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ABSTRACT This article develops two new algorithms of three-term conjugate gradient (TTCG) coefficients
to handle nonlinear least-squares (NLS) problems using the structured secant equation. Motivated by
improved conjugacy and sufficient descent conditions, we developed two new formulations of CG
coefficients. Furthermore, with these parameters, two search directions are proposed that satisfy the sufficient
descent condition, which further enhances the efficiency of the proposed strategies. One key advantage of
the proposed techniques is their low memory requirements, rendering them suitable for large-scale nonlinear
least squares problems. Moreover, some mild suppositions and a non-monotone line search are used to
establish the global convergence properties of the methods. More so, we investigate the robustness and
effectiveness of the proposed methods numerically by performing experiments on benchmark test problems,
and their performance is compared against existing methods. The outcomes of these experiments indicate
that the proposed methods outperform the other techniques regarding the metrics of comparison adopted.
Finally, the algorithms are applied to an extension of the model of robotic motion control of four degrees of
freedom (4DOF), resulting in positive outcomes for the robot’s motion traits.

INDEX TERMS Three-term method, nonlinear least-squares, convergence analysis, robotics, conjugate
gradient.

I. INTRODUCTION

A mathematical problem formulated as a nonlinear least-
squares (NLS) poses various challenges in domains within
science and engineering. This problem encompasses tasks
such as data fitting, parameter estimation, robotic motion,
experimental design, image restoration, and full waveform
inversion, among others (refer to, for example, [1], [2], [3],
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approving it for publication was Qiang Li

[4], [5], [6], [7]). Let’s examine the general optimization
problem without constraints:

min f(x), (1)

xeR"

where f : R” — R is a continuously differentiable function,
and R” represents the n-dimensional Euclidean space with
its norm denoted by || - ||. In this context, the gradient and
Hessian of the function (1) at the point x are represented by
g(x) = Vf(x)and B = V?f(x), respectively. CG is frequently
utilized among the well-known iterative algorithms employed
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to solve the optimization problem (1) [8]. This method
updates its sequence of iterations using the formula below,

Xk+1 = Xk + ogdy 2)

where k > 0, and oy > O represent the step size calculated
through a line search technique in the direction of the search
vector di [9], [10]. For k = O, then dy = —gi, this
is recognized as the steepest descent direction. However,
subsequent search directions undergo updates via:

dr = —gk + Brdi—1. 3

where, the parameter B; denotes the CG coefficient, the
formulas for Hestenes-Stiefel (HS) [11], Dai-Yuan (DY)
[12], Polak-Ribiere and Polyak (PRP) [13], [14], and
Fletcher-Reeves (FR) [15], four of the well-known traditional
two-term CG methods for solving equation (1), are as follows:

HS _ g]?)’k—l DY __ ||gk||2 ()
k _dT ’ _dT b
k—1Yk—1 k—1Yk—1
gPRP _ 8h Vi1 e llekll? 5
k - ) k = .
llgk—1lI? lgx—11I?

where yx—1 = gk — gk—1. More recently, additional variations
for the parameter §; have emerged. For example, the (PRP)
method was modified, and the formula (RMIL) was proposed
in [16],

T
8k Yk—1
ﬂRMIL — . (6)
k lldi—11I?

More so, Dai et al. [17] suggested their formula (DL)
employing the new conjugacy condition giving rise to a class
of one-parameter CG algorithms, and the B being defined as
follows:

g]{Sk—l
dg_ 1Yk—1 ,

g]{)’k—l

B = -
d]z_l}’k—l

t>0. @)

Many first-order variant approaches have been devel-
oped to address NLS problems related to large-scale data
sets [18], [19], [20]. Nevertheless, a typical flaw with
first-order approaches is the inability of the methods to
find a descent direction, potentially leading to stagnation
or inaccurate solutions. Recently, numerous research studies
have been conducted in the conjugate gradient method,
focusing on secant conditions that incorporate second-order
information regarding the objective function. For instance,
Perry [21] introduced a conjugate gradient method by
integrating the secant condition from the quasi-Newton
method. Subsequently, Dai et al. [17] proposed two non-
linear CG methods that utilize the secant condition and
a novel proposed conjugacy condition. However, within
the context of numerical experimentation, one of these
methods exhibited spectacular performance compared to
the classical HS method. Yabe et al. [22] derived a new
conjugacy condition based on the Dai et al. formula and
proposed another CG parameter using the modified secant
condition proposed by [23] and [24]. Furthermore, Zhou and
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Zhang [25] proposed a modified version of Dai et al. and
Yabe-Takano methods using the MBFGS condition, and in
a similar attempt, Ford et al. [26]proposed two CG methods
based on the multi-step secant condition. Moreover, for
more detail on the secant conditions-based methods, kindly
refer to [27], [28], [29], and [30]. Recently, solving NLS
problems through utilizing the CG methods has received
special attention. Kobayashi et al. [31] extended the nonlinear
CG methods by merging the structured secant relation and
the Dai et al. [17] scheme to solve NLS problems. However,
as highlighted by [32], these methods do not consistently
produce a descent search direction. To ameliorate these
limitations, some authors have suggested TTCG methods that
rely on secant relations, ensuring consistent satisfaction of the
sufficient descent criterion. There are quite some methods
with three-term CG structures developed recently to solve
equation (1). For instance, some studies have proposed a
hybrid TTCG algorithm that always satisfies the sufficient
descent condition; other studies have introduced a scaled
TTCG method that utilizes the DFP update for the inverse
Hessian approximation. These TTCG methods have shown
excellent applicable characteristics when used on various
real-world problems, including COVID-19 modeling, sparse
signal restoration, image restoration, portfolio selection, and
tomography [33], [34], [35], [36], [37], [38], [39], [40],
[41]. Moreover, if the TTCG approaches are compared
with conventional two-term CG methods, according to [42].
The TTCG algorithms consistently achieve good numerical
performance and possess appropriate theoretical properties
such as sufficient descent and trust region properties. Babaie-
Kafaki and Ghanbari, as described in [43], introduced a
modified version of the three-term HS-DL method where the
direction takes on the following structure:

T
8k Sk—1
di = —gi + B dy 1t Tk di—1 + 88y 1,
|yk_1dk71|
—old
3]1;15 — 8k Hk—1 k>0.

T b
dk_1yk—1

and in [44], the authors proposed a hybrid TTCG method that
satisfies the sufficient descent condition, and its direction is
defined by

HTHP HTHP
do = —go, dk+1 = =8k + B¢ dk—1 kT k-,
where,
T 2.T
,BHTHP 8k k-1 l7i—1ll 8k dr—1
X = - )
Nk—1 771%71
Tq
HTHP ._ 8 Gk—1
Kk L ck_1—7
Nk—1
and -1 = max {pldi—1llre—ill, d_ =1, lge—11%}
T e
iw > 0. where, ¢ = 8kt —Sk) - oy =

llgx 11>
min{c,max{0,c}}and0 < ¢, <c < 1.

In light of all the developments made in the three-
term methods, it is intriguing to devise a more efficient
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one. However, despite their outstanding features, the TTCG
methods for solving the nonlinear least squares problem
received little attention. This paper introduces two distinct
approaches for determining the coefficients of the TTCG
method based on quasi-Newton’s secant equation. The first
method uses the Dai et al. conjugacy condition, while the
second relies on the sufficient descent property. The key
contributions of this research can be outlined as follows:

e Propose two new TTCG coefficients using the
second-order curvature information of the objective
function, developed based on sufficient descent prop-
erties and the Dai et al. conjugacy condition.

o The proposed search direction satisfies the criteria of the
sufficient descent property.

e With the aid of a non-monotone line search, the
proposed coefficients have been shown to achieve global
convergence under some mild hypotheses.

o Numerical experiments were carried out to assess the
performance of the proposed approaches compared to
other methods documented in the literature.

« Finally, the proposed methods were applied to solve
the motion-control problem of a four-degree-of-freedom
(4DOF) robotic system, demonstrating their practicality.

Moreover, in this work, we adopt Zhang and Hager’s [45]
non-monotone line-search method to determine the step
length ;. When the direction dy demonstrates a substantial
descent, the step length o is determined according to the
non-monotone line-search conditions of the Armijo type
described below:

f o + awdy) < Ok + Sogl dy., (®)
where,
Qo = f(x0),
_ kePrOk +f (k1)
Ok+1 = ,
Piy1 9
Py =1,

Pry1 = mePr + 1.

Remark 1 [45]: The sequence Py, is situated between f (xy)
and Y, where

k
1
V= Zf(xo, k> 0. (10)

The remaining sections of thils_a%ticle are arranged as follows:
The proposed approach and its algorithms are described in
Section II. The global convergence properties of the sug-
gested algorithms are examined in Section III under certain
hypotheses using the non-monotone Armijo-type line search.
In Section IV, the effectiveness of the proposed algorithms
is examined using numerical experiments compared to other
methods described in the literature. Finally, Section V applies
the new approach to a four-degrees-of-freedom robotics
problem.
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Il. MOTIVATION AND FORMULATION OF THE TTCG
COEFFICIENTS

In this section, we begin by considering the three-term
gradient method for solving NLS problems as follows:

) 1 m 5 ;

minf(), f@) =3 ;um)) LxeR" 1D
Given R(x) as (R;(x), R2(x), - - - , Ru(x))T, where each indi-
vidual residual R; : R* — R fori = 1,2,---,m
is a smooth function, we define J(x) € R™*" as the
Jacobian matrix associated with the residual function R(x).
Additionally, we use Vg(x) to represent the gradient of the
objective function and V2f(x) to represent the Hessian of
the same objective function [46]. Notably, the NLS problem
expressed in equation (11) exhibits a unique structure for
its gradient and Hessian matrix, which can be expressed as
follows:

g() = > Ri)VRi(x) = J(0)T R@), (12)

i=1

B(x) := Z VR;(x)VR;(x)T + ZRi(x)VzRi(x) (13)

i=1 i=1

=J) J(x) + P(x), (14)

where J(x) = R'(x) represents the Jacobian matrix of the
residual function, and the matrix P(x) corresponds to the
second term mentioned in equation (14). First, we will state
as shown in [31], [32], and [47] e.t.c. The structured vector
approximation, which is an action of a vector on a matrix,
is derived from Taylor series approximations of the Hessian of
the objective function defined in (14) such that the following
secant equation is fulfilled:

B(x)s = w, (15)

here s = x T —x—, the difference between current point xT and

previous point x~ and @ denotes an appropriately structured
vector defined as follows:

o=UNHTT s+ Ut —JI)HTRK). (16)

where J* and J~ denote the current and previous Jacobian
matrix of the residual function R(x).

Next, we describe one of the efficient three-term CG
(TTCG) methods presented by Zhang et al. [48]; it possesses
a decent property. This method utilizes the following search
directions,

81 di—1

di = —gk + B di—y —
dkT_l)Jk—l

Viet, V= 0. (17)

Motivated by their work, We proposed a novel search
direction for the three-term parameters, for n = 1, 2, defined
as follows:
do = —g0, dy = —gi + ﬂ;((n)d)k—l - ,BIEn)Sk—l Vk=>0.
(18)
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where sg_1 = xx — xx—1, and ,B,({") is the CG coefficient to be

determined through utilization of the idea presented in [49]
for the cases when n = 1, 2, respectively.

A. DETERMINATION OF BIT€¢C! VIA THE CONJUGACY
CONDITION

In this subsection, we apply the property of the conjugacy
condition to derive the first formula for the proposed TTCG
coefficient since, for quasi-Newton methods, the search
direction dj can be expressed as

drx = —Bi gk, (19)

where By is a symmetric and positive definite matrix that
approximates the Hessian sz (xx), or its inverse, which
adheres to the secant equation:

Bi@—1 = Sk—1, k-1 = I Jese—1 + Uk — Je—1)" R(xx),
(20)

where By &~ V2f(x;)™V. Therefore, by multiplying the
transpose of the direction dy as defined in (19) and wi_1,
to equation (20) we have

dl dn—1 = —Brgr) -1 = —gf (Bedk—1) = —gf Sk—1,
2D

Hence, equation (21) can be replaced by the relation,
df @1 = —Vrg{ Sk—1. (22)

Meanwhile, equation (22) is popularly known as the Dai et al.
conjugacy condition (see, for more detail [17]), where yx
is a scalar. In addition, the original objective function’s
Hessian matrix is better approximated by the new conjugacy
condition. In implementing our proposal for the numerical
experiment, we choose y; = 0.5 Vk, as suggested by [49].

Now, we incorporate the structured vector, w—1 into the
TTCG direction stated in (18) for n = 1 and considering the
conjugacy condition in (22), we obtain

- 1 _
(—gk + ﬂ;i dap_1 — ,BIE Sspo) @p—y = — k& Sk—1,
(23)
- -1 - 1 -
ngk—l + ﬂ,E )w]{_lwk—l - ﬂ;i )s,f_lwk_l = —ng;{Sk—l,
(24)

Rearranging the terms in equation (24), we have
D, - _ _ _
,3;({ )(w;{_lwkq — Sp_1@k—1) = gh (k1 — Visk—1), (25)
1), - - -
ﬂ;i Y@ — si—1) dp—1 = 8t (&k—1 — Vksk—1), (26)

solving for ,B,El) from equation (26), we obtain our first
coefficient and name it TTCGC1

UTCGED _ 8h (@r—1 — ViSk—1)
g [(@r—1 — sk—DT 1]’

if Wp—1 — sk—1 #0.
(27

VOLUME 12, 2024

B. DETERMINATION OF BITC“2 VIA THE SUFFICIENT
DESCENT PROPERTY

This subsection derives the second TTCG coefficient from the
sufficient descent property. The sufficient descent condition
is stated by:

ghde = —0llgkll?, ® > 0, (28)

by substituting equation (18) for n = 2 in equation (28),
we have

2) - 2
e~k + B k-1 — B sk = =01l (29)
2 - 2
elar + B el v — BPglsio1 = —ollael®, (30)

Rearranging the terms in equation (30), we obtain

2 - 2
BPelan 1 — BPelsio1 = gkl — ollgl?,  (31)
2 -
BP el (@n—1 — si-1) = llgl P(1 — 9), (32)

(TTCGC?)
k

Solving for in equation (32) 8 , We obtain

garreaey __llglP(1 = )
‘ ] @1 — skl

if Or—1 — sk—1 #0.

(33)

Subsequently, we outline the sequential stages of the
proposed three-term algorithms used to solve nonlinear
least-squares problems as follows:

Algorithm 1 : New TTCG Coefficients (TTCGC)
Imputs: xo € R', ¢ > 0, p, §, o,€
0 < Mmin < Mmax <1, u >0,y =05,9 =0.7.

©, D,

Step 1: If k = 0, compute gi, then set dy := —gi;
Step 2: If ||gx || < €, then stop.

Step 3: Determine wy_; using (20), ,Bkn CGCT or ,B,ZT cGe2
using (27) and (33), respectively.

If [(k—1 — sk—1)  @r—1] < & ll@r—1 — sk—1]lll@k—11l,
then set dy = —gx;

Step 4: Compute the next direction
dy = —gi + B 1 — Bsi—1, with n = 1 if BITCGCT s
adopted, else n = 2, if /3kTT GC2 §s used.

Step 5: Compute oy that satisfy (8).

Step 6: Calculate the next iterate xx | = x; + axdy, choose
Nk € [Mmin> Mmax]), and compute Py and Q1 using (9).

Step 7: Set k := k + 1 and go to Step 2.

Remark 2: It is important to acknowledge that the
algorithm outlined above combines two distinct methods. Dif-
ferent algorithms correspond to the choices of either B ,ZT cael

or ,Bkrr COC2 coefficients. Furthermore, these algorithms have
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been designed in MATLAB to compute structured matrices
directly as matrix-vector products for each test function,
eliminating the need for explicitly creating matrices during
the iterative process.

lll. CONVERGENCE RESULTS

Given certain assumptions, this section will present the
convergence analysis of the proposed TTCG approaches
using equations (27) and (33). For the entirety of this section,
it is presumed that gy # O for all k. To proceed, we adopt
the following standard hypothesis regarding the objective
function.

H1. The set of points £ = {x € R"|f(x) < f(xp)} is
confined within a bounded region. In other words, there
exists a positive constant b such that ||x|| < b for every
x within £.

H2. In a certain neighborhood N of ¢, R(x) is continuously
differentiable, and the Jacobian matrix J(x) is Lipschitz
continuous, there exists a positive constant a; such that

V) =IO < arllx = yll, Yx,y e N.  (34)

also, for all x € ¢, there exists a positive constant
ay such that

VI < az, Vx € L. (35)

And also R(x) Lipschitz continuous, i.e, there exists a
positive constant b such that

[R(x) = RO < billx = yll, ¥x,yet.  (36)

Similar to (34), for all x € £, there exists a positive
constant b, such that

RO < b2, Vx € L. (37)
by using (34) and (36), we obtain

IVf(x) = VIO
= VT (Rx) — RY) + T x) = TGN RO
< IW@IR@) = RO+ 17() — IWIHIRG)
< bilI@Ilx =yl + arllx — YR
< (braz +aib)|x — y| (38)

Therefore, from (38), it follows that there exists
constant ¢i := (brap + a1by)

IVf@x) = VIWI < cillx =yll, Vx,y e £ (39)

which implies that there exists a positive constant
¢ such that

IVFOl < c2, Vx € L. (40)

H3. The gradient of the equation (11), represented as g(x) =
J(x)T R(x), exhibits uniform continuity within an open
convex set encompassing the level set £.

Next, we present the following lemma:
Lemma 3: Suppose that Hypotheses 1 and 2 hold. Let {xy}
and {dy} be generated by Algorithm 1. If the function f

61090

is uniformly convex on ¢, i.e. there exist a constant u >
0 such that (Vf(x) = VFG) (x = y) = plx — y|I* for
any x,y € N, then there exists positive constants cy and
L such that the subsequent inequalities are valid for every
k> 0.

@ llok—1ll = Llisg—1ll,

(b) g @x-1 = pisi-l = ea(L + yls-1

()

@1 =k a1l = =l 1P
Proof:
(a) From the definition of the structured vector defined
in (20), we obtain
k11l = 1} Jesk—1 + i — Je—D)" Re |
< W skl + 1 Gx = T ) Rl
< Ikl lsk=t 1l + 1k = Je—1 IRl
< a3llse-1ll + arllxe — xx—1 |1 Re |
< allse-1ll + arballse—1 |
= (a3 + aib) i1l
Therefore, by setting L := a% + a1by, we obtain the
inequality (a).
(b) It follows from (27), (34), and inequality in (a) that
18k @r—1 — viesk—D] < Ngklll@x—1 — Vese—1ll
< lgrlllog—11l + Yxllsk—11)
< co(Lllsg—1ll + villse—11D)
= (L + yi)llsk—1l.
Hence, the inequality in (b) holds.
(c) From (a), it follows that ||wr—1|| < L||sxk—1]. Also, from
uniform convexity we have c?)kT_lsk_l > wllsk—1l|?, for
a constant u > 0.
(@k—1 — sk—1) @11 = @} _ k-1 — sp_ 1 Bk—1]
> N1 = wllse—11]
> |L2{lsk—111* = pellse—111°]
> |L? — plllsk—11I
1 1
~ - =7 2°
(k-1 — sk—0)T@r—1] = L2 — plllsk—1ll

Therefore, the inequality in (c) also holds.
]
Lemma 4: Suppose that the sequence xy, is produced using
Algorithm 1, and ,BkTTCGCI is defined as per equation (27).
The search direction di, which is defined by equation (18),
exhibits the descent property for all k > 0, where this
property is expressed as gl di < —¢1llgk|% for every k >
0 where ¢ > O.
Proof: For k = 0, from (18) we obtain g/, dy < —I|gol|%,
this implies that ¢1 = 1. Now, for k > 0 and ﬁkTT CGCT defined
by (27), we have the following:

T
8k Ak
TTCGC1 TTCGC1

= gt (—gk + B{ k-1 — B Sk—1)s
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TTCGC1 T7CGC]
= —llgkll* + B{ g g1 — 8F sk—1,
s 8h (@ —)/kSk—l) T -
= —llgrll” + —= = & Ok—1
(k-1 — sk—1)T dx—1]
8t (@k—1 — ViSk—1) 1
- 1= T — 8k Sk—1]|>
[(@r—1 — Sk—1)" Dk—1
o lgklli(@r—1 — yesk—Dl -
< —llgll” + —= 7= lgr Il ok -1l
[(r—1 — sg—1)" 1]
llgx Nl (ox—1 — yresk—DIl
= 7= lgullsk—11ls
[(Wr—1 — Sk—1)" Wr—1l
(@ —1—Visk—1)l - 2
<- [1— = 7= (k-1 +lsk—1 D] g I,
[(Wk—1— ViSk—1)" @k—1]

[ oL+ yllsk—1l 2
< — |14+ —S———— Llsck=tll + llsk—=11D | llgx I~
L IL? — plllsk—111?

(L + yiollsg—1ll 2
————————(L 4+ Dlisi—1ll | g«
IL? — pulllse—111?

oL+ y)L +1) )
5 lgxll”.
|L= — pl

<—|1+

=—|1+

Therefore, by setting ¢ := [1 + w], we have,

|L2—p|

g,fdk < —¢1|lgkll?, and the proof is completed. O

Lemma 5: Let {dy} be the sequence of directions produced

by Algorithm 1, where ,BTTCGC1 is defined by (27). Then

there exists a constant p1 > 0 such ||di|| < p1 for all
k > 0.

Proof: For k = 0, we have from (18) and ,8,37 cacl

defined by (27), we obtain ||dy|| = ||goll < p1, On the other

hand, for k > 0, we have
lld |l

= llgx + B¢

=< llgkll + |,3k
llgk (k-1 — Yesk—1)Il
) [(@r—1 — sk—1)T 1]
llgx (k-1 — viese—l
- 7= llsk—11l,
(k-1 — Sk—1)! wk—1l
Wk—1 — ViSk—
- [1—1— Il( -1 Vk;_l)”
[(Wk—1 — Sk—1)! wr—1]
(k-1 — Yiese—DIl
[(@r—1 — sk—1)T 1]
[ l(@k—1 — vese—DIl . -
1+ — 7= (lox—1ll + llsk—11D | llgx I,
[(Wr—1 — Sk—1)" W1l
2L+ yi)llsg—1l
—2(L|| k=11l + lsk=11D | lgxll,
L IL? — pulllse—1l

[ oL+ yllsi-1]l
=1+ —2(L + Dlisg—1ll | llgxll-
L IL? — pulllse—1l

(TTCGCI) - ,B(TTCGCI)

|
(TTCGC1 (TTCGC1)
>||| 11l + 1B Mse—1ll,

=< llgkll + llor—111+

llox—1l

IISk—lll] llgxll,

IA

IA

Therefore, if we let p1 := |1 + %], then we have,
lldi |l < p1. Hence, the search direction is bounded. O

Lemma 6: Suppose that the sequence xi is produced using
Algorithm 1, and ﬁkn COC2 s defined as per equation (33).
The search direction di, which is defined by equation (18),
exhibits the descent property for all k > 0, where this
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property state that there exists ¢» > 0, such that for all k > 0,
we have, g di. < —¢n x|l

Proof: For k = 0, we obtain gbdy = —||goll®, this
implies that w, = 1. Now, for k > 0 and /T2 defined
by (33), we have the following:

gld
k
gk( gk+,37TCGC2 Dk—1 _IBI%TTCGCZSk 1)
= —llgl* + BT gl iy — BT g i1,
_19 _
el + llgl2(1 — 9) T
8 (Wk—1 — Sk—1
G )|
llgkl2(1 — 9) Tat,
ng(yk 1 — Sk— 1)|
llgkl1211 — 9| _
< —llgkl*+ llge Il ll@x—1l
Ig (k-1 — Sk—1)|
llgxl>11 — |
— gl lsk—1 I,
gy (Wr—1 — sk—1)I
lgellll — 9 . _
=—|1-—=< N@k—1ll + Nse—11) | Nexll?,
|8k (@k—1 — Sk—1)]
11— 9 lgl )
<—|1- (Lllse—1l+lsk—11D) | lgell®,
ea (L)l gxlIsk—1 I
[ 11— 9l )
=—|1- (L + Dlise—11l | lgell®,
L e+ Dllgllse—1
[ 11—
=—|1-———|ls Kl

| — [=v]

Therefore, by setting ¢, := —], we have, g,{dk <

(&)
—#]lgk |I?, and thus, complete the proof.

Lemma 7: Let {dy} be the sequence of directions produced
by Algorithm 1, where ﬂ,ZTCGcz is defined by (33), Then
there exists a constant p» > 0 such dy < py for all
k> 0.

Proof: For k = 0, we have from (18) and ,BIZ"T cGe2
defined by (33), we obtain ||dy|| = ||goll < p2, Subsequently,
for k > 0, we obtain

TTCGC? - TTCGC2
ldill = llgr + By wp—1 — By

Sk—1l
< llgrll + 18IS |k —1 1| — 1BITCCC2 st I,
gkl =9
= llgkll + ll@k—1 [+

lgT (@k—1 — sk—1)|
gkl — 5ot
lgF (@r—1 — sk—1)

1-9
:[H gl =91 -

lgT (@r—1 — sk—1)

—1ll+

gk !lll — |
lgF (@k—1 — sk—1)

||Sk—l||] llgxll,

1_
) gkl |
lgT (@r—1 — sk—1)]

(lor—11 + ||Sk—l||):| lgxlls

61091



IEEE Access

R. B. Yunus et al.: New CG-Based Algorithms With Second-Order Curvature Information

:[ 11— 21l
c2(L + Dllgellllsk—1ll

[1— 3
=|1+ llgkll,
2

Therefore, if we let py := [1 + ] then we have, ||di || <
2. Hence, the search direction is bounded. OJ

Lemma 8: Consider the sequence {xi} generated by
Algorithm 1, assuming gr # 0, and Hypothesis 3 is satisfied.
Furthermore, based on the results from lemmas 3.2 and 3.4,
which established that dy is a sufficient descent direction,
it follows that there exists a small positive step length o™ such
that

L+ 1)||Sk—l||)j| gl

|1 19|

e +a*dy) < Ok +da*g] (41)

holds, this indicate that « is well-defined.

Proof: In order to demonstrate the existence of a
sufficiently small step length «*, we posit, to establish a
contradiction, that

F O + ajdi) > Ok + 8agl di, Yaj > 0, holds,  (42)

such that lim «; = 0. But, since f(x) = 2||R()c)||2 as stated

j— 00
in (11), this indicates

1
flu) = EIIR(Xk)II2 >0, Vk, (43)

Furthermore, as mentioned in (10), ¥ lies between Py
and f(xz) In other words, it can be represented as a convex
combination of both f(x;) and Pg41. Moreover, Qp = f(xo)
at k = 0, then we have Vk, Qr > 0. Furthermore,
by utilizing the constraint that dj is bounded, equation (8)
transforms to f(xx + ajdy) > O — (Sajnj||gk||2, therefore,
using lim;_, oo j = 0, we have

J () = Ok. (44)

On the other hand, Q; = %, Implying that,
Oy can be expressed convexly as a combination of f(xz) and
QOr—1, consequently, This signifies that n;_; = 0, since Py_
and Qy_ are both non-zero. Therefore, the non-monotone
line search turns monotone that is, equation (8) becomes

[ + ardy) > ) + (Sa]g dy, Showing that

F O+ ajdi) — f ()
o

> 8gldj. (45)

by taking the limit as j — oo from equation (45) and making
use of the assumption of uniform continuity of the gradient,
we have g; Tdy > 6 & T dy. Nevertheless, since 8k Tdy < 0,
it holds that § > 1; this leads to a contradiction, and thus,
we conclude the proof. O

The following lemmas are critical for proving Theorem 9.
However, their proofs can be found in [45].

Lemma 9: Suppose Hypothesis 1 is valid; if the iterative
sequence {xy} is produced by Algorithm I, then it can be
established that fi, < Qk for every value of k.

61092

Lemma 10: Suppose that Hypothesis 2 is valid; if the
iterative sequence {xi} is generated by either TTCGCI or
TTCGC2, it can be deduced that
2(1 -6 Td

Lo
c1

Remark 11: Suppose that Q; < I/f]for all0 <j <k, given
the initial condition Py = 1, and considering that ny € [0, 1],
then we have

L

m i
Pip=14+> []nm=i+2 (47)

Theorem 12: Suppose l?f(z)an;_gquation (11) defines the
function f (x), and Hypothesis 1 and 2 are valid. The resulting
sequence {x;} produced by either TTCGCI or TTCGC2
algorithms is encompassed by the level set £, and

lim inf ||gk]| = O, (48)
k— 00
Moreover, if Nmax is less than 1, then
Jim{lgell = 0, (49)
Proof: To begin W1th we present the fact that
ferr < O — Bligil, (50)
considering the line search in equation (8), we have
fir1 < Ok + douwgl dy, (51)

and the inequality in equation (47), we obtain

21 = )\ ( lgl il
— . 52
Jir = G ( Y )(||dk||2) 62

Based on the sufficient descent property from lemma 3.2. and
the bound property from lemma 3.4, we have

28(1 — 8)¢?
Ser1 < Ok — ((—2)"5‘) lgell>. (53)
c1¢py

where,
25(1 — 8)p?
Cl(ﬁf .

combining the cost update in equation (9) and equation (50),
we can obtain

NkPrQk + frs1

(54)

_ MePrQe + Ok — Bligel®

O = < (55)
Pr+1 Prt1
_ QumPrst + 1) — Bllgill?
Prt1
QiPis1 — Bligkll? Bl
— A TP _ g - B (56)
Py Prt1

As f is bounded from below, and for all k, fi < Ok,
we can deduce that Oy, is also bounded from below. Therefore,
it follows from (56) that

0 2
5o lsel 57

P
k—1 k+1
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TABLE 1. List of test functions, initial points, and Residual type.

No. Function name Initial point Residual type
F1  Penalty Function 1 [50] (3,3,...,3)7 Non-Zero
F2  Variably Dimensioned [50] (1— %, 1— %, 0T Zero
F3  Trigonometric Function [51] (32,07 Zero
F4  Discrete Boundary-value [51] G — Loy — D Zero
F5 Linear Full Rank [51] (1,1,..., )7 Non-zero
F6  Problem 202 [52] (2,2,...,2)" Zero
F7  Problem 206 [52] (2,2,...,2)" Zero
F8 Problem 212 [52] (0.5,0.5,...,0.5)" Zero
F9 Raydan 1 [50] (5, 2,17 Non-zero
F10 Raydan 2 [50] () 1), Non-zero
F11 Sine Function 2 [53] (1,1,..., )" Zero
F12 Exponential Function 1 [50] (A5 A, )T Zero
F13 Exponential Function 2 [50] (n%, n%, e niz)T Zero
F14 Singular Function 2 [50] (1,1,..., )" Zero
F15 Ext. Freudenstein & Roth Func- (6,3,6,3,...,6,3)" Zero
tion [50]
F16 Ext. Powell Singular Function (1.5E —4,...,1.5E —4)7 Zero
[50]
F17 Function 21 [50] (1,1,..., )7 Zero
F18 Broyden Tridiagonal Function (—1,—1,...,—1)T Zero
[51]
F19 Extended Rosenbrock Function repmat([—1:1],[5,1]) Zero
[51]
F20 Extended Himmelblau Function (1, %, 1, %, o1 %)T Zero
[54]
F21 Function 27 [50] (100, =5,...,5)" Zero
F22 Triglog Function [54] (1,1,..., )7 Non-zero
F23 Zerojacobian Function [50] if i 1, 100(";100), if i > Zero
o (1=1000)(n—500)
’ (60n)2
F24 Exponential Function [50] (0.5,0.5,...,0.5)" Zero
F25 Function 18 [50] (0,0,...,0)" Zero
F26 Brown almost linear function (0.5,0.5,...,0.5)" Zero

[51]

If ||gx || were bounded away from 0, the equation (56) would
not hold since Px4+1 < k + 2 by (47). Hence, if nyqr < 1,
then by (47),

ko k k
Py =1 +Zan4 = l-l-zrrlyjai = Zﬁinax
Jj=0 i=0 Jj=0 =0

1
= (58)

- Nmax

Therefore, we can infer that (48) directly entails (49).
Therefore, the proof is concluded. 0

VOLUME 12, 2024

Remark 13: The above proof of theorem 12 is for
TTCGCI; the proof for TTCGC2 is similar with slight
modifications.

IV. NUMERICAL EXPERIMENTS

This section reports numerical results obtained to solve the
NLS problems using the proposed TTCGC1 and TTCGC2
algorithms. We showcase a series of numerical trials to
evaluate the effectiveness of these suggested approaches.
We investigate 26 benchmark test functions. The list of
the test problems, their initial points, and their respective
references are reported in Tables I, we solved each test
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problem with the following five dimensions ranging from
3000, 6000, 9000, 12000, and 15,000. We performed
the experiments by evaluating the suggested TTCGClI
and TTCGC2 against Kobayashi et al’s CGSQN [31],
Dehghani et al.’s M1 [32] and Yunus et al.’s SSHS [57] as
points of comparison. We carried out the experiment using
MATLAB R2022a on a personal computer with an Intel (R)
CORE(TM) i7-3537U processor running at 2.00 GHz and
having 8 GB of RAM. The algorithms were executed with
the specified configuration of parameters:
o TTCGCI algorithm: 1,5, = 0.1, Npax = 0.85, v =
0.5,k = 1078,

o« TTCGC2 algorithm: ¢ = 1074, Nmin = 0.1, Npax =
0.85, 9% =7/8,k = 1078.

o CGSQN algorithm: The parameter settings for this
method remained unchanged, as in [31].

o MI algorithm: The parameter settings for this method
remained unchanged, as in [32]

o SSHS algorithm: The parameter settings for this method
remained unchanged, as in [57]

Furthermore, throughout the iterative  process,
we employed a stopping criterion, which is |lgk]| < 107%.
We reported that each algorithm had reached a solution when
the criterion was met, and we marked any failures with the
label “F” in case any of the following conditions occurred:

1) If there are more than a thousand iterations.

2) If the count of function evaluations went beyond 5000.
To evaluate the effectiveness of the proposed algorithms,
we utilize the following comparative metrics: (i) Number
of iterations, (I7) (ii) Number of function evaluations,
(FE) (iii) Number of gradient evaluations, (NG) (iv) CPU
time (CPU) required to reach the approximate solution,
and (vi) Residual Value (V_F). The outcomes of the
numerical experiments are presented in Tables 2, 3, 4, and 35,
respectively.

Furthermore, to offer a comprehensive perspective on the
comparison, we have visually summarized the data presented
in Tables 2, 3, 4, and 5 by using the widely recognized
Dolan and More [55] performance profile. This can assist
in standardizing the comparison of methods. Let’s consider
a method labeled as n, and a problem referred to as ny,.
In our evaluation, we focus on a performance metric, which
can be either the number of iterations, number of function
evaluations number of gradient evaluations, CPU time, or the
residual value. We denote by b, ,, one of the mentioned
metrics required by method m to solve the problem. To gauge
the performance of a solver s on problem p relative to the best
performance achieved by other solvers for the same problem,
we utilize the performance ratio 7, , defined as follows:

_ bp.s
min{b,;:s€S,p € P}

Ip,s (59
let M represent the set of solvers and P denote the set of
problems. Subsequently, consider ps(7) as the probability for
asolvers € § that a performance ratio r, s falls within a factor
of T € RT of the best achievable ratio. The formulation for
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FIGURE 2. Performance assessment relative to the number of functions
evaluation.

ps(T) is expressed as follows:

ps(T) = nLSiZe{p EP: lOgZ(rp,s) <t} (60)
P
According to their guidelines, the solver having the highest
probability ps(7) is deemed the top-performing solver.

The comparisons were conducted based on the specified
metrics depicted in Figures 1 through 5. Upon examination of
these figures, it becomes apparent that the proposed TTCGCl1
and TTCGC2 algorithms consistently outperform their rivals,
M1, CGSQN, and SSHS across all five metrics. In a broader
context, Figure 1 within the factor ¢ > 1 indicates that
TTCGC1 and TTCGC2 solve approximately 85% and 69% of
the test problems with less number of iterations, whereas M1,
CGSQN, and SSHS solve nearly 50%, 69%, and 74% of the
test problems, respectively. In Figure 2, at T > 2 it is evident
that TTCGC1 and TTCGC?2 address nearly 97% and 70%
of the test problems with the minimum number of function
evaluations. In comparison, M1, CGSQN, and SSHS handle
approximately 50%, 70%, and 73% of the test problems in
terms of the number of function evaluations, respectively.
In Figure 3, it is illustrated that TTCGCI and TTCGC2
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FIGURE 4. Performance assessment relative to the number of gradient
evaluations.
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FIGURE 5. Performance assessment relative to the least zero residual
errors.

successfully address nearly 95% and 74 % of the test problems
with a minimal number of gradient evaluations. Conversely,
M1, CGSQN, and SSHS manage 50%, 63%, and 70% of the
test problems in terms of the number of gradient evaluations,

VOLUME 12, 2024
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Evaluate A\;, using (67)

|
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TTCGC(byy, Asy.)

l
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|

FIGURE 6. Steps for solving Robotic model with 4DOF.
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FIGURE 7. Synthesized robot paths of Lissajous curve.

respectively. Moreover, in terms of the CPU time, in Figure 4,
in particular at T > 2 TTCGC1 and TTCGC2 demonstrate
effectiveness by solving approximately 94% and 79% of the
test problems in the shortest amount of time. In contrast, M1,
CGSQN, and SSHS address almost 49%, 72%, and 74% of
the test problems, respectively. While TTCGC2 demonstrates
comparable performance to the SSHS method, it surpasses
both M1 and CGSQN across all metrics. The performance
of the TTCGC1 algorithms surpasses that of the TTCGC2,
M1, CGSQN, and SSHS algorithms, as indicated by Figure 5,
it becomes evident that the TTCGC1 methods’ convergence
offers a notably accurate approximation of the solution
with significantly fewer errors, where t* represents the
count of instances of zero residual problems. Consequently,
the proposed approaches are efficient with low memory
requirements and may represent a better option.
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FIGURE 8. End-effector path and intended path of Lissajous curve.
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FIGURE 10. Monitoring the residual error of Lissajous curve along y-axis.

V. APPLICATION TO 4DOF MOTION CONTROL OF ROBOT
MODEL

This section presents an application of the proposed TTCGC
algorithm to address a practical robotic model. The model
has been extended from its initial three degrees of freedom

61100

(3DOF) state, as discussed in [56] and [57] to encompass
four degrees of freedom (4DOF). Furthermore, a 4DOF robot
arm can be helpful in various applications such as assembly
lines to pick and place parts, painting applications to ensure
even coverage, and welding applications to ensure accurate
welds [58]. The depiction of the planar four-joint kinematic
model and the formulation of the discrete kinematic model
equation involving four degrees of freedom are conveyed
through the equation below.

4

C L 0 6 .16

5(6) = 2/4_1]0?)5(14‘ 2+ 46| 61)
21 lisin®r + 60>+ ... +0))

where s(-) represents the kinematic transformation and
positioning of a robot’s endpoint or any component of the
robot concerning active adjustments in its joints, denoted by
0; € R*. Each link is designated as [; (where j takes values
j = 1,2,...,4) and signifies the length of the respective
link. Furthermore, within the notion of controlling robotic
motion, s(f) embodies a vector indicating the position of
the end effector. Let us consider A, € R? to represent
the vector defining the desired path at a specific moment,
say tr. We have devised the subsequent least-squares model.
This formulation will be computed within each time segment,
denoted as f; belonging to the interval [0, #;]. We state the
optimization problem as follows:

1
in =||s(0) — Ay |12, 62
errel;Rgzlls() Ml (62)

In which A;, , as documented in [56], [57], and [59], represents
the desired trajectory at the instance #; of a Lissajous curve
depicted as

1
1.5+ 0.4 sin(%)
)\tk = ﬁ

, (63)
— 404 sin(n—tk + z)
2 + 5 3
The structure of (62), as demonstrated earlier, resembles
that of (11). This similarity enables the utilization of the
TTCGC algorithm to evaluate its solution. The flowchart in
Figure 6 outlines the procedure for addressing the challenge
of controlling robotic motion. Now, to solve the model and
then simulate the outcomes, we make use of the combination

at the time moment ¢ = 0 denoted as 6;,, = [0, , %, 51,
where the length of each link is to [; = 1 for j =

1, 2, 3, 4. Additionally, it requires the utmost duration, t,,,5x =
10 seconds within Algorithm 2.

Upon examination of the illustrated figures that display
the results of solving equation (62) using the TTCGCl
algorithm, Figure 8 depicts the robot’s end effector model
accurately following the desired path. Figure 7 effectively
demonstrates the accomplishment of synthesizing robot
trajectories for the task. Figures 9 and 10 depict the error
rates of residuals, where TTCGC1 and TTCGC?2 exhibit the
lowest error at approximately 1079, followed by SSHS with
107>, CGSQN with 10~%, and M1 with 10~3. The remarkably
low residual error rates of TTCGC1 and TTCGC?2 in this case
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underscore the algorithms’ good performance, affirming their
effectiveness in seeking accurate and reliable solutions for
least-square models.

VI. CONCLUSION

In this article, two coefficients for the TTCG method were
developed to address nonlinear least-squares problems. These
proposed algorithms are constructed based on the structured
secant equation and are derived using properties of sufficient
descent and the Dai et al. conjugacy condition. We have
demonstrated that both algorithms ensure sufficient descent
conditions regardless of any specific line search method.
Furthermore, by employing the nonmonotone line search
technique presented by Zhang and Hager [45], we have
established the global convergence of these algorithms, sub-
ject to certain conditions. We have also demonstrated these
algorithms’ numerical efficiency and robustness through
benchmark test problems, showing their competitiveness.
Additionally, to illustrate the practical applicability of the
proposed algorithms, these algorithms are more applicable
than the others in addressing a 4DOF robotic motion control
problem. Finally, future work in this area will involve the
incorporation of the modified structured secant equation as
delineated in [32].
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