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ABSTRACT Iterative team-based learning (TBL) is a common educational strategy for collaborative
learning that involves sequential phases of individual and group learning activities. The advent of digital
learning platforms, with the accumulation of learning log data, presents an opportunity to leverage
data-driven techniques to enhance TBL practices. However, applying data-driven approaches in iterative
TBL scenarios has received limited exploration in existing literature. Through a review of initial studies in
this domain, data-driven iterative TBL emerges as a promising area. To explore this topic, we introduce a
novel framework, drawing from the GLOBE framework for group learning, aimed at integrating data-driven
designs into iterative TBL settings. This framework is proposed to guide data and activity design within
iterative TBL, comprising four phases of group learning activity workflow and three essential steps of data
flow. Additionally, we present two authentic instances supported by empirical evidence, offering insights into
how educators can implement data-driven designs across different phases of TBL. Within the data-driven
environment, we also uncover potential impacts and challenges of data-driven iterative TBL, to identify
avenues for future research that can further expand our understanding of the possibilities in this domain.

INDEX TERMS Team-based learning (TBL), collaborative learning, group formation, peer evaluation, rater
reliability, data-driven support, computer-supported collaborative learning (CSCL), learning analytics (LA).

I. INTRODUCTION
Collaborative Learning is widely embraced in contemporary
education due to its emphasis on the social-emotional aspects
of learning [1] and the value placed on interpersonal skills
in modern society [2]. One specific implementation of group
learning is Team-Based Learning (TBL), an educational
strategy comprising sequential phases of individual and group
learning activities, as well as peer evaluation. This approach
often spans multiple rounds and encompasses an entire
semester, functioning as an iterative process [3].

A. ITERATIVE TEAM-BASED LEARNING
TBL was initially introduced in medical education [4]
and revolves around flipped learning practice within small
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groups, departing from traditional lecture-driven instruction.
As a typical form of flipped learning, learners utilize
class time for in-depth discussions, problem-solving, and
application of concepts initially acquired through individual
learning assignments [5]. The process commences with
individual learning based on provided materials, followed by
group discussions and activities designed to foster critical
thinking, problem-solving, and decision-making. The former
steps can recur iteratively, enabling learners to reflect on their
progress and enhance their skills through formative feedback
in each iteration [3]. In this paper, we focus on this type of
design as iterative TBL. Extensive studies have examined
the dynamics of teamwork within this context, exploring
various facets such as transition processes, action dynamics,
and interpersonal relationships [6].

TBL can also adapt to hybrid learning contexts through
computer-mediated support, known as computer-supported
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team-based learning (CS-TBL) [5]. As a sub-field of
Computer-Supported Collaborative Learning (CSCL) [2],
CS-TBL leverages communication tools such as online
forums and hybrid meeting rooms, enabling asynchronous
learning and overcoming the constraints of physical space
and time. This flexibility is valuable during recent global
pandemics, as it offers convenience and expanded oppor-
tunities for interaction in hybrid learning environments.
Existing studies have shown that CS-TBL is effective
in improving learner motivation, engagement, and overall
learning outcomes.

B. DATA-DRIVEN SUPPORT FOR EDUCATION
In the meantime, the promotion of educational ICT envi-
ronments and the installation of computer-based learning
systems have generated a substantial amount of educational
data pertaining to student learning behavior [7]. This data
holds great promise for learning analytics (LA), which
involves measuring, collecting, analyzing, and reporting data
about learners and their contexts with the aim of improving
the learning environment [8], [9] and, in turn, influencing
their learning behaviors and improving outcomes through
appropriate remedial actions [10], [11], [12]. In various
educational settings, including TBL, predictive analytics can
be conducted using learning log data previously generated by
students [9], [11].
Teacher concerns regarding using computers in teaching

primarily revolve around time-saving, personalization, and
assessment [13]. To orchestrate a successful TBL, teachers
must carefully plan the lesson, facilitate collaboration,
motivate students, ensure learning, and evaluate achieve-
ments. However, this process can be time-consuming. For
example, teachers often spend considerable time aligning
students based on different learning contexts [14]. In online
environments like MOOCs (Massive Open Online Courses),
the lack of information about students canmake it challenging
to create appropriate groups [15]. Furthermore, due to limited
workload capacity, teachers struggle to provide personalized
and accurate interventions and feedback to every student or
group [16], [17], [18]. Therefore, addressing these concerns
by incorporating data-driven design using learning logs
and prediction models from LA holds significant promise.
For example, automated group formation with data can
save time, enabling personalization using various indicators.
Additionally, a peer evaluation system can assist in assessing
group work and collecting data for subsequent formation.

Many studies in collaborative learning field have pri-
marily focused on utilizing learner attribute data to predict
performance [19], aid decision-making for incident detec-
tion [20], and to provide formative feedback through data
visualization [21], [22]. For instance, the significance of
domain knowledge has been emphasized in problem-solving
tasks that require high knowledge construction [23], [24].
As a result, learners’ prior knowledge and skills is taken
into consideration when assigning them to appropriate
group members [25], [26], [27]. Additionally, personality

TABLE 1. Comparative table of main bibliographic references on TBL and
data-driven studies.

traits from the Big Five models, particularly the aspect of
externality that reflects collaborative tendencies, have been
examined to enhance collaboration and improve learning
outcomes [28]. Furthermore, group-level indicators, such as
group size, cohesion and intimacy among members, have
been investigated in various studies for its impact on group
performance and production [27], [29], [30]. In addition
to performance prediction, behavior models from sequence
analysis and network analysis are widely used to examine
group dynamics during the learning process [31], [32], [33],
[34]. Moreover, researchers have attempted to provide group
awareness information by focusing on key factors of learning
activities, enabling timely scaffolding of learners during
group learning. This computational artifact can mediate
collaboration and unveil CSCL processes [35]. Examples
include customized instructions based on equal contributions
in collaborative wikis [21] and the visualization of group
knowledge maps in collaborative search [36].

C. CONTRIBUTIONS AND INNOVATION OF THIS WORK
Table 1 summarizes the aforementioned studies on TBL and
data-driven implementations. On the one hand, conventional
TBL studies derive from classroom-based scenarios. Despite
advancements in scaffolding services with computers for
online environments, data-driven design is less addressed.
On the other hand, LA studies utilize educational big data to
enhance educational practice. They have focused on learner
attribute data, depicting and scaffolding manifold aspects of
group learning. However, their data usage is often confined to
a single TBL episode, overlooking the potential for reusing
data in long-term scenarios with multiple times of TBL
activities.

Iterative TBL, which involves consecutive group works,
is a typical context where the data cycle of reuse is crucial.
By accumulating learning evidence from outside and within
the group learning context, a more flexible framework can
be developed to support iterative TBL designs in various
learning contexts. Through a review of the aforementioned
initial studies, data-driven iterative TBL emerges as a
promising area to explore further.

65968 VOLUME 12, 2024



C. Liang et al.: Data-Driven Support Infrastructure for Iterative Team-Based Learning

Accordingly, to enhance iterative TBL processes with data
support and address the limitations of existing data-driven
studies, this topical review proposes a data-driven framework,
which covers three steps of data-driven design in four phases
of CSCL [37]. The proposed framework aims to integrate
various data sources, including learning log behaviors such as
e-book reading logs, to support all phases of group learning.
By incorporating data accumulated from multiple rounds of
TBL implementations, the framework levels a playground for
data-driven services and predictive models that contribute to
developing optimal group learning environments.

D. PAPER STRUCTURE
In the subsequent sections, we will commence by introducing
the data-driven design framework, focusing on the activity
workflow of team-based learning, which encompasses indi-
vidual learning and group learning phases. Next, we will
delve into the potential and issues of data-driven support in
each phase, drawing on recent studies. Following this, wewill
outline our data-driven support design, comprising three
key steps: data synthesis, data utilization, and data analysis.
To provide concrete insights into the framework’s application
within authentic scenarios, we will furnish examples of two
enabling tasks. These examples also elicit the promising
prospects of data-driven design across various group learning
scenarios. In the subsequent discussion section, we will
debrief several pertinent issues that may arise when imple-
menting data-driven support in authentic learning contexts as
the results of the topical review. These include considerations
related to evaluation design, ethics, and the challenges
encountered in the implementation process. Finally, in the
conclusion section, wewill summarize themain contributions
of this topical review and discuss potential future directions.

II. ITERATIVE TBL WORKFLOW IN DATA-RICH
ENVIRONMENT
In a typical TBL workflow, students usually start by
individually exploring the learning topic as a pre-group
activity before transitioning to the group learning phase [3].
Some assessments are also included in this phase to gauge the
readiness for group learning. Subsequently, group learning
activities commence, encompassing various tasks such as
discussions, presentations, and other collaborative work. The
former steps can recur several times iteratively, and finally,
the TBL concludes with peer evaluations. Figure 1 below
illustrates the generic workflow for TBL according to [3].
When implemented in a data-driven environment, the

learning log data from previous rounds empowers teachers
to deliver targeted interventions [20]. With the increasing
accumulation of learning log data, recent CSCL studies
have opened avenues for supporting collaborative learning
with state-of-the-art technical frameworks and data-rich
environments [2]. Group Learning Orchestration Based on
Evidence (GLOBE) [37] outlines four phases of collab-
orative learning for data-driven support: group formation,
orchestration, evaluation, and reflection. Compared to the

original TBL design, the framework incorporated the peer
evaluation phase into the recurring steps, wherein students
can assess the products or outcomes of their peers’ learning
experiences, engaging in a formative reflection process [38].
Digital systems such as group formation and peer evaluation
modules within the GLOBE framework facilitated the data
flow with AI scaffoldings. As the GLOBE infrastructure
matures, LA for group learning, such as algorithmic group
formation, can become increasingly automated with the
growth of data on group learning performance.

Given this background, we will now introduce data
collection opportunities in each phase of iterative TBL
throughout the workflow (refer to Figure 2). During the
individual learning phase, behavior logs and readiness test
scores are collected for each learner. These data can be
computed as learner model attributes that depict students’
learning characteristics and can be utilized for optimized
group formation. In the group orchestration phase, inter-
actions and engagement can also be logged, contributing
to group awareness for formative feedback and reflection.
Furthermore, teacher and peer ratings and comments are
incorporated into the group learning process, serving as
evidence of group learning performance. The following
section will provide a detailed breakdown of the activity flow
within one round of iterative TBL.

A. INDIVIDUAL LEARNING PHASE
As an indispensable preparation phase in flipped learning
design, individual preparation holds paramount importance.
[39] has pointed out that the individual ideation phase
before the group learning starts is significant and can
improve the quality of subsequent collaboration. In the
team-based learning design, individual learning activities
cover pre-reading the learning materials, and pre-test for
readiness [5]. During these individual learning activities,
learner attributes can be modeled from learning logs and test
scores. In a broader view from a data-driven perspective, the
data covered in this stage is not confined to cognitive skills
but also covers general attributes such as personalities and
demographic information from online surveys.

According to research from [40] on cognitive load theory
in collaborative learning, antecedents describing all attributes
available before the group learning starts can pose an effect
on the subsequent phases of collaboration processes and
consequences. Therefore, they can be utilized for data-driven
support in the group learning phase such as optimized group
formation and early detection and intervention for left-behind
students.

Moreover, as there are recurring steps as a cycle, the
experience gained in group learning during the previous TBL
round can significantly contribute to subsequent individual
learning rounds. When reflecting on the prior TBL round,
learners have the opportunity to recap their group learning
experiences, draw lessons from peer evaluations, set goals,
and make revisions for improved performance in subsequent
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FIGURE 1. Generic workflow for TBL reproduced from [3].

FIGURE 2. Workflow of iterative TBL with GLOBE.

TBL iterations. For instance, collaborative writing tasks
and intra-group feedback enhance report writing through
effective TBL applications. The collaborative problem-
solving approach, where challenging problems are addressed
with peer assistance during each group learning round, can
support successful problem solving on similar topics during
the individual learning phase.

B. FOUR PHASES OF DATA-DRIVEN GROUP LEARNING
When it comes to the group learning phase, Group Learning
Orchestration Based on Evidence (GLOBE) [37] presents a
framework for AI-based collaborative learning support with
data-driven approaches in an LA-enhanced environment.
There are four phases of collaborative learning: group
formation, orchestration, evaluation, and reflection, where
data flow and AI scaffold are empowered by the group
formation and peer evaluation modules (see Figure 2). The
following sections will further introduce four phases of
GLOBE with the continuous data flows among the GLOBE
modules.

1) FORMATION
In the broader scope of Computer Supported Cooperative
Work (CSCW), research related to group formation revolves

around the concept of ‘‘studying and designing technologies
that bring people together in partnerships, teams, crowds,
communities, and other collectives’’ [41]. In the realm of
group learning design, group formation assumes a funda-
mental role [42]. Traditional grouping strategies like seating
students next to each other or spontaneously forming groups
have limitations when devoid of data, potentially leading to
issues such as excessive homogeneity [43].

Collaborative learning within properly constituted groups
surpasses conventional teaching methods [44]. Numerous
factors, including the characteristics of group members, the
context of the grouping process, and the techniques used to
create groups, can influence group learning processes [45].
Among these factors, knowledge holds a prominent posi-
tion and can be assessed through knowledge test scores
and graph-based knowledge models. Nevertheless, beyond
ordinal scores, the interrelationships between individuals and
their personalities also play a pivotal role in group formation.
In data-rich environments, student model data from learning
logs allow for the incorporation of student characteristics
when forming groups [46]. In Figure 2 of the data flow
model, LA for group learning, such as algorithmic group
formation, can become increasingly automated as more data
from previous group work experiences accumulates.
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As per the theory of proximal development (ZPD)
[47], it is recommended to compose groups with varying
abilities, especially in contexts where mutual assistance
is encouraged [48]. Hence heterogeneity often manifests
in distinct levels of prior knowledge and cognitive skills.
Conversely, fostering homogeneous engagement in learning
enhances the quality of group tasks, as well as the interaction
and self-efficacy among learners [49], [50]. Homogeneity in
this context often pertains to non-cognitive aspects, such as
personality and interests.

Manifold techniques are employed for creating learning
groups or teams, contingent on different student model
data and objectives. One approach for forming groups with
disparate abilities involves ranking students based on specific
indicators and selecting students from various parts of the
distribution [51]. Homogeneous groups are created using
clustering techniques founded on distance measurements.
For example, the K-means algorithm clusters students with
similar attributes [52], [53], while hierarchical clustering
aids in group recommendations based on collaborative fil-
tering [54]. In scenarios where students generate substantial
learner-created content, semantic methods are utilized to
group students based on textual features, considering knowl-
edge diversity, textual similarity, and a semantic network
of learners’ interaction texts [55], [56], [57]. However,
quantifying group heterogeneity with comparable values
remains challenging when employing semantic matchmakers
[58].

2) ORCHESTRATION
The orchestration phase reflects the process of group learn-
ing, which can include assorted activities such as discussions,
collaborative working (e.g. programming, knowledge map
generation), and presentations. The process data incorporates
textual or voice data that depict discussions, video data,
and behavior logs in group learning platforms. Effective
communication is essential for reflecting interactions among
participants, and these interactions can be effectively cap-
tured by instrumenting relevant mediums. In the context
of online education, online forum discussions have been
analyzed using social network analysis techniques [32],
[33], [34]. Currently, AI is widely employed to analyze
the interactions during collaborative learning. This includes
voice processing coupled with semantic analysis, senti-
ment recognition [37], and the capture and coding of
gestures from video data collected during collaborative
sessions [59]. Beyond the conventional indicators, behavior
logs in group learning platforms open an avenue for
interactive logs in computer-supported collaborative learning
contexts.

The outcomes of these analyses, often used as indicators of
learning performance, can be presented in ways that provide
group awareness information on the collaborative process for
learners, offering valuable formative feedback [38]. These
insights offer transparency, enabling teachers to intervene
promptly [60].

Moreover, the data derived from group learning processes
can be further leveraged in subsequent phases and rounds
within the GLOBE ecosystem. It’s important to note that
team-based learning encompasses not only group discussions
but also programming, workshops, and other collaborative
activities, and different kinds of process data can be collected
via xAPI statements [61].

3) EVALUATION
The group learning evaluation phase serves a dual purpose,
as it can not only assign course grades but also enhance
the quality of group learning while motivating individual
learners [62]. The evaluation methods can be broadly
categorized as summative and formative assessments [63].
Though the original TBL paradigm put peer evaluation as a
summative step in theworkflow [3], formative assessment has
been proven to be highly beneficial for stimulating reflection
and immediate corrections [64], [65]. Thus, in data-rich
environments, adopting instant feedback [21] and enriched
group awareness information [22] is prevalent to support the
group learning process.

To bolster peer evaluation with data-driven support, group
awareness information is generated based on accumulated
learning logs, including forum engagement and knowledge
contributions [21]. This information equips raters with more
reliable decision-making capabilities. The reliability of peer
evaluation can be quantified by estimating peer rating
potentials, utilizing student model data from previous group
learning experiences, which assigns different weights to
ratings based on the reliability of the raters [66]. Furthermore,
behavior pattern analysis based on web survey theory can
describe the rating behavior patterns [67]. Additionally,
natural language AI conversation analysis plays a crucial role
in interpreting the quality of written feedback [68].

In parallel, online evaluation systems enable participants
to provide feedback to their partners, thus contributing to the
modeling of their group work and task experiences [40]. The
anonymity offered by online evaluation collectors enhances
the reliability of the feedback provided by participants [69].
With the increasing adoption of self-reported evaluation
and immediate feedback from actual participants in TBL
contexts, coupled with attributes of the group learning
process from the previous phase, all this evaluation and
feedback data can be synchronized with the student model
and subsequently used for various algorithmic grouping
purposes within LA [70].

4) REFLECTION
After each round of group learning activities, the data
collected during group learning can be organized, structured,
and presented to both learners and instructors for reflective
purposes. This data encompasses information from the
orchestration and evaluation phases, serving to foster social
learning among students and provide teachers with valuable
insights through simple LA [71].
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For instructors, the analysis and visualization of classroom
activities are crucial for their professional development [72].
Through data reflection, teachers can access a dashboard that
highlights how the class progressed, whether it deviated from
the lesson plan during the actual activity, and whether the
students were able to follow the TBL activity design [73].
Accordingly, teachers can refine the learning design based on
the reflection as professional training.

Additionally, this data can serve as a foundation for
creating more advanced evaluation metrics tailored for
process-based competency assessments [74]. Reflecting on
these performance indicators can motivate students to
develop strategies for addressing their weaknesses, actively
contributing to their self-directed learning [75]. In TBL, this
implementation of formative learning encourages students to
apply their acquired knowledge and enhance areas where they
may have identified deficiencies during the current round
of group learning. This iterative process fosters continuous
improvement.

Moreover, the insights from LA research can be harnessed
for student modeling, leading to advanced service innova-
tions like AI recommendations to identify determinants of
desirable learning performance [19]. This concept can also
be seamlessly integrated into the realm of TBL, providing
valuable support and guidance to students.

III. STEPS FOR CONDUCTING ITERATIVE TBL WITH
DATA-DRIVEN SUPPORT
This section will introduce the iterative TBL framework
in a data-oriented perspective. We proposed three major
steps of data-driven design of TBL scaffold applications (see
Figure 3). It begins with synthesize data created in individual
learning activities, collect and utilize log data during the
group learning, and analyze data to create intelligent models
for LA research.

A. SYNTHESIZE: INTEGRATE MULTIPLE DATA SOURCES
FROM INDIVIDUAL LEARNING
The initial stage of data-driven design involves integrating
various data sources. The data covers not only traditional test
scores but also learning behavior logs from assorted digital
platforms. The scope extends beyond learner-knowledge
connections, such as the proficiency of each knowledge
unit, to include knowledge-knowledge connections, like
precedence in the learning order. Meanwhile, the data is
not restricted to numerical variables; it includes relationship
graphs and interactions in reading activities, like overlaps of
annotations. The diverse data sources can be interconnected
through Learning Tools Interoperability (LTI) protocols, and
learning logs from different platforms can be formatted into
xAPI statements. Leveraging the integrated data, learner
models can be constructed to depict student characteristics
based on their learning behaviors. This integration also
facilitates vector-based input for LA algorithms.

B. UTILIZE: COLLECT GROUP LEARNING EVIDENCE FOR
THE SUBSEQUENT ACTIVITIES
To overcome cold start problems arising from limited data
on learner attributes when a teacher launches a iterative TBL
design, especially in offline school contexts, the framework
should incorporate the accumulation and re-use of data
during TBL. This aspect is often neglected in current
CSCL research. Therefore, it is essential that each technical
intervention tool employed in the TBL design not only
consumes data but also serves as a sensor of meaningful
learning behaviors. Within the aforementioned data-driven
iterative TBL framework, the framework not only leverages
learning log data from other platforms but also actively
collects data during the group learning phases. These data
offer insights into group learning performance, enhancing
the modeling of collaborative skills among learners. For
instance, engagement data, such as the number of utterances
and meaningful tokens, and the equivalence of participation,
can reflect a learner’s collaborative skills. Through multiple
rounds of group learning in iterative TBL, learner model
attributes related to group learning can be constructed for
subsequent group learning tasks and other LA applications.

C. ANALYZE: DISCOVER NEW PROSPECT IN GROUP
LEARNING
Over multiple TBL rounds, data can be collected and
subjected to analysis within an analytics engine for model
creation. Identifying struggling students from learning logs
and recognizing behavior patterns for targeted interventions
are frequent in LA studies. For instance, evidence from a
sufficient volume of training data can be harnessed to predict
successful group work and enable early identification of at-
risk students, particularly within flipped learning contexts.
Moreover, if the process of extracting models from evidence
can be automated, the dynamic recommendations for optimal
group formation settings for specific contexts or purposes,
based on continually updated data, become a promising
prospect. Guided by analysis outcomes, context-based group
formation with less parameter setting work can alleviate
teachers from the trivial task of manually creating groups,
empowering them to focus on other aspects of instruction.

IV. EXAMPLES OF ITERATIVE TBL WITH DATA SUPPORT
In this section, we illustrate two typical tasks that underscore
the significance of data-driven support in iterative TBL.
These cases specifically center on the group formation and
group work evaluation phase, two aspects that have received
less attention in related studies on CS-TBL. One of the
goals of presenting these studies is to prompt research on
phases before and after the ongoing orchestration phase of
teamwork, which also deserves data-driven attention. The
first task involves algorithmic group formation using learning
log data, and the second task pertains to the early detection of
peer evaluation reliability.
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FIGURE 3. Data flow of iterative TBL with GLOBE.

A. OPTIMIZED GROUP FORMATION
In this case, learning log data from the individual learning
phase of TBL are integrated to create groups, and the group
learning process and outcome of the current activity will be
collected and re-used for group creation in the subsequent
rounds.Meanwhile, indicationswith colors based on previous
round performance are shown to teachers for the intervention
of endangered students and groups. Finally, the accumulated
evidence can be used for data analysis to create prediction
models of successful TBL.

The data-driven implementation of algorithmic group
formation follows three steps of synthesizing, utilizing,
and analyzing data, following the data flow in Figure 3.
Firstly, a system using genetic algorithms is designed
and implemented to form groups using learning log data
from various data sources. In terms of data synthesis, the
presented group formation system enables student models
from different data sources underpinned by genetic algo-
rithms and LEAF infrastructure that aggregates multiple
learning logs [76]. These logs cover online reading logs for
engagement and annotation behaviors, quiz scores from the
LMS, uploaded offline test scores (performance data), survey
responses (perception data), and so on. They are synthesized
into a comprehensive platform and standardized for group
formation. Meanwhile, previous forum engagement data and
peer rating data indicating the group work experience are
collected and can be leveraged for subsequent rounds as well,
which happens in the utilization step.

To represent a group formation, one combination of
students constructs a candidate individual (G) as a set
of randomly-ordered students (s) partitioned by groups
(Figure 4(b)). To synthesize multiple data sources, there is
a corresponding vector covering different characteristics of
each student for the calculation of fitness value (Figure 4(a)).
Each dimension of a student vector is represented by a
certain variable selected by the user. Figure 4(a) illustrates
an example of metrics representation where each student (s)

is represented by a column vector with a characteristic (c)
as a dimension. Students are allocated into groups through
iterative processes from the first candidate individual (G)
with a genetic algorithm [77]. Beyond rankable scores, the
algorithm can consider relationship data describing positive
or negative connections between participants and annotation
data of common markers.

Secondly, As for data utilization, the continuous
data-driven support provided throughout the two phases of
GLOBE is summarized in Figure 5. A simple randomized
grouping followed by using evaluation scores for subsequent
grouping provides a feasible solution to the cold start problem
in data-driven research [78]. As shown in the figure, the
peer and teacher evaluations are logged into the learning
record store as part of the student model (orange circles)
and can be reused as input to the algorithm in the following
group formations (orange triangles). These inputs can also
identify students who may need special attention in the
current group learning beforehand [79] in the detail panel.
At-risk students and groups can be alerted in the instructor’s
panel, indicating that they need more attention from the
instructor. Furthermore, by utilizing accumulated group
learning evidence in the GLOBE ecosystem, predictive group
formation indicators were explored that can enable automatic
group formation based on teachers’ objectives in different
contexts for desirable performance in subsequent group
learning activities.

Further, the former two steps of data synthesis and
utilization have been implemented in authentic classes.
These studies encompass a range of learning contexts,
spanning from primary school to higher education levels.
Take an academic reading course in higher education as
an instance. In this course, TBL design was conducted
several times from week 3 to week 11 across the 15-week
semester [80]. Following the iterative TBL framework,
students went through the workflow of the weekly activity
shown in Figure 6. In individual learning, students read
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FIGURE 4. Algorithmic group formation based on multiple learning log data.

FIGURE 5. Continuous data feedforward for group formation function.

several articles on BookRoll, an e-book reading system that
can automatically collect learning data. Then, in the group
learning phase, they should share and discuss their reading
progress with their group members in the Moodle forum and
prepare a brief presentation as a group for the next offline

class. During the class, each groupmade presentations, which
were peer-evaluated by the audience (both the instructor
and students) in the classroom in the evaluation systems.
In the meantime, they made peer ratings on the initiative and
communication of their group mates in the peer evaluation
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FIGURE 6. Workflow of iterative TBL implemented in the academic reading course.

system for each week as well. They can check the forum
engagement dashboard and feedback from classmates for
reflection, which can help them improve for the subsequent
round.

Building upon the accumulated evidence, data analysis
was conducted to investigate predictive indicators of group
formation in specific contexts. From a preliminary correlation
analysis within a reading-based group learning environment.
The results revealed that individual achievement in group
work can be inferred from reading engagement and previous
peer ratings. Moreover, a homogeneous grouping strategy
based on reading annotations and prior group work expe-
rience can forecast favorable group performance in this
particular learning context.

B. RATER RELIABILITY IN PEER EVALUATION
To evaluate TBL, teacher evaluation is typically summative,
while it has limitations since one teacher cannot monitor all
group activities simultaneously [16], [18]. Moreover, issues
like social loafing and free-riding pose significant challenges
to effective TBL [63]. Thus, peer evaluation becomes crucial
to alleviate the teacher’s workload and provide real-time
insight into the group learning process [81]. Considering the
developmental stage, cognitive abilities, and social dynamics
of learners [82], peer evaluation activities are more suitable
for higher education settings. Nevertheless, implemented in
younger learners in junior high school [83], with the national
guidelines encouraging interaction among learners in K12
education [84]. However, it’s essential to provide clear rubrics
and articulate evaluation criteria in an understandable manner

for the target learners to enable broader implementation [85],
[86].

In peer evaluation, students provide ratings and feedback
on each other’s work, which is formative and can enhance
their performance in subsequent tasks [38]. However, peer
evaluation reliability is a significant concern, as the quality
of peer evaluation remains promising [65]. Recent studies
have introduced strategies to enhance the reliability of peer
assessment. These strategies include focusing on privacy
protection [69], providing group awareness support as
decision-making assistance [18], [21], and implementing
interactive peer evaluation platforms with backward feedback
mechanisms [87].

Nonetheless, issues of unbalanced grader reliability due
to individual differences among learners persist, leading to
less accurate evaluation results in practice. Some students
do not take the task of evaluating others’ work seriously,
rushing through the rating process and providing uniform
scores. This phenomenon is problematic, as obtaining fair
and constructive feedback is crucial in collaborative learning.
To address this problem, researchers have attempted to adjust
the final rating values based on grader-specific variables,
such as previous rating tendencies [88] and previous grades
for relevant tasks [66], [89]. However, the potential of using
learning data in digital systems has been underutilized,
limiting the comprehensive consideration of these variables
in existing peer evaluation designs.

To address the issue of rater reliability in peer evaluation,
data-driven support for the peer evaluation phase of TBL
can follow three steps mentioned in the previous section.
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FIGURE 7. Data-driven design of peer evaluation studies.

Figure 7 illustrates the data-driven design of peer evaluation
studies. Learner model attributes, which encompass all data
collected during the individual learning phase and depict
learner characteristics, have the potential to improve rater
reliability in peer assessments [66]. Therefore, this data is
synthesized into rating potential indicators, with specific
weights fine-tuned for each learner model attribute. During
the group learning phase, this case places a focus on the
dynamics of the evaluation phase, examining peer evaluation
behaviors in online systems. Concurrently, consistency
measures for each rater are implemented, indicating the
deviation between rating scores from experts (instructors)
and from the average level. The data gained from the peer
evaluation activity are then re-utilized in the next round of
TBL for analysis. Potential topics for data analysis include the
early detection of unserious raters before the peer evaluation
activity and the calibration of final scores received by each
learner.

Consider the case of early detection of unserious raters,
as introduced in [90]. This study takes place in a higher
education design course implementing a team-based learning
design. The peer evaluation activity entails rating group
presentations, focusing on interpretations of ‘‘good and bad
design’’ using knowledge from weekly lectures on concepts
in interaction design. Throughout each week of the experi-
ment, a new-topic lecture was provided through an e-book
platform before class. Individual learning included reviewing
lectures, participating in forum discussions, and summarizing
assignments. Within the group learning activities, students
engaged in group sharing of the previous week’s assignments.
They presented outcomes from their forum discussions in
jigsaw groups. In these jigsaw groups, peer ratings were
assigned to individual presentations, facilitated by the peer
evaluation system. In the final week, students worked in
groups to prepare a final presentation summarizing their
learning, which they delivered in class. The behavioral
pattern analysis in this study is rooted in the peer evaluation
of these concluding presentations.

Drawing from an earlier model of evaluation behav-
iors [91], six feature variables were proposed to identify
indicators of poor feedback quality. These variables encom-
pass two constructs: time features and scoring features.
Principal Component Analysis (PCA) was employed to
distill these constructs from the original dataset, capturing
the nuances of rating behaviors. The subsequent cluster
analysis revealed that unserious evaluators tended to rate
quickly and assign uniformly high scores. The study’s second
objective was to explore whether cases of unserious ratings
could be detected before the final evaluation round. Several
classification methods were compared in how well they
could predict whether a student would end up in the serious
or unserious rater cluster. The predictor variables were
taken from previous evaluation rounds and incorporated data
related to individual learning, including reading engagement
and forum participation. The results demonstrated that using
five or more predictors and applying logistic regression or
a neural network analysis led to classifications that were
approximately 70% accurate. Within this learning scenario,
the evaluation behavior in the preceding rating round
and reading engagement appeared to provide significant
information gain. In contrast, rating behavior in the initial
round and forum participation exhibited weaker predictive
power.

V. DISCUSSION
By addressing the broader discussions on data-driven iterative
TBL designs, we identify several key areas for future
investigation based on the results of the topical review. These
include the development of data infrastructure, addressing
privacy concerns, assessing the applicability across educa-
tional contexts, facilitating field implementation, evaluating
the effectiveness, and ensuring explainability.

A. DATA-DRIVEN INFRASTRUCTURE
The diversity of data available throughout TBL underscores
the significance of a data-driven infrastructure. However,
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not all regions possess existing infrastructure with multiple
learning log data available for analysis [92]. Some issues may
stem from policy constraints related to strict privacy laws,
while others could be attributed to cold start problems. In the
latter case, the importance of launching data sensors is vital to
initiate data-driven circulation. As suggested in the previous
discussions, LTI and xAPI provide a technical grounding for
data collection and a pipeline for cross-system exchange in
digital educational environments.

B. ETHICAL ISSUES AND PRIVACY
Challenges related to data usage, particularly ethical con-
cerns, data privacy, and policies on personal data, should
be addressed when designing data-driven services [93], not
only for TBL but for all practices concerning educational
data. For example, GDPR in Europe calls for a high level
of personal data protection, increasing the difficulty of
learning data aggregation in the synthesis phase. Therefore,
data-driven services need to align with the policies of
different regions to uphold human rights. To obtain full
ethical approval, explanations to the involved students and
parents regarding the research purpose, data collection, and
utilization are indispensable to follow the ethical committee’s
rules. Meanwhile, the database design and pipeline should
prioritize concerns related to anonymity, where only the
anonymized data omitting the personal information can be
extracted from researchers [94]. This is equally crucial for
user-end services that contain sensitive personal data, such as
peer evaluation systems, where the visibility of peer rating
scores requires careful consultation with teachers based on
educational scenarios [95].

C. IMPLEMENTATION OF DATA-DRIVEN SERVICES
Implementing data-driven support for authentic teachers and
students in real classrooms poses challenges, necessitating
attention to the curriculum design of TBL and the unfamil-
iarity of school teachers with digital systems. Hence, it is a
prerequisite to understand the teacher’s needs and educational
gaps. For instance, in group formation, creating groups
with learners who share similar strengths and weaknesses
enables focused attention on common challenging areas or
enhancement of proficiency in specific domains. However,
the traditional practice of creating such groups in everyday
classrooms involves time-consuming tasks like administering
pre-tests and aggregating data. Here, data-driven services
prove pivotal. Notably, positive feedback from teachers
underscores significant time savings in the streamlined group
formation process, reducing it from 1 to 1.5 hours to
approximately 30 minutes [37], thereby reducing the barrier
to incorporating group learning into everyday classroom
activities.

Moreover, in practical curriculum design, the workflow
of data-driven iterative TBL exhibits flexibility to adapt to
various learning scenarios. The order of individual learning
and group learning phases is not strictly divided and can be

intertwined in each round of implementation, as the key issue
remains to address the real needs of educational practitioners
through appropriate data support.

As contexts affect activities, the application of iterative
TBL should also adjust depending on the developmental stage
and cognitive capability of the target learners. For example,
as peer evaluation activities are typically implemented in
higher education [82], applying them in primary education
may require more effort in clarifying rubrics and criteria
to help students understand their responsibilities, potentially
encountering more obstacles. To enable flexibility across
different contexts, data-driven services can not only offer
advantages over laborious manual processes but also provide
an intelligent platform for effortless manipulation by recom-
mending settings, as seen in the group formation case [80].
This capability allows educators to experiment with diverse
grouping conditions based on data-driven recommendations
aligned with their objectives.

D. EVALUATION OF DATA-DRIVEN INTERVENTIONS
Understanding educational contexts is also crucial for
data-driven designers evaluating TBL. Solely assessing
performance from an algorithmic perspective may lack
pedagogical foundations. When evaluating a group formation
system, considerations should go beyond achieving accu-
rate figures and the best-optimized solution, and factors
like time sacrifice matter. In educational implementations,
relatively optimized output can be acceptable, especially
considering the importance of speed highlighted by frontline
teachers [13]. Consequently, co-designing with educational
practitioners is crucial to understanding actual demands
and what should be considered in empirical studies. The
evaluation indicator design should based on the educational
purpose [74].

Designing the evaluation approach is also a promising
task. Although traditional approaches like grading from
teachers and peer evaluations can reflect the performance
and effectiveness of TBL, they tend to be subjective and
summative. Hence the accuracy of the evaluation indicator
is another concern, as peer evaluations can be deliberately
crafted or influenced by unserious raters. As discussed in
the aforementioned case, data support, such as using learner
model attributes to predict those prone to free-riding with
social loafing, enhances the grounding of the evaluation
ecosystem in data-driven TBL.

E. EXPLAINABILITY OF TECHNIQUES
When evaluating TBL through objective behavior logs,
like group work dynamics and social network graphs,
it becomes evident that these logs can effectively depict
learning patterns and provide formative group awareness
information. However, a significant challenge lies in the
explainability of data-driven AI tools, especially in emerging
AI areas. From an algorithmic perspective, it is crucial to
enable teachers to understand the output of data-driven tools
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with clear justifications for AI-generated outcomes [96],
an aspect that is not extensively discussed in existing studies.
In contemporary applications, there is a growing reliance
on ‘‘vector embeddings’’ (of texts, graphs, images, etc.)
in combination with neural networks and deep learning
techniques, replacing original data structures. While vector
embeddings may not be lossless, the hope is that they
preserve structural properties essential for interpretation,
bringing this aspect back into the educational discourse.
In the example of group formation, a detailed dashboard is
provided for teachers, illustrating the distributions of each
learner’s model attributes from individual learning. This
feature enables teachers to easily grasp the heterogeneity
in group formation inputs within each group. This case
exemplifies efforts toward the explainability of data-driven
developments involving complex algorithms.

VI. CONCLUSION
In conclusion, our topical review contributes to advancing
the understanding and utilization of data-driven approaches
in iterative TBL scenarios. To overcome challenges such
as cold start and data re-usage in current data-driven TBL
implementations, we propose a data-driven iterative TBL
framework, rooted in the GLOBE framework for data-driven
group learning. This framework incorporates all phases of
TBL, comprising four distinct phases of group learning
activity workflow and three essential steps of data flow.
It serves as a guideline for implementing data-driven support
in iterative TBL contexts and also contributes to a taxonomy
for existing literature in this field for a better understanding
of its current status.

Through the examination of two instances—algorithmic
group formation and peer evaluation reliability assessment—
we demonstrate the potential efficacy and authenticity of
data-driven approaches in improving TBL outcomes. These
instances also highlight research opportunities in phases
preceding and succeeding the ongoing orchestration phase
of group learning, which deserve further exploration in
future studies. Moreover, these cases not only demonstrate
the application of our framework but also offer valuable
insights for future research and development, including
sample workflows for activity and technical designs.

Moving forward, our paper aims to establish an ecosys-
tem conducive to data-driven collaborative learning. This
ecosystem seeks to empower both educators and learners with
actionable insights derived from data-driven interventions,
fostering effective collaborative learning designs, and ulti-
mately optimizing collaborative learning experiences through
data-driven services.

REFERENCES

[1] N. C. Singh and A. K. Duraiappah, ‘‘Rethinking learning: A review
of social and emotional learning frameworks for education systems,’’
UNESCO MGIEP, Mar. 2020.

[2] G. Stahl, T. Koschmann, and D. Suthers, ‘‘Computer-supported collabora-
tive learning: An historical perspective,’’ in Cambridge Handbook of the
Learning Sciences. Cambridge, U.K.: RK Sawyer, 2006, pp. 409–426.

[3] D. Parmelee, L. K. Michaelsen, S. Cook, and P. D. Hudes, ‘‘Team-based
learning: A practical guide: AMEE guide, no. 65,’’Med. Teacher, vol. 34,
no. 5, pp. e275–e287, May 2012.

[4] L. K. Michaelsen, A. B. Knight, and L. D. Fink, Team-based Learning:
A Transformative Use of Small Groups. Westport, CT, USA: Greenwood
Publishing Group, 2002.

[5] E. A. Gomez, D. Wu, and K. Passerini, ‘‘Computer-supported team-based
learning: The impact of motivation, enjoyment and team contributions
on learning outcomes,’’ Comput. Educ., vol. 55, no. 1, pp. 378–390,
Aug. 2010.

[6] J. V. Dinh, E. J. Schweissing, A. Venkatesh, A. M. Traylor, M. P. Kilcullen,
J. A. Perez, and E. Salas, ‘‘The study of teamwork processes within the
dynamic domains of healthcare: A systematic and taxonomic review,’’
Frontiers Commun., vol. 6, Feb. 2021, Art. no. 617928.

[7] A. G. Picciano, ‘‘The evolution of big data and learning analytics in
American higher education,’’ Online Learn., vol. 16, no. 3, pp. 9–20,
Jun. 2012.

[8] G. Siemens, ‘‘Learning analytics: Envisioning a research discipline and
a domain of practice,’’ in Proc. 2nd Int. Conf. Learn. Analytics Knowl.,
Apr. 2012, pp. 4–8.

[9] R. Ferguson, ‘‘Learning analytics: Drivers, developments and challenges,’’
Int. J. Technol. Enhanced Learn., vol. 4, nos. 5–6, pp. 304–317, 2012.

[10] D. Ifenthaler and J. Y.-K. Yau, ‘‘Utilising learning analytics to support
study success in higher education: A systematic review,’’ Educ. Technol.
Res. Develop., vol. 68, no. 4, pp. 1961–1990, Aug. 2020.

[11] C. H. Chen, S. J. Yang, J. X. Weng, H. Ogata, and C. Y. Su, ‘‘Predicting at-
risk university students based on their e-book reading behaviours by using
machine learning classifiers,’’ Australas. J. Educ. Technol., vol. 37, no. 4,
pp. 130–144, 2021.

[12] S. K. Banihashem, O. Noroozi, S. van Ginkel, L. P. Macfadyen, and H.
J. A. Biemans, ‘‘A systematic review of the role of learning analytics
in enhancing feedback practices in higher education,’’ Educ. Res. Rev.,
vol. 37, Nov. 2022, Art. no. 100489.

[13] I.-A. Chounta, E. Bardone, A. Raudsep, and M. Pedaste, ‘‘Exploring
teachers’ perceptions of artificial intelligence as a tool to support their
practice in Estonian K-12 education,’’ Int. J. Artif. Intell. Educ., vol. 32,
no. 3, pp. 725–755, Sep. 2022.

[14] D. Urhahne, S. Schanze, T. Bell, A. Mansfield, and J. Holmes, ‘‘The role
of the teacher in computer-supported collaborative inquiry learning,’’ Int.
J. Sci. Educ., vol. 32, no. 2, pp. 221–243, 2010.

[15] C. Wang and Y. Xu, ‘‘Who will work together? Factors influencing
autonomic group formation in an open learning environment,’’ Interact.
Learn. Environments, pp. 1–19, Mar. 2023.

[16] A. Van Leeuwen, ‘‘Learning analytics to support teachers during
synchronous CSCL: Balancing between overview and overload,’’ J. Learn.
Analytics, vol. 2, no. 2, pp. 138–162, Dec. 2015.

[17] I. Amarasinghe, D. Hernández-Leo, and H. Ulrich Hoppe, ‘‘Deconstruct-
ing orchestration load: Comparing teacher support through mirroring and
guiding,’’ Int. J. Comput.-Supported Collaborative Learn., vol. 16, no. 3,
pp. 307–338, Sep. 2021.

[18] J. Kasch, P. van Rosmalen, A. Löhr, R. Klemke, A. Antonaci, and M. Kalz,
‘‘Students’ perceptions of the peer-feedback experience in MOOCs,’’
Distance Educ., vol. 42, no. 1, pp. 145–163, Jan. 2021.

[19] B. Slof, A. van Leeuwen, J. Janssen, and P. A. Kirschner, ‘‘Mine, ours,
and yours: Whose engagement and prior knowledge affects individual
achievement from online collaborative learning?’’ J. Comput. Assist.
Learn., vol. 37, no. 1, pp. 39–50, Feb. 2021.

[20] L. D. Johnson, ‘‘Exploring cloud computing tools to enhance team-
based problem solving for challenging behavior,’’ Topics Early Childhood
Special Educ., vol. 37, no. 3, pp. 176–188, Nov. 2017.

[21] S. Strauß and N. Rummel, ‘‘Promoting regulation of equal participation
in online collaboration by combining a group awareness tool and
adaptive prompts. But does it even matter?’’ Int. J. Comput.-Supported
Collaborative Learn., vol. 16, no. 1, pp. 67–104, Mar. 2021.

[22] L. Ollesch, S. Heimbuch, and D. Bodemer, ‘‘Towards an integrated
framework of group awareness support for collaborative learning in social
media,’’ in Proc. 27th Int. Conf. Comput. Educ., 2019, pp. 121–130.

[23] H. U. Hoppe and R. Ploetzner, ‘‘Can analytic models support learning
in groups,’’ in Collaborative-learning: Cognitive and Computational
Approaches. Citeseer, 1999, pp. 147–168.

[24] F. Fischer, J. Bruhn, C. Gräsel, and H. Mandl, ‘‘Fostering collaborative
knowledge construction with visualization tools,’’ Learn. Instruct., vol. 12,
no. 2, pp. 213–232, Apr. 2002.

65978 VOLUME 12, 2024



C. Liang et al.: Data-Driven Support Infrastructure for Iterative Team-Based Learning

[25] S. Abnar, F. Orooji, and F. Taghiyareh, ‘‘An evolutionary algorithm for
forming mixed groups of learners in web based collaborative learning
environments,’’ in Proc. IEEE Int. Conf. Technol. Enhanced Educ.
(ICTEE), Jan. 2012, pp. 1–6.

[26] J. Zambrano R., F. Kirschner, J. Sweller, and P. A. Kirschner, ‘‘Effects
of prior knowledge on collaborative and individual learning,’’ Learn.
Instruct., vol. 63, Oct. 2019, Art. no. 101214.

[27] X. Li, F. Ouyang, and W. Chen, ‘‘Examining the effect of a genetic
algorithm-enabled grouping method on collaborative performances, pro-
cesses, and perceptions,’’ J. Comput. Higher Educ., vol. 34, no. 3,
pp. 790–819, Dec. 2022.

[28] O. R. Sánchez, C. A. Collazos Ordóñez, M. Á. R. Duque, and
I. I. B. S. Pinto, ‘‘Homogeneous group formation in collaborative learning
scenarios: An approach based on personality traits and genetic algorithms,’’
IEEE Trans. Learn. Technol., vol. 14, no. 4, pp. 486–499, Aug. 2021.

[29] P. Block, ‘‘Reciprocity, transitivity, and the mysterious three-cycle,’’ Social
Netw., vol. 40, pp. 163–173, Jan. 2015.

[30] S. Gächter, C. Starmer, and F. Tufano, ‘‘Measuring ‘group cohesion’ to
reveal the power of social relationships in team production,’’ Rev. Econ.
Statist., pp. 1–45, Feb. 2023.

[31] H. U. Hoppe, D. Doberstein, and T. Hecking, ‘‘Using sequence analysis to
determine the well-functioning of small groups in large online courses,’’
Int. J. Artif. Intell. Educ., vol. 31, no. 4, pp. 680–699, Dec. 2021.

[32] H. U. Hoppe, A. Harrer, T. Göhnert, and T. Hecking, ‘‘Applying
network models and network analysis techniques to the study of online
communities,’’ in Proc. Mass Collaboration Educ., 2016, pp. 347–366.

[33] M. Saqr, J. Nouri, H. Vartiainen, and J. Malmberg, ‘‘What makes an online
problem-based group successful? A learning analytics study using social
network analysis,’’ BMC Med. Educ., vol. 20, no. 1, pp. 1–11, Dec. 2020.

[34] T. Hecking, I. A. Chounta, and H. U. Hoppe, ‘‘Role modelling in MOOC
discussion forums,’’ J. Learn. Analytics, vol. 4, no. 1, pp. 85–116, 2017.

[35] S. Ludvigsen, K. Lund, and J. Oshima, ‘‘A conceptual stance on
CSCL history,’’ in International Handbook of Computer-Supported
Collaborative Learning. Cham, Switzerland: Springer, 2021, pp. 45–63,
doi: 10.1007/978-3-030-65291-3_3.

[36] E. Ilkou, T. Tolmachova, M. Fisichella, and D. Taibi, ‘‘CollabGraph:
A graph-based collaborative search summary visualisation,’’ IEEE
Trans. Learn. Technol., vol. 16, no. 3, pp. 382–398, Jun. 2023, doi:
10.1109/TLT.2023.3242174.

[37] C. Liang, R. Majumdar, and H. Ogata, ‘‘Learning log-based automatic
group formation: System design and classroom implementation study,’’
Res. Pract. Technol. Enhanced Learn., vol. 16, no. 1, pp. 1–22, Dec. 2021.

[38] A.-E. Guerrero-Roldán and I. Noguera, ‘‘A model for aligning assessment
with competences and learning activities in online courses,’’ Internet
Higher Educ., vol. 38, pp. 36–46, Jul. 2018.

[39] Q. Lyu, W. Chen, J. Su, and K. H. Heng, ‘‘Collaborate like expert
designers: An exploratory study of the role of individual preparation
activity on students’ collaborative learning,’’ Internet Higher Educ.,
vol. 59, Oct. 2023, Art. no. 100920.

[40] J. Janssen and P. A. Kirschner, ‘‘Applying collaborative cognitive load
theory to computer-supported collaborative learning: Towards a research
agenda,’’ Educ. Technol. Res. Develop., vol. 68, no. 2, pp. 783–805,
Apr. 2020.

[41] A. M. Harris, D. Gómez-Zará, L. A. DeChurch, and N. S. Contractor,
‘‘Joining together online: The trajectory of CSCW scholarship on group
formation,’’ in Proc. ACMHum.-Comput. Interact., vol. 3, 2019, pp. 1–27.

[42] M. Wessner and H.-R. Pfister, ‘‘Group formation in computer-supported
collaborative learning,’’ in Proc. Int. ACM SIGGROUP Conf. Supporting
Group Work, 2001, pp. 24–31.

[43] I. Srba and M. Bielikova, ‘‘Dynamic group formation as an approach to
collaborative learning support,’’ IEEE Trans. Learn. Technol., vol. 8, no. 2,
pp. 173–186, Apr. 2015.

[44] E. Kyndt, E. Raes, B. Lismont, F. Timmers, E. Cascallar, and F. Dochy,
‘‘A meta-analysis of the effects of face-to-face cooperative learning. Do
recent studies falsify or verify earlier findings?’’ Educ. Res. Rev., vol. 10,
pp. 133–149, Dec. 2013.

[45] N. Maqtary, A. Mohsen, and K. Bechkoum, ‘‘Group formation techniques
in computer-supported collaborative learning: A systematic literature
review,’’ Technol., Knowl. Learn., vol. 24, no. 2, pp. 169–190, Jun. 2019.

[46] I. Boticki, G. Akçaınar, and H. Ogata, ‘‘E-book user modelling through
learning analytics: The case of learner engagement and reading styles,’’
Interact. Learn. Environments, vol. 27, nos. 5–6, pp. 754–765, Aug. 2019.

[47] L. S. Vygotsky, Mind in Society: The Development of Higher Psychologi-
cal Processes. Cambridge, MA, USA: Harvard University Press, 1980.

[48] T. Knez, M. Holenko Dlab, and N. Hoic-Bozic, ‘‘Implementation of group
formation algorithms in the ELARS recommender system,’’ Int. J. Emerg.
Technol. Learn. (iJET), vol. 12, no. 11, p. 198, Nov. 2017.

[49] M. Salihoun, F. Guerouate, N. Berbiche, and M. Sbihi, ‘‘How to assist
tutors to rebuild groups within an ITS by exploiting Traces. Case of a
closed forum,’’ Int. J. Emerg. Technol. Learn. (iJET), vol. 12, no. 3, p. 169,
Mar. 2017.

[50] L. Sanz-Martínez, E. Er, A. Martínez-Monés, Y. Dimitriadis, and
M. L. Bote-Lorenzo, ‘‘Creating collaborative groups in a MOOC: A
homogeneous engagement grouping approach,’’ Behaviour Inf. Technol.,
vol. 38, no. 11, pp. 1107–1121, Nov. 2019.

[51] I. U. Haq, A. Anwar, I. U. Rehman, W. Asif, D. Sobnath, H. H. R.
Sherazi, and M. M. Nasralla, ‘‘Dynamic group formation with intelligent
tutor collaborative learning: A novel approach for next generation
collaboration,’’ IEEE Access, vol. 9, pp. 143406–143422, 2021.

[52] S. Manske, T. Hecking, I. A. Chounta, S. Werneburg, and H. Ulrich Hoppe,
‘‘Using differences to make a difference: A study on heterogeneity of
learning groups,’’ in Proc. Comput.-Supported Collaborative Learn. Conf.
(CSCL), vol. 1, 2015, pp. 182–189.

[53] S. Amara, J. Macedo, F. Bendella, and A. Santos, ‘‘Group formation in
mobile computer supported collaborative learning contexts: A systematic
literature review,’’ J. Educ. Technol. Soc., vol. 19, no. 2, pp. 258–273,
2016.

[54] M. H. Chang, R. Kuo, F. Essalmi, M. Chang, V. Kumar, and H.-Y. Kung,
‘‘Usability evaluation plan for online annotation and student clustering
system—A tunisian university case,’’ in Proc. 8th Int. Conf. DHM Held
HCI Int. Vancouver, BC, Canada: Springer, Jul. 2017, pp. 241–254.

[55] S. Manske and H. U. Hoppe, ‘‘The ‘concept cloud’: Supporting
collaborative knowledge construction based on semantic extraction from
learner-generated artefacts,’’ in Proc. IEEE 16th Int. Conf. Adv. Learn.
Technol. (ICALT), Jul. 2016, pp. 302–306.

[56] M. Erkens, S. Manske, H. U. Hoppe, and D. Bodemer, ‘‘Awareness
of complementary knowledge in CSCL: Impact on learners’ knowledge
exchange in small groups,’’ in Proc. Int. Conf. Collaboration Technol.
Kyoto, Japan: Springer, 2019, pp. 3–16.

[57] S. Isotani, A. Inaba, M. Ikeda, and R. Mizoguchi, ‘‘An ontology
engineering approach to the realization of theory-driven group formation,’’
Int. J. Comput.-Supported Collaborative Learn., vol. 4, no. 4, pp. 445–478,
Dec. 2009.

[58] J. Konert, D. Burlak, and R. Steinmetz, ‘‘The group formation problem:
An algorithmic approach to learning group formation,’’ in Proc. 9th
Eur. Conf. Technol. Enhanced Learn. Graz, Austria: Springer, Sep. 2014,
pp. 221–234.

[59] N. Drljević, I. Botički, and L. H. Wong, ‘‘Observing student engagement
during augmented reality learning in early primary school,’’ J. Comput.
Educ., vol. 11, no. 1, pp. 181–213, Mar. 2024.

[60] R. Kasepalu, L. P. Prieto, T. Ley, and P. Chejara, ‘‘Teacher artifi-
cial intelligence-supported pedagogical actions in collaborative learning
coregulation: A wizard-of-oz study,’’ Frontiers Educ., vol. 7, Feb. 2022,
Art. no. 736194.

[61] B. Heinemann, M. Ehlenz, S. Görzen, and U. Schroeder, ‘‘XAPI made
easy: A learning analytics infrastructure for interdisciplinary projects,’’
Int. J. Online Biomed. Eng. (iJOE), vol. 18, no. 14, pp. 99–113,
Nov. 2022.

[62] M. Alqassab, J.-W. Strijbos, E. Panadero, J. F. Ruiz, M.Warrens, and J. To,
‘‘A systematic review of peer assessment design elements,’’ Educ. Psychol.
Rev., vol. 35, no. 1, p. 18, Mar. 2023.

[63] J.-W. Strijbos, ‘‘Assessment of (computer-supported) collaborative learn-
ing,’’ IEEE Trans. Learn. Technol., vol. 4, no. 1, pp. 59–73, Jan. 2011.

[64] N. Mentzer, D. Laux, A. Zissimopoulos, and K. A. R. Richards, ‘‘Peer
evaluation of team member effectiveness as a formative educational
intervention,’’ J. Technol. Educ., vol. 28, no. 2, pp. 53–82, Apr. 2017.

[65] N. Aminu, M. Hamdan, and C. Russell, ‘‘Accuracy of self-evaluation in a
peer-learning environment: An analysis of a group learning model,’’ Social
Netw. Social Sci., vol. 1, no. 7, pp. 1–17, Jul. 2021.

[66] C. Piech, J. Huang, Z. Chen, C. Do, A. Ng, and D. Koller, ‘‘Tuned models
of peer assessment in MOOCs,’’ in Proc. 6th Int. Conf. Educ. Data Mining
(EDM), 2013, pp. 1–8.

[67] I. Horikoshi and Y. Tamura, ‘‘How do students evaluate each other during
peer assessments? An analysis using ‘evaluation behavior’ log data,’’Educ.
Technol. Res., vol. 43, no. 1, pp. 3–21, 2021.

[68] S. Farshad and C. Fortin, ‘‘A novel method for measuring, visualizing,
and monitoring E-collaboration,’’ Int. J. e-Collaboration, vol. 19, no. 1,
pp. 1–21, Feb. 2023.

VOLUME 12, 2024 65979

http://dx.doi.org/10.1007/978-3-030-65291-3_3
http://dx.doi.org/10.1109/TLT.2023.3242174


C. Liang et al.: Data-Driven Support Infrastructure for Iterative Team-Based Learning

[69] A. H. A. Tharim, T. Mohd, N. A. Othman, N. H. Nasrudin, N. Jaffar,
M. N. Shuib, M. K. Kurdi, and I. Yusof, ‘‘Peer evaluation system in team
work skills assessment,’’ in Proc. 7th Int. Conf. Univ. Learn. Teaching
(InCULT). Singapore: Springer, 2014, pp. 603–616.

[70] O. Cleynen, G. Santa-Maria, M. Magdowski, and D. Thévenin, ‘‘Peer-
graded individualised student homework in a single-instructor undergrad-
uate engineering course,’’ Res. Learn. Technol., vol. 28, May 2020, doi:
10.25304/rlt.v28.2339.

[71] I. H. Hsiao, J. Guerra, D. Parra, F. Bakalov, B. König-Ries, and
P. Brusilovsky, ‘‘Comparative social visualization for personalized e-
learning,’’ inProc. Int. Work. Conf. Adv. Vis. Interfaces, 2012, pp. 303–307.

[72] A. A. C. Hoyos and J. D. Velásquez, ‘‘Teaching analytics: Current
challenges and future development,’’ IEEE Revista Iberoamericana de
Tecnologias del Aprendizaje, vol. 15, no. 1, pp. 1–9, Feb. 2020.

[73] I. Horikoshi, Y. Toyokawa, K. Nakamura, C. Liang, R. Majumdar, and
H. Ogata, ‘‘Teaching analytics with xAPI: Learning activity visualization
with cross-platform data,’’ in Proc. 31th Int. Conf. Comput. Educ. Conf.
(ICCE), vol. 1, 2023, pp. 548–553.

[74] T. Kano, I. Horikoshi, K. Koike, and H. Ogata, ‘‘Data-driven competency
assessment supporting system for teachers,’’ in Proc. 31th Int. Conf.
Comput. Educ. Conf. (ICCE), vol. 1, 2023, pp. 926–935.

[75] C.-Y. Hsu, I. Horikoshi, H. Li, R. Majumdar, and H. Ogata, ‘‘Supporting
‘time awareness’ in self-regulated learning: How do students allocate time
during exam preparation?’’ Smart Learn. Environments, vol. 10, no. 1,
p. 21, Mar. 2023.

[76] H. Ogata, R. Majumdar, and B. Flanagan, ‘‘Learning and evidence
analytics framework bridges research and practice for educational data
science,’’ Commun. ACM, vol. 66, no. 7, pp. 72–74, Jul. 2023.

[77] B. Flanagan, C. Liang, R. Majumdar, and H. Ogata, ‘‘Towards explainable
group formation by knowledge map based genetic algorithm,’’ in Proc. Int.
Conf. Adv. Learn. Technol. (ICALT), Jul. 2021, pp. 370–372.

[78] M. van der Velde, F. Sense, J. Borst, and H. van Rijn, ‘‘Alleviating the cold
start problem in adaptive learning using data-driven difficulty estimates,’’
Comput. Brain Behav., vol. 4, no. 2, pp. 231–249, Jun. 2021.

[79] W. M. Bukowski, M. Castellanos, and R. J. Persram, ‘‘The current status
of peer assessment techniques and sociometric methods,’’ New Directions
Child Adolescent Develop., vol. 2017, no. 157, pp. 75–82, Sep. 2017.

[80] C. Liang, I. Horikoshi, R.Majumdar, B. Flanagan, and H. Ogata, ‘‘Towards
predictable process and consequence attributes of data-driven group
work,’’ Educ. Technol. Soc., vol. 26, no. 4, pp. 90–103, 2023.

[81] K. Willey and A. Gardner, ‘‘Investigating the capacity of self and peer
assessment activities to engage students and promote learning,’’ Eur. J.
Eng. Educ., vol. 35, no. 4, pp. 429–443, Aug. 2010.

[82] K. S. Double, J. A. McGrane, and T. N. Hopfenbeck, ‘‘The impact of peer
assessment on academic performance: A meta-analysis of control group
studies,’’ Educ. Psychol. Rev., vol. 32, no. 2, pp. 481–509, Jun. 2020.

[83] C. Liang, R. Majumdar, Y. Nakamizo, B. Flanagan, and H. Ogata,
‘‘Algorithmic group formation and group work evaluation in a learning
analytics-enhanced environment: Implementation study in a Japanese
junior high school,’’ Interact. Learn. Environments, pp. 1–24, Sep. 2022.

[84] N. Shiho, ‘‘A study on subjectivity and interactive dialogue in lessons (I):
Critical examination of ‘proactive, interactive and authentic learning,’’’
Bull. Graduate School Educ. Human Develop. Educ. Sci. Nagoya Univ.,
vol. 68, no. 1, pp. 25–37, 2021.

[85] E. Panadero and A. Jonsson, ‘‘A critical review of the arguments against
the use of rubrics,’’ Educ. Res. Rev., vol. 30, Jun. 2020, Art. no. 100329.

[86] M. W. Ohland, M. L. Loughry, D. J. Woehr, L. G. Bullard, R. M. Felder,
C. J. Finelli, R. A. Layton, H. R. Pomeranz, and D. G. Schmucker,
‘‘The comprehensive assessment of team member effectiveness: Devel-
opment of a behaviorally anchored rating scale for Self- and peer
evaluation,’’ Acad. Manage. Learn. Educ., vol. 11, no. 4, pp. 609–630,
Dec. 2012.

[87] H.-C. Lin, G.-J. Hwang, S.-C. Chang, and Y.-D. Hsu, ‘‘Facilitating
critical thinking in decision making-based professional training: An online
interactive peer-review approach in a flipped learning context,’’ Comput.
Educ., vol. 173, Nov. 2021, Art. no. 104266.

[88] U. Masaki and U. Maomi, ‘‘Item response theory with
assessors’parameters of peer assessment,’’ J. Inst. Electron., Inf. Commun.
Engineers, vol. 91, no. 2, pp. 377–388, 2008.

[89] G. Bjelobaba, M. Paunovic, A. Savic, H. Stefanovic, J. Doganjic, and
Z. Miladinovic Bogavac, ‘‘Blockchain technologies and digitalization in
function of student work evaluation,’’ Sustainability, vol. 14, no. 9, p. 5333,
Apr. 2022.

[90] C. Liang, I. Horikoshi, R. Majumdar, and H. Ogata, ‘‘Tackling unserious
raters in peer evaluation: Behavior analysis and early detection with learner
model,’’ in Proc. 31th Int. Conf. Comput. Educ. Conf. (ICCE), vol. 1, 2023,
pp. 154–163.

[91] I. Horikoshi, C. Liang, R. Majumdar, and H. Ogata, ‘‘Applicability and
reproducibility of peer evaluation behavior analysis across systems and
activity contexts,’’ in Proc. 30th Int. Conf. Comput. Educ. Conf. (ICCE),
vol. 1, 2022, pp. 335–345.

[92] G. Biancato, E. Marques Queiroga, R. Muñoz, V. Ramos,
T. Thompsen Primo, V. Rodés, and C. Cechinel, ‘‘Expectations of
high school teachers regarding the use of learning analytics,’’ in Proc.
Latin Amer. Conf. Learn. Technol. Singapore: Springer, 2023, pp. 459–471.

[93] T. Hoel and W. Chen, ‘‘Privacy and data protection in learning
analytics should be motivated by an educational maxim—Towards a
proposal,’’ Res. Pract. Technol. Enhanced Learn., vol. 13, no. 1, pp. 1–14,
Dec. 2018.

[94] J. R. Reidenberg and F. Schaub, ‘‘Achieving big data privacy in education,’’
Theory Res. Educ., vol. 16, no. 3, pp. 263–279, Nov. 2018.

[95] E. Panadero and M. Alqassab, ‘‘An empirical review of anonymity effects
in peer assessment, peer feedback, peer review, peer evaluation and peer
grading,’’ Assessment Eval. Higher Educ., vol. 44, no. 8, pp. 1253–1278,
Nov. 2019.

[96] H. Ogata, B. Flanagan, K. Takami, Y. Dai, R. Nakamoto, and K. Takii,
‘‘EXAIT: Educational eXplainable artificial intelligent tools for person-
alized learning,’’ Res. Pract. Technol. Enhanced Learn., vol. 19, p. 19,
Aug. 2023.

65980 VOLUME 12, 2024

http://dx.doi.org/10.25304/rlt.v28.2339

