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ABSTRACT The primary objective of this study is to investigate the efficacy of Support Vector Machine
(SVM) regression method to enhance the accuracy of Low Earth Orbit (LEO) space debris orbit prediction
using the historical data. Principal Component Analysis (PCA) is employed to efficiently reduce the
dimensionality of dataset’s feature space and hence optimize the model’s performance. This investigation
is motivated by the limitations of conventional orbit prediction methods, which often rely on dynamic
models with unknown coefficients of perturbation forces and other relevant characteristics of space debris,
leading to errors during the prediction process. On the other hand, while the Collision Avoidance Maneuver
(CAM) strategy remains crucial for mitigating the threat posed by such debris, precise knowledge of
debris coordinates is essential for effective CAM implementation. However, traditional ground-based optical
equipment encounters challenges in observing fast-moving debris within the dynamic LEO environment,
including atmospheric interference and limited Field of View (FOV). To address these limitations, the
secondary objective of this study involves exploring the potential of an in-orbit optical space surveillance
network as a promising solution. The system utilizes optical sensors distributed across multiple spacecraft
within the Above the Horizon (ATH) constellation, specifically designed to continuously monitor the
most densely populated altitude band in LEO. Simulations under different conditions demonstrate that
the proposed scheme successfully complements ground-based equipment and dynamic models for debris
tracking, thereby improving orbit prediction accuracy. The results of simulations under different conditions
demonstrate that proposed scheme successfully complements ground-based equipment and dynamic models
for debris tracking, and improving orbit prediction accuracy.

INDEX TERMS LEO space debris, tracking, orbit prediction, optical space surveillance network, support
vector machine, principal component analysis.

I. INTRODUCTION
Space debris is a pressing concern, posing significant risks
to operational spacecraft, and long-term sustainability of
space activities. To effectively address this issue, two critical
aspects play a vital role to ensure the safety of operations:
space debris tracking and reliable and accurate orbit pre-
diction. Space debris tracking helps mitigate collision risks,
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enhance situational awareness, and guide the development of
effective debris management strategies. Ground-based space
debris tracking systems rely on a combination of technolo-
gies, including radars, lasers, and optical telescopes, each
offering unique capabilities crucial for comprehensive space
situational awareness. Radars, as demonstrated by [1], excel
in distance detection with millimeter precision. Optical tele-
scopes, as highlighted in [2], [3], [4], [5], [6], [7], and
[8], provide exceptional angular precision of 0.01 arcsec-
onds, despite being susceptible to weather conditions. Laser
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systems, as discussed by [4] and [8], contribute precise
ranging measurements. These laser-ranging systems pro-
vide accurate distance measurements, further enhancing the
overall tracking capabilities of ground-based systems. The
drastic increase of LEO (Low Earth Orbit) Resident Space
Objects (RSOs), particularly orbital debris, necessitates the
development of sophisticated space surveillance systems.
To meet this demand, optical space-based surveillance net-
works have emerged as a highly promising complement to
traditional radar-based systems [1], [9]. These optical net-
works offer numerous advantages, including high-resolution
capabilities for tracking smaller objects, cost-effectiveness,
all-weather operability, real-time and continuous observation
capabilities, and potential for scientific research. Integrating
optical Space-Based Space Surveillance Networks (SBSSNs)
with existing ground-based equipment presents a comprehen-
sive, and powerful approach to ensure the safety, efficiency,
and sustainability of operations in increasingly crowded
LEO environment. The SBSSN complements ground-based
systems by offering continuous, unobstructed monitoring
from space. Integrating data from ground-based and SBSSN
sources enhances space situational awareness, critical for
collision avoidance as emphasized by [8]. On the other hand,
accurately predicting debris trajectories is crucial for com-
prehensively understanding their dynamics and effectively
mitigating potential hazards. Such predictions play a crucial
role in planning collision avoidance maneuvers and optimiz-
ing satellite operations. Moreover, precise orbit propagation
is vital to identify potential conjunctions, and assessing col-
lision probabilities between operational satellites and debris
fragments, enabling timely warnings and maneuver recom-
mendations to ensure the safety and continuity of space
missions. Understanding the spatial distribution and density
of LEO debris is essential to design efficient spacecraft dis-
posal and end-of-life measures, as accurate predictions allow
for determining optimal disposal altitudes and angles, result-
ing in reduced long-term orbital debris accumulation, and a
decreased likelihood of future collisions. It is crucial to note
that the effect of LEO debris extends to broader concerns,
as collisions involving large objects can trigger cascading
effects, generating more debris fragments and exacerbating
the space debris problem. This phenomenon, which is often
referred to as Kesler Syndrome, highlights the potential for a
catastrophic cascade of collisions in LEO resulting from the
proliferation of space debris. Critical debris sources can be
identified by leveraging accurate orbit propagation, facilitat-
ing targeted remediation efforts and debris removal missions
to address the issue effectively.

Recent studies on this topic have explored various aspects
of tracking and predicting LEO debris trajectories. These
studies cover constellation design strategies, precise initial
orbit determination and estimation methodologies, and state-
of-the-art orbit prediction algorithms.

Within constellation design, coverage is classified into two
primary categories: traditional Below the Horizon (BTH) and

ATH (Above the Horizon) problems. BTH problems focus
on achieving Earth coverage using circular [10], [11], [12]
or elliptical orbits [13], [14], [15], while ATH problems are
about observing targets against the space background. Within
ATH, there are two subcategories: Single Altitude Band Shell
(SABS) and Dual Altitude Bands Shell (DABS) problems.
DABS primarily focuses on strategically designing satellite
constellations that can comprehensively cover targets within
both lower and upper altitude bands. Despite its importance,
there has been limited research conducted on the DABS
subcategory. Rider [16], [17] was a pioneer in developing
DABS polar constellation for low to medium altitudes, with
platforms positioned within dual altitudes bands or above the
upper altitude band. Biria and Marchand [18] introduced an
analytical method for DABS ATH constellations, enabling
platforms below the lower altitude band. However, their
approach was constrained by practical limitations resulting
from simplifying assumptions. Takano and Marchand [19]
considered more complex sensor profiles and addressed pre-
vious limitations, providing a numerical solution to theDABS
coverage problem.

Lei et al. [20] conducted a comprehensive study on initial
orbit determination for LEO RSOs, studying the effect of
different sensors’ angle observation geometries, noise levels,
and the number of observations. Qu et al. [21] developed
an analytical solution for initial orbit determination using
bi-static radar with two observations at different times, eval-
uating its efficacy for tracking space objects under various
observation geometries.

Camet et al. [22] presented a comprehensive review of
various estimation algorithms and proposed a solution to
the RSO tracking problem. Their method utilizes simulated
optical telescope observations and employs a Bayesian filter-
based approach.

In the context of enhancing orbit prediction accuracy,
numerous studies have made great contributions. Levit and
Marshall [23] introduced an advanced numerical propaga-
tor based on the Two-Line Element (TLE) catalog, leading
to significant improvement in orbit prediction accuracy.
Chen et al. [24], employed an innovative error analysis
approach by using historical data to reveal inherent periodic
attributes in prediction errors. Goh et al. [25] proposed an
innovative strategy focused on orbit parameter preprocessing,
and effectively mitigating errors during orbit propagation.
Simultaneously, Sang et al. [26] introduced a dual-step
TLE-based methodology aimed at significantly improving
prediction accuracy. Perez and Bevilacqua [27] employed
neural network techniques to address errors induced by
atmospheric density, offering a novel perspective on error
correction. In the domain of orbit determination, Sharma and
Cutrel [28] introduced a learning-based framework based on
distribution regression principles. Peng and Bai [29], [30]
presented innovative orbit prediction methods based on ML
(Machine Learning) approaches, leading to notable enhance-
ment in prediction accuracy. Expanding on this foundation,
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Peng and Bai [31] conducted a thorough evaluation of three
contemporary ML approaches to enhance orbit prediction
accuracy. Jung et al. [32] introduced a recurrent neural net-
work model designed for predicting reentry trajectories of
uncontrolled space objects. Zhai et al. [33] investigated a ML
approach, particularly focusing on the XGBoost algorithm to
improve the orbit prediction accuracy. Takahashi et al. [34]
explored Gaussian process regression using GPS (Global
Positioning System) data to reconstruct continuous data from
sparse positioning data, providing a valuable perspective
on data-driven orbit prediction. Li et al. [35] implemented
two learning methods, gradient boosting decision tree and
convolutional neural networks to improve TLE-based orbit
prediction accuracy. Salleh et at. [36] proposed a deep learn-
ing technique specifically aimed at improving TLE-based
orbit prediction accuracy. Xu et al. [37] introduced an orbit
predictionmodel based onML approach to effectively correct
the error value of orbit prediction for Internet of Thing (IoT)
applications.

This research explores the potential of utilizing an in-orbit
optical space surveillance network to effectively track LEO
space debris. To enhance the accuracy of space debris orbit
prediction, a novel model is introduced, making use of the
SVM (Support Vector Machine) regression method and his-
torical data in a simulated environment. Furthermore, PCA
(Principal Component Analysis) is employed to efficiently
reduce the dimensionality of the dataset’s feature space, and
optimizing the model’s overall performance. This combina-
tion of advanced techniques offers a promising approach to
address the growing challenge of LEO space debris tracking
and prediction. When comparing the output of our proposed
machine learning model for orbit propagation of LEO space
debris with that of classical orbital dynamic models imple-
mented in General Mission Analysis Tool (GMAT) [57],
Semi-analytical Tool for End of Life Analysis (STELA)
[58], etc., notable distinctions may become apparent. The
computer simulations conducted by the authors indicate a
significant increase in prediction errors over time with clas-
sical methods. These errors, mainly caused by uncertain
coefficients in mathematical modeling of perturbation forces
and also space debris characteristics, quickly amplify to
the extent that future orbital trajectories become uncertain.
This, in turn, may severely compromise the accuracy of
orbit prediction for space debris. In contrast, our proposed
machine learning-based compensatory approachmay provide
a promising remedy. By effectively mitigating predicted state
errors, our method enables the attainment of more accurate
orbital states with minimized error margins. This capability
holds critical importance for the scheduling and execution of
CAM in operational satellite systems.

The remaining part of the paper is structured as follows:
Section II introduces the simulation framework and assesses
the feasibility of the proposed optical SBSSN. Section III
presents the details about the ML approach, and introduces
the PCA as a powerful tool for the dimensionality reduction of
feature space. Section IV discusses the design of the learning

process and the selection of learning and target variables.
Section V presents the analysis of the simulation results, and
finally, section VI summarizes the conclusions.

II. SIMULATION ENVIRONMENT
This section provides a comprehensive description of the
simulated environment designed for the proposed scheme as
depicted in FIGURE 1.
The framework introduces a PCA-SVM regression

machine learning approach to enhance the accuracy of
LEO debris orbit prediction. The approach relies on optical
measurements obtained from a dedicated DABS ATH [16]
constellation, specifically designed to provide continuous
multi-fold coverage in the most populated altitude bands of
LEO.

A. TRUTH DYNAMIC MODEL
The simulated truth dynamic model proposed in this study
aims to comprehensively address the primary factors con-
tributing to prediction errors in LEO orbit. The model
incorporates the Newtonian gravitational force and accom-
modates the Earth oblate gravitational field through zonal and
tesseral harmonic coefficients of degree and order 70 × 70
[52]. Moreover, third-body perturbations induced by the Sun
and the Moon are considered. To approximate atmospheric
conditions, the NRLMSISE-00 [56] model is employed,
which considers mean solar and geomagnetic activities. Truth
dynamic model is implemented in the MATLAB program-
ming environment.

B. MEASUREMENT MODEL
This research focuses on the development of an optical
space-based space surveillance network intended for track-
ing space debris within the most densely populated altitude
band of LEO. This network utilizes a dedicated DABS ATH
constellation. The constellation is configured to provide con-
tinuous multi-fold coverage over highly populated altitude
range in LEO,which spans approximately 700 km to 1000 km
above the Earth’s surface. This specific altitude band is com-
monly called the ‘‘LEO debris cloud’’. In order to confirm
that the majority of LEO debris falls within the range of
700-1000 km, data from total number of 4461 TLEs were
used to illustrate the frequency of these debris a function of
semi-major axis. The data is available on the CelesTrackweb-
site1 and is categorized into four major groups of LEO debris:
Fengyun 1C [53], Iridium 33 [54], Cosmos 2251 [54], and
Cosmos 1408 [55]. The results are shown in FIGURE 2 and
align well with published LEO debris density [38]. Notably,
the corresponding date for FIGURE 2 is July 2023, enhancing
the temporal relevance of the analysis. In this study, a satellite
deployment strategy based on the Rider technique [16] is
selected to design a space-based surveillance network for
continuous DABS ATH viewing of the specified target alti-
tude band from platforms in polar orbits.

1https://celestrak.org/NORAD/elements
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FIGURE 1. Framework of the proposed PCA-SVM regression ML approach to enhance LEO debris orbit prediction accuracy.

FIGURE 2. Debris frequency as a function of semi-major axis based
on 4461 TLEs; from Fengyun 1C, Iridium 33, Cosmos 2251 and Cosmos
1408.

This approach, utilizes a method based on spherical geom-
etry and Street-of-Coverage (SOC) theory, as described in the
works of Adams and Rider [39] and Luders [40], to derive

formulas for the coverage multiplicity of the DABS ATH
constellation. The coverage multiplicity refers to the num-
ber of satellites that can simultaneously observe a specific
ATH region bounded within the lower and upper altitude
shells. The technique is a deterministic approach to derive
the total number of platforms, sensor elevation Field of View
(FOV), and sensor maximum range requirements for design
of space-based surveillance systems in polar orbits that pro-
vide continuous multiple global or polar cap ATH viewing.
These requirements are determined as a function of surveil-
lance platform altitude, the minimum and maximum space
object altitudes of interest, and the multiplicity of desired
ATH coverage.

The needed number of orbital planes, the required number
of satellites per orbital plane, and geocentric latitude coverage
restrictions are all related to coverage multiplicity. Thus, the
number of sensors needed for full DABS global coverage is
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FIGURE 3. Rider SOC approach in DABS ATH coverage geometry.

computed given a specified coverage multiplicity and mini-
mum latitude.

Therefore, it is beneficial to provide an overview of the
SOC technique.

FIGURE 3 illustrates the geometry employed in the Rider
study, considering a single-satellite DABS ATH coverage
scenario, specifically when the platform is located above then
the target upper altitude band. It is essential to note that in
the Rider method, platforms can be positioned either within
or above the target dual-altitude-band. However, this article
particularly focuses on the latter option. This choice is moti-
vated by two key reasons. Firstly, the target altitude band is
already overcrowded with LEO debris, and the objective is to
avoid further crowding by deploying platforms in this altitude
band. Secondly, as the platform altitude increases, the impact
of atmospheric drag perturbation and consequently orbital
decay becomes less significant. As depicted in FIGURE 3,
The tangent sphere around the Earth at radial distance rt
is determined by the lowest allowable sensor Line-of-Sight
(LOS) penetration of the atmosphere without interfering with
its normal functionality. The outer and lower surfaces of the
target shell, at corresponding radial distances ru and rl , are
defined by the maximum and minimum altitudes, respec-
tively, at which continuous viewing of targets is assured
with the specified multiplicity of coverage. rt , rl and ru are
considered as 100 km, 700 km and 1000 km, respectively.

According to FIGURE 3, achieving above-the-tangent-
altitude viewing of targets within the specified altitude shell,
as observed from a single platform, is guaranteed when the
targets are located within a shell defined by the central angle
2φ and undergo a 360 deg rotation out of the paper’s plane
about the rs axis (where rs represents the radial direction
to the sensor platform). The outer boundary of the shell’s
coverage is determined by the central angle θ , measured from
the platform’s nadir point. The ‘‘nadir-hole’’, representing
the region directly below and invisible to a sensor platform
regardless of the size of the sensor-to-target range, is defined
by the central angle θ ′, also measured from the platform’s
nadir. The maximum sensor-to-target range, denoted as Rmax ,
occurs when the target is positioned at location T and the

FIGURE 4. Double nadir-hole-fill projection on the lower target shell.

required platform’s FOV, denoted as ξ , is determined at
point E, where the platform’s LOS grazes the outer part of
the target shell. By solving for planar triangles illustrated in
FIGURE 3, when rs exceeds both rl and ru, the following
relations can be established:

φ = cos−1
(
rt
rl

)
. (1)

θ = cos−1
(
rt
rs

)
+ φ. (2)

θ ′
= cos−1

(
rt
rs

)
− φ. (3)

Rmax =

(
r2s + r2u − 2rsrucosθ

)1/2
. (4)

ξ = sin−1
(
ru
rs

)
− sin−1

(
rt
rs

)
, (5)

these equations illustrate that by specifying rt , rl , ru, and
rs, the geometry of single-platform DABS ATH, along with
the maximum platform-to-target range requirement and the
platform’s FOV, can be determined. Techniques for achieving
single nadir hole fill for satellites in the same orbital plane can
be found in Rider’s earlier work [51]. The validation process
will benefit from the following general condition on θ :

2π
s

≤ θ ≤
π

2
ors> 4, (6)

where s represents the minimum number of platforms in
each orbital plane. The Eq. (6) must always hold to achieve
any level of nadir hole fill. Otherwise, the determination of
the minimum number of required platforms can be derived
from Rider’s dual-altitude band ATH coverage paper [16]
for continuity, in which he chooses double nadir hole fill.
As illustrated in FIGURE 4, This objective is achieved by
satisfying the condition:

θ ≥
2π
s

+ θ ′. (7)

Applying (1), (2), and (3) to (7) yields the following
condition:

s ≥
π

cos−1
(
rt
rl

) ≥
π

φ
. (8)

This indicates that the minimum number of platforms
symmetrically distributed in a single orbital plane, providing
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double nadir hole fill for all nadir holes, is solely a function
of rt and rl .

Similar to BTH coverage [17], the half street width of
continuous j-fold coverage associated with one orbital plane
composed of s platforms is given by:

Cj = cos−1

 cosθ

cos
(
jπ
s

)
 . (9)

As illustrated in FIGURE 4, the half street width of contin-
uous double coverage for a single orbital plane is:

C2 = cos−1

 cosθ

cos
(
2π
s

)
 . (10)

The Rider method places particular emphasis on the dou-
ble coverage property within each orbital plane, as parts of
its multiple coverage scheme. This approach is rooted in
a study conducted by W.S. Adams [16], which illustrates
that platform constellations synthesized from orbital planes
utilizing even multiples of coverage are more efficient than
those employing oddmultiples of coverage in delivering ATH
coverage for the lower target shell.

Rider also establishes a conservative general relation
between the half street width of 2-fold coverage (C2), the
required number of orbital planes (p), and the minimum
latitude (L) at which 2k-fold continuous coverage is achieved.

p =

[
k(π

/
2)

sin−1 (sinC2
/
cosL)

]
. (11)

The outer brackets indicate that the quantity within should
be rounded up to the next higher integer if it is not already an
integer.

Eq. (11) yields the number of polar orbital planes needed
to ensure 2k-fold continuous ATH coverage of the target shell
at a geocentric latitude of L or higher (each orbital plane
provides double coverage when s satisfies (8)). The total
required number of platforms, denoted as T, is then calculated
as:

T = sp = s

[
k(π

/
2)

sin−1 (sinC2
/
cosL)

]
. (12)

It is now evident that Rider explored a deterministic
approach to determine the key design parameters, includ-
ing the total number of required platforms, the required
platform’s FOV, and the maximum platform-to-target range
within a defined space volume specified by lower and upper
altitude bands that encompass potential targets of interest.

The selected tangent altitude representing the deepest
atmospheric penetration of the platform-to-target LOS is
100 km, corresponding to rt = 6478.137 km. The lower
and upper altitudes of the target shell are 700 and 1000 km,
resulting in rl and ru at 7078.137 and 7378.137 km, respec-
tively. To optimize the efficiency of ATH constellations,
orbital planes with symmetrically distributed platforms that

provide a street-of-double-coverage are employed. The num-
ber of platforms per orbital plane, denotes as s and obtained
from (8), is determined to be 8, the minimum required
value. This determination is based on substituting the selected
values of rt and rl in (8). These selections allow for the
illustration of the relationship between Rmax , ξ , and T as a
function of ATH platform altitude, as shown in FIGURE 5.
The total number of platforms illustrated in FIGURE 5 is
based on the requirement of a minimum 4-fold continu-
ous ATH target coverage above 45

◦

latitude (k = 2 and
L = 45

◦

). This requirement is met using polar orbital planes
symmetrically distributed at the same altitude in a circular
orbit within each orbital plane. Above the Earth’s equator,
continuous ATH coverage is 2-fold. The level of continuous
ATH coverage steadily increases with latitude, transitioning
from 4-fold coverage at 45

◦

latitude to 3p-fold coverage over
the pole, with p representing the number of orbital planes in
the constellation. The data shown in FIGURE 5 illustrate the
j = 2 solutions under specific values of rt , rl , ru, s, k, and
L which are 6478 km, 7078 km,7378 km, 8 and 45◦ respec-
tively. A noticeable discontinuity occurs in both platform’s
FOV andmaximum platform-to-target range as the platform’s
position shifts from within the target shell (ranging from700
to 1000 km) to above it. This variation is attributed to the
different geometries inherent in these two scenarios, and it
is thoroughly explained in Rider’s research [16]. FIGURE 5
clearly illustrates that in both scenarios, as the platform alti-
tude increases, the required platform’s FOV decreases, while
the necessary maximum platform-to-target range increases.
However, these changes follow distinct patterns.

The study’s design point is established at a platform alti-
tude of hs= 1300 km, with 24 platforms distributed across
3 orbital planes (p = 3), each containing 8 platforms. The
required platform’s FOV is ξ = 16.39

◦

, and the necessary
maximum platform-to-target range is Rmax= 7100 km. This
configuration ensures continuous double street-of-coverage
above the Earth’s equator, which then extends to four-fold
coverage at latitude of 45 deg. This increase in coverage
multiplicity persists as the latitude approaches 90 deg.

One of the primary reasons for adopting the Multiple
Point-of-View (MPOV) optical observation scheme in this
paper is the challenge of achieving accurate orbit determi-
nation with a single POV space-based optical platform. Orbit
determination of a target using a single space-based optical
observer is hindered by short observation arcs, mainly due
to the limited FOV of the optical platform and the high rela-
tive angular velocities between the platforms and the target.
Various proposed solutions to address this challenge include
estimation algorithms such as genetic algorithms [41], batch
methods [42], and sequential estimators [43], [44], [45].
However, an efficient initial orbit determination method that
ensures final convergence remains a challenging issue with
all the presented solutions, which is not well solved yet in
this case.

It is important to highlight that among different MPOV
observation schemes for cataloging the LEO space debris, the
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FIGURE 5. Platform altitude as a function of sensor maximum. range,
FOV, and total number of platforms.

dual POV method is the preferable choice due to its superior
cost-effectiveness ratio [46], [47], [48]. Furthermore, dual
POV proves highly effective in addressing the challenging
issue of in-orbit initial orbit determination of uncatalogued
debris. FIGURE 6 illustrates the designated DABS ATH
polar constellation scheme, which offers continuous multiple
coverage within the altitude range of 700 to 1000 km around
the Earth. Utilizing three polar orbits, each containing eight
platforms, the sample target in greet orbit is observed at this
moment by four platforms.

The technique for detecting debris through an optical sen-
sor operates as follows: as an object traverses the sensor’s
FOV within a designated time frame, an image emerges
where the object’s path is marked by a streak against a
background of stationary stars. The object’s right ascension
and declination angles are computed by extracting informa-
tion from the stationary stars in the image. As illustrated in
FIGURE 7, the object’s angular orientation with respect to
observation platform is indicated by two angular measure-
ments: right ascension (α) and declination (δ) angles. The

FIGURE 6. Visualization of the proposed optical SBSSN.

FIGURE 7. Optical sensor measurement schematic.

measurement models are as described as:
α = tan−1

(
y− yi
x − xi

)
+ ϵ1,

δ = tan−1

 z− zi√
(x − xi)2+(y− yi)2

 + ϵ2,
(13)

here, [xi yi zi]T represents the position of j-th sensor in
Earth Centered Inertial (ECI) coordinates and ϵ⃗ = [ϵ1 ϵ2]T

denotes the measurement noise.
Only when the trajectory between the observation platform

and the debris avoids atmospheric interaction with Earth, the
optical sensor is not pointed at the sun, and the debris is within
the FOV of the optical sensor, does a typical LEO space
debris become detectable by a space-borne optical sensor.
Simulated measurement errors follow a normal distribution
pattern, characterized by zero biases and a standard deviation
denoted as σα for right ascension angles and σδ for declination
angles, respectively.

C. ESTIMATION ALGORITHM PERFORMANCE EVALUATION
Unscented Kalman Filter (UKF) is applied to estimate the
state of the LEO debris using the initial conditions provided
in TABLE 1. The dynamic model only takes into account the
second zonal harmonic of the Earth, J2, as the perturbation
acceleration.

To evaluate the performance of UKF algorithm, three sam-
ple LEO debris are selected upon available TLEs, as listed
in TABLE 2. As mentioned earlier, the challenge of pre-
cise initial orbit determination finds a practical solution by
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TABLE 1. Unscented Kalman Filter (UKF) initial conditions. Initial state errors are selected for more than the initial orbit determination accuracies to show
the robustness of the estimator.

TABLE 2. Classical orbital elements of the selected LEO space debris. e, a, i, Ω, ω and M represent the eccentricity, semi-major axis, inclination, right
ascension of the ascending node, argument of perigee and mean anomaly respectively.

employing DPOV scheme within a distributed network of
space-borne optical sensors [49], [50]. This approach sig-
nificantly improves the initial orbit determination accuracy
due to the increased observability provided by the tracking
system. TABLE 3 presents the Gauss angle-only IOD (Ini-
tial Orbit Determination) accuracies of the selected targets
over 100 Monte Carlo runs for different measurement inter-
vals and SBO (Space-Based Optical) sensors noise levels.

As can be seen, the accuracy of IOD is degraded as the
SBO sensor noise becomes larger but even in the case of
sensor noise level as much as 10 arcseconds, the results are
reasonable.

In all simulations, the accuracy improves as the time inter-
vals increase up to a certain threshold. This enhancement is
attributed to the Gauss technique’s reliance on the line-of-
sight geometry between the target and the observers. As the
time interval increases to an optimal value, the configuration
becomes more favorable for this technique to produce better
results. However, beyond this optimal point, accuracy begins
to degrade. The decrease in accuracy occurs because the
Gauss technique relies on a simplified two-body problem
model and does not consider perturbations.

According to TABLE 3, the mean errors across all cases
are minimized when the time interval is set to 120 seconds.

FIGURE 8 displays the average position and velocity
errors for Fengyun 1C at three distinct SBO sensor noise lev-
els: 0.1, 1, and 10 arcseconds and TABLE 4, lists the results
for all targets. As indicated in TABLE 4, the initial errors for
all targets experience a slight increase, with an average factor
of 1.1, as the SBO sensor noise levels change from 0.1 to
1 arcseconds. However, when the noise levels increase further
from 1 to 10 arcseconds, errors show a significant average
increase, with a factor of 2.7. Despite the constraints taken
into account for the optical sensors, the consecutive obser-
vation time intervals, and hence the performance, remain
unaffected.

FIGURE 8. Position and velocity errors of Fengyun 1C across different
sensor noise levels.

D. LEO DEBRIS ORBIT PREDICTION
Utilizing the identical assumed dynamic model, estimated
state of a debris is propagated to desired future epochs, result-
ing in the generation of prediction errors when compared to
the actual recorded orbit. Taking into account the cumulative
effects of errors introduced by the assumed dynamic model,
measurement process, and estimation process, the prediction
error can quickly reach an impractical magnitude as the
propagation time increases. We have set a maximum predic-
tion duration of 1tprediction equals to seven days (one week)
for the simulation. This timeframe is considered sufficient
for meeting surveillance and collision avoidance scheduling
requirements.

The RSW reference system (radial, along-track, and cross-
track) is preferred over ECI to express prediction errors in
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TABLE 3. Accuracies of initial orbit determination for selected targets in different scenarios. The ‘‘Time Interval’’ denotes the duration between successive
angular measurements. For each target, the Root Mean Squared (RMS) of position and velocity errors under three distinct levels of optical sensor
measurement noises is provided.

TABLE 4. Performance evaluation of UKF scheme for chosen targets across different sensors noise levels.

future epochs because, as can be observed, it effectively
maps the majority of position and velocity error vectors into
specific components: the in-track component of the posi-
tion error vector and the radial component of the velocity
error vector, respectively. In RSW coordinates, the Radial
axis extends outward from the central body along the line
connecting its center to the object in orbit, measuring the
distance from the central body. The Along-track axis runs
parallel to the object’s orbital path, measuring the distance
traveled along the orbit. The Cross-track axis is perpendicular
to both Radial and Along-track directions, lying within the
orbital plane and measuring the distance from the object’s
orbital path. This coordinate system is valuable for analyzing
spacecraft motion and space debris trajectories, providing a
concise means to describe positions and velocities in relation
to orbital dynamics.

FIGURE 9 illustrates the RSW components of true pre-
diction errors. The horizontal axis represents the prediction
interval, while the vertical axis represents position and veloc-
ity error components. The primary objective is to minimize
the orbit prediction error in the along-track position and radial
velocity components.

III. REVIEW OF THE PROPOSE ML APPROACH
In this section, a concise introduction to the proposed
PCA-SVM regression model is presented.

A. SUPPORT VECTOR MACHINE
SVM regression, a supervised learning algorithm, is
employed for solving regression tasks involving the

prediction of continuous numerical values. This technique
addresses regression challenges through the incorporation
of kernel functions, enabling the model to capture complex
nonlinear relationships within the dataset. SVM regres-
sion’s primary objective is to identify a hyperplane in a
higher-dimensional feature space that best fits the data points.
The pivotal concept behind achieving this goal is the ‘‘kernel
trick’’. Instead of explicitly transforming the data into the
higher-dimensional space, SVM regression applies kernel
functions to compute inner products among data points in
the higher-dimensional space, all without needing to explic-
itly represent the data. This approach significantly reduces
computational complexity while retaining the capability to
capture non-linear patterns.

The Gaussian kernel is preferred in this study due to its
ability to facilitate non-linear transformations, possess the
universal approximation property, and generate smooth deci-
sion boundaries. It calculates the similarity between two data
points, often referred to as support vectors. For two data
points, xi and xj , the Gaussian kernel function is given by:

K (xi, xj) = exp(−γ
∥∥xi − xj

∥∥2), (14)

where
∥∥xi − xj

∥∥ represents the Euclidean distance between
the feature vectors of xi and xj , and γ serves as a hyperpa-
rameter, kernel scale, that controls the width of the Gaussian
kernel. Smaller γ values result in a wider Gaussian curve,
while larger γ values lead to a sharper curve.

SVM regression formulates the problem as a convex opti-
mization task, aiming to minimize the loss function and
maximize the margin through a combination of loss and
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FIGURE 9. Radial, in-track and cross-track components of position and velocity error in one week orbit prediction for
selected targets.

regularization. Typically, the selected loss function is the
epsilon-insensitive loss, which permits a specified deviation
(ε) between the predicted and actual target values. It can be
expressed as:

Minimize : L
(
w, b, ξ, ξ∗

)
=

1
2

∥w∥
2
+ C

∑n

i=1
(ξi + ξ∗

i ),

Subject to: φyi − wT (x i) + b ≤ ε + ξi,

φ(wT (x i) + b) − b ≤ ε + ξ∗
i ,

ξi, ξ
∗
i ≥ 0, (15)

where w is the weight vector that defines the decision bound-
ary of the SVM regression model and b is the bias term
that shifts the decision boundary. ξi and ξ∗

i are non-negative
slack variables associated with each training example i and
represent the amount by which each data point can violate the
epsilon-insensitive loss.C is the regularization parameter and
controls the trade-off between minimizing the regularization
term and minimizing the sum of slack variables. Higher
values of C emphasize fitting the training data well, while
lower values encourage a larger margin and more emphasis
on regularization. φ(xi) represents the transformation of the
input data xi into a higher-dimensional feature space using the
Gaussian kernel and n is the number of training examples.

In Eq. (15), the first term represents the regularization
term, promoting a balance between maximizing the margin
and minimizing the magnitude of the weight vector w. The
second term represents the sum of slack variables, penalized
by the regularization parameter C , and governs the trade-off

between fitting the training data and allowing errors within
the epsilon (ε) range. The optimization problem seeks to find
the values of w, b, ξi, ξ∗

i that minimize the objective function
while satisfying these constraints, ultimately finding the best
hyperplane for regression while allowing for a margin of error
defined by ε.
Lagrange dual formulation is applied to efficiently solve

the SVM regression optimization problem. The Lagrange
multipliers (αi, α∗

i ) associated with each data point represent
the importance of that data point as a support vector. The dual
problem seeks to maximize the Lagrangian while respecting
the constraints. Solving the dual problem yields the optimal
values of αi and α∗

i according to:

Minimize : L
(
αi, α

∗
i
)

=
1
2

n∑
i=1

n∑
i=1

(
αi − α∗

i
) (

αj − α∗
j

)
K

(
xi, xj

)
+ ε

∑n

i=1

(
αi + α∗

i
)

−

∑n

i=1

(
αi − α∗

i
)
yi.

Subject to:
∑n

i=1

(
αi − α∗

i
)

= 0,

0 ≤ αi, α∗
i ≤ C . (16)

The decision function in SVM regression is expressed as a
weighted sum of kernel evaluations for support vectors as:

f (x) =

∑n

i=1

(
αi − α∗

i
)
K (xi, x) + b, (17)
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where K (xi, x) represents the kernel value between the sup-
port vector xi and the input data x respectively.

B. PRINCIPAL COMPONENT ANALYSIS
PCA is a dimensionality reduction technique used to trans-
form a dataset with potentially correlated variables into a
new set of uncorrelated variables, known as principal com-
ponents. These components capture the data’s most notable
patterns of variation, which facilitates the visualization,
analysis, and comprehension of complicated datasets. Math-
ematically, PCA involves several key steps. First the data is
mean-centered by subtracting the mean of each feature from
every data point according to:

xmean =
1
n

∑n

i=1
xi,

x′i = xi − xmean, (18)

where n is the number of data points, xi represents the original
data for i-th feature, x′i represents the mean-centered data.

Then, the covariance matrix of the centered data is com-
puted as:

Cij =
1

n− 1

n∑
k=1

(x′ik − xmean)(
n∑

k=1

(x′jk − xmean), (19)

where Cij represents the covariance between x′i and x′j .
Next, eigenvalue decomposition is performed on the

covariancematrix to find the eigenvalues (λi) and correspond-
ing eigenvectors (ei) for i = 1, 2, . . . ,n.
The eigenvalues indicate the variance explained by each

eigenvector. Eigenvalues are sorted in descending order{
λ′

1λ2. . .λn
}

so that λ1 > λ2> . . . >λn. The variance
explained by each component is given by:

σexplained .i =
λi
p∑
i=1

λi

, (20)

where p is the number of features in the original dataset. The
total variance retained by ‘k’ components is determined from:

σtotal,retained =

k∑
i=1

σexplained,i, (21)

to reduce the dimensionality, the top ‘k’ eigenvectors are
selected based on the largest eigenvalues and their corre-
sponding principal components PC i are computed from:

PC i = ei · x′. (22)

By retaining the top principal components that explain
most of the variance, and projecting the dataset onto them,
PCA effectively reduces the dimensionality of the data, mak-
ing it easier to interpret while retaining crucial information.

IV. DATASET CONSTRUCTION
This section outlines the methodology for designing the
dataset structure for the proposed PCA-SVM approach. The
establishment of a meaningful relationship between the learn-
ing and target variables in the dataset is of paramount
importance, as it enables the ML model to effectively cap-
ture relevant patterns. However, due to the absence of a
comprehensive theory that addresses unmodeled hidden rela-
tionships, the design procedure relies on a trial-and-error
approach. To validate the results of theML approach and eval-
uate its generalization capability, the test data is kept entirely
separate from the training data and is not used in the training
process. Additionally, the dataset structure must allow for
access to both the learning and target variables during the
learning process, while ensuring that the learning variables
remain accessible during the modification process. Prior to
delving into the construction of the learning dataset utilized in
this study, several notations are introduced for simplification.
The symbol X (t) represents the orbit state at the desired
epoch, and the superscript signifies the coordinate frame used
to express X (t), including options such as Classical Orbit
Elements (COE), ECI, and RSW frames. XCOE (t) = [a, e,
i,Ω, ω , M] represents the classical orbital elements, while
XECI (t) = [x, y, z, vx , vy, vz] corresponds to the ECI frame.
Similarly, XRSW (t) represents the components of position and
velocity vectors in RSW frame. Xtrue(t) denotes the actual
orbit at epoch t , whereas Xest (t)signifies the estimated orbit
at the same epoch. Additionally, Xprop(ti, tj) represents the
predicted orbit at epoch ti based on the estimated orbitXest (tj),
where (ti > tj). The calculation of the true orbit prediction
error, denoted as e(t), is as follows:

e
(
tj
)
= X true (ti) − Xprop

(
ti, tj

)
. (23)

Potential sources of information contributing to orbit pre-
diction errors can be foundwithin the learning variables listed
in TABLE 5.
This study considers six target variables that correspond to

the position and velocity components of error vector. These
variables are denoted as {eRradial, eRin−track,eRcross−track,
eVradialeVin−track,eVcross−track}. The dataset is divided into
the standard practice of 75% training data and 25% test
data. The training data is employed for training the SVM
regression model, optimizing its parameters, and identifying
the optimal hyperplane for data fitting. The remaining 25%
is reserved as an independent test set, used to assess the
model’s performance on unseen data. This approach ensures
a fair assessment of the model’s ability to generalize to
new data and provides valuable insights into its real-world
effectiveness.

Moreover, PCA was applied to normalized feature space
to reduce its dimensionality and capture the most significant
variations in the data.

PCA transforms the original features into a new orthogo-
nal coordinate system, where the first principal component
explains the largest variance, the second explains the second
largest variance, and so on.
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FIGURE 10. Accumulated variance in PCA analysis.

As shown in FIGURE 10, by selecting the top 10 principal
components, approximately 99% of most important patterns
in the data are retained, reducing computational complexity
and potential noise from less informative features.

In SVM regression, hyper-parameters are parameters that
are set prior to the training process and cannot be directly
learned from the data. They play a crucial role in configuring
and fine-tuning the SVM regression model and significantly
affect the model’s performance. Consequently, they must be
carefully selected to achieve optimal results.

The term ‘‘optimal hyper-parameters’’ refers to the values
of these parameters that result in the best performance of
the SVM regression model on a given dataset. Determining
the optimal hyper-parameters is crucial for achieving high
accuracy and generalization ability of the SVM regression
model.

The key hyper-parameters include ‘‘Kernel Scale’’ which
determines the width of influence of the Gaussian kernel on
the predictions. ‘‘Box Constraint’’ constraints the magnitude
of the Lagrange multipliers and affect the model’s complex-
ity and potential overfitting. Finally, ‘‘Epsilon’’ parameter
controls the tolerance level for the epsilon-insensitive loss
function, allowing predictions within a certain range of actual
target value. During hyper-parameter optimization, different
combinations of these values are explored through techniques
like grid search or random search, along with cross-validation
to find the most effective set of hyper-parameters.

V. PCA-SVM REGRESSION SIMULATION RESULTS
This section presents numerical results in four subsections,
each focusing on different aspects. The evaluation begins
with an assessment of the learning capability exhibited by the
PCA-SVM model. Subsequently, the effects caused by opti-
cal sensor noise are examined. Then, the model’s maximum
prediction capacity is explored. Lastly, the impact of noise
and randomness on the system is investigated. To establish
the SVM model, the SVM regression function in MATLAB
is utilized, with a summary of employed parameters provided
in section IV. It should be mentioned that the performance of
the developed model was evaluated on the test data using the
four following metrics:

RMSE =

√
1
n

∑n

i=1
(yi − ŷi)

2
, (24)

MaxErr = max(
∣∣yi − ŷi

∣∣), (25)

MAE =
1
n

∑n

i=1

∣∣yi − ŷi
∣∣ , (26)

R2 = 1 −

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − ȳ)2

, (27)

where yi represents true value of the i-th data point, ŷi is the
ML-predicted value of i-th data point, ȳ is the mean value
of all train data points. Root Mean Squared Error (RMSE)
measures the average magnitude of the difference between
the predicted and actual target values. Mean Absolute Error
(MAE) calculates the average absolute difference between
the predicted and actual target values. Maximum Error (Max-
Err) determines the largest absolute difference between the
predicted and actual target values, while the R2 score evalu-
ates the proportion of variance in the dependent variable that
can be explained by the model.

A. LEARNING CAPABILITY OF PCA-SVM REGRESSION
APPROACH
The optical DABS constellation is capable of real-time debris
monitoring, as exemplified in FIGURE 8 and TABLE 4.
In the dataset preparation process, for each target specified

in TABLE 2, a total of eight distinct estimated epochs are
selected. Among these epochs, four are associated with opti-
cal sensor noise of 1 arcseconds, and the other four are tied
to optical sensor noise of 5 arcseconds. Using the estimated
state vectors obtained from the selected epochs, the trajectory
of debris is simulated and propagated for a duration of one
week. For every specific optical sensor error scenario, three
epochs are selected, along with their corresponding variables,
to construct the training dataset.

Furthermore, one epoch is designated as the test dataset,
enabling a comprehensive evaluation of the model’s perfor-
mance. Total debris training dataset then underwent training
for six distinct models, each dedicated to compensating the
components of position and velocity error vectors.

TABLE 6 presents the optimal hyper-parameters achieved
during the training phase of all six models. The hyper-
parameters were obtained using the SMO algorithm, imple-
mented in MATLAB.

FIGURE 11 illustrates the evaluation of objective func-
tion during the optimization of hyper-parameters for the two
models associated with the dominant errors of position and
velocity error vectors, Rintrack and Vradial respectively. The
objective function serves as a metric for assessing the per-
formance of the optimization process and ensuring that the
models achieve their optimal configurations with respect to
the specified hyper-parameters.

B. EVALUATING DIFFERENT OPTICAL SENSOR NOISE
LEVELS
In this subsection, a study is undertaken to analyze the robust-
ness of the robustness of the proposed PCA-SVM regression
technique in the face of optical sensor noise. The examination
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TABLE 5. Selected learning variables in SVM regression.

FIGURE 11. Evaluation of objective functions Rin−track model and V radial
model for hyper-parameters optimization.

is conducted for two distinct cases, where the noise levels are
set at 1 and 5 arcseconds.

1) OPTICAL SENSOR NOISE LEVEL AT 1 ARCSECOND
FIGURE 12 and FIGURE 13 display the performance of
all six models within the proposed PCA-SVM regression
ML approach, using Fengyun 1C debris as an example.
FIGURE 12 is associated with the RSW components of
position error, whereas FIGURE 13 pertains to the RSWcom-
ponents of velocity error. They illustrate how well the models
predict the behavior of Fengyun 1C debris, offering insights
into their effectiveness in capturing patterns and trends within
the dataset. A set of three graphs accompanies each model to
evaluate its performance. The first graph displays the residual
error plotted against the predicted values obtained from the
ML model. This gives insights into how well the model’s
predictions align with the actual data. The second graph

TABLE 6. Optimal hyper-parameters for the proposed PCA-SVM
regression.

compares the true values and the predicted values generated
by the ML model.

By analyzing this graph, researchers can assess the accu-
racy of the ML model’s predictions and identify any discrep-
ancies. Lastly, the third graph shows the true prediction error,
the ML-predicted error, and the residual error within a one-
week timeframe. This plot enables a detailed examination of
the model’s performance in capturing variations and devia-
tions from the actual data within the specified time frame.
Together, these three graphs comprehensively evaluate each
ML model’s capabilities. As previously stated, it is evident
from the FIGURE 9 that the primary sources of error for posi-
tion and velocity are the in-track component of position error
and the radial component of velocity error, respectively. Thus,
the focus will be on presenting the results corresponding to
these dominant errors for the remainder of the simulation.
TABLE 7 presents a detailed performance evaluation of each
PCA-SVM regression model across various targets associ-
ated with optical sensors’ error of 1 arcsecond.

2) OPTICAL SENSOR NOISE LEVEL AT 5 ARCSECONDS
FIGURE 14 illustrates the performance of PCA-SVM regres-
sion models corresponding to dominant errors of position and
velocity of Fengyun 1C as an example. TABLE 7 presents a
detailed performance evaluation of each PCA-SVM regres-
sion model across various targets associated with optical
sensors’ error of 5 arcseconds.

As evident from TABLE 7 and TABLE 8, it is not con-
sistently true that the prediction error increases with larger
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FIGURE 12. Performance evaluation of the PCA-SVM regression models on enhancing components of Fengyun 1C position error vector under
1 arcseconds sensor noise level.

TABLE 7. Performance evaluation of PCA-SVM regression models considering optical sensor error of 1 arcsecond. Errors are expressed in km and km/s
respectively.

sensor noise levels. As mentioned earlier, the accuracy of
estimated state at a specific epoch and the instantaneous
coverage multiplicity of the target seems to influence the
prediction error. For instance, in the case of Fengyun 1C,
in the case of 5 arcseconds optical sensor noise, the cov-
erage multiplicity for the corresponding epoch is 3, while

for the 5 arcseconds sensor noise at the corresponding
epoch, it increases to 8, resulting in a reduction of pre-
diction error for this particular scenario. This observation
emphasizes the importance of considering these factors while
interpreting the prediction results for different sensor noise
levels.
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FIGURE 13. Performance evaluation of the PCA-SVM regression models on enhancing components of Fengyun 1C velocity error vector under
1 arcseconds sensor noise level.

TABLE 8. Performance evaluation of PCA-SVM regression models on targets considering optical sensor error of 5 arcseconds. Errors are expressed in km
and km/s.

C. NOISY DATA
This section explores the impact of randomness and noise
within the dataset. The objective of the SVM model is to
accurately capture the underlying relationship between the
original learning and target variables in the learning process.

In noise-free test dataset conditions, SVMmodel performs
well, with results presented in TABLE 7 and TABLE 8

confirming the effectiveness of the PCA-VM regression
model, as evident in FIGURE 12 to FIGURE 14.

Effectiveness is reasonable due to the PCA-SVM model’s
primary task of capturing patterns from the original noise-free
dataset. As a data-driven algorithm, the PCA-SVM model
encounters c However, when random noise is introduced to
one percent of the entire dataset, with all features augmented
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FIGURE 14. Performance assessment of PCA-SVM regression for dominant position and velocity errors of Fengyun 1C with optical sensor level of
5 arcseconds.

FIGURE 15. Impact of noise on the performance of PCA-SVM regression models for Fengyun 1C with 1 arcsecond optical sensor noise.

by Gaussian noise having a mean of 0 and a variance equal to
0.1 times their original values, the performance of the trained
model significantly deteriorates. The decline in model per-
formance is clearly depicted in FIGURE 15 and FIGURE 16.
This observed drop in model challenges when predicting
accurate outputs in the presence of datasets containing noisy
features. Therefore, model’s inability to handle noisy features
justifies the decrease in performance under such conditions.
When the test dataset is not noisy, the performances of
the trained PCA-SVM model are shown in TABLE 7 and
TABLE 8. In this case, as illustrated in FIGURE 12 to
FIGURE 14, the PCA-SVM regression model works well.
In another case, random noise is added to one percent of the
whole dataset in such a way that all the features are added to
a Gaussian noise of mean 0 and variance equal to 0.1 times
of their original values. As illustrated in FIGURE 15 and
FIGURE 16, the performance of the trained model exhibits

limitations, as SVM model is supposed to capture the pattern
of the original dataset without any noise introduced. This
result because the SVM model is expected to capture the
pattern of the original dataset without any added noise. Given
that ML algorithms are fundamentally data-driven, the model
faces challenges in accurately predicting the output when
confronted with noisy data.

TABLE 9 presents a detailed performance evaluation of
PCA-SVM regression model across various targets associ-
ated with noisy data.

D. EXTEND PREDICTION TIME
In this section, the time span of ML-modification is explored,
referring to the maximum future interval within which the
trained SVMmodel can effectively reduce the orbit prediction
error. The findings will demonstrate that there are constraints
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FIGURE 16. Impact of noise on the performance of PCA-SVM regression models for Fengyun 1C with 5 arcseconds optical sensor noise.

TABLE 9. Performance evaluation of PCA-SVM approach in the presence of noisy data with varied optical sensor noise levels. Errors are expressed in km
and km/s.

TABLE 10. Performance evaluation of trained PCA-SVM approach over a 10-day duration under diverse sensor error levels. Errors are expressed in km
and km/s.

on the correction capability. An analysis of the trained
PCA-SVM regression method using the representative sam-
ple Fengyun 1C is shown in FIGURE 17 and FIGURE 18.
Instead of the prior one-week timeframe, the research extends
the observation period to twoweeks while taking into account
optical sensor noise levels of 1 arcsecond and 5 arcsec-
onds, respectively. The results documented in presents the

model’s performance across various targets under different
sensor noise levels. For each model, the presentation fea-
tures two graphs. One graph depicts the model’s performance
over a two-week prediction duration, while the other illus-
trates its performance during the second week, despite the
model being trained with a one-week prediction duration
limit. As evident from the TABLE 10 and FIGURE 18., the
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FIGURE 17. Assessment of PCA-SVM regression performance on Fengyun 1C with 1 arcsecond optical sensor error.

FIGURE 18. Assessment of PCA-SVM regression performance on Fengyun 1C with 5 arcseconds optical sensor error.

model demonstrates satisfactory performance for an extended
three-day prediction duration. However, beyond this point,
the predictions start to diverge gradually.

Furthermore, it’s worth noting that in all simulations
under various conditions, the results show that the MAE
consistently yields lower values across all cases presented in

the tables. While MAE may indicate better performance in
terms of accuracy compared to other metrics such as MSE,
RMSE, or R-squared, it is essential to consider the specific
objectives and constraints of the analysis when interpreting
these results. In some applications, lower values of MAE
may indicate better accuracy and may be more desirable if
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they meet the requirements of the intended use case. For
example, if the primary concern is the absolute deviation
between predicted and observed values, MAE may provide
a straightforward measure of accuracy that aligns with the
application’s goals. However, it is also crucial to consider the
relative strengths and weaknesses of each metric in different
contexts. Metrics such as MSE and RMSE emphasize the
squared differences between predicted and observed values,
which may penalize large errors more heavily compared to
MAE. On the other hand, R2 score provides a measure of
the proportion of variance explained by the model, offering
insights into the goodness of fit. A comprehensive evaluation
should consider multiple metrics in conjunction to provide a
holistic assessment of the model’s performance. Depending
on the specific objectives and constraints of the analysis, one
metric may be more suitable than others.

VI. CONCLUSION
This study investigates the crucial problem of LEO orbital
debris and proposes an innovative solution to enhance space
debris tracking and orbit prediction accuracy. The CAM strat-
egy, utilized as the primary countermeasure for mitigating
the threat posed by LEO space debris, depends significantly
on precise knowledge of debris coordinates and accurate
trajectory predictions, both of which present substantial
challenges in the dynamic LEO environment. Traditional
ground-based observation methods encounter challenges due
to atmospheric interference and limited FOV, impacting
their effectiveness in tracking fast-moving debris in the
dynamic LEO environment. Additionally, conventional orbit
prediction models’ uncertainties, stemming from unknown
coefficients of perturbation forces and other debris charac-
teristics, lead to prediction errors.

To overcome these limitations, the research proposes an
innovative solution using an in-orbit optical space surveil-
lance system. This system comprises a network of distributed
optical sensors deployed on multiple spacecraft within the
ATH constellation, specifically designed to monitor the
densely populated altitude band in LEO. Furthermore, a novel
orbit prediction model is introduced, leveraging a supervised
ML approach, specifically SVM regression. The model’s
performance is optimized by incorporating PCA, an unsu-
pervised ML approach, to reduce the dimensionality of the
dataset’s feature space.

The proposed ML scheme aims to enhance the accuracy of
space debris orbit prediction by learning from historical data
in a simulated environment. Simulation results under various
conditions demonstrate the scheme’s successful comple-
mentation of ground-based equipment and dynamic models
for debris tracking, significantly improving orbit prediction
accuracy.
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