design and Implementation for Error Logging and Reporting

FIGURE 10. Simplified block diagram of the internal architecture of the
Interrupt Request (IRQ) Generator in case of multiple records owned by
the RAS hub.

correlated with the number of error records implemented in
the overall system, which depends on the number of units
to be monitored and the number of error logs to be stored
simultaneously.

E. IRQ GENERATOR
The IRQ Generator implements the Error Reporting feature
through an interrupt signal connected to an Interrupt Con-
troller.

Assuming a total of N implemented records, the IRQ
Generator module includes a Single Record FG (Flag-
Generator) sub-module for each record, as depicted in
Figure 10, which generates a 4-bit flag. For the generic
record<n>, this sub-module can trigger a flag depending
on the ERR<n>STATUS and on the configuration of the
ERR<0>CTRL:

• flags_rec<n>[0] – UUE stored in the record<n>;
• flags_rec<n>[1] – DUE stored in the record<n>;
• flags_rec<n>[2] – Overflow of one of the CE Coun-
ters (primary- or secondary-CEC). If this error logging
feature is not implemented, a CE stored in record<n>
raises this flag;

• flags_rec<n>[3] – UUE or UDE has been overwrit-
ten or discarded.

In addition, all the Status Registers of the N records within
the Bank are simultaneously monitored by the Bank FG sub-
module, which will raise the flag flag_rec_full when
there are no free error records within that RAS hub.

Every flag is channeled into a single signal through a logic-
OR stage, connected to the final logic-AND that provides
the global enable for the IRQ signal, which is controlled
at run-time through a bit in the Control Register. This
choice does not preclude refining the granularity of the error
reporting feature, since the IRQ Generator can be easily
modified to output multiple interrupt signals, which will
then be fed into different inputs of the processor interrupt
controller. For example, each flag related to a stored UUE
(flags_rec<n>[0]) can be singled out and sent to the
interrupt controller as a different signal.

The flags described above can be configured at the
synthesis level. Indeed, their generation can be: never

enabled, always enabled, or enabled at run-time via a specific
bit in the Control Register.

IV. SYNTHESIS RESULTS AND FPGA DEMONSTRATOR
For evaluation purposes, the proposed ENGAGE module
has been equipped with an AXI4 Slave memory-mapped
interface to access its error record registers. The overall
system has been designed in SystemVerilog language and
synthesized on Standard-Cell and FPGA technologies. Also,
we have implemented a System-on-Chip (SoC) on an
FPGA board to validate the Error Logging and Reporting
features that are provided by the ENGAGE module in a
real system. For both synthesis and implementation, the
ENGAGE module was configured with the following error
logging and reporting features:

• NHUB = 1;
• Two monitored units (NHW = 2);
• Two error records implemented (NREC = 2);
• Each record implements both CE Counters of 8-bit
(bCEC = 16);

• Each record includes the timestamp information, consid-
ering a 32-bit value (bTS = 32);

• AXI4 address bus is 32-bit wide (bADDR = 32);
It is worth noting that different configurations of the

ENGAGE module, which use different amounts of hardware
resources, can be realized according to the application
requirements. From (1) we can estimate the number of
single-bit registers required for the error records in this
implementation, which is:

REGTOT = 7 · 1 + (17 + 32 + 16 + 32) · 2 = 201. (2)

A. SYNTHESIS RESULTS ON STANDARD-CELL
The developed module has been synthesized using the
Synopsys 2019.12 Design Compiler tool on two Standard-
Cell technologies:

• The NanGate Open-Cell Library, designed with the
45nm FreePDK kit [34]. The synthesis has been
performed with a voltage supply of 1.10 V, a working
temperature of 25oC, and a typical process. Moreover,
the 5K_hvratio_1_1 wire load model has been used;

• The Artisan 7nm TSMC standard-cell technology [35].
In this case, the synthesis has been performed with a
voltage supply of 0.90 V, a working temperature of
125oC, and a slow process. Also, the Zero wire load
model has been used.

Table 6 reports the synthesis results for the ENGAGE
module in terms of maximum operating frequency, total esti-
mated power (including both switching and leakage power),
and resource utilization of the sub-modules of the ENGAGE
module, according to the hierarchy of the synthesized design.
The maximum operating frequency has been obtained by
performing multiple syntheses with a frequency sweep of the
clock signal, reaching 1.20 GHz with the 45nm technology
and 5.50 GHz with the 7nm technology. The value obtained
for the total power consumption has been estimated by

VOLUME 12, 2024 60089



N. Canino et al.: HW-SW Interface Design and Implementation for Error Logging and Reporting

TABLE 6. Maximum operating frequency, total estimated power, and
resource utilization for both 45nm and 7nm Standard-Cell technologies.

FIGURE 11. Relative resource utilization of the ENGAGE module from the
synthesis results on the 7nm Standard-Cell technology.

the synthesis tool. By looking at the resource utilization
results, expressed in Gate Equivalents (GE), they have been
distinguished between Combinational and Sequential logic
(Comb. gate and Seq. gate, respectively, in Table 6). The
differences between the two Standard-Cell technologies are
minimal for both categories since they depend mainly on how
the respective libraries are designed. Indeed, both synthesis
results report a total resource utilization of about 6.2 kGE.

Figure 11 shows a pie chart with the relative resource
utilization of each sub-module. Even though the resource
overhead introduced by the controller cannot be reduced, the
one due to the error records can be adjusted according to
the implementation requirements. Indeed, we can modify the
number of records or even the amount of information stored
in each error record (such as address, timestamp, and CE
counters). Note that fewer records imply a higher probability
that a new error is detected in the system while the records
still contain information about previous errors, increasing the
overwriting frequency.

To estimate the area overhead as a function of the number
of error records inside a bank, and to confirm the (2), we have
also performed a synthesis on the 7nm technology of the
ENGAGE module with NREC = 20. Table 7 presents the
results of this analysis and compares the resource usage with

TABLE 7. Impact of error records on Resource Utilization, synthesizing on
7nm technology, evaluating NREC values of 2 and 20.

NREC = 2 and NREC = 20: the first row shows the total
number of registers REGTOT calculated with (1), the second
row highlights the sequential logic utilized by only the Error
Record Bank module, the third includes the remaining
sequential logic consumed by the ENGAGE module, and the
last row shows the combinational area of the whole ENGAGE
module. As can be seen in Table 7, the resource trend of the
sequential logic of the Error Record module is in line with
the one estimated using (1); the remaining sequential logic
area (total sequential area - error record sequential area) is
almost invariant. Instead, the total combinational logic area
of the implementation with NREC = 20 is around 5.77 times
higher than the implementation with NREC = 2. This is due
to the circuitry needed to convey the error record registers
to the AXI4 data bus, plus the more complex logic of the
Controllers that monitor and update the records. It should
be noted that the maximum operating frequency for the 7nm
synthesis withNREC = 20 decreases to 3.8GHz; however, the
optimization of this metric is out of the scope of this analysis,
whose main goal is to provide an approximated evaluation of
the area increase depending on the number of error records.

B. SYNTHESIS RESULTS ON FPGA
We synthesized and implemented, the ENGAGE module
on the Xilinx Zynq Ultrascale+ MPSoC, featured on the
Xilinx ZCU104 board, using Vivado 2020.2 Design Suite.
Table 8 outlines the utilization report following the hierarchy
of the implemented system. The first row reports the resource
consumption of the CV32E40P RISC-V core, a 32-bit single-
core processor that has been integrated into the test SoC
that will be presented in Subsection IV-C; this indicates that
the ENGAGE module consumes notably fewer resources
compared to the considered core (around 10% of total
resources of the CV32E40P core). It should be noted that
the latter is a small area and low-performance RISC-V
microcontroller. For instance, in [36] the RISC-V application
processor CVA6 has been synthesized on the same FPGA
family, obtaining 31170 LUTs and 19076 FFs, plus 37
BRAMs (Block RAMs) for the cache memory. Therefore,
if the ENGAGE module was implemented in an application
system, it would require less than 1% of the total resources of
the CVA6 core.

The results in Table 8 refer to post-implementation in
the target FPGA at 100 MHz; however, we found that the

60090 VOLUME 12, 2024



N. Canino et al.: HW-SW Interface Design and Implementation for Error Logging and Reporting

TABLE 8. Absolute resource utilization of the test SoC implemented on
the ZCU104 board, XCZU7EV FPGA.

maximum frequency of the ENGAGE module is about
320MHz. From Table 8 we can derive that the designed mod-
ule does not use BRAM resources, while CARRY8 primitives
have been used to synthesize the Logging Controller of the
ENGAGE module, which includes large comparators.

The Error Synchronization Interface, along with the
Error Records, require the most resources among all the
sub-modules of the ENGAGE module. However, the over-
head introduced by these modules is largely configurable
according to system requirements. From Table 8, we can
observe that the error records require 159 FFs, in contrast
to the 201 single-bit registers estimated with (1). This
difference can be attributed to the optimization made by
Vivado when implementing the design. For example, the
ENGAGE module was configured to have bADDR = 32, even
if themonitoredmodules in the test SoC have 13-bit addresses
(8 KBmemories, as later described). Indeed, Vivado does not
implement these unused FFs.

C. VERIFICATION AND FPGA SOC DEMONSTRATOR
The proposed ENGAGE module was first verified in behav-
ioral RTL (Register Transfer Level) simulations in Questa
Sim 2022.2 simulation environment, then implemented and
prototyped to validate its functionality.

An extract of the RTL verification is depicted in Figure 12,
in which the timing of the internal signals can be evaluated,
and the fundamental signals are highlighted. Also, the
color coding of the depicted signals is the same as in
Figure 3. Additionally, we have configured the verification
environment to contain one RAS hub (our module) with only
one Error Record; it monitors two memories with SEC-DED
protection (i.e., mem[0] as L1 cache, and mem[1] as L2
cache) with no delay between address and ECC output.
Moreover, the ‘‘fifo’’ group of signals refers to the output
of a FIFO (First-In First-Out) buffer inside the Error
Synchronization Interface, which interfaces with the Logging
Controller. Finally, the timestamp signal is also included.
By looking at the data path from the error detection to the
rise of the respective interrupt (from the first to sixth clock
cycle in Figure 12, respectively), the following steps can be
appreciated, in which:
1◦ A double-bit error is detected performing a read

operation at the address 0x08C0 of the second
memory (mem[1] that emulates an L2 cache). Since

this memory acts as a high-level memory, it is only
supposed to perform mem-to-mem transactions, so it
would never directly provide data to the processor;
therefore, the Error Mux will classify it as UDE.

2◦ At the second clock cycle there is no signal varia-
tion because the output of the Error Mux and the
address-related information are being stored in the
FIFO buffer, which is internal to theError Synchroniza-
tion Interface.

3◦ The Logging Controller reads the error-related infor-
mation and determines the action to take. In this case,
since the error record is still free, the controller will
write the error information in the record (see Table 4).

4◦ The controller performs the chosen action, thus
writing in the ERR<0>STATUS, ERR<0>ADDR,
and ERR<0>MISC<1> (containing the timestamp)
registers.

5◦ The aforementioned registers of the first (and only)
Error Record are updated with the error-related data.

6◦ Since the interrupt generation has been previously
enabled in the ERR<0>CTRL register, the IRQ Gen-
erator raises the interrupt signal.

The number of entries of the FIFO buffer must be determined
depending on the probability of errors occurring in consecu-
tive clock cycles.

Finally, we implemented a prototype SoC on the FPGA
board Xilinx Zynq ZCU104, which features the Zynq
UltraScale+ MPSoC, to validate our ENGAGE module in a
real system. Figure 13 shows the structure of the developed
test SoC. All blocks communicate via memory-mapped
accesses, exploiting the AXI4 communication protocol.

The designed SoC includes the following modules:
1) RISC-V CV32E40P core [37]: 4-stage in-order 32-bit

RISC-V processor implementing RV32IMFC Instruc-
tion Set Architecture (ISA) [38]. It has two master
AXI4 interfaces (data and instruction) that allow for
access to all the available resources in the test SoC.
Its interrupt controller has also been connected to the
ENGAGEmodule, to receive the interrupt generated by
the IRQ Generator (red blocks in the figure);

2) ENGAGE module: It is configured to own two records
with all error logging features implemented and to have
full error reporting capability, by properly setting the
ERR<0>CTRL register. Furthermore, we included an
Error Injection register that the processor can access
to inject errors at run-time in the 2o and 3o BRAMs to
validate the proposed architecture;

3) Main Block RAM (BRAM): It is provided as Xilinx
IP (Intellectual Property), and has been used as the
Main Memory of the prototyped system, acting as both
instruction and data memory. Its size is 128 KB;

4) 2o and 3o BRAMs: Similar to the Main BRAM, they
are provided as Xilinx IP. These are two small auxiliary
BRAMs (one of 8 KB and the other of 4 KB), which
are configured to implement a SEC-DED type ECC
code. This IP embeds dedicated error injection input

VOLUME 12, 2024 60091



N. Canino et al.: HW-SW Interface Design and Implementation for Error Logging and Reporting

FIGURE 12. Extract of behavioral RTL simulation of the ENGAGE module. Detection and storage of a UDE, and reporting through interrupt, is shown.

ports to inject at run-time single and double errors
on the ECC-protected memory words (32-bit data
word protected by 7-bit additional SEC-DED code).
This feature can be activated by writing in the Error
Injection register included in the ENGAGE module;

5) Central DMA (CDMA): It is provided as Xilinx
IP, and has two AXI4 interfaces, a master and a
slave. It can transfer large groups of bytes from one
memory-mapped device to another, and has been used
to support memory-to-memory transfers of large blocks
of data, emulating data transfers between adjacent
cache layers;

6) UART: It is provided as Xilinx IP, and is required to
display debug information via the terminal;

7) JTAG: It is provided as Xilinx IP, and is used to load
the program binary into the Main BRAM at run time.

Since the test SoC is equipped with a 32-bit processor, the
data bus width is 32-bit. This implies that each 64-bit register
of an error record will be addressed and accessed as two
separate 32-bit registers. Moreover, it is worth noting that our
module could be implemented into 64-bit systems by simply
modifying its AXI4 slave interface to support 64-bit reads and
writes of the error records.

In the proposed SoC, the ENGAGE module monitors two
units with error-checking HW, namely 2o and 3o BRAMs.
TheCDMAhas been exploited to triggermemory-to-memory
data transfers between the two ECC-protected BRAMs
(2o and 3o BRAMs), thus emulating transfers between
two adjacent cache levels (e.g., L1 and L2 caches). This
configuration can emulate the following error scenarios:

• Single-bit error injections and their correction through
the ECC SEC, thus causing errors with CE severity.

FIGURE 13. Architecture of the test SoC implemented. The colored
dashed lines represent the main interconnections, independent of the
AXI4 interface, to and from the ENGAGE module.

• Double-bit error injections and their detection through
the ECC DED in memory-to-processor transactions that
trigger errors with UUE severity; they are classified as
UUE since data will be consumed immediately by the
processor, potentially inducing a system failure.

• Double-bit error injections and their detection through
the ECC DED in memory-to-memory transactions that
trigger errors with UDE severity; they are classified
as UDE errors since data may not be consumed
immediately. The erroneous data will be tagged as
poisoned.

To test the features of the proposed ENGAGE module,
several software routines were developed in C language and
run on the RISC-V processor to stimulate error conditions
that exploit the error injection ports of the BRAMs. First of
all, we tested the generation of errors with severity CE, UDE,
and UUE and checked the correctness of the related error

60092 VOLUME 12, 2024



N. Canino et al.: HW-SW Interface Design and Implementation for Error Logging and Reporting

information stored in the error record registers. Afterward,
we tested the developed SoC for several corner cases:

• Overwrite of a stored CE by a newly detected error with
severity UDE or UUE;

• Overwrite of a stored UDE by a newly detected error
with severity UUE;

• Discard of a new CE, UDE, or UUE due to higher
severity errors already stored (or older ones with the
same severity);

• CE counting and overflow of the primary and secondary
CEC;

• Escalation of a stored error record from UDE to UUE
severity (consumption of poisoned data);

• Invalidation of a stored error record of UDE severity
(overwrite of the poisoned data);

• Enable interrupt generation via the Control register.
By performing all those tests in the SoC, we were able to
assess the ability of our module to provide all the Error
Logging and Reporting capabilities to the system. We recall
that, even if we have considered only memories as HW units
to monitor, the ENGAGE module may monitor every HW
unit that embeds error control logic.

V. CONCLUSION
This work presented the design and implementation of a
HW-SW Interface for Error Logging and Reporting called
ENGAGE (Error loggiNG And reportinG architecturE),
which can be adopted by 32- and 64-bit systems to improve
system RAS independently of their specific ISA. An Error
Record interface is also proposed, which stores the error-
related information. The developed ENGAGE module is
highly flexible and configurable, allowing designers to imple-
ment only the desired features, thus optimizing the hard-
ware overhead introduced. Although only ECC-protected
memories were considered as monitored HW units, the
proposed architecture also allows other system modules to
be monitored, including TLBs and interconnections. Indeed,
as long as a system module implements error control
and/or correcting logic, it can be monitored by our HW-SW
Interface. Our ENGAGE module has been synthesized on
both a Xilinx UltraScale+ FPGA device and two Standard-
Cell technologies, 45nm and 7nm. The synthesis results have
shown that the complexity of the module heavily depends
on parameters such as the number of records implemented
and the amount of information stored in them. Also, the
module is not a bottleneck for the system operating frequency.
Therefore, depending on the logging and reporting features
to be implemented in the system, the resource overhead of
our module can be adjusted accordingly. We then developed
a test SoC to validate the proposed ENGAGE module,
featuring also the RISC-V CV32E40P core, which has been
implemented on a ZCU104 board.

To the best of the authors’ knowledge, this is the first
publicmicro-architectural proposal of aHW-SW Interface for
Error Logging and Reporting, since proprietary solutions do
not share such detail. As it is also ISA-independent, it can

monitor any HW unit within a system that has error control
logic. Therefore, it may be taken as a reference to provide
such features in any computing system.

REFERENCES
[1] R. Canal, C. Hernandez, R. Tornero, A. Cilardo, G. Massari,

F. Reghenzani, W. Fornaciari, M. Zapater, D. Atienza, A. Oleksiak,
W. PiĄtek, and J. Abella, ‘‘Predictive reliability and fault management in
exascale systems: State of the art and perspectives,’’ ACM Comput. Surv.,
vol. 53, no. 5, pp. 1–32, Sep. 2021.

[2] J. Brandt, F. Chen, V. De Sapio, A. Gentile, J. Mayo, P. Pèbay,
D. Roe, D. Thompson, andM.Wong, ‘‘Quantifying effectiveness of failure
prediction and response in HPC systems: Methodology and example,’’ in
Proc. Int. Conf. Dependable Syst. Netw. Workshops (DSN-W), Jun. 2010,
pp. 2–7.

[3] F. Cappello, H. Casanova, and Y. Robert, ‘‘Checkpointing vs. migration for
post-petascale supercomputers,’’ in Proc. 39th Int. Conf. Parallel Process.,
Sep. 2010, pp. 168–177.

[4] O. Khan and S. Kundu, ‘‘Hardware/Software codesign architecture for
online testing in chip multiprocessors,’’ IEEE Trans. Dependable Secure
Comput., vol. 8, no. 5, pp. 714–727, Sep. 2011.

[5] A. Chatzidimitriou, G. Papadimitriou, and D. Gizopoulos, ‘‘HealthLog
monitor: Errors, symptoms and reactions consolidated,’’ IEEE Trans.
Device Mater. Rel., vol. 19, no. 1, pp. 46–54, Mar. 2019.

[6] Z. Zheng, L. Strigini, N. Antunes, and K. Trivedi, ‘‘Editorial: Software
reliability and dependability engineering,’’ IEEE Trans. Dependable
Secure Comput., vol. 20, no. 4, pp. 2674–2676, Jul. 2023.

[7] I. Kaitovic and M. Malek, ‘‘Impact of failure prediction on availability:
Modeling and comparative analysis of predictive and reactive methods,’’
IEEE Trans. Dependable Secure Comput., vol. 17, no. 3, pp. 493–505,
May 2020.

[8] D. Cotroneo, L. De Simone, P. Liguori, and R. Natella, ‘‘Fault injection
analytics: A novel approach to discover failure modes in cloud-computing
systems,’’ IEEE Trans. Dependable Secure Comput., vol. 19, no. 3,
pp. 1476–1491, May 2022.

[9] V. Sridharan, H. Asadi, M. B. Tahoori, and D. Kaeli, ‘‘Reducing data cache
susceptibility to soft errors,’’ IEEE Trans. Dependable Secure Comput.,
vol. 3, no. 4, pp. 353–364, Dec. 2006.

[10] J. K. Park, D. Kim, and J. T. Kim, ‘‘Efficient error-resilient bus coding
method using bit-basis orthogonal integrative multiplexing,’’ IEEE Trans.
Emerg. Topics Comput., vol. 10, no. 2, pp. 1178–1191, Apr. 2022.

[11] J. Li, P. Reviriego, L. Xiao, and H. Wu, ‘‘Protecting memories against soft
errors: The case for customizable error correction codes,’’ IEEE Trans.
Emerg. Topics Comput., vol. 9, no. 2, pp. 651–663, Apr. 2021.

[12] Y. Sazeides, A. Bramnik, R. Gabor, and R. Canal, ‘‘A real-time error
detection (RTD) architecture and its use for reliability and post-silicon
validation for F/F based memory arrays,’’ IEEE Trans. Emerg. Topics
Comput., vol. 10, no. 2, pp. 524–536, Apr. 2022.

[13] F. Cosimi, F. Tronci, S. Saponara, and P. Gai, ‘‘Analysis, hardware
specification and design of a programmable performance monitoring unit
(PPMU) for RISC-V ECUs,’’ in Proc. IEEE Int. Conf. Smart Comput.
(SMARTCOMP), Jun. 2022, pp. 213–218.

[14] V. Sridharan, N. DeBardeleben, S. Blanchard, K. B. Ferreira, J. Stearley,
J. Shalf, and S. Gurumurthi, ‘‘Memory errors in modern systems: The
good, the bad, and the ugly,’’ ACM SIGPLAN Notices, vol. 50, no. 4,
pp. 297–310, 2015.

[15] S.-H. Lim, R. G. Miller, and S. S. Vazhkudai, ‘‘Understanding the
interplay between hardware errors and user job characteristics on the
Titan supercomputer,’’ in Proc. IEEE Int. Parallel Distrib. Process. Symp.
(IPDPS), May 2020, pp. 180–190.

[16] C. Di Martino, Z. Kalbarczyk, R. K. Iyer, F. Baccanico, J. Fullop, and
W. Kramer, ‘‘Lessons learned from the analysis of system failures at
petascale: The case of blue waters,’’ in Proc. 44th Annu. IEEE/IFIP Int.
Conf. Dependable Syst. Netw., Jun. 2014, pp. 610–621.

[17] T. C. May and M. H. Woods, ‘‘Alpha-particle-induced soft errors in
dynamic memories,’’ IEEE Trans. Electron Devices, vol. ED-26, no. 1,
pp. 2–9, Jan. 1979.

[18] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal,
J. Liu, B. Khessib, K. Vaid, and O. Mutlu, ‘‘Characterizing application
memory error vulnerability to optimize datacenter cost via heterogeneous-
reliability memory,’’ in Proc. 44th Annu. IEEE/IFIP Int. Conf. Dependable
Syst. Netw., Jun. 2014, pp. 467–478.

VOLUME 12, 2024 60093



N. Canino et al.: HW-SW Interface Design and Implementation for Error Logging and Reporting

[19] Intel 64 and IA-32 Architectures SoftwareDeveloper’sManual, Intel Corp.,
Santa Clara, CA, USA, 2022.

[20] AMD64 Architecture Programmer’s Manual: System Programming, Adv.
Micro Devices, Inc., Santa Clara, CA, USA, 2021.

[21] Arm Architecture Reference Manual Supplement. Reliability, Availability,
and Serviceability (RAS), for Armv8-A, Arm Holdings Plc, Cambridge,
U.K., 2021.

[22] Intel Xeon Processor E7 Family: Reliability, Availability, and
Serviceability—White Paper, Intel Corp., Santa Clara, CA, USA,
2011.

[23] AMD EPYC Brings New RAS Capability—White Paper, Moor Insights
Strategy, Austin, TX, USA, 2017.

[24] Arm Reliability, Availability, and Serviceability (RAS) Specification
Armv8, for the Armv8-A Architecture Profile—White Paper, Arm Holdings
plc, Cambridge, U.K., 2022.

[25] D. Rossi, N. Canino, S. Di Matteo, S. Saponara, and V. Tenentes, ‘‘Design
and evaluation of a peripheral for integrity checking to improve RAS in
RISC-V architectures,’’ in Proc. 8th South-East Eur. Design Automat.,
Comput. Eng., Comput. Netw. Social Media Conf. (SEEDA-CECNSM),
Nov. 2023, pp. 1–6.

[26] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, ‘‘Basic concepts
and taxonomy of dependable and secure computing,’’ IEEE Trans.
Dependable Secure Comput., vol. 1, no. 1, pp. 11–33, Jan. 2004.

[27] R. W. Hamming, ‘‘Error detecting and error correcting codes,’’ Bell Syst.
Tech. J., vol. 29, no. 2, pp. 147–160, Apr. 1950.

[28] M. Y. Hsiao, ‘‘A class of optimal minimum odd-weight-column SEC-DED
codes,’’ IBM J. Res. Develop., vol. 14, no. 4, pp. 395–401, Jul. 1970.

[29] X Project. Xen’s Machine Check Architecture Implementation for Intel
Processors. Accessed: Feb. 27, 2024. [Online]. Available: https://lists.
xenproject.org/archives/html/xen-devel/2012-07/pdfuVm2TRqnjV.pdf

[30] A. Kleen. Machine Check Handling on Linux. Accessed: Feb. 27, 2024.
[Online]. Available: https://www.halobates.de/mce.pdf

[31] AXI (Advanced EXtensible Interface) Memory-mapped Interface.
Accessed: Jan. 15, 2024. [Online]. Available: https://developer.arm.com/
documentation/ihi0022/e/AMBA-AXI3-and-AXI4-Protocol-
Specification

[32] Avalon Memory-Mapped Interface. Accessed: Jan. 15, 2024.
[Online]. Available: https://www.intel.com/content/www/us/en/docs/
programmable/683091/20-1/introduction-to-the-interface-
specifications.html

[33] BIOS and Kernel Developer’s Guide (BKDG) for AMDFamily 16hModels
30h-3Fh Processors, Adv. Micro Devices, Inc., Santa Clara, CA, USA,
2016.

[34] FreePDK45 and the Nangate Open-Cell Library. Accessed: Feb. 5, 2024.
[Online]. Available: https://mflowgen.readthedocs.io/en/latest/stdlib-
freepdk45.html

[35] 7 nm Cell Library. Accessed: Feb. 5, 2024. [Online]. Available:
https://www.tsmc.com/english/dedicatedFoundry/technology/logic/l7nm

[36] P. Nannipieri, S. Di Matteo, L. Zulberti, F. Albicocchi, S. Saponara, and
L. Fanucci, ‘‘A RISC-V post quantum cryptography instruction set
extension for number theoretic transform to speed-up CRYSTALS
algorithms,’’ IEEE Access, vol. 9, pp. 150798–150808, 2021.

[37] OpenHW-Group. Cv23e40p RISC-V Processor Core. Accessed:
Jan. 8, 2024. [Online]. Available: https://github.com/openhwgroup/
cv32e40p

[38] RISC-V International. Accessed: Feb. 27, 2024. [Online]. Available:
https://riscv.org/

NICASIO CANINO received the M.Sc. degree
(cum laude) in electronic engineering from the
University of Pisa, where he is currently pursuing
the Ph.D. degree in information engineering. His
research interests include security in automotive
and IoT domains, the design of resilient computing
systems, and the RISC-V community.

STEFANO DI MATTEO received theM.Sc. degree
in electronic engineering and the Ph.D. degree
(cum laude) in information engineering from
the University of Pisa. He leads a Chaire in
secure hardware implementation of post-quantum
cryptography as a Research Engineer with CEA
Leti/List, Grenoble. His research interests include
hardware security, VLSI design, and embedded
systems for cybersecurity and cryptography in
different application fields.

DANIELE ROSSI (Senior Member, IEEE)
received the M.Sc. degree in electronic engi-
neering and the Ph.D. degree in electronics and
computer engineering from the University of
Bologna. He is currently an Associate Professor
in electronics with the University of Pisa. He has
coauthored over 100 articles. His research interests
include energy-efficient and reliable electronic
design and hardware security. He served as an
associate editor for several journals and a TPC

member for international conferences.

SERGIO SAPONARA (Senior Member, IEEE)
received the M.Sc. and Ph.D. degrees in electronic
engineering from the University of Pisa. He was
a Marie Curie Research Fellow with IMEC. He is
currently a Full Professor in electronics with the
University of Pisa. He is also the Director of
the I-CAS Laboratory, Summer School Enabling
Technologies for IoT, and the leader of many
funded projects by the EU and companies. He has
coauthored about 400 scientific publications and
18 patents.

Open Access funding provided by ‘Università di Pisa’ within the CRUI CARE Agreement

60094 VOLUME 12, 2024


