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ABSTRACT Deep neural networks (DNNs) have proven highly effective in various computational tasks,
but their success depends largely on access to large datasets with accurate labels. Obtaining such data may
be challenging and costly in real-world scenarios. Common alternatives, such as the use of search engines
and crowdsourcing, often result in datasets with inaccurately labeled, or ‘‘noisy,’’ data. This noise may
significantly reduce the ability of DNNs to generalize and maintain reliability. Traditional methods for
learning with noisy labels mitigate this drawback by training DNNs selectively on reliable data, but they
often underutilize available data. Although data augmentation techniques are useful, they do not directly
solve the noisy label problem and are limited in such contexts. This paper proposes a confidence-guided
Mixup named ConfidentMix, which is a data augmentation strategy based on label confidence. Our method
dynamically adjusts the intensity of data augmentation according to label confidence, to protect DNNs from
the detrimental effects of noisy labels and maximize the learning potential from the most reliable portions of
the dataset. ConfidentMix represents a unique blend of label confidence assessment and customized data
augmentation, and improves model resilience and generalizability. Our results on standard benchmarks
with synthetic noise, such as CIFAR-10 and CIFAR-100, demonstrate the superiority of ConfidentMix in
high-noise environments. Furthermore, extensive experiments on Clothing1M and mini-WebVision have
confirmed that ConfidentMix surpasses state-of-the-art methods in handling real-world noise.

INDEX TERMS Data augmentation, deep learning, learning with noisy labels, semi-supervised learning.

I. INTRODUCTION
Deep neural networks (DNNs) have demonstrated excep-
tional performance in tasks such as image classification [1]
and object detection [2], primarily because of the availability
of large datasets with high-quality labels. However, acquiring
precise labels is often difficult and expensive. Methods such
as the use of search engines [3], [4] and crowdsourcing [5],
[6] provide alternatives for data collection, but they tend to
produce labels of lower quality. The problem of noisy labels
may significantly affect DNNs because they may learn the
incorrect annotations [7], leading to reduced generalization
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and robustness. Consequently, training deep learning models
with noisy labels is a significant challenge.

Recently proposed methods for learning with noisy labels
(LNL) in DNNs can be categorized into three approaches:
regularization [9], [10], noisy label correction [11], [12],
[13], and sample selection [14], [15]. In particular, sample
selection methods, which are intended to isolate clean
samples from noisy training datasets, have demonstrated
impressive results. Sample selection methods are further
divided into two categories: the small-loss approach and the
feature representation approach. The former approach selects
samples with minimal losses, according to a phenomenon
known as the memorization effect [16], wherein a model
initially learns simple patterns and gradually progresses to
more complex patterns, such as those in data with noisy
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FIGURE 1. Left column: Data mixing process in Mixup [8]. Right column:
Data mixing process in our proposed method. Traditional mixed data
augmentation techniques that do not account for label confidence often
produce mixed data with degraded labels. In contrast, our method
weakens the mixing when label confidence is low, thereby preserving
clean labels.

labels. The latter approach selects samples according to the
similarity of feature representation. Although these methods
are effective in removing noisy labels, they tend to reduce the
volume of training data. A significant development in sample
selection has been its integration with semi-supervised
learning (SSL) [17], [18]. This strategy involves learning
from large datasets that comprise a mix of few labeled
samples with many unlabeled samples [19], [20], [21], [22].
It discards labels from samples that are removed during
selection and generates pseudo-labels based on confident
model predictions. This enables the use of the entire training
dataset, thereby enhancing generalization performance and
robustness to noisy labels.

Another method for learning from limited numbers of
samples in the SSL context is data augmentation. Techniques
such as AutoAugment [23] and RandAugment [24] have been
proposed to enhance model robustness, focusing primarily
on single-image transformation. However, most of these
techniques fail to exploit inter-image information. Methods
such as Mixup [8] and CutMix [25] were designed to address
this drawback by mixing multiple data points to create new
images and labels. Nonetheless, a significant concern with
these techniques is their potential to corrupt clean labels,
particularly in the context of LNL. This problem arises
when features and labels from different images, including
those with noisy labels, are indiscriminately combined.
When a clean label is mixed with a noisy one, the
resulting label may not accurately represent either of the
original labels, thus becoming less reliable. Such mixing
may introduce ambiguity and diminish the overall quality
of labels, thereby impairing the learning efficiency of the
model and its ability to generalize from clean, accurate
data.

In this paper, we propose ConfidentMix, a confidence-
guided Mixup-based data augmentation method, specifically
designed for SSL. The unique feature of ConfidentMix is
that it exploits pseudo-labels by assessing label confidence

across the training dataset. It includes three key components:
(i) sampling reliable labels (SRL), which uses a threshold-
based method to selectively incorporate samples that have
high-confidence labels; (ii) label confidence estimation
(LCE), a process intended to evaluate label confidence
to refine the augmentation strategy; and (iii) confidence-
guided mixing, a method that adjusts the level of data
mixing according to label confidence, thus maintaining the
quality of clean labels and reducing the impact of noisy
data.

The main difference between ConfidentMix and existing
data augmentation techniques is its strategy for moderating
the intensity of augmentation for pseudo-labels in noisy label
situations based on estimated label confidence, as illustrated
in Fig. 1. This strategy prevents the degradation of the quality
of labels and pseudo-labels, to allowmodels to be trainedwith
both augmented labeled data and high-quality labels. Thus,
SSL-based models with ConfidentMix achieve improved
generalization and robustness compared with models trained
without consideration of label confidence.

The primary contributions of this paper include:

• We introduce a novel confidence label sampling tech-
nique that selectively harnesses high-confidence labels
for more accurate model training.

• We develop a method to monitor and evaluate the
selection of data with high-confidence labels, which
effectively estimates the proportion of noisy labels and
controls the distribution of random mixture weights.

• The proposed mixed data augmentation approach,
ConfidentMix, can easily be integrated into existing
frameworks that employ sample selection and SSL,
as a consequence of its straightforward algorithm that
prevents clean label corruption.

• Comprehensive experiments on widely recognized
benchmark and real-world datasets in the LNL field
have demonstrated that our method surpasses current
state-of-the-art (SOTA) methods. In particular, our
ConfidentMix-implemented SSL-based LNL method
achieved a significant 15.1% improvement in scenarios
characterized by high levels of noise.

The rest of this paper is organized as follows. Sec-
tion II reviews related literature. Section III presents the
preliminaries of our method. In Section IV, we describe
the ConfidentMix method. Extensive empirical studies are
reported in Section V, followed by our conclusions in
Section VI.

II. RELATED WORK
A. SEMI-SUPERVISED LEARNING
SSL is an approach that learns from datasets that comprise
a small number of labeled samples and a large number of
unlabeled samples [26]. Recently, the predominant trend
in SSL has been the use of consistency regularization.
This technique enforces consistent model outputs for dif-
ferent transformations of the same instance. MixMatch [17]
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and FixMatch [18] are anchor-based methods that exploit
augmentation consistency. MixMatch uses an average of
sharpened model predictions for multiple weak augmentation
versions as pseudo-labels, enhancing their effectiveness
through the Mixup [8] strategy. In contrast, FixMatch boosts
consistency regularization with strong data augmentation
and applies a threshold for using only reliable pseudo-
labels. Another approach involves adjusting class-specific
confidence thresholds according to the difficulty of learning
each class [27]. Finally, contrastive learning has been
introduced to exploit instance similarity [28], [29].

B. LEARNING WITH NOISY LABELS
LNL is a serious challenge in real-world scenarios because
labeled datasets often contain inaccuracies. Noisy labels
may significantly degrade the performance of learning
algorithms, leading to model overfitting on erroneous data
and diminished generalization capabilities.

1) ROBUST LEARNING ALGORITHMS
Robust learning algorithms have been developed to handle
label noise. These algorithms are intended to be insensitive
to label noise; this is achieved by either modifying the
loss function or adjusting the training process. The goal
is to prevent models from fitting the noise in the data,
thereby ensuring stable learning even when some labels are
incorrect.

A phenomenon known as early learning [9] has been
observed, whereby models tend to predict the true class labels
correctly in the initial training phases, even in the presence
of noisy data. The early-learning regularization technique,
proposed by Liu et al. [9], uses a regularization term that
optimizes the agreement between model predictions and an
adaptive target probability, thereby lessening the impact of
incorrect labels. This target probability is crafted using a
temporal ensemble method [30], which relies on moving
averages of model predictions.

2) NOISE DETECTION ALGORITHMS
Identifying and handling noisy labels is another impor-
tant strategy. These algorithms are intended to distinguish
between noisy and clean labels. They often employ a
small-loss strategy that selects samples with small losses,
to exploit the property that models initially predict true
classes before memorizing noisy labels [9], [16]. Once they
have been detected, noisy labels can be corrected or discarded
to obtain a cleaner training dataset.

Sample selection is a method for selecting clean samples
from noisy datasets. Many such techniques use multiple mod-
els to remove noisy samples. For instance, Jiang et al. [31]
pretrain an additional model to select clean samples for
the training of the main model. However, this method
faces the challenge of error accumulation. To mitigate
this, Co-teaching [14] proposes the training of one model
using a small-loss strategy to train another. However,

Co-teaching faces the problem of model convergence over
time. Co-teaching+ [15] introduces decoupling [32] to force
the two models to diverge. All the above approaches require
careful calibration to avoid erroneous exclusion of genuine
data points.

3) COMBINING SSL WITH SAMPLE SELECTION
Integrating SSLwith sample selection offers a novel approach
to LNL. This method trains the model using labels from a
subset of samples that are considered correctly annotated,
while treating the rest as unlabeled data. Research by
Ding et al. [33] and Kong et al. [34] highlighted the potential
of SSL in noisy environments, but its effectiveness decreases
as label noise increases. DivideMix [19] is distinguished by
its use of a ‘‘warm-up’’ phase and a Gaussian mixture model
(GMM) to separate the dataset into clean labeled and noisy
unlabeled samples. Fine [35] proposed the use of principal
components of latent representations to filter label noise.
Combined with contrastive learning, MOIT [20] identifies
noisy labels by performing a k-nearest-neighbors search to
quantify the agreement between feature representations and
labels. LongReMix [21] extracts a reliable clean sample set
through a two-stage clean sample selection process. OT-
Filter [22] improves sample selection by optimizing the
transport plan from the Euclidean space of feature vectors to
the probability space. Other methods exist that, in addition
to integrating SSL and sample selection, can be combined
with regularization methods to effectively address noise
challenges [36], [37]. RankMatch [38] is a recently proposed
method that, to enhance the consistency between similar
samples, introduces a rank contrastive loss based on the
rank statistics of the principal features. Although RankMatch
and ConfidentMix share the common goal of improving
the robustness of LNL, they differ in their approach to
sample selection and consistency regularization. RankMatch
focuses on feature representation and does not explic-
itly integrate with SSL techniques, whereas ConfidentMix
emphasizes confidence-guidedmixing and the exploitation of
pseudo-labels in the SSL context. As the primary focus of this
paper is on the ConfidentMix method and its integration with
SSL, we do not provide a quantitative comparison between
ConfidentMix and RankMatch.

C. DATA AUGMENTATION
Data augmentation is intended to improve model gener-
alization by enriching training data with transformations
that preserve the semantic information of the input. Tra-
ditional image transformations include horizontal flipping,
cropping, scaling, color distortion, and cut-out. Recent
research has focused on finding optimal sequences of these
transformations. AutoAugment [23] automates the search
for the optimal augmentation sequence using predefined
transformations. Although effective, its vast search space
complicates training. RandAugment [24] simplifies this
search space by combining random transformations, which
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significantly reduces computational cost. However, these
approaches focus primarily on transformations on a single
image and do not focus on extracting relationships and
interactions among multiple images. Combining multiple
images has the potential to produce richer training data by
fusing new visual features and context.

1) MIXING AUGMENTATION
Recent studies have focused on data augmentation using
multiple images [8], [25]. These approaches are intended
to increase the diversity and novelty of visual patterns by
combining images from a single class or from different
classes in the training data. Because mixed data augmentation
seeks to expand the training data distribution, the mixed
images must remain close to the training data manifold.
Mixup [8] achieves this objective by combining a pair
of labels and images using convex linear interpolation.
Conversely, CutMix [25] augments data by cutting a portion
of one input image and overlaying it onto another. These
techniques benefit both images and labels, reduce label
overfitting, and enhance robustness of the model to noisy
labels. However, both Mixup and CutMix were designed on
the assumption that label information is correct, which could
compromise clean labels in the presence of noisy labels.
Additionally, models trained with corrupted labels cannot
entirely eliminate noisy labels during sample selection,
leaving many noisy labels in the labeled data that remain after
selection. Our proposed method estimates label confidence
and, according to that, carefully mixes labels with teacher
labels, thereby preventing the degradation of clean labels and
enhancing model generalization.

III. PRELIMINARIES
In this section, we describe SOTA methods that combine
sample selection with SSL, along with Mixup, which is
used in the semi-supervised phase. Because these methods
form the foundation of our proposed approach, the notation
introduced here will also be relevant in Section IV.

A. STATE-OF-THE-ART METHOD FOR LEARNING WITH
NOISY LABELS
DivideMix and OT-Filter represent the latest techniques that
combine sample selection with SSL. These methods involve
dividing training data into a labeled set with clean labels
and an unlabeled set with discarded noisy labels. After
dividing the training data, the entire dataset is used through
SSL approaches, exemplified by MixMatch. In this section,
we take DivideMix as an example of a data partitioning
method that uses sample selection. In DivideMix, losses are
computed for all training data D = {(xi, yi)}Ni=1, where
N is the number of samples. These computed losses are
then fitted to a two-component GMM to discern clean
from noisy distributions, to obtain the probability wi that xi
belongs to the clean distribution. The dataset is subsequently

divided into

X = {(xi, yi)|wi ≥ τw, i ∈ {1, . . . ,N }},

U = {xi|wi < τw, i ∈ {1, . . . ,N }}, (1)

where τw denotes the threshold parameter. Subsequently,
unlabeled samples in U are assigned pseudo-labels ŷi
that are generated from the model’s predictions, following
MixMatch, to form the pseudo-labeled sample set P =

{(xi, ŷi)}
N−Nx
i=1 , where Nx is the number of labeled samples

in X . DivideMix further enhances this approach by incorpo-
rating label refinement using GMM predictive probabilities,
thus improving MixMatch. The refinement of a label for
sample xi with network prediction pi is performed as follows:

p̄i = wiyi + (1− wi)pi,

ȳi = sharpen(p̄i,T ), (2)

where sharpen(p,T ) = p
1
T /

∑
c pc

1
T , pc denotes the score for

class c, and T denotes the temperature for sharpening.

B. DATA AUGMENTATION USING MIXUP
Mixup is a data augmentation technique that ensures that
mixed images reside near the training data manifold using
convex linear interpolation. It combines randomly sampled
image pairs (xi, xj) and their corresponding label pairs (yi, yj)
to create newmixed images x̃i and mixed labels ỹi as follows:

λ′ = max(λ, 1− λ), (3)

x̃i = λ′xi + (1− λ′)xj, (4)

ỹi = λ′yi + (1− λ′)yj, (5)

where λ is a random mixing weight drawn from a beta
distribution Beta(α, α) with parameter α ∈ (0,∞].
In methods that combine sample selection with SSL, the

image and label pair (xi, yi) is randomly sampled from the
pseudo-labeled sample set P , and (xj, yj) is sampled from
the union of the labeled and pseudo-labeled sample sets
(X ∪ P). However, in scenarios in which training data noise
is prevalent or there are numerous classification classes, the
accuracy of sample selection decreases, leaving the labeled
sample set with many noisy labels. When noisy labels are
sampled as yj, the resulting pseudo-labels are corrupted and
the generated mixed labels ỹi may diminish the robustness
of the model to noisy labels, leading to a decrease in
generalization performance.

IV. PROPOSED METHOD
This section introduces ConfidentMix, our proposed data
augmentation method designed for SSL in environments
with noisy labels. ConfidentMix is based on the principle of
using only high-confidence labels and pseudo-labels for data
augmentation. This ensures that only high-quality labels are
employed in SSL.

The ConfidentMix framework, illustrated in Fig. 2, con-
sists of three main components: (i) SRL (Section IV-A),
which involves choosing for sampling only those labels or
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FIGURE 2. Framework of the proposed ConfidentMix method.

pseudo-labels that are considered trustworthy; (ii) LCE (Sec-
tion IV-B), which assesses the confidence of labels in labeled
data; and (iii) confidence-guided mixing (Section IV-C),
which employs data augmentation with restricted random
mixing weights according to estimated label confidence.

A. SAMPLING RELIABLE LABELS
In the context of mixing augmentation, notably that per-
formed by the Mixup technique, a key challenge is the
unintentional inclusion of noisy labels in the mixing process;
this occurs when yj in (5) is noisy. Mixup, which samples all
training data randomly, occasionally results in the selection
of noisy labels for mixing. Inspired by the approaches of [18]
and [27], we define a threshold, denoted by τ , to ensure that
only the samples with the most reliable labels are chosen,
as follows:

X ′ = {(xi, ȳi)|max
c

(ȳi) > τ, i ∈ X }, (6)

P ′ = {(xi, ŷi)|max
c

(ŷi) > τ, i ∈ P}, (7)

where c ∈ {1, . . . ,C} denotes a classification category
and C is the total number of such categories. For labeled
data, we can prevent the corruption of these labels by
mixing them with (xj, yj), which are randomly sampled
from a combination of the labeled dataset with the reliable
pseudo-labeled dataset (X ∪ P ′). For pseudo-labeled data,
to avoid corruption of pseudo-labels, we use yj, which is
randomly selected from a combined set of reliable labeled and
pseudo-labeled samples (X ′ ∪P) during the mixing process.
Following the existing methods [18], [27], our proposed

method uses a threshold to select samples with reliable
labels. However, our approach differs significantly from these
methods in two respects: (i) We focus on selecting reliable
labels for use in mixing augmentation, rather than for samples
used in backpropagation. (ii) We apply this selection process
to both corrected labels and pseudo-labels.

B. LABEL CONFIDENCE ESTIMATION
The corruption of pseudo-labels in mixing augmentation is
largely attributed to mixing ratios whose design does not

FIGURE 3. Experimental results of DivideMix on CIFAR-100 with
symmetric noise.

consider label confidence. For labeled data that are still
replete with noisy labels, the mixing ratio requires careful
calibration. ConfidentMix approaches this task by incorpo-
rating label confidence into the design of mixing ratios.
To estimate label confidence, we calculate the proportion of
clean labels in the labeled data; this is also referred to as
the label precision. In real-world scenarios where the clean
labels are unknown, accurately determining label precision
is a challenge. Therefore, we approximate label precision as
the ratio of the number of labeled samples to the number of
labeled and pseudo-labeled samples, as follows:

r =
|X |

|X | + |P|
, (8)

where X and P are the sets of labeled and pseudo-labeled
samples, respectively. When noisy labels are present in the
training data, the decrease in sample selection accuracy
increases the frequency of noisy labels in the labeled data, and
the r obtained by (8) decreases. Specifically, when the noise
rate is high, many samples are classified as noisy, resulting
in a small value of r . Conversely, when the noise rate is low,
sample selection works effectively and the value of r is high
because there are fewer noisy labels in the labeled data. Thus,
we define r as a measure of label confidence and use it to
design an appropriate mixing ratio.

These trends have been observed and validated in pre-
liminary experiments. Fig. 3 shows the relationship between
true label precision and the calculated labeled sample ratio r ,
using CIFAR-100 as the dataset. Further details of the
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Algorithm 1 ConfidentMix

inputs: Labeled data X = {(xi, ȳi)}
Nx
i=1, pseudo-labeled

data P = {(xi, ŷi)}N−Nxi=1 , beta distribution parameter α,
threshold τ

output: Mixed dataset X̃ , P̃
1: X ′← (6) ▷ Sampling reliable labels
2: P ′← (7) ▷ Sampling reliable labels
3: r ← (8) ▷ Label confidence estimation
4: α̂← αr2

5: Dx ← shuffle(X ∪ P ′)
6: Dp← shuffle(X ′ ∪ P)
7: X̃ = Mixup(X ,Dx , α)
8: P̃ = Mixup(P,Dp, α̂) ▷ Confidence-guided mixing

experimental setups are presented in Section V. It is evident
from Fig. 3 that, as the noise rate increases, both the actual
and estimated label precisions decrease. It is important to note
that, although the label confidence r does not have to match
the label precision precisely, the two values should follow a
similar trend.

C. CONFIDENCE-GUIDED MIXING
In Mixup, random mixing weights are derived from a beta
distribution using the parameter α. In contrast, ConfidentMix
tailors the design of these weights by incorporating the
estimated label confidence r . This approach differs from that
of recent modifications to the weight design of Mixup, such
as those proposed by Liu et al. [39] and Mai et al. [40].
Specifically, ConfidentMix restricts the distribution of ran-
dom mixing weights in accordance with label confidence.
The equations for determining the restricted distribution
parameters and random mixing weights are as follows:

α̂ = αr2,

λc ∼ Beta(α̂, α̂). (9)

Using the formulated weight λc, ConfidentMix generates
mixed data x̃i and mixed labels ỹi, similarly to the process
described in (3–5) for Mixup. A notable aspect of the
random mixing weights of ConfidentMix is their ability
to preserve clean labels by considering label confidence,
while simultaneously introducing diversity in the mixed data
through an element of randomness. Specifically, higher label
confidence leads to a larger α̂, which increases the likelihood
of assigning a smaller weight to the original label yi and
thus facilitating more extensive data mixing. In contrast,
lower label confidence results in a smaller α̂, which favors
the retention of the original label yi. The complete mixing
augmentation process is outlined in Algorithm 1.

D. APPLICATION TO SSL IN NOISY ENVIRONMENTS
Our method, ConfidentMix, generates mixed data that
contain reliable labels and results in the mixed sample sets
X̃ and P̃ . This mixing augmentation integrates seamlessly
with SSL. As an illustrative example, we combine MixMatch

Algorithm 2 SSL With ConfidentMix

inputs: Labeled data X = {(xi, yi)}
Nx
i=1, unlabeled data

U = {ui}N−Nxi=1 , network’s output softmax probability
pmodel , network parameter θ , weight for unlabeled loss
λu, batch size B, number of augmentationsK , sharpening
temperature T , beta distribution parameter α, threshold
τ , predictive probabilities of GMMW = {wi}Nxi=1

1: while b in B do
2: for k in K do
3: x̂b,k ← augment(xb)
4: ûb,k ← augment(ub)
5: end for
6: pb← 1

K

∑
k pmodel(x̂b,k : θ)

7: p̄b← wbyb + (1− wb)pb
8: ȳb← sharpen(p̄b,T )
9: qb← 1

K

∑
k pmodel(ûb,k : θ)

10: ŷb← sharpen(qb,T )
11: end while
12: X̂ = {(x̂b, ȳb)}Bb=1,P = {(ûb, ŷb)}

B
b=1

13: X̃ , P̃ ← ConfidentMix(X̂ ,P, α, τ )
14: Lx ← CE(X̃ ), Lu←MSE(P̃)
15: L← Lx + λuLu

with SSL in the framework of the SOTA method [22].
The combined training process, which integrates SSL
with ConfidentMix, is outlined in Algorithm 2. In this
implementation, label refinement is conducted using GMM
predictive probabilities and the sharpening function, as in
DivideMix [19]. To strengthen consistency regularization
for the clean labels maintained by our proposed method,
we use RandAugment during the semi-supervised phase.
This enhances the robustness of the training process.
In Algorithm 2, CE andMSE represent the cross-entropy loss
and mean square loss, respectively.

V. EXPERIMENTS
A. TYPES OF NOISE
Real-world noise patterns can be categorized into symmetric
(Sym.) noise [41], asymmetric (Asym.) noise [42], and
instance-dependent noise [43]. Symmetric noise is generated
by randomly replacing labels of a specified proportion of
samples with labels of other classes. Asymmetric noise is
created by switching labels between similar classes, thereby
reflecting class-dependent real-world label noise. Instance-
dependent noise is a more complex type of label noise
that depends on both the class and the specific features
of each instance [44]. Our experiments considered datasets
affected by each of these noise patterns. Additionally, the
real-world datasets used in our experiments are among
the top two in terms of noise rate according to the most
recent survey [45]. Therefore, it is important to note that
the complexity and size of these datasets are carefully
selected benchmarks for evaluating the effectiveness of our
ConfidentMix.
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TABLE 1. List of λu values used in the CIFAR-10 and CIFAR-100 datasets.

B. DATASETS
1) CIFAR-10 AND CIFAR-100
We evaluated our method on CIFAR-10 and CIFAR-100 [46]
using synthetic noise. Both datasets contain 50K training and
10K test images of size 32× 32. CIFAR-10 and CIFAR-100
contain 10 and 100 classification classes, respectively.
Because it is difficult to identify noise characteristics
in real-world environments in advance, synthetic noise,
whose noise rate can be controlled, is commonly used
to assess learning algorithms. Hence, following previous
studies [19], [22], we simulated two types of synthetic
noise: symmetric and asymmetric. Symmetric noise was
implemented by changing labels of a predefined percentage
of the training data (20%, 50%, 80%, or 90%) to random
classes. Asymmetric noise, which considers the semantic
information of classes, was generated by changing labels
to similar classes (e.g., truck→automobile). We conducted
experiments on datasets containing 40% asymmetric noise
because distinguishing classes with a noise rate exceeding
50% is practically impossible [12]. The noise rates used in our
experiments were also set according to previous studies [19],
[22] for a fair comparison.

2) CLOTHING1M
Clothing1M [47] is a large-scale dataset that contains over
1M training images collected from online shopping sites,
annotated with noisy labels. The labels, based on text
provided by sellers, include 14 classes and the estimated noise
rate is 38.5% [48]. Statistical hypothesis testing conducted
by Chen et al. [49] has shown this noise to be instance-
dependent. This dataset also provides 14K validation and
10K test images. We sampled 1000 mini-batches from the
training data, following a previous study [19].

3) WEBVISION
WebVision [3] consists of web images with noisy labels
crawled from the Internet, using keywords from 1K classes
of ImageNet ILSVRC12 [50]. The noise rate of these labels
is estimated to be approximately 20% [3]. Following recent
studies [9], [19], we used the first 50 classes of the subset
of WebVision that comprises Google images, referred to
as mini-WebVision, and evaluated our method on both the
WebVision and ImageNet validation sets.

C. IMPLEMENTATION DETAILS
To avoid self-implementation bias, we chose DivideMix, for
which official experimental code is available,1 to combine

1https://github.com/LiJunnan1992/DivideMix

with our ConfidentMix. Thus,most details of our experiments
are as described in [19]. Our method focuses on the problem
of mixing data augmentation in methods that combine sample
selection with SSL. Therefore, only methods that satisfy this
condition are included in our comparison.

For CIFAR-10 and CIFAR-100, we used PreActRes-
Net18 [51] as the backbone and trained the model using
a stochastic gradient descent (SGD) optimizer with a
momentum of 0.9 and weight decay of 5 × 10−4. The
learning rate was initialized to 0.02 and decayed by a
factor of 10 after 150 epochs. The model was trained for
300 epochs with a batch size of 128. These conditions and the
hyperparameter settings were the same as those of DivideMix
because we integrated ConfidentMix with DivideMix for
the performance evaluation. However, for experiments on
CIFAR-10 with 20% symmetric and 40% asymmetric noise,
we adjusted λu from 0 to 3 to maximize the effect of our
proposed method. We focused on Clothing1M, which has
similar noise rates and the same number of classification
classes as CIFAR-10, and conducted a parameter search
using the validation set provided in Clothing1M to determine
the optimal λu values for these noise rates. Table 1 lists
the λu values used for the experiments on CIFAR-10 and
CIFAR-100. For the experiments on CIFAR-10 with noise
patterns other than 20% symmetric and 40% asymmetric
noise, the λu values are the same as those used in DivideMix.
Threshold parameter τ was set using the dataset with 90%

symmetric noise as a proxy validation set, following the
experimental setup in [12] and [19]. We searched for the opti-
mal τ value from the parameter set {0.1, 0.3, 0.5, 0.7, 0.95}
and selected 0.95 for CIFAR-10 and 0.7 for CIFAR-100.
These selected values were then used consistently across all
noise patterns.

For Clothing1M, following [19] and [22], we used a
ResNet50 [1] pretrained on ImageNet as the backbone, and
trained the model using an SGD optimizer with a momentum
of 0.9 and weight decay of 10−3. The learning rate was set
to 0.002 and reduced by a factor of 10 after 40 epochs. The
model was trained for 80 epochs with a batch size of 32.
We set λu = 3 and τ = 0.3, and the other hyperparameter
settings were the same as those of DivideMix.

For WebVision, we used Inception-ResNet-v2 [52] as the
backbone, and trained the model using an SGD optimizer
with a momentum of 0.9 and weight decay of 5 × 10−4

for 100 epochs. The batch size was 32, and the learning
rate was set to 0.01 and reduced by a factor of 10 after
50 epochs. We set λu = 5 and τ = 0.7, and the
remaining hyperparameter settings were the same as those
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TABLE 2. Comparison of test accuracy (%) on CIFAR-10 and CIFAR-100 with symmetric and asymmetric noise. Results of baseline methods were copied
from the respective papers. The best result is highlighted in bold. The differences between DivideMix and the proposed method for each noise rate are
noted at the bottom.

of DivideMix. For both Clothing1M and WebVision, we per-
formed a grid search for λu in {3, 5} and τ in {0.3, 0.7} to
determine the optimal combination.

D. EXPERIMENTAL RESULTS
1) RESULTS ON CIFAR-10 AND CIFAR-100
Table 2 shows the test accuracy results on CIFAR-10 and
CIFAR-100 using symmetric and asymmetric noise, and
compares ConfidentMix with several SOTA methods. The
comparison includes traditional approaches, such as Cross-
Entropy, and innovative methods, such as Mixup [8], Co-
teaching+ [14], DivideMix [19], Fine [35], MOIT [20],
LongReMix [21], and OT-Filter [22]. These methods rep-
resent a range of techniques, from traditional strategies to
more complex mix-based approaches and recent sample
selection approaches. We also evaluated the effectiveness of
the proposed method as an embedded method by comparing
it with Fine + DivideMix.

In this comparison, ConfidentMix achieved favorable
results across all noise patterns, particularly in challenging
scenarios with high noise rates or a large number of
classes. On CIFAR-10 with 90% symmetric noise, our
proposed method both outperformed DivideMix by 15.1%
and achieved a 0.6% higher accuracy than the best performing
SOTAmethod. On CIFAR-100with 50% and 80% symmetric
noise, it outperformed the best SOTA methods by 0.9%
and 2.5%, respectively. Although OT-Filter achieved superior
performance on CIFAR-100 with 90% symmetric and 40%
asymmetric noise, our method clearly demonstrated its
effectiveness by significantly improving the accuracy of
DivideMix. Moreover, compared with the combination of
DivideMix with the approach of [35], ConfidentMix was
significantly superior for several noise patterns. In summary,
the comparison verified the effectiveness of the proposed
method as an embedded method.

2) RESULTS ON CLOTHING1M
Table 3 shows the test accuracy results on Clothing1M of our
proposed method in comparison with traditional and SOTA

TABLE 3. Test accuracy (%) on Clothing1M. The * annotation indicates
results obtained using the official experimental code. Baseline results
were copied from the respective papers. The best result is highlighted in
bold.

TABLE 4. Results (top1 and top5 accuracy) on mini-WebVision. Baseline
results were copied from the respective papers. The best result is
highlighted in bold.

methods. It is important to note that the DivideMix results
on Clothing1M reported in the recent work [12], [22] are
worse than those published in [19]. Therefore, to enable
a fair comparison, we present a result obtained from our
experiments using the authors’ public code with the same ran-
dom seeds as ours. Our experimental results demonstrate that
ConfidentMix is effective in dealing with complex real-world
noise patterns and outperforms the SOTA methods. This
improvement highlights the robustness of ConfidentMix and
its adaptability to various types of noise, particularly in
complex datasets such as Clothing1M, where label noise is
prevalent and diverse. The integration of ConfidentMix with
DivideMix both enhances overall accuracy and underscores
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FIGURE 4. Ablation study for the quality of sample selection on CIFAR-10 with symmetric and asymmetric noise.

the potential benefits of combining different methodologies
to effectively address challenges in training models on
data with noisy labels. This achievement demonstrates the
versatility and practicality of ConfidentMix in real-world
applications where data quality is often unpredictable and
imperfect.

3) RESULT ON WEBVISION
Table 4 presents the results of our proposedmethod compared
with traditional and SOTA approaches on the real-world
mini-WebVision dataset. In Table 4, we report the top1
and top5 classification accuracies following the conventions
used in the existing literatures [19] and [21]. Top1 accuracy
refers to the percentage of test instances for which the
model’s top predicted class matches the true class label.
Top5 accuracy, by contrast, is a more relaxed metric that
considers a prediction as correct if the true class label is
among the model’s top five predicted classes. Reporting both
top1 and top5 accuracies provides a more comprehensive
evaluation of the model’s performance. It is worth nothing
that OT-filter was excluded because the experiments in
this dataset were not included in the paper. Our approach,
which combines ConfidentMix with DivideMix, demon-
strated superior performance, surpassing the SOTA methods.
In particular, it enhanced the performance of DivideMix
by 2.60% and 1.61% on mini-Webvision and ILSVRC12,
respectively. This achievement is significant, particularly
considering the challenging nature of the mini-WebVision
dataset, which is known for its real-world complexity and
noisy labels. The improvement in both the top1 and top5
accuracy metrics demonstrates that ConfidentMix effectively

handles the noise and variability inherent in real-world
data.

E. ABLATION STUDY
1) ANALYSIS OF LABEL NOISE DETECTION
Figs. 4 and 5 present the comparative results of ConfidentMix
and DivideMix with respect to sample selection quality, using
synthetic noise on the CIFAR-10 and CIFAR-100 datasets.
The noise rates evaluated were 50%, 80%, and 90% for
symmetric noise and 40% for asymmetric noise. The top
row of each figure, labeled ‘‘Precision,’’ plots the fraction
of samples in the predicted clean labeled set that are indeed
clean. The bottom row, labeled ‘‘AUC,’’ plots the area under
the receiver operating characteristic curve (AUC). This takes
into account both the clean label proportion and how well
the model fits to labels that are incorrectly classified as
clean. ConfidentMix consistently improved the quality of
sample selection in high-noise scenarios (80% or more) on
both CIFAR-10 and CIFAR-100. In particular, our method
suppressed fitting to noisy labels in the later stages of training
(post-150 epochs) by preventing the corruption of clean
labels, which greatly improved the AUC. We focused on
the problem of the degradation of sample selection quality
in high-noise conditions, where many noisy labels in the
labeled samples could lead to the generation of corrupted
mixed data with clean labels. Therefore, these results align
with our hypothesis and demonstrate that our method can
retain a high proportion of clean labels in high-noise
environments.

This analysis shows the effectiveness of ConfidentMix in
accurately distinguishing between clean and noisy labels,
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FIGURE 5. Ablation study of the quality of sample selection on CIFAR-100 with symmetric and asymmetric noise.

TABLE 5. Ablation study of the effect of each component. We abbreviate
sampling reliable labels, label confidence estimation, and RandAugment
as SRL, LCE, and RA, respectively.

particularly in challenging high-noise conditions. The ability
to maintain high precision in label noise detection is vital
for the robust performance of learning algorithms in noisy
environments. The findings suggest that ConfidentMix could
be a valuable tool for enhancing data integrity and improving
learning outcomes in scenarios where label quality cannot be
guaranteed.

2) THE EFFECT OF EACH COMPONENT
In our ablation study, we analyzed the impact of the key
components of our method: LCE and SRL. Additionally,
we compared our method with RandAugment [24], which
is known to be one of the best augmentation methods,
to evaluate the effectiveness of ConfidentMix in noisy
environments. The results are presented in Table 5.

LCE plays a crucial role in assessing the confidence of
labels, which is vital for reducing pseudo-label corruption.
Our study showed that omitting LCE often leads to decreased
performance, underlining its significance in the design of
weights that consider label confidence. SRL, which involves
the selection of samples whose labels are highly reliable,
proved to be particularly effective. This was most apparent

in scenarios with asymmetric noise, where models are prone
to make ambiguous predictions for similar classes, and
in datasets that have fewer classification categories, such
as CIFAR-10.

When SRL was excluded, we observed a minor decline
in performance at high noise ratios, which suggests that the
high-quality labels generated through LCE effectively sur-
passed the threshold set by SRL. However, the performance
on CIFAR-100 with 40% asymmetric noise deteriorated
significantly, confirming the importance of SRL.

In contrast to LCE and SRL, although RandAugment is
a high-performance data augmentation technique, it is not
tailored to noisy environments. Its inclusion with DivideMix
led to performance decreases in most cases, except on
CIFAR-10 with 90% symmetric noise. This comparison
highlights the adaptability and robustness of ConfidentMix
in handling noisy data, which is a challenging task that
RandAugment does not specifically address.

3) SENSITIVITY TO HYPERPARAMETER
We evaluated the impact of the label confidence threshold
parameter, denoted by τ , under 90% symmetric noise
conditions on CIFAR-10 and CIFAR-100. Fig. 6 plots the
variation in test accuracy as τ varied from 0.1 to 0.95. This
evaluation demonstrates the robustness of ConfidentMix to
variations in hyperparameters. The threshold τ is pivotal
in the selection of reliable labels. It must be sufficiently
large to ensure accurate selection but not so large as
to be counterproductive, particularly in scenarios such as
CIFAR-100, where a larger number of classes may lead
to lower prediction probabilities. Thus, for these scenarios,
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FIGURE 6. Ablation study with 90% symmetric noise for
hyperparameter τ . The left and right axes represent the test accuracy
achieved on CIFAR-10 and CIFAR-100, respectively.

setting τ to an excessively high value may result in the
exclusion of actual clean labels and affect the overall
effectiveness of the model. However, although setting τ to a
small value may include a higher proportion of noisy labels,
it also allows the capture of a broader range of potentially
clean labels, which can be advantageous in scenarios with
lower prediction certainty.

Our analysis revealed that the performance of Confident-
Mix remained stable across a broad range of τ values,
indicating its resilience to variations in hyperparameter
settings. Nonetheless, it is crucial to calibrate τ appropriately
for different datasets.

F. LIMITATION
ConfidentMix functions by estimating label confidence,
which it does by monitoring fluctuations in the volume
of training data that has been categorized through sample
selection. The precision of this estimation hinges on the
effectiveness of the sample selection algorithm. For instance,
in experiments with the CIFAR-100 dataset involving
40% asymmetric noise, ConfidentMix demonstrated notable
accuracy improvements when used in conjunction with
DivideMix. However, its performance compared with that
of OT-Filter was somewhat lower. This observation suggests
that, although ConfidentMix is effective in scenarios with
high noise levels, its performance on data with low to moder-
ate noise levels largely relies on the capability of the sam-
ple selection algorithm to accurately differentiate between
reliable and noisy labels. Additionally, ConfidentMix is
optimized for integration with SSL-based LNL approaches.
Consequently, adapting ConfidentMix to methods that do
not include a division of training data (specifically those
outside the purview of combining sample selection with SSL)
remains a substantial challenge.

VI. CONCLUSION
In this paper, we addressed the problem of label corruption
in mixing augmentation, which is a significant challenge

in LNL. We introduced ConfidentMix, an innovative mixing
augmentation technique designed to create training samples
in which clean labels are preserved. This method can be
effectively integrated with existing sample selection and SSL
strategies. In contrast to typical mixing augmentation meth-
ods that rely on completely random mixing, ConfidentMix
enhances the quality of labels in mixed data. It achieves
this by carefully selecting samples with reliable labels and
calibrating mixing weights according to the assessed label
confidence. The efficacy of ConfidentMix was validated
through comprehensive experiments on benchmark datasets
with synthetic noise, in addition to real-world datasets.
It outperformed SOTA methods on all real-world datasets
and on the synthetic noise dataset for multiple noise rates.
In particular, our method achieved a remarkable accuracy
improvement of 15.1% in scenarios with the high noise rate
of 90%.

There are two directions for future work. First, although
ConfidentMix has been primarily designed and evaluated
for multi-class classification problems, its key components
– SRL, LCE, and confidence-guided mixing – could poten-
tially be modified to handle multi-label classification tasks.
However, modifications such as independently considering
the label confidence for each label, adapting the mixing
operation, and adjusting the confidence threshold would be
necessary to account for the specific characteristics of multi-
label noise. The extension of ConfidentMix to multi-label
classification is an interesting direction for future work, as it
could extend the applicability of our proposed method to a
wider range of real-world problems in which instances are
associated with multiple labels.

Next, while ConfidentMix has demonstrated effectiveness
in various noisy label scenarios and has been specifically
designed for integration with SSL techniques, there remain
opportunities for future research in comparing and potentially
combining our approach with other SOTA methods. For
instance, RankMatch, a recently proposed method that shares
the goal of improving robustness in learning with noisy
labels, employs a confidence representation voting strategy
for clean sample selection and a rank contrastive loss
for consistency regularization. Although RankMatch and
ConfidentMix have different strategies and are designed for
different settings, exploring their compatibility and potential
synergies could lead to further advancements in the field.
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